
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
DEPARTMENT OF INFORMATION SYSTEMS
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

DESIGN AND IMPLEMENTATION OF DISTRIBUTEDSYSTEM FOR ALGORITHMIC TRADING
NÁVRHA IMPLEMENTACEDISTRIBUOVANÉHO SYSTÉMUPROALGORITMICKÉOBCHODOVÁNÍ

MASTER’S THESIS
DIPLOMOVÁ PRÁCE
AUTHOR Bc. MICHAL HORNICKÝ
AUTOR PRÁCE
SUPERVISOR RNDr. MAREK RYCHLÝ, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2018

Brno University of Technology
Faculty of Information Technology

 Department of Information Systems (DIFS) Academic year 2018/2019
Master's Thesis Specification

Student: Hornický Michal, Bc.
Programme: Information Technology Field of study: Information Systems
Title: Design and Implementation of Distributed System for Algorithmic Trading
Category: Information Systems
Assignment:

1. Research programming models and paradigms used to create scalable distributed applications. Study
existing approaches to high-frequency algorithmic trading.

2. Select suitable programming model and propose a set of technologies for implementation of distributed
system for algorithmic trading using this model. Analyse requirements and design the system.

3. After consulting with the supervisor, implement the system using the proposed technologies. Measure
performance and scalability of the resulting system and evaluate the impact of selected technologies on
the system.

4. Describe, evaluate and publish the results as an open source.
Recommended literature:

Arden Agopyan, Emrah Sener, Ali Beklen. Financial business cloud for high-frequency trading. Cloud
Computing 2010, IARIA, 2010. ISBN978-1-61208-106-9.
Camilo Rostoker, Alan Wagner, and Holger Hoos. A parallel workflow for real-time correlation and
clustering of high-frequency stock market data. Parallel and Distributed Processing Symposium 2007,
IEEE International, 2007.
Maarten Van Steen, Stefan Van der Zijden, Henk J. Sips. Software engineering for the scalable distributed
applications. Computer Software and Applications Conference, IEEE, 1998.

Requirements for the semestral defence:
Items 1 and 2.

Detailed formal requirements can be found at http://www.fit.vutbr.cz/info/szz/
Supervisor: Rychlý Marek, RNDr., Ph.D.
Head of Department: Kolář Dušan, doc. Dr. Ing.
Beginning of work: November 1, 2018
Submission deadline: May 22, 2019
Approval date: October 23, 2018

Powered by TCPDF (www.tcpdf.org)

Master's Thesis Specification/22171/2018/xhorni14 Strana 1 z 1

Abstract
Innovation in financial markets provides new opportunities. Usage of algorithmic trading
is a perfect way to capitalize on them. This thesis deals with design and development of
a system that would allow its users to create their own trading strategies and apply them
on real financial markets. The emphasis is put on designing a scalable and reliable system
using cloud computing technologies.

Abstrakt
Inovácia na finančných trhoch poskytuje nové príležitosti. Algoritmické obchodovanie je
vhodný spôsob využitia týchto príležitostí. Táto práca sa zaoberá návrhom a implementá-
ciou systému, ktorý by dovoľoval svojím uživateľom vytvárať vlastné obchodovacie stratégie,
a pomocou nich obchodovať na burzách. Práca kladie dôraz na návrh distribuovaného sys-
tému, ktorý bude škálovatelný, pomocou technológií cloud computingu.

Keywords
Trading, Algorithmic trading, Cloud, Distributed system, Rust, Kubernetes,

Klíčová slova
Obchodovanie,Burza,Distribuovaný systém, Rust, Kubernetes

Reference
HORNICKÝ, Michal. Design and Implementation of Distributed System for Algorithmic
Trading. Brno, 2018. Master’s thesis. Brno University of Technology, Faculty of Informa-
tion Technology. Supervisor RNDr. Marek Rychlý, Ph.D.

Rozšířený abstrakt
Inovácia na finančných trhoch poskytuje nové príležitosti. Algoritmické obchodovanie je
vhodný spôsob využitia týchto príležitostí. Táto diplomová práca sa zaoberá návrhom
a vývojom systému pre algoritmické obchodovanie na burze. Hlavným cieľom práce je
navrhnúť a vyvinúť systém, ktorý by dovolil obchodovať na burze viac používaťeľom, a
teda by bol škálovaťelný.

Pre dosiahnutie týchto cieľov, bolo potrebné založiť systém na distribuovanej architek-
túre, a použiť moderné technológie z oblasti distribuovaných systémov a Cloud Computingu.
Pri vypracovaní tejto práce, boli taktiež použité netradičné technológie ako napríklad použi-
tie ZeroMQ pre komunikáciu, a použitie jazyku Rust pre implementáciu.

Použitie tývchto technológii pre splnenie požiadavkov na vysledný systém so sebou
prinieslo vlastnú sadu problémov, ktorých riešenie je popísané v texte práce.

Text prácie je rozdelený do niekoľkých kapitol. Kapitola 2 sa v krátkosti zaoberá ex-
istujúcimi produktmi, ktoré taktiež poskutujú nástroje pre algoritmické obchodovanie na
burzách s kryptomenami.

Kapitola 3 sa zaoberá teoretickými základmi použitých technológii. Asi najdôležitejšou
časťou je popis distribuovaných systémov. Z faktu že vytvárame distribuovaný systém
vyplýva potreba použitia programovacej paradigmy, ktorá by tento prístup zjednodušila.
Preskúmali sme viaceré, ale nakoniec sme použili prístup znaámy ako Actor model.

Kapitola 4 sa zaoberá návrhom výsledného systému, a jeho jednotlivých častí. Systém
sme navrhli ako kolekciu distribuovaných komponentov, ktoré komunikujú pomocou Ze-
roMQ, a bežia vo výpočetnom prostredí Docker kontajnerov, ktoré sú spravované nástrojom
Kubernetes. Rozhranie systému je navrhnuté ako Single-page aplikácia vytvorená pomocou
knižnice React, ktorá komunikuje s REST API poskytovaným servrovou aplikáciou.

Kapitola 5 sa zaoberá popisom samotnej implementácie jednotlivých komponentov,
ktoré boli navrhnuté v predchádzajúcej kapitole. Taktiež sa zaoberá popisom knižníc
actix_comm actix_arch ktoré obsahujú nástroje pre implementáciu komunikačných kanálov
medzi jednotlivými komponentami v distribuovanom prostredí. Kapitola sa dalej zaoberá
použitými technológiami, a dôvodmi pre ich použitie.

