
sciendo

Journal of ELECTRICAL ENGINEERING, VOL 72(2021), NO2, 78–88

PAPERS

Automatic generation of a PLC controller
based on a control system-identified model

Tomáš Sýkora, Michal Husák, Ondřej Baštán, Tomáš Benešl1

This paper discusses the automatic generation of controller codes through a model created in the MATLAB environment
the aim of the research is to simplify the implementation and tuning of the closedloop circuit in industrial systems in this
context, the concepts and steps outlined herein could produce a more intuitive and powerful alternative to the pre-defined
software components of control systems that enable closed-loop control. We propose a methodology for identifying the system
through an industrial control setup, creating a control loop model, and generating a code implementable in the control setup.
Importantly, we also present and compare the results obtained with various variants of the automatically generated control
circuit containing a pre-defined controller of the industrial control system. The outcomes of the research allow us to conclude
that the implementations generated by the model perform better that the option using a built-in controller.

K e y w o r d s: control system, system identification, PLC code generation, simulink PLC coder, industrial automation

1 Introduction

Feedback operation or control are traditional concepts
within the automation of industrial systems. A vast ma-
jority of automated systems include a feedback loop that
facilitates automatic control. Designing the algorithms
for such loops, however, usually requires skilled operators
and relatively good knowledge of the controlled system.
These factors and preconditions, together with a suitable
industrial control system, then allow us perform an auto-
matic task with a closed loop.

Most classic industrial control systems, such as pro-
grammable automata, enable the use of builtin soft-
ware or hardware blocks serving as some of the ba-
sic controllers, including PIDs or PSDs (whose struc-
tures are described in paper [1]). As a rule, these blocks
are user-friendly and allow easy and quick implementa-
tion of a robust controller. The basic disadvantage of
most control systems equipped with these blocks is non-
transparent implementation. In such standard ”prede-
fined” controllers, the individual parameters can be mon-
itored and edited, but it is often not entirely clear how the
parameters are subsequently brought into the regulatory
process and how a specific implementation is carried out.
A regulatory scheme (from the manufacturers’ traceable
documentation, eg , [2]) corresponding to the specific im-
plementation is either not mentioned in the block-related
documentation or is very concise.

Predefined controllers are designed to be usable for the
widest possible range of closed-loop SISO systems, and in
such a manner that their setting is performed more or less
automatically, without the need of advanced knowledge of
control theory. Although such an approach seems useful,

there are also situations where it is inappropriate and its
use can cause several problems when putting controllers
into practice.

Typical examples of such scenarios consist in the ap-
plication of these blocks in MIMO or MISO systems or
where we do not know the controlled system sufficiently,
making automatic identification necessary.

As a rule, the algorithms to execute automatic con-
troller setting are limited to several basic variants [3].
These then include, for example, setting the parameters
depending on the system’s response to an impulse or cal-
culating the parameters of the controller by adapting the
Ziegler-Nichols method, which sets the controller by ex-
ploiting the parameters of the marginal cycle, for which
the feedback system needs to be set to the limit of stabil-
ity, ie to a mode where the system oscillates with steady
oscillations. Setting the controller via Ziegler-Nichols to
regulate DC motors is outlined in, for example, paper [4].

However, these methods are completely unsatisfactory
in many diverse closed-loop systems. Impulse-based iden-
tification can often be insufficient, and bringing the sys-
tem to the stability limit is even characterizable as dan-
gerous for a wide range of controlled systems. In such
cases, the system integrator has to rely on his or her
own experience only [5]. Conversely, self-adjustment al-
gorithms and pre-defined controllers limit an experienced
integrator by not allowing them an insight into the imple-
mentation, thus eliminating the actual possibility of de-
bugging or modifying the module for more sophisticated
or special solutions.

We discuss the design and testing of a solution al-
ternative to the pre-set controllers described above, a
concept intended to facilitate transparent and verifiable

1 Department of Control and Instrumentation, Faculty of Electrical Engineering and Communication, Brno University of Technology,
Technická 3058/10, 616 00 Brno, Czech Republic, xsykor23@vutbr.cz

https://doi.org/10.2478/jee-2021-0011, Print (till 2015) ISSN 1335-3632, On-line ISSN 1339-309X
c©This is an open access article licensed under the Creative Commons Attribution-NonCommercial-NoDerivs License

(http://creativecommons.org/licenses/by-nc-nd/3.0/).



Journal of ELECTRICAL ENGINEERING 72(2021), NO2 79

automatic implementation of a controller with extended
automatic identification options, diversified adaptability
to long-term changes, and tuning modes. The resulting
product should be suitable for the practical use of the
methodology in a real environment.

The aim of the research is to employ MATLAB to gen-
erate an implementation code, utilizing a code created in
Simulink. The described solution has a potential to en-
sure a high level of reliability, transparency, and versatil-
ity while maintaining simplicity and fostering an overall
increase in the resiliency of the control circuit. Another
value added may rest in the possibility of using formal
code verification methods.