Kapitola 6 obsahuje popis vlastností vyvvinutého systému, a celkovými výsledkami tejto
práce. Hlavnou súčastou je popis práce s vytvoreným systémom, metodológie merania
výkonu, a samotné nameráné vykonnostné hodnoty. Táto kapitola sa taktiež zaoberá popi-
som problémov so systémom, a možnými riešeniami týchto problémov.

Hlavnými výsledkami práce sú: samotný implementovaný systém s nástrojmi pre jeho
správu a nasadzovanie, knižnice pre implementáciu komunikácie v distribuovanom prostredí
pomocou ZeroMQ.

Design and Implementation of Distributed Sys-
tem for Algorithmic Trading

Declaration
Hereby I declare that this term project was prepared as an original author’s work under
the supervision of RNDr. Marek Rychlý, Ph.D. All the relevant information sources, which
were used during preparation of this thesis, are properly cited and included in the list of
references.

. .
Michal Hornický

May 20, 2019

Acknowledgements
I would like to thank RNDr. Marek Rychlý, Ph.D, the supervisor of this thesis, for extremely
valuable feedback provided during consultations I would also like to thank attendees of
Excel@FIT student conference for supportive, and valuable feedback provided about the
result of this thesis.

Contents

1 Introduction 4
1.1 Objectives . 4

2 Current state & existing solutions 6
2.1 Examples . 6

2.1.1 Gekko . 6
2.1.2 CryptoTrader . 6

3 Theory 7
3.1 Trading & Exchanges . 7

3.1.1 Algorithmic trading . 7
3.2 Distributed systems . 9

3.2.1 Additional properties . 9
3.3 Actor model . 10

3.3.1 Alternative models . 10
3.3.2 Implementations . 11

3.4 Rust . 11
3.4.1 Language basics . 12
3.4.2 Features . 12
3.4.3 Generic programming, traits . 12
3.4.4 Traits . 13
3.4.5 Marker traits . 14
3.4.6 Memory management . 14
3.4.7 Concurrency primitives . 15
3.4.8 Asynchronous programming . 15
3.4.9 Build system and package manager 16

3.5 Actix . 16
3.5.1 Actor in actix . 17
3.5.2 Networked actors in actix . 18

3.6 Cloud environment . 18
3.6.1 Virtual machine model . 18
3.6.2 Container model . 18
3.6.3 Kubernetes . 19

3.7 Web applications . 19

4 Design 21
4.1 General system design . 21
4.2 Component design . 21

1

4.2.1 Individual component architecture 23
4.3 Communication, actix-comm and actix-arch 23

4.3.1 Underlying protocol . 23
4.3.2 Library interface . 23
4.3.3 Communication protocol . 24
4.3.4 Message format, actor state . 25
4.3.5 Actix-arch . 25

4.4 Data storage . 27
4.4.1 System data . 27
4.4.2 Asset data . 28
4.4.3 Evaluated storage architectures . 29
4.4.4 Evaluated solutions . 29

4.5 Web . 30
4.5.1 Backend . 30
4.5.2 Frontend . 30
4.5.3 Frontend application . 32

4.6 Exchange adapters . 32
4.7 Strategies . 32

4.7.1 Language choice . 32
4.7.2 Lua . 33
4.7.3 Safety . 33
4.7.4 Access to information . 34
4.7.5 Technical analysis library . 34

4.8 Evaluation . 34

5 Implementation 36
5.1 Project structure . 36
5.2 Building and deploying . 36

5.2.1 Makefile meta-build management . 37
5.2.2 Kubernetes configuration templating 37
5.2.3 Build targets . 37

5.3 Component implementation . 38
5.3.1 Core component . 38
5.3.2 Eval component . 39
5.3.3 Bitfinex adapter . 40
5.3.4 Persistence . 40
5.3.5 Web component . 42

5.4 Web application frontend . 43
5.4.1 React . 44
5.4.2 Components & Routing . 44
5.4.3 Redux . 44
5.4.4 Material-UI . 46

6 Testing and evaluation 48
6.1 Testing . 48

6.1.1 Debugging . 49
6.1.2 Monitoring . 49

6.2 Implementation evaluation . 49

2

6.2.1 Measurement methodology . 50
6.3 Performance measurements . 50

6.3.1 Collected information . 50
6.4 Results . 52

6.4.1 Measurement stages . 52
6.4.2 Further scaling . 55
6.4.3 Automatic scaling . 55

6.5 Problems . 55
6.5.1 Database bottlenecks . 55
6.5.2 Readability problems . 55
6.5.3 Deployment updates - Disconnects 56

6.6 Impact of selected technologies . 56

7 Conclusion & Future work 58

Bibliography 59

3

Chapter 1

Introduction

Financial markets are complex systems, in which, market players interact with each other
to determine price of an asset. Advances in financial technologies, like the advent of
blockchain technology, and corresponding proliferation of cryptoccurencies , like Bitcoin[16]
have changed nature of trading.

As a result of these advances, financial markets are now more approachable than ever,
and thus present a significant opportunity. One example of services that successfully exploit
this opportunity are cryptocurrency exchanges. They are a whole new kind of marketplace,
that provides several advantages to its users. These exchanges usually provide approachable
Web based user interface for everyone and, HTTP/WebSocket API for advanced users.

In order to capitalize on these advances, we must use advanced trading techniques. One
of these is algorithmic trading. Basis of algorithmic trading, is utilization of some kind
of algorithm, along with market data, in order to determine most profitable actions, that
should be performed on the market.

This approach, has several requirements. One of them is large amount of computing
power, since used algorithms might be extremely complex. Latency is also a big concern,
since this space is extremely competitive, and a party, which is able to perform optimal
actions sooner than all other parties, will net a larger profit. Thanks to these requirements,
usage of this technique is not easy, or cheap.

However, advances in development and usage of distributed systems, might be an easy
solution to these problems. Cloud computing[22] is now more widespread, and easy to use
than ever. Thanks to new technologies like docker1 and kubernetes[5], the creation and
management of distributed systems is easy, and systems created with these technologies
can be easily secured, are scalable and provide other benefits for developers creating them
compared to more monolithic architectures.

1.1 Objectives
This thesis is concerned with creation of a system for algorithmic trading. This system was
conceived as a distributed application. Usage of distributed was chosen in order to minimize
cost of approach should help with performance requirements, and the difficulty of imple-
menting such complex system. The system should be designed with latest technological
advances in mind, and should utilize cloud computing environment.