We briefly characterize the state of the art, then out-
line the conceptual properties of the solution, and present
the individual possibilities of identifying open-loop sys-
tems usable for incorporation in both common basic and
less common complex industrial systems. These identifi-
cation methods [6, 7] will then be employed in an au-
tonomous system identification algorithm. The elemen-
tary types of controllers that are convenient for general
control and can be implemented by an automatically gen-
erated code through Matlab. To compare the generated
implementations and built-in regulator blocks, we have to
select the optimum criterion; however, as the optimum so-
lution differs between diverse types of systems. After de-
scribing the physical model of the controlled system used
to verify the implementations we list the measured data
and the calculated criteria, and compare the achieved re-
sults.

2 Related research

The entire field of industrial control systems as related
to feedback systems and Matlab can be primarily divided
into two categories, namely, model-based design (MBD)
and code verification. In this connection, we should also
point to hardware-in-the-loop (HIL/HWIL) simulation,
a technique discussed in a significant number of papers.
To ensure verifiability and portability, the code has to
be generated in such a manner that the resulting for-
mat complies with the IEC 61131-3 standard, used by
most industrial control systems. The research published
to date focuses especially on the verification of generated

implementations or overall code generation based on the
modelled functionality.

For example, Bayrak et al [8] compare the outputs of
a system model implemented in Matlab Simulink with
the outputs of an industrial control system whose code
was generated on the basis of a relevant model (as pre-
sented above) and whose implementation was carried out
through different development environments into control
systems of different manufacturers. The authors then in-
vestigated if the output data of the real system with
the generated implementation corresponded to those of
the model. After comparing the results of systems im-
plemented by different manufacturers via criteria aimed
at tracking the shape and deviations, the researchers con-
cluded that the best shape match between the model out-
put data and the real system data with the generated
code implementation is achieved in Beckhoff systems,
while the deviation criterion best suits the implementa-
tion in Siemens control systems. Furthermore, Bayrak et

al established that if the Continuous flow chart (CFC)
syntax is used, all the tested control systems exhibit a dif-
ference of not more than 1.5% between the output data of
the real implementations and the simulation output data.

Within our research, a real system with real elements
is employed to verify the functionality of the proposed
controller. For this reason, due to the sensor noise, ac-
curacy of the A/D converters, and real interference, we
expect greater deviations. The comparison is centred pri-
marily on a pre-defined controller implemented in a spe-
cific control system and a controller generated by Matlab
Coder [9] depending on the control circuit model. Article
[10] describes the design and generation of software for a
B&R platform control system through the MBD method.
A block diagram characterizing the authors approach is
shown in Fig. 1; the block scheme indicates that the pro-
cedure consists in an automatic generation of the control
system code from a mathematical model of the produc-
tion process created in Matlab Simulink. The authors of
[10] do not use the resources defined by IEC 61131-3 and
generate the resulting code in ANSI C, which is supported
by B&R platform control systems.

The researchers describe, among other problems, the
detailed formation of a system model in Matlab, and
they also characterize the related code generation via the
Automation studio environment. A similar approach is

Configuration
settings

B&R automation
studio target for
Simulink model

Ceating
graphical HMI

Automatic
generation of PLC

code in C

Compile & download
automation system

Creating
simulation model

in MATLAB

Mathematical
model of color
mixing process

Fig. 1. MBD block diagram for a BR control system, [10]



80 T. Sýkora, M. Husák, O. Baštán, T. Benešl: AUTOMATIC GENERATION OF A PLC CONTROLLER BASED ON A CONTROL . . .

applied in our study. The difference rests primarily in
that we use a different modelled system and standard
resources defined by IEC 61131-3.

PLC Ladder logic
program

Safety
properties

Transform to C program by Gene-auto

Model check C program by CBMC

Properties
proved!

Satisfy?

Error trace for debugging

Yes

No

Generate Simulinks models

Fig. 2. Basic procedure of model based verification, [11]

As mentioned above, a frequently described category
in current research, relating to the use of generated code,
is the verifiability. A code generated automatically is suit-
able for implementing safety functions or safety systems.
Because such a code has a model characterizing its func-
tionality, it is easier to be verified and, thus, certified as
safe.

This issue is addressed in, for example, He, Oke and
Allens paper on PLC code verificiation by using Matlab
Simulink [11]. One of the methods proposed by the re-
searchers is the MBD technique (Fig. 2), which can be
adapted to our model and employed to verify our imple-
mentation. The authors of paper [12] focus on a similar
issue within the wider framework of generating and veri-
fying codes for safety applications.

Hul, Wagner and Allen describe in their article [13] the
generation of a regulator code by utilizing the Simulink
Coder tool. The authors exploit a mathematical de-
scription of the feedback system and analyse the design

and generation of an MPC controller (predictive con-
trol model) for an industrial PLC control system. The
eventual behaviour of the generated code was verified in
laboratory conditions. By extension, the problem of code
generation is further outlined in paper [14].

One of the target fields for generated codes is virtual
commissioning. To obtain a pattern for a generator, we
can create a model that describes the operation of a sep-
arate industrial system. The control system containing
the implementation based on the generated code can also
serve as a simulator of a relevant industrial system. In
terms of practice, this solution may find use in, for exam-
ple, verifying the functionality of a program; training op-
erators; and education. The problem is further addressed
in in paper [15]. Within our research group, alternatives
to this solution were previously examined during simu-
lations of a batch production control system designed to
teach industrial control [16].

3 Solution concept

Considering the current state of the research and the
above requirements, we defined four basic approaches us-
ing an automatically generated code to implement solu-
tions to the task of industrial closed-loop system control.
The individual approaches are described in the following
subchapters.

3.1 Mathematical model

This controller designing technique assumes that the
mathematical model of the feedback system is known.
The target application lies where it is practically too
complicated, costly, or impossible to implement system
identification via one of the well-proven methods, such as
the technique based on evaluation of the response to a
step. This approach also facilitates designing a controller
for the system before the real system is formed.

Figure 3 shows a typical solution procedure. Based on
a mathematical description, a model of the entire con-
trol loop, including models of the system and the con-
troller, is created by using the Simulink tool. The con-
troller model is then processed via Simulink Coder, which
supports code generation according to IEC 61131-3; thus,

Mathematical

model

of system

Simulink model

TIA Portal target

for Simulink

Coder

Automated code

generation in

SCL (IEC61131-3)

Compile and

Download to

S7-1500

System control

by PLC

Input data

T
o

o
lch

ain

Hardware

Fig. 3. Block diagram of the controller generated from a mathematical description of the system



Journal of ELECTRICAL ENGINEERING 72(2021), NO2 81

System analysis

(response to
a step)

Simulink model

TIA Portal target

for Simulink

Coder

Automated code

generation in

SCL (IEC61131-3)

Compile and

Download to

S7-1500

System control

by PLC

Input data

T
o
o
lch

ain

Hardware

Matlab data

analysis

Fig. 4. Block diagram of the controller generated from identification according to the step response data

we obtain a code representing the controller in a format
that is directly usable in programmable automata.

3.2 Manual identification

The second approach rests in designing the controller
through parameters obtained via manual system identifi-
cation. The individual steps are shown below.

A step signal is brought to the input of the feedback
system by utilizing an industrial control system, and the
related response is recorded. We then insert the measured
data into an analytical module in the Matlab environ-
ment to adjust the relevant parameters of the controller
in the control loop model inside the Simulink tool. The
subsequent procedure is the same as that in the previous
variant.

3.3 Automatic in-field identification

One of the more sophisticated techniques for imple-
menting the controller in control systems allows auto-
matic system identification and automatic controller ad-
justment. In practice, this procedure is materialized by,

for example, supplementing the system model created in

Simulink with a self-executable function that automat-

ically performs the identification (for instance, via step

response), analyses the measured data, and adjusts the

specific parameters inside the controller in relation to the

selected criterion. This concept is shown in Fig. 5.

The ”autotune” functionality described above may be

suitable for mass-produced control systems, which are

subsequently deployed in various feedback systems.

In certain industrial applications, however, this con-

cept is inappropriate, due to the fact that the identifica-

tion algorithm can independently bring the feedback sys-

tem into an unstable or even dangerous state. In such sys-

tems, the controller settings should always be performed

by an experienced integrator.

3.4 Adaptive control

This approach finds application in systems whose pa-

rameters change in the long-term perspective, depending

on quantities such as ambient temperature and humidity,

Simulink

controller with

identification

TIA Portal target

for Simulink

Coder

Automated code

generation in

SCL (IEC61131-3)

Compile and

Download to

S7-1500

Indentification

starts in PLC

Model for

controller created

in PLC

System control

by PLC

T
o

o
lch

ain

Hardware

Fig. 5. Block diagram of a controller with an identification module

Self-adapt

controller

TIA Portal target

for Simulink

Coder

Automated code

generation in

SCL (IEC61131-3)

Compile and

Download to

S7-1500

System control

by PLC

T
o

o
lch

ain

Hardware

Fig. 6. Clock diagram characterizing adaptive controller generation



82 T. Sýkora, M. Husák, O. Baštán, T. Benešl: AUTOMATIC GENERATION OF A PLC CONTROLLER BASED ON A CONTROL . . .

especially at a turn of the seasons, or the performance of
the associated technology.