1https://www.docker.com/

4

The system itself should be extensible and scalable. The extendability requirement
deals with ability to integrate new markets, with types of assets, or add new functionality
to existing ones. The scalability of the system deals primarily with the system’s ability to
automatically scale based on amount of users and resulting load on the system.

From users’ perspective, the system should be a easy to use web application. The user
should be able to define custom algorithms and strategies, and apply them to different
markets.

5

Chapter 2

Current state & existing solutions

Existing solutions for algorithmic trading that are aimed to regular users instead of spe-
cialized investment companies have been available for some time. These solutions range
from simple command-line applications that connect to single exchange to large distributed
deployments with web interface that connect to largest stock exchanges[6].

2.1 Examples
We chose to look at a few solutions from different part of this spectrum in order to better
understand the requirements that will be placed upon the designed system. All evaluated
solutions perform algorithmic trading of cryptocurrencies. While restricting our research
to this small part of global markets might affect our findings, the primary market in which
the designed system will operate also is a cryptocurrency market.

2.1.1 Gekko

On the lower end of the spectrum, there is a simple application written in javascript called
Gekko1. This application is open source and runs on top of the Node.js. The application
can import historical data, and use this historical data to backtest2 created strategies.
The strategies are written in Javascript, with the support of a simple library that contains
implementations of financial indicators, that are commonly used with these types of trading
strategies.

It also provides simple web interface, but can only connect to one exchange at a time,
and only supports one user at a time.

Therefore, it lacks the scalability of a distributed approach.

2.1.2 CryptoTrader

On the higher end of the scale spectrum, we have CryptoTrader3. This solution is imple-
mented as a web application, that supports multiple users at the same time. Each user
can define multiple strategies, and each strategy can utilize multiple data sources. The
strategies are written in language called CoffeeScript, with slightly inconvenient but very
powerful API. This system serves as a good benchmark for our system.

1https://gekko.wizb.it/
2https://en.wikipedia.org/wiki/Backtesting
3https://cryptotrader.org/

6

Chapter 3

Theory

This chapter describes theoretical approach to different parts of target system.

3.1 Trading & Exchanges
In order to define algorithmic trading, we must first define what trading is, and how it
is performed. Trading is performed on exchanges. Key aspect of exchange trading is the
price discovery mechanism. For all assets, traded on an exchange, the price is not dictated
by any single party. Instead, the price is ”discovered“ by interaction of buyers and sellers.
Buyers advertise the highest price they are willing to pay for an asset, and sellers advertise
the lowest price they are willing to accept. These 2 prices correspond to basic economic
principle of supply and demand. When there are more sellers active on the exchange, the
price will fall, since there are isn’t enough buyers to buy an asset. This principle also
applies in reverse, if there are more buyers active on the market, the price will rise. The
maximum price listed by a buyers known as bid price, and the minimal price listed by a
seller is known as ask price

Since these exchanges are dynamic environments, with always fluctuating pressures on
either side, the price of an asset, varies over a time. The amount of this variance is called
volatility.

Historically, the exchanges were physical, mainly used for trading stocks, and were
called stock exchanges. They were physical locations , where individual traders met, and
traded one asset for another. Primarily, these trades consisted of stocks or goods against
money. Another type of trade is when 2 parties trade one currency for another. Exchanges
specializing in these types of trades are called FOREX (Foreign exchange) markets.

Most recent of exchange types, is the cryptocurrency exchange. These exchanges are
almost always purely virtual. All trading is performed via web interface. The main ad-
vantage for our purposes is the ease of use of these exchanges, and their modern features.
Virtually all of them provide multiple APIs for different purposes. A real-time API for
low-latency streaming of updates to clients, and a REST API provided for executing trades
on the exchange.

3.1.1 Algorithmic trading

First financial markets with electronic execution and connection to communication networks
appeared in late 1980s and 1990s. This allowed some degree of automation, but weren’t
yet used for fully automated trading. In 2001 a paper published by IBM[18], encouraged

7

adoption of algorithmic trading. In this paper, fully automated trading strategies consis-
tently outperformed human counterparts. Since then, the amount of trading performed by
automated systems has steadily risen.

As algorithmic trading became more common, new trading strategies started popping
up, and an arms race was started. In this arms race, the parties were consistently intro-
ducing new, more effective ways of performing trading decisions, and executing resulting
trades. The HFT(High frequency trading) is a culmination of the automated trading arms
race.

High frequency trading

This form of trading is characterized by high turnover and order-to-trade ratios(number
of created orders compared to executed trades). It utilizes highly specialized order types,
co-location of trading equipment as close as possible to exchange. In 2010, only 2% of US
based trading firms specialized in HFT, but these 2% accounted for more than 73% of all
trading volume[14].

There are four key categories of HFT strategies[21]:

• Order-flow based market making - Utilizes data about amount & volume of newly
created orders to determine state of the market & then creates orders on a regular
basis to capture bid-ask spread

• Tick data based market making - Utilizes tick data (current bid & ask prices) to
determine state of the market creates orders on a regular basis to capture bid-ask
spread

• Event arbitrage - Utilizes external information, about events that might affect the
market to create specialized orders to profit from this event (Company mergers)

• Statistical arbitrage - Utilizes multiple asset classes, to create complex transaction
chains, which allow for relatively risk free profit

Our system will mainly support strategies, that would fall into Tick data market
making category. This is due to simplicity of these strategies, and the fact that the
information provided by the cryptocurrency exchanges is best suited for these strategies.
However, we should clarify, that this system does not aim to achieve extremely low latencies.
The general goal is to achieve latency of one second. This latency is measured between the
moment the system receives update from an exchange to a moment at which the system
starts executing API calls related to order creation on said exchange.

The strategies will be implemented in a generic way. That means that an individual
strategy will not be referencing any particular asset, but will be working with a general
representation of financial data within the system. The selection of an asset, to which a
particular strategy should be applied will be performed by users. The system will allow
application of a strategy to multiple assets.

The users’ capability to use multiple strategies on multiple assets, and the multi-user
nature of the system will require large degree of scalability in different parts of the system.
To satisfy these constraints, it will have to be of distributed nature.

8

3.2 Distributed systems
Distributed systems are systems, that are comprised of many loosely coupled components.
These components might be threads in single process, processes on single computer, or
multiple computers connected through shared memory or a network. These components
communicate by utilizing shared memory, or by passing messages to one another. Compo-
nents interact with one another in order to achieve shared goal. Distributed systems have
several key properties[9]:

• Concurrency - The computation in one component is concurrent with computations
performed by other components

• No global clock - There is no single global clock, each component has only local clock

• Independent failures - Failure of one component does not imply failure of other com-
ponents

We can use these properties to make a very loose definition of what a distributed system
is. In order to better understand these types of systems, we will have to analyze several
additional properties.

3.2.1 Additional properties

We can analyze whether a distributed system uses homogeneous or heterogeneous compo-
nents. The systems that only use homogeneous components are commonly used in open
environments. Systems like BitTorrent or similar file distribution software are the perfect
example.

In order to find an example of heterogeneous system , we don’t have to look further
than World Wide Web. In this system, we have servers and clients, which are 2 different
types of system components.

Another property of distributed system is the communication method. There are 2
primary approaches to communication between 2 components. Message passing or shared
memory.

Message passing is used more commonly, since it allows lower degree of coupling be-
tween components, allowing them to communicate over any communication channel. We
can simulate former approach with the latter and vice versa at the cost of performance.
Going further, this thesis will only deal with systems that use message passing as the
communication paradigm.

Another aspect of component communication is the communication protocol. This does
not mean the underlying technology that is used to send messages, but rather the protocol
that determines what messages will be sent, and when.

Components might communicate using simple request - reply based protocol , like
HTTP. Or they might communicate using slightly different publish - subscribe model over
technologies like ZeroMQ, or message buses like Kafka.

We can also examine the rigidity of the system. The number and types of compo-
nents can be either dynamic, or static. This property influences the ability of a system to
independently resolve local failures (self-healing systems).

9

Designed system properties

Using these properties, we settled on a model of a distributed system, that utilizes large
amount of heterogeneous components. Each of these components communicates primarily
using request-reply style of communication utilizing message passing paradigm. This model
is called the Actor model.

3.3 Actor model
Actor model is a conceptual model of describing concurrent computation. It treats Actors as
primitives of concurrent computation. Each actor can: Create new actors, send messages,
modify its state and decide, how to respond to received messages. Primary constraint is the
restriction of modifying application state. Each actor can modify its local state however it
wants, but can only affect other actors by sending messages.

Thanks to this property of isolation, there are no necessary locks to ensure memory
safety. It originated in 1973, and has been used for understanding distributed computation,
and also as a basis of several implementations of concurrent systems.

According to Hewitt[10], the actor model is based on physics. This contrasts other
computational models, which are most commonly based on mathematical logic, set theory
or similar concepts. The primary takeaway from physics , that can be observed in actor
model, is taken from quantum physics, and it is the idea of uncertainty. We cannot observe
precise state of a whole system, because attempting to do so will affect it, and therefore
invalidate measured results.

3.3.1 Alternative models

Actor model is very high level, and shares both goals and properties with other programming
paradigms. These include:

OOP

If we consider Smalltalk, and its message passing model of object oriented programming,
we observe several common properties.

• Encapsulation - Both actors and objects can only directly manipulate their local state

• Message passing - Both actors and objects can send messages to other actors and
objects respectively

• Polymorphism - Both actors and objects can decide, how will they respond to specific
message

While these models are similar, Smalltalk was tied to particular implementation, and
it did not provide tools for concurrent programming. But the similarity nonetheless still
stands, and actor model can be also understood as an extension of OOP paradigm.

Petri nets

Petri nets have been widely used to model concurrent computation. However, while they
are extremely well suited for modeling control flow, They can’t be used to model data flow
in their basic form. Another problem is simultaneous action. While we can easily simulate

10

simultaneous action of removing a marker from one place, performing a transition and
placing a marker in output place, in reality, these 3 actions will not be simultaneous.

Communicating sequential processes

While CSP model has similar goals to actor model, there are several ways, in which these 2
models differ. Most important difference is that Actor model is inherently dynamic, while
CSP model if based on a fixed number of sequential processes communicating in a fixed
topology[12]. Usage of this model therefore is not particularly suited for our purposes, since
designed system should be dynamically scalable, which is not possible in CSP model.

3.3.2 Implementations

While the actor model is almost 4 decades old, implementations of concurrent and dis-
tributed systems that are based on this model are more common than ever. One of the
oldest implementations of the actor model is in the Erlang language. This language was
originally developed for telecommunications, with the goal put upon high-availability. The
language was created in 1986, originally was implemented in Prolog, and thus extremely
slow. But in 1995 it gained custom VM (BEAM VM), and Ericcson deployed more than a
million lines of Erlang code in production.

But the Erlang is not the only implementation of this paradigm. There are several
libraries implementing Actor model in wide variety of languages, ranging from Lisp to C++.
Today, one of the most commonly used libraries is Akka[4], which was originally developed
for Java and Scala, but was reimplemented using C# for the .NET platform. While Akka is
extremely easy to use, extensible, and performant, it is still only implemented for managed
languages, which require heavy runtime with tracing garbage collection.

This was one of the aspects , which influenced the decision to look for another library,
that would be implemented in non-managed language.

On the other side of the equation, we evaluated CAF 1 framework for C++, but ulti-
mately we decided against the use of this library and language. We decided against this
approach because of the complexity of this framework, and inherent unsafety in C++.

In order to avoid these issues, we decided to use Rust[8] programming language along
with the Actix[3] library.

3.4 Rust
Rust is a new programming language developed by Mozilla. It was created as a response
to many shortcomings of existing low level languages such as C and C++. While these
languages have crucial place in programming landscape, providing the highest performance
and degree of control over hardware, they are outdated, unergonomic and unsafe (par-
ticularly with respect to concurrency). On opposite side of this equation , are managed
languages, that are highly ergonomic, and seem to contain most innovation in this space.

Rust language aims to position itself among the low level languages, bringing new and
exciting features to this space. It was originally developed by Graydon Hoare[13] while
working at Mozilla, and was based on ML. Probably the most important step, was adoption
of the language by Mozilla for the purpose of creating new browser engine called Servo[7].

1https://actor-framework.org/

11

Goal of Servo was to experiment and innovate in the web browser space, without the
depending on over 30 years of legacy code, that was Firefox.

3.4.1 Language basics

Basic concepts of the Rust language are very similar to other C based languages. Basic
structure is denoted by braces, It has functions, a module system, and other features, that
will be uninteresting to intermediate programmer. However, some of the more advanced
concepts make this language particularly well suited for large concurrent systems, and will
be explored later in this chapter.