In this type of feedback systems, it is usually very dif-
ficult to perform single-step parameter setting such that
the resulting control manages all long-term changes at an
approximately identical quality. A possible solution to the
problem may consist in utilizing gain-scheduling for the
adaptation. This approach, however, requires knowledge
of not only the variable that influences the regulatory
process but also the ability to measure it; thus, an adap-
tive controller appears to be a suitable choice (Fig. 6).
The advantage of such controllers is that they actively
adjust their parameters according to the current course
and conditions of control. Conversely, a major drawback
may rest in the poor behaviour of the controlled variable
at the start-up or during a step change in the param-
eters of the controlled system. These disadvantages are
reducible by convenient initial setting of the control loop
before the system is started.

4 Methods

This chapter provides a description of the methods
used in the identification, modelling, and assessment of
our solution.

4.1 Identification methods

The techniques presented in Chapter 3 assume the use
of several identification methods to yield a dynamic model
of the regulated system. This model will then facilitate
implementing the model.

The identification methods can be classified into two
categories parametric, which compile the system model
analytically, and non-parametric, which determine the
parameters of the system experimentally. In the former
case, we assume that the structure of the system follows
the laws of nature and can be described via internal state
variables. By contrast, experimental methods interpret
the system primarily as a black-box and analyse its be-
haviour through its responses to external influences.

Considering the fact that the proposed solution should
be applicable to unknown systems with an unknown state
description, it is appropriate to use experimental methods
to create an initial system model. The most common in-
struments of nonparametric identification are techniques
based on impulse or transient characteristic analysis cor-
relation methods, and frequency and spectral analyses An
important requirement lies in the industrial applicability
of the resulting control circuit design methodology, and
therefore the applied method should be practicable di-
rectly in field conditions. In our solution, the system is
identified based on its response to the input signal [6].

An important aspect of the actual identification is the
type of the input signal used to excite the system. The
quality and character of the input signal have a major
impact on the accuracy of the identification. The most
widely used types of input signals are as follows:

• Step response

• Pseudo Random Binary Sequence (PRBS)

• Sum of harmonic waveforms. The step response class
allows easy identification of the static gain, rise time,
and overshoot.

Pseudorandom binary sequence is a type of signal that
takes on only two values (binary) and exhibits white
noise-like behaviour; in PRBSs, however, we are invari-
ably capable of determining the following element (pseu-
dorandom). The signal is generated by using a shift reg-
ister and modulo 2 adders [7]. The identification can take
place in an open or a closed loop. The simplest and most
popular option is open loop identification, where the ac-
tual identification proceeds near one of the operating
points and is based on a steady state.

The closed-loop identification variant is markedly
more complicated. The procedure must be used on sys-
tems that do not allow the creation of an open loop,
as they would become unstable with the change; alterna-
tively, feedback is required for security reasons. In closed-
loop identification, we employ either a direct approach,
corresponding to open-loop identification, or an indirect
approach, in which closed-loop transmission is identified
and the system transmission is calculated based on the
knowledge of the controller’s transfer function.

Another significant parameter in the identification
process is the sampling period. This is generally set to
10% of the rise time. A sampling period too short causes
practical problems, due to the retrieved poles being close
to ”1” and also the greater sensitivity in rounding. Con-
versely, an excessively long sampling period is inferior in
terms of the quality of the control procedure.

For the first iteration of our solution, we will employ
the principles of open-loop identification.

4.2 Controller possibilities

Without knowing the actual value of the output, we
are unable to compensate for the impact of the faults,
and it is not possible to ensure reliable monitoring of the
setpoint in the event of changed system parameters. In
cases of accurate knowledge of the system the action can
be calculated in advance, such that the resulting control
is optimal. The optimality of the actual control is deter-
mined by the selected criteria, including the requirement
to minimize the energy consumption or to optimize the
speed. To provide a relevant example, we can refer to en-
ergy production planning according to the time of the day
and season.

The system is controlled by a controller that uses other
components to achieve the required goals. The controller
delivers a minimum control deviation by changing the ac-
tion intervention affecting the system. To ensure proper
functioning, the controller consists of multiple parts. In
practice, three-component controllers are frequently used;
these contain a proportional, an integrative, and a deriva-
tive component. By combining these components, we can
achieve the required regulation properties.



Journal of ELECTRICAL ENGINEERING 72(2021), NO2 83

Historically, analogue PID controllers were first used.
Due to the fact that control systems are usually discrete,
the controllers implemented by them are also discrete.
Thus, we are talking about a discrete variant of the PID
controller, PSD controller. Predefined controllers in in-
dustrial systems could be referred to as pseudo PIDs. The
constants of these controllers are designed similarly to
those for continuous controllers. The control system then
transforms the proposed solution into a discrete form dur-
ing the compilation.