Language has 2 primary entities – types, and traits. For the types, language sup-
ports product and sum types(structs and enums respectively), and references (which can
be mutable or immutable). Traits are more interesting feature. They are similar to in-
terfaces in Java, but their closest analogy would be typeclasses from Haskell. Traits are
used to declare a set of constraints, types, constants, and functions, that an implementing
type(implementor) must provide. Each implementor, can implement any number of traits.

The language supports all the most common control flow constructs like conditionals
and loops. In addition to that, it also supports expressive pattern matching using the match
expression. However, it does not support the goto control flow construct for unrestricted
jumps.

3.4.2 Features

The requirements influenced the design of the language in a significant way. It started out
as general purpose programming language with functional features, very similar to ML, and
due to its use for the implemetation of the Servo browser, it acquired some features that
make it excellent systems programming language. These features are:

• Generic programming based on traits

• Memory model that allows safety without garbage collector

• Primitives to eliminate data races

• Integrated build system and package manager

3.4.3 Generic programming, traits

Generic programming is a paradigm, in which algorithms are written in terms of unspec-
ified types. The types are then specified upon instantiation. These types are called type
parameters, or generic types. By using this tool, programmer can write common functions
or types only once, and use them with multiple types, thus reducing duplication. This
paradigm was pioneered by ML, and is supported in virtually every modern language in
one shape or form.

Modern implementations follow 2 primary approaches for typing generic constructs:
structural, or protocol based.

Structural generic typing (also called Duck typing) is primarily used in C++. With
this approach, the type checking is performed after instantiation of generic construct. This
allows for greater flexibility. But virtually all implementations of this approach suffer poor
diagnostic messages[19].

12

Protocol(Interface) generic typing is an approach , in which the generic construct itself
undergoes type checking, and every instantiation requires minimal amount of additional
checks. This requires programmer to describe the required interface of each type parameter
explicitly. These requirements take form of Interfaces (Java, C#), Concepts (Future C++),
Type classes (Haskell) or Traits(Rust). Then, upon instantiation it is only necessary to
check whether each type parameter satisfies specified constraints.

3.4.4 Traits

As described earlier, traits are used to declare interface, that a type must provide. They
are used to support other language features, and must be understood in order to effectively
use the language. Below is an example of a simple trait.

1 pub trait Ord: Eq + PartialOrd<Self> {
2 fn cmp(&self, other: &Self) -> Ordering;
3 fn max(self, other: Self) -> Self where Self: Sized {
4 if other >= self { other } else { self }
5 }
6 }

Listing 3.1: Trait definition

Listing 3.1 Shows definition of an Ord trait that defines complete ordering over im-
plementors type. This trait specifies Additional constraints for implementing types (Also
called supertrait constraints). Every type that implements Ord, must also implement Eq,
and PartialOrd trait with generic argument of implementing type. The implementor, must
provide implementation for cmp method, that takes an one argument of implementors type,
and returns an ordering. The trait definition also specifies max method for types, that
implement Sized trait, and provides default implementation. The Self keyword is used to
refer to implementing type in the trait definition. Traits can also be generic, accepting type
parameters, such as the PartialOrd trait used earlier.

1 impl Ord for bool {
2 fn cmp(&self, other : &bool) -> Ordering {
3 if self & !other {
4 return Ordering::Greater;
5 }
6 if self == other {
7 return Ordering::Equal;
8 }
9 return Ordering::Less;

10 }
11 }

Listing 3.2: Trait implementation

Listing 3.2 shows simple implementation of Ord trait specified earlier for boolean data
type. This sample uses an impl block, to implement a trait for specific type. Impl block
can itself be generic, and have to provide implementations for all functions that do not have
default implementations specified in trait definitions.

13

3.4.5 Marker traits

The traits Eq and PartialOrd used earlier are self-explanatory, they denote the availability
of equality comparison, and partial order in implementing types. However, the Sized trait
might not be so easy to comprehend.

This trait belongs to special category of traits, called marker traits. These include Send
, Sync, Sized and several others. The marker traits do not provide any functions and serve,
as their name implies, as markers. They are used for marking specific types. The Sized
trait marks types, which have their sizes defined at compile time, and is automatically
implemented for these types by compiler. The example of unsized type might be [u8] ,
which is an array of unsigned bytes with unknown length.

The Send and Sync traits are crucial for features supporting safe concurrent program-
ming , and will be explored later in this chapter.

3.4.6 Memory management

Modern programming languages primarily use one of 2 approaches to manage memory.
The garbage collection is an approach most commonly used in High-level languages. 2 most
common variants of garbage collection are reference counting and tracing garbage collection.
Both of these approaches have drawbacks, primary ones being difficulty handling reference
cycles for reference counting and necessary program pauses for tracing garbage collection

Second common approach used is called RAII, which stands for ”Resource acquisition
is initialization“. It is most prominently associated with C++, but is used in D, Ada, and
Rust. This approach was originally developed for exception safe resource management in
C++[17].

RAII is more oriented for management of resources, but if we consider dynamically
allocated objects a resource, it serves the same purpose as garbage collection.

The lifetime of a resource is tied to object lifetime. The resource is acquired during
creation of the object, and released during destruction. The object can have unconstrained
lifetime (Allocated on a heap), or scope constrained lifetime (Allocated on the stack).

In C++ the creation and destruction of object is performed by specific functions(Constructor
and destructor). Rust does not support object oriented programming in a classical sense.
The data types are created structurally(enumerating all component values).

The destruction of values is performed with the help of a trait system. If a type,
implements the Drop trait, it must implement the drop method, which has similar semantics
to C++ destructor. This method will be invoked when variable of this type goes out of
scope, and memory associated with it will then be deallocated

Move semantics

Another important concept taken from C++ is move semantics. Until C++11, the only
approach was copy semantics, in which assignment to a variable from another variable would
create copy of referenced object. The drawback of this approach, is inability to express a
type, that should not be copyable, but should be movable.

The move semantics on the other hand, can express this concept easily. With copy, the
assignment to a variable, invalidates the old variable. In C++ move semantics, the object
referenced by old variable is replaced by and ”Empty“ object (an object that is safe to
destruct, and its destruction will not invalidate copied object).

14

In rust, the invalidation of moved-from variables is enforced at compile time, and usage
of invalidated variable will result in a compiler error. Rust provides only move semantics,
with copy semantics emulated by the Clone trait.

Ownership and borrowing

Conceptually, the move semantic are used to express the concept of ownership. If a variable,
contains an object, it ”owns“ that object , and is responsible for its destruction. However,
requiring programmer to transfer ownership of an object every time it is passed into a
function would be extremely tedious on programmer side, and copying of an object would
degrade performance.