Another option is to employ a state controller. The
essence of state regulation lies in introducing the feed-
back from the individual states of the regulated system
to its input. The obvious disadvantage is the need to mea-
sure, or at least to reconstruct, the states of the regulated
system. The reward for this effort is the ability to force
almost any dynamics on the control loop. Compared to
a PID controller, we can achieve a faster transient with
a lower frequency. The main limitation of this approach
stems from the fact that when an extremely fast response
is being designed, state feedback generates action inter-
ventions of such amplitudes that are not feasible by a real
action member. In addition, designing too much gain in
the state links may cause excessive sensor noise amplifica-
tion. Therefore, when designing the feedback, we should
only require such a speed of regulatory processes that the
above-mentioned problems do not occur.

4.3 Regulation criteria (analysing the dynamic proper-
ties of the control circuits)

To compare and evaluate the results achieved, it will
be necessary to use evaluation criteria, whose purpose will
be to determine the behaviour of the systems in the tran-
sient process. The parameters of interest are the transient
stabilization rate, maximum overshoot, and oscillation.
These are then the dynamic properties of a system con-
sisting of a regulated controller setup and feedback. The
aim is to achieve the most optimal dynamic properties
possible, via suitable setting of the controller parameters.
The optimality itself must be defined in advance by using
a criterion function. An improper choice of the criterion
will result in suboptimal control loops.

As we intend to assess the dynamic properties of a
transient effect, a criterion that considers time has to be
employed. Integral criteria satisfy this requirement; they
assess the quality exploiting the course of the control
deviation, which is obtained from the response of the
control circuit to a step change of the setpoint.

Linear integral criterion

This instrument calculates the area between the course
of the control deviation e(t) and the steady state devi-
ation. The area is termed the linear control area. The
criterion is

J L =

∫
∞

0

[e(t)− e(∞)]dt . (1)

Quadratic criterion

This instrument expresses the quadratic control area.

Due to the square multiplication, negative deviations can

be included smoothly. The negativity is cancelled because

of the multiplication. At the same time, however, this

property is a disadvantage: It attaches more weight to

larger deviations, which then leads to large overshoots

and deviation frequencies. The criterion is

J K =

∫
∞

0

[e(t)− e(∞)]
2
dt . (2)

ITAE criterion

The disadvantage of the quadratic criterion is im-

proved by the ITAE criterion (Integral of Time Multi-

plied by Absolute value of Error), given in equation (3).

As is obvious from the formula, the weight of the devi-

ation increases linearly with time. The problem of neg-

ative deviations is solved by utilizing an absolute value;

however, due to the non-linear function of the value, it

is not possible to calculate the controller design analyti-

cally, and thus repeated simulations are employed for the

calculation

JITAE =

∫
∞

0

|e(t)− e(∞)|t dt . (3)

The proposed solutions are compared with all of the

above criteria.

4.4 Code generation system models

The Matlab Simulink tool enabled us to create the

system model. Two variants of the model were imple-

mented in this tool: One via the transfer function and

the other by using the state description of the system.

Subsequently, we selected suitable regulators. The selec-

tion criterion consisted in the ability to generate the PLC

implementation via the Simulink PLC Coder tool. This

requirement is met by the PID controller implemented

by exploiting the Simulink-block PID Controller, which

allows the block to be switched to the discrete mode,

ie . the PDS controller mode. The required parameters of

the controller were then found in the block by using the

”tune” function.

The other controller was designed with the Siso tool,

where a PI controller was designed based on the time

signals and responses of the controlled system. In per-

forming the task, it was necessary to ensure a sufficient

supply of stability (GM (gain margin) and PM (phase

margin)). However, the proposed controller it has a con-

tinuous form, and, to generate the code, it is necessary to

convert its model to a discrete form with a fixed sampling

period. The discretized form of the controller designed in

the Sisotool tool is visualized in Fig. 7. For this model, it



84 T. Sýkora, M. Husák, O. Baštán, T. Benešl: AUTOMATIC GENERATION OF A PLC CONTROLLER BASED ON A CONTROL . . .

Fig. 7. Simulink discrete model4 of the PIPS controller

is now possible to automatically generate a code imple-

mentable in a PLC.

The last tested variant of the design was a procedure

consisting in the identification and description of the sys-

tem by using a state model, ie ., matrices A, B, C, and

D. Subsequently, this description was employed to design

a state controller, meaning matrices K and L. The dis-

cretization of this controller was solved automatically via

a special block.

5 Real test system

A real system connected to a real control system was
utilized to verify the functionality of the results.

5.1 Controlled system

The regulated test system consisted of a tube having
80 mm in diameter and exhibiting a length of 500 mm. A
voltage-controlled fan was placed at the inlet of this tube.
The air flow through the tube was measured at its outlet,
utilizing a rotary encoder with a vane flow meter. The
controlled variable is the air flow (output encoder speed).
The system is visualized in Fig. 10. Although the system
is a higher order one, it can be simplified, with respect
to the time constants, to a system that has three states
and a traffic delay. These states are the inlet fan speed,
air flow through the tube, and outlet encoder speed. We
subsequently approximated the system to a second-order
one with delay for testing purposes.