Rust also provides a way to reference objects, without moving or copying them. By using
& or &mut sigil, the programmer can create immutable and mutable reference respectively.
The reason for 2 different reference types is ensuring memory safety.

We can create any number of immutable references to an object, but these references
can’t mutate referenced object, or we can create one mutable reference, and use this refer-
ence to mutate the object. Creation of multiple mutable references at the same time is not
allowed, and will result in compiler error. Compiler uses the concept of a lifetime to ensure
that created references do not overlap.

3.4.7 Concurrency primitives

In addition to ensuring memory safety, the concept of ownership and borrowing is also used
for preventing data races in concurrent programs.

Data race occurs when 2 or more threads concurrently access same location of memory,
one of these accesses is a write, and accesses are unsychronized. These types of bugs are
extremely hard to discover, and have lead to death of several medical patients in one extreme
case[15].

The ownership and borrowing system prevents these kinds of data races, but Rust also
provides tools for ensuring other constraints in multithreaded programs. Primary building
blocks are 2 marker traits. The Send and Sync traits.

The Send trait denotes that the implementor can be safely transferred to a different
thread. This trait is automatically implemented by compiler, when appropriate. For ex-
ample, objects that reference thread local storage do not implement Send.

The Sync trait is implemented for types that can be safely shared between threads(eg.
immutable reference).

These 2 traits are then used by library abstractions like Mutex and Rwlock to ensure
memory safety and data race free code. For example, the Mutex abstraction is used to
protect an object with a mutex. The Mutex struct is generic, with one type parameter,
that denotes contained value, which must implement Send trait. This ensures that the
contained value can be safely shared between threads. The mutex itself implements both
Send and Sync traits, meaning mutex can be safely shared between threads.

3.4.8 Asynchronous programming

One of the most recent additions the Rust language is the addition of primitives for
lightweight asynchronous programming. The key component of this feature is the Future
trait. This trait denotes that the implementing type represents an asynchronous computa-

15

tion that will result in a value or an error at a later time. The types of resulting item of
error are represented as associated type on the Future trait.

1 pub trait Future {
2 type Item;
3 type Error;
4 fn poll(&mut self) -> Poll<Self::Item>, Self::Error>;
5 }

Listing 3.3: Future trait

Listing 3.3 shows the definition of the Future trait. As you can see, in addition to two
associated types, it also contains a method declaration for poll method. This method is
called when a runtime executing the future is interested whether the future has completed.
Implementations of this method should actively try to complete the work represented by
the Future.

This design means that Rust futures are pull-based, as opposed to push-based imple-
mentations (eg. Javascripts promises). Our implementation heavily relies on this feature
of Rust due to the fact, that the Actix library, which provides basic architectural blocks of
our system, is based on futures.

3.4.9 Build system and package manager

One area that low level languages are extremely outdated compared more high-level lan-
guages is modularity and code reuse. While these languages provide tools for creating
modules, that can be combined to form a larger program, they lack tools for supporting
this process. Because of this, the number of libraries, that a project uses is extremely low,
and each project ends up reimplementing existing functionality. This is a large problem
in C++, where most common libraries used are extremely large (QT, Boost), and domain
specific libraries are virtually nonexistent.

Rust aims to solve this problem with Cargo. Cargo is primarily a build too and package
manager, but it also provides testing and benchmarking support. Cargo operates on Crates.
A crate is the smallest compilation unit. Each crate contains multiple source code files, and
a manifest file which specifies metadata information about this crate, and lists dependencies.

Crates can be published and uploaded to crates.io repository, which is closely integrated
with Cargo. Each crate can then also require dependencies from this repository.

This improvement encourages development and usage of small, domain specific libraries,
which in turn allows for the standard library to be extremely small, on par with C++,
without reducing productivity.

3.5 Actix
One of primary reasons for choosing rust was the choice of Actix[3] library. Actix is a
library that provides abstractions for implementing applications with architecture based on
actor model. Internally it is based upon the Futures feature describe earlier.

Core API provided by the library is a set of traits, that are used to for introducing
semantics based on actor model to custom types. In addition to that, the library also
provides several structs, that rely on these traits in order to provide communication between
individual actors.

16

3.5.1 Actor in actix

Actors are types, that implement the Actor trait. The Actor trait has an associated type,
that defines the context in which the actor will be run, and several methods for dealing
with actor lifetime. The actor context defines how will the actor receive messages, manages
actor mailbox, and several other supporting components, but its detailed description is out
of the scope of this thesis.

The programmer will also have to implement Handler trait for every message that it
wants to handle.

1 pub trait Handler<M> where Self: Actor, M: Message
2 {
3 type Result: IntoResponse<Self, M>;
4
5 /// Method is called for every message received by this Actor
6 fn handle(&mut self, msg: M, ctx: &mut Self::Context) -> Self::Result;
7
8 }

Listing 3.4: Handler trait

The implemented handle method runs synchronously, but asynchronous computation
can be started by returning a value that implements a Future trait, from the handle method,
or by utilizing the spawn method on the ctxs argument to spawn a new asynchronous task
in same context.

After creating an actor, the actor must be started. This can be performed by several
functions. the Arbiter::start function starts a new thread, runs an Arbiter actor inside
it, and then starts our custom actor within this thread.

Or the Actor::create starts an actor within current thread.
1 impl Handler<IngestUpdate> for Ingest {
2 type Result = Box<Future<Item=usize,Error=()>>;
3
4 fn handle(&mut self, msg: IngestUpdate, ctx: &mut Context<Self>) {
5 Box::new(self.db.send(db::SaveOhlc{
6 id : msg.spec.pair_id().clone(),
7 ohlc : msg.ohlc
8 })
9 .then(|v| if v.is_err() { panic!("DB Error")} else { return Ok(v.count) }))

10 }
11 }

Listing 3.5: Asynchronous message handling example

Listing 3.5 shows implementation of the Handler trait with asynchronous message han-
dling. The Ingest actor receives IngestUpdate message, and in response then sends SaveOhlc
message to db actor. Then, using the then combinator, it verifies that the operation com-
pleted successfully, and returns number of written rows to original message sender.

The actual computation is not started in the handle method. Rather the computation
is described by creation of a value that implements the Future trait in this method, and
actual computation is started after returning the value from handle method, when the task
created is spawned on event loop in which the actor is running.