The system itself features a number of nonlinearities
that occur in both the inlet fan and the airflow mea-

Fig. 8. Simulink model with the state and LTI models and two different controllers implemented

Fig. 9. State controller for PLC code generation



Journal of ELECTRICAL ENGINEERING 72(2021), NO2 85

surement. The fan starts rotating at an effective action
voltage of 12 V and stops when the voltage drops below
9 V. The output flow meter is unable to detect an air flow
lower than that generated when the inlet fan is energized
with 10 V. For this reason, the system was used in range
of 12-24 Vrms value of the output voltage.

Fig. 10. Regulated test system

As part of the verification, our goal is to regulate
the air flow through the tube. This regulation should be
gentle on the actuator, fast, and, if possible, without an
overshoot.

5.2 Hardware and software

The following hardware and software allowed us to
control the test system and its subsequent tuning.

The applied control system was a compact PLC manu-
factured by Siemens, type S7-1214 DC/DC/DC equipped
with firmware version 4.4. The engineering framework
TIA Portal V16 was employed as the development envi-
ronment for the HW. Matlab r2020a facilitated the iden-
tification, modelling, and code generation, with the fol-
lowing tools: PLC Coder v.3.2; System identification tool-
box v.9.12; Simulink tool v.10.1; and control system tool-
box v.10.8. The Siemens NX r1914 tool with the Nastran
simulation solver was applied to design and simulate the
hardware of the testing system.

6 Results

This chapter characterizes the results achieved within
the individual areas of interest set out in the paper.

The system was identified by using three input-output
measurement methods, namely, application to a step re-
sponse, a linear increase setpoint, and PRBS. A system
consisting of a regulated setup, a D/A converter, and an
A/D converter of the control system was identified. The
sampling period in the control system was set to 10 ms.
The D/A converter was implemented via a PWM output,
whose period was chosen to be between 10.25 and 50 ms;
this allowed us to determine the impact of the period on
the result of the system identification. A period of 25 ms
was chosen experimentally, and showed the best dynamic
parameters.

All of the measured data were assembled, entered into
the System identification tool in Matlab, and analysed in
such a manner that the response of the identified system
corresponded as accurately as possible to the original
response.

y1

0 200 800Time (s)

u1

30

400

4000

8000

10

20

Fig. 11. System identification for the ms PWM

For the 25 ms PWM, the model was identified as

F25msPWM(s) = e
−0.2s

357.3

s2 + 2.523s+ 1.186
. (4)

The results of the identification indicate an oscillating

system of the second order. We successfully identified

the system and then materialized transmission with an

accuracy of 93%. The identification was more accurate

(by units of percent) with the third order; however, for

testing purposes and simpler controller design, the second

order of the system was chosen.

The theoretical response of a control loop containing

the above system, whose controller was designed by using

the SISO tool, is displayed in Fig. 12.

An implementation via a PID controller block was also

used for the identified system; this option facilitated quick

setting of the controller parameters, depending on the

step response of the closed loop with the possibility of

defining the aggressiveness, or speed and robustness, as

regards overshooting the controlled system.

Another implemented variant then consisted in a con-

troller whose model implemented state control. All of the

variants were subsequently generated via the Simulink

PLC Coder tool and deployed in a Siemens PLC. In ad-

dition to the three above-mentioned automatically gener-

ated implementations, we applied in the PLC an option

with a predefined controller, tuned by using the autotune

and finetune functions. The results of measuring the con-

trol loop responses in a real system are presented in Figs.

12, 13, and 14.

Considering the waveforms in Fig. 15 and Fig. 16, it is

not easy to decide whether a particular implementation

is significantly better than the others. Thus, the criteria

were calculated for all of the variants, whose results are

shown in Tab. 1.

The action sequences in Fig. 16 indicate that setting

the controller via the TIA Portal is not very suitable

for applications using actuators that are prone to abrupt



86 T. Sýkora, M. Husák, O. Baštán, T. Benešl: AUTOMATIC GENERATION OF A PLC CONTROLLER BASED ON A CONTROL . . .

Table 1. The controller results according to the pre-defined criteria

Linear (×105) Quadratic (×109) ITAE (×108)

State controller 9.47 3.568 6.27

Matlab PID 9.48 3.459 6.41

SISO tool PID 5.39 3.456 7.63

TIA Portal PID 9.97 3.604 9.10

Amplitude

0 1 2 63 Time (s) 5

0

0.4

0.8

1.2

Fig. 12. Sisotool controller simulated step response

Frequency (Hz)

0 2 4 Time (s) 8

0

1000

2000

3000

SISO tool

PID block

Requested value

Fig. 13. Simulink model step response with the sisotool discretized
controller and PID block controller

Frequency (kHz)

0 4 8 Time (s) 16

2

4

6

Req. value

State controller

Matlab PID controller

SISO tool PID

TIA portal PID

Fig. 14. Controlled variable response

changes (typically relays). In the system applied within
this paper, the action is filtered by an actuator, ie ., a
DC motor. In some applications, though, such an action
behaviour is undesirable.

6.1 Real code generation problems

When creating a subsystem for code generation, we
need to pay due attention to the feasibility in the target
control system. From the perspective of practical imple-
mentation, it is also necessary to assume, among other
aspects, that the backward Euler’s methods - not the
forward ones - have to be used. Moreover, we have to
perform discretization in all time-dependent processes. In

the control system, it is then necessary to run the gen-
erated code with the same sampling period as that set
in the model. Even if these rules are observed, however,
the control subsystem may not be generable, due to the
presence of algebraic loops, and will need to be resolved
manually.

7 Discussion and conclusion

We presented in detail the concepts, tasks, and setup
options that facilitate the testing of automatic code gen-
eration for PLCs; the paths towards the desired goal were
explored via a model using Matlab Simulink PLC Coder.
Procedurally, we generated various types of controllers,
exploiting identification performed by the control system
and methods described above. The resulting control cir-
cuits were designed on the basis of the identified system
model, whose response matched that of the real system
at an accuracy of 93%. As a result, there was a minimal
difference (in the order of units of percent) between the
theoretical response of the controllers with the identified
system and the response of the real control loop.

7.1 Comparison with the controller natively imple-
mented in the PLC

The resulting responses of the individual control loops
are displayed in the graphs in Figs. 12-14. Compared to
the original assumption, the predefined PID controller set



Journal of ELECTRICAL ENGINEERING 72(2021), NO2 87

rpm (revolutions / min)

0 4 8 Time (s) 16

State controller

Matlab PID controller

SISO tool PID

TIA portal PID

40

20

60

80

100

Fig. 15. Inlet fan speed (action)

rpm (revolutions / min)

0 4 8 Time (s) 16

State controller

Matlab PID controller

SISO tool PID

TIA portal PID

12

18

6

24

Fig. 16. Controller output in the form of a voltage/PWM, written
to the PLC output

in the TIA Portal yielded very good results, and its re-

sponses to the setpoint were comparable to the outcomes

of the other tested implementations.

The controlled system exhibited minimal traffic de-

lay and was relatively fast (see the time constants system

equation 4); thus, the design of the controller utilizing au-

tomatic tuning in the TIA Portal reached the same level

as the designed controllers relying on Matlab. However,

in a system having a longer traffic delay or time constants

in the order of tens of seconds or more, the result could

be markedly worse.

We believe that the good performance of the controller

from the TIA Portal followed from the relatively large

derivative component but was achieved only at the ex-

pense of an oscillating output of the controller, as illus-

trated in Fig. 16. We can nevertheless point out that the

results of the controller designed by using the PID block

in MATLAB, and also those of the state controller, are

similarly satisfactory but without the oscillation of the

output; such an oscillation can adversely affect the life of

the actuator and is therefore generally undesirable.

7.2 Discussion of the results and applicability

Within the research characterized in this article, we

established that the possibilities of code generation for

PLCs, in terms of not only generating control elements

but also, for example, offering diverse code verification

options and other related aspects, comprise major poten-

tial. Using the methodology described herein to control

fast systems having good feedback is less beneficial than

initially expected; however, system identification and the

related design of a controller (or filters) via the tools and

methods presented in the paper could prove advantageous

in the construction of more complex feedback circuits,

filters for noisy feedback signals, and control of MIMO,

MISO, and SIMO systems. Such an approach embodies

the almost exclusive way to functionally implement a con-

trol circuit, except for SISOs.

7.3 Future work

At the follow-up research stages, we intend to test the
functionality of the generated controllers on different sys-
tems, those requiring adaptive control in particular. The
fields and subdomains to be explored in this context in-
clude also formal code verification and fail-safe code gen-
eration for safety PLCs, as combining adaptive control
and formal verification will increase the resilience of con-
trol circuits.

The primary aim, however, consists in designing adap-
tive regulators, which have not found wide use thus far
due to their demanding implementation; one of the most
prominent related tasks is then to create a universal
methodology for a simple automatic design of adaptive
control usable in a wide range of industry standard feed-
back systems.

Acknowledgements

The completion of this paper was made possible by
the grant No. FEKT-S-20-6205 - Research in Automation,
Cybernetics and Artificial Intelligence within Industry 4.0
financially supported by the Internal science fund of Brno
University of Technology.

References

[1] P. Gawthrop, “Self-tuning PID control structures”, IEE Collo-

quium on Getting the Best Out of PID in Machine Control,

1996, 10.1049/ic:19961463.