17

3.5.2 Networked actors in actix

While actix provided extremely well designed base for implementing concurrent applications
based on actor model, it has one glaring flaw. It does not provide tools for running actors
on different computers, and thus can’t really be used for distributed applications by itself.

To reify this issue, part of this thesis was the design and implementation of actix-comm
library, which extends base actix library with primitives for communication between actors
on different computers using ZeroMQ technology. This library is described in detail in
chapter 4.

3.6 Cloud environment
While usage of low level language, with the support for effective concurrent programming
should provide a large performance advantage, this does not solve the scalability problem.
One of the requirements was for the resulting system to be able to scale according to number
of users, and resulting load on the system.

To solve the scalability problem, we have decided to utilize a dynamic computing envi-
ronment. This approach is called Cloud Computing[22] This approach is characterized by
shared pools of configurable system resources and services, that can be rapidly provisioned
with low latency. Cloud computing relies on sharing of resources, and economies of scale
to provide better cost to performance ratio than dedicated computing environments.

There are multiple providers of cloud computing environments, with different Service
and deployment models. Most popular of these environments are Amazon web services,
Microsoft Azure, Google Cloud Services, or Digital Ocean. For the purpose of this thesis,
the Digital Ocean was chosen to be primary provider, but modifying created system for
other environments should be relatively simple.

The basic component the necessary for function of cloud environment is virtualization.
By virtualizing resources, the provider can ensure isolation of different customers, and
fine-grained allocation of resources.

3.6.1 Virtual machine model

Conventional approach to virtualizing computing resources is the usage of a Virtual Ma-
chine(VM). However, the problem with virtual machines is that each virtual machine runs
complete OS, that is running within the confines of another operating system. This redun-
dancy creates unnecessary overhead. Another issue is the management of these VMs. Since
each VM is running a complete OS, this OS must be periodically updated.

3.6.2 Container model

More fine-grained unit of isolation is a container. A container is a simple lightweight image,
that contains only an application, and libraries needed by this application. It does not
contain whole operating system. Conceptually, it provides isolation on a layer, that sits
between a process and a virtual machine.

The issue with simple containers is that, the containers still need to be managed, and
as application grows, this task becomes increasingly hard. To solve this problem, there
must be another layer, on top of containers, that will manage them. This is called the
orchestration layer.

18

3.6.3 Kubernetes

Kubernetes[5] is an open-source orchestration system. It’s used for automating deployment,
management and scaling of applications that run in containers. This system was initially
released in 2014, based on the Borg[20] system, that was used for similar purposes internally
in Google.

Kubernetes defines a set of primitives, which are used to describe a distributed system.
The kubernetes runtime then dynamically modifies state of the system, to conform to
described model. The kubernetes runtime runs on a Cluster. A cluster is comprised of
multiple nodes, that can be dynamically added or removed.

Basic used primitives are:

• Namespace - Is a tool used to partition resources into disjoint sets.

• Pod - A pod is a basic scheduling unit, it contains one or more containers, has assigned
unique IP address withing a cluster,and can define a storage volume, that it exposes
to its containers.

• Service - Is a set of homogeneous pods, that work together. Its main goal is to expose
information about running pods to internal DNS.

• Deployment - Serves as a watchdog that automatically ensures there are pods in a
healthy state available to serve incoming requests

• Volume - Object representing a persistent storage.

3.7 Web applications
Another aspect of the designed system is user access to this system. Because the system
will be distributed, and will run in cloud environment, there is only one usable approach
to implementation of the user-facing side of the system. We will have to provide a web
interface. There are several possible approaches for implementing such interfaces. The
primary distinction between them is the location of the main application logic.

Server-side rendering & logic

We could implement the whole application as a set of static html pages. We would in-
troduce dynamic behavior into the server side by rendering these pages using some kind
of templating language. And some dynamic behavior into client side by embedding some
javascript. while this approach could reduce development time, it would almost certainly
yield bad user experience, and thus we chose not to go this way.

Client side rendering & Logic

State of the art approach for creating web applications is so called ”single-page application.
In this approach, the application consists of 2 parts, the frontend part runs in browser, and
it connects to the backed that is running on the server. The frontend is implemented in
javascript, and its primary functions include interpreting system data for user consumption,
accepting user inputs and communicating with the backend. The Backend then runs on the

19

server, connects to the database, and usually provides some kind of a API, most commonly
in the form of REST2 API.

2https://en.wikipedia.org/wiki/Representational_state_transfer

20

Chapter 4

Design

This chapter aims to outline a system, that satisfies the requirements listed in chapter 1,
utilizing concepts and technologies outlined in chapter 3.

4.1 General system design
System is designed as a collection of loosely coupled components, running inside virtualized
environment provided by kubernetes, which can be distributed across many computing
nodes. Basic diagram of intended architecture can be found in Figure 5.1.

Each component will be implemented as a set of actors that run inside a single process
and communicate with other components over ZeroMQ using both Request reply and Pub-
Sub communication patterns. We will utilize Kubernetes’ internal DNS for purposes of
service discovery. The actual communication protocol will be implemented in actix-comm
library that is described in section 4.3.

The user facing part of the system will be implemented as a web application. This
application will utilize a simple API implemented using actix-web library. The actual web
application itself will be in a form of Single-page application.

Figure 4.1: Component diagram of basic architecture

4.2 Component design
By using Kubernetes we virtualized the computing environment. The environment as per-
ceived by individual components will just be a set of connected Docker containers with

21

access to DNS server, that contains information about other components. Kubernetes also
provides virtualized network environment, making it appear as if all containers were on a
same network.

This fact greatly simplifies architectural challenges. The only architectural challenge
remaining, is the definition of how will the application components be connected and com-
municate. While the actual communication protocol is defined later in this chapter, here
we are interested in more conceptual approach.

Application is divided into several components:

• Web component - Provides a web interface for users’ inetraction with the system, and
interacts with the database

• Core component - Accepts input from users, incoming data from exchanges, decides
when to evaluate strategies, and when to create orders on exchanges

• Evaluation component - Evaluates strategies based on requests from Core service

• Persistence component - Stores tick data and user data upon provided by core service,
and provides this data to all services if necessary

• Exchange components - Each of these components serves as an adapter, that connects
to external exchange API, and maps its specific API onto internal communication
channels.

Figure 4.2: Service communication diagram

Figure 4.2 shows a communication diagram that describes communication between indi-
vidual services, that will occur in response to receiving new financial data from an exchange.
The system will store this information into persistent storage for later use, and if the infor-
mation is up to date, it will initiate strategy evaluation for strategies applied to currency
of incoming data.