[2] “TF4100 TC3 Controller Toolbox: FB CTRL PID”, 2020.

[3] Y. Li, C. Tang, and K. Liu, “PID parameter self-setting

method base on S7-1200 PLC”, 2011 International Confer-
ence on Electrical and Control Engineering, 2011, 10.1109/ice-

ceng.2011.6057410.

[4] P. Meshram and R. Kanojiya, “Tuning of PID controller us-

ing Ziegler-Nichols method for speed control of DC motor”,
International Conference On Advances In Engineering, Science

And Management (ICAESM -2012), IEEE- Nagapattinam, In-

dia, 2012.

[5] P. Noskievič, Modelovańı a identifikace systému, Ostrava, Mon-

tanex, 1999.



88 T. Sýkora, M. Husák, O. Baštán, T. Benešl: AUTOMATIC GENERATION OF A PLC CONTROLLER BASED ON A CONTROL . . .

[6] T. Soederstroem and P. Stoica, System identification, New York,
Prentice Hall, 1989.

[7] L. Ljung, System identification - theory for the user, (second
edition), Englewood Cliffs, NJ, Prentice Hall PTR, 1999.

[8] G. Bayrak, P. Murr, S. Ulewicz, and B. Vogel-Heuser, “Com-
parison of a transformed Matlab/Simulink model into the pro-
gramming language CFC on different IEC 61131-3 PLC envi-
ronments”, Proceedings of 2012 IEEE 17th International Con-
ference on Emerging Technologies Factory Automation (ETFA
2012), 2012, 10.1109/etfa.2012.6489667.

[9] Simulink Coder Reference, The MathWorks, Inc., 2020.

[10] R. Salunke, P. Vikhe, and T. Sarode, “Implementation of au-
tomatic PLC code from MATLAB simulation model using BR
automation target for Simulink”, Int. Conf. on Control, Com-
munication and Power Engineering, 2013.

[11] N. He, V. Oke, and G. Allen, “Model-based verification of
PLC programs using Simulink design”, 2016 IEEE International
Conference on Electro Information Technology (EIT), 2016,
10.1109/eit.2016.7535242.

[12] M. Schwarz, H. Sheng, A. Sheleh, and J. Boercsoek, “Matlab /
Simulink generated source code for safety related systems”, 2008
IEEE/ACS International Conference on Computer Systems and
Applications, 2008, 10.1109/aiccsa.2008.4493678.

[13] R. Hyl and R. Wagnerova, “Fast development of controllers with
Simulink Coder”, 2017 18th International Carpathian Control
Conference (ICCC), 2017, 10.1109/carpathiancc.2017.7970434.

[14] S. Ozana and T. Docekal, “The concept of virtual laboratory
and PIL modeling with REX control system”, 2017 21st Inter-
national Conference on Process Control (PC), 2017, 10.1109/pc.
2017.7976196.

[15] A. Pereira, C. Lima, and J. Martins, “The use of IEC 61131-3
to enhance PLC control and MMatlab/Simulink process simula-
tions”, 2011 IEEE International Symposium on Industrial Elec-
tronics, 2011, 10.1109/isie.2011.5984336.

[16] V. Kaczmarczyk, T. Benešl, Z. Bradáč, P. Fiedler, and Z. Kacz-
marczykov, “SkuBATCH - System for control of technological

processes”, IFAC-PapersOnLine, vol. 52, no. 27, pp. 477-483,

2019, 10.1016/j.ifacol.2019.12.709.

Received 29 March 2021

Tomáš Sýkora was born in 1994. He received an MSc in

electrical engineering from Brno University of Technology in

2019. Currently, he is a PhD student at the Department of

Control and Instrumentation, Faculty of Electrical Engineer-

ing and Communication, Brno University of Technology. His

research interests include industrial applications, Industry 4.0,

and industrial system optimization.

Michal Husák was born in 1996. He received an MSc in

electrical engineering from Brno University of Technology in

2020. Currently, he is a PhD student at the Department of

Control and Instrumentation, Faculty of Electrical Engineer-

ing and Communication, Brno University of Technology. His

research interests are machine learning in predictive mainte-

nance and industry automation.

Ondřej Baštán was born in 1993. He received an MSc in

Cybernetics, Control and Measurement from Brno University

of Technology, Brno, the Czech Republic, in 2017. At present,

he is a PhD student at the Department of Control and Instru-

mentation, Faculty of Electrical Engineering and Communi-

cation, Brno University of Technology. His research interests

include industrial control, Industry 4.0, embedded systems,

and resilient systems.

Tomáš Benešl was born in 1993. He received an MSc in

Cybernetics, Control and Measurement from Brno University

of Technology, Brno, the Czech Republic, in 2017. His research

interests are within industrial applications, Industry 4.0, IoT,

data mining, and industrial system optimization.