22

4.2.1 Individual component architecture

Each of these services will be comprised of one or more kubernetes service-deployment
pairs. The service part will ensure availability of information about individual pods on
kubernetes’ internal DNS server. The deployment part will ensure the availability of actual
pods.

Each service will be comprised of one ore more pods that will be managed by deployment.
Each pod will contain base communication actor from actix-comm library, and several other
actors to support communication with other services. In addition to these supporting actors,
it will also contain varying number of actors, that will collectively implement the desired
functionality of a particular component.

4.3 Communication, actix-comm and actix-arch
As described earlier the Actix library does not provide tools for communication between
actors on different machines. One of the goals of this thesis was to design & implement a
library that would facilitate this functionality. The resulting library should be usable by
other projects.

4.3.1 Underlying protocol

We chose to use ZeroMQ[11] as an underlying protocol instead of TCP/UDP because of
several factors. The ZeroMQ can be used over many different transport types, including
TCP, UDP, Unix pipes, PGM or shared memory. Another benefit is the added flexibility;
While TCP requires establishing connection in a particular order (Bind then Connect),
ZeroMQ does not have similar constraints.

Another possible approach would be usage of HTTP and/or Websockets. While these 2
communication protocols would probably satisfy the requirements, ZeroMQ was specifically
designed for low-latency, low-overhead applications and seemed like a better fit into the
global system architecture.

ZeroMQ

ZeroMQ is an asynchronous message-based communication library. It is aimed at low-
latency distributed systems, and does not require a centralized message broker. It provides
primitives for implementing different communication patterns. Our library will utilize 2 of
these communication patterns.

The Router-Dealer socket types are used for asynchronous request-reply communication
pattern, and our library uses them to implement Request and Reply actors respectively,
which collectively implement described communication pattern. This type of communica-
tion is then used

The Pub-Sub socket types are used for publish-subscribe communication pattern. This
communication pattern is implemented by Publish and Subscribe actors.

4.3.2 Library interface

Because the library is intended to be used exclusively with the Actix framework, the only
provided interface will be in form of a several actors. These actors will respond to a set of

23

messages that are also exported by the library. The implementation of additional function-
ality by creating a set of actors & messages is is very common within the Actix ecosystem.
For example, the actix-web library, which is used to implement the web application, is also
built with similar approach

Upon Receiving SendRequest message, the Request actor sends actual message(which
is stored inside the SendRequest) to a remote machine, along with an unique identifier. It
then stores this information along with notification token into its state, and returns other
half of the notification token. This token denotes future response to request that was just
send over the network.

The Reply actor responds to Register message, which is used for registering another
actor as a recipient of some message type. Then, whenever the Reply actor receives a
message of said type, the message is forwarded to registered actor.

The Publish Subscribe actors operate similarly to Request, Reply actors respec-
tively, but they do not send or receive message responses.

4.3.3 Communication protocol

Each of the defined communication actors contains one primary ZeroMQ socket that is
used for receiving and sending messages to other components. The actual communication
protocols vary between individual actor types

Figure 4.3: actix-comm communication

In Figure 4.3 you can see simple sequence diagram containing basic request-reply com-
munication pattern. The diagram contains 2 component. The component A contains a
Request actor, that is used to send request to component B, which contains Reply actor
and another, programmer defined, custom actor. The user code in component B first reg-
isters the user actor as a recipient of message type M. Then , the user code in component

24

A sends a SendRequest to its Request actor. It then stores some information about the
message into its local state, and sends message data along with its type to ZeroMQ socket.

After the Reply actor in component B receives this message, it forwards the message
to actor registered earlier, and upon a response from this actor, it sends response along
with metadata received earlier back to ZeroMQ socket.

Then, upon receiving the response, the Request actor uses provided metadata to get
appropriate notification token from its local state, and uses it to notify originating code
about the response.

4.3.4 Message format, actor state

Since we are using a language with extremely strong static type system, we decided to
leverage this type syystem in much of the library implementation. This reliance on static
typing has made a whole class of errors impossible, but there are some drawbacks to this
approach. Since the data we send over the network is jsut a sequence of bytes, and our
system deals exclusively in strongly typed messages, we must solve the problem of serializing
and deserializing messages into bytes.

Serialization

The serialization was very simple to solve. We utilized the serde library, which is main
data serialization and deserialization library in rust, and supports many data formats. For
the development purposes, we utilize JSON as a serialized data format, but for production
use, we aim to replace it with MsgPack in order to reduce serialization overhead.

Deserialization

The main problem of deserialization was determining what datatype should a message be
deserialized into. We solved this by including unique type identifier with each message sent
over the network, This identifier relies on information provided by standard library intrinsic
function, which utilizes data provided by compiler. Using this information, and a clever
trick utilizing type erasure we were able to safely bridge typed and untyped parts of this
library.

Actor state

Each actor in this library stores notification tokens representing running tasks inside its
state. Each request also has a unique numeric identifier associated with it. This identifier
is sent over the network, and expected to be send along with the response. After receiving
the identifier, the local actor finds notification token associated with it, and uses it to notify
user code about request completion.

These notification tokens are implemented in form of single-shot channels provided by
the futures library.

4.3.5 Actix-arch

Is a library that was built on top of actix-comm simplify development of individual compo-
nents. It contains implementations from common communication patterns, and components
to support the development of communicating applications.

25

Service abstraction

Since most common communication pattern is Request-Response, this component was cre-
ated to support this type of communication. It consists of 3 parts. The ServiceInfo trait,
that is used for declaring crucial information about the service, like hostname, on which
the service is available, and types of request and response.

1 pub trait ServiceInfo: 'static + Debug {
2 type RequestType: Remotable + Debug;
3 type ResponseType: Remotable + Debug;
4 const ENDPOINT: &'static str;
5 }

Listing 4.1: ServiceInfo trait definition

Two other components are the ServiceHandler and ServiceConnection structs, which are
generic over type paramenter S, that must implement ServiceInfo trait. The ServiceHandler
struct has a register method, which can be used to register a handler of service messages.
Both of these structs internally use ZeroMQ actors defined in actix-comm library, namely
the Request and Reply actors.

Publish - subscribe abstraction

Is an abstraction for implementing Publish-Subscribe data flows. Is analogous to Service
abstraction, utilizing 3 parts. The EndpointInfo trait defines the hostname, on which
the binding endpoint can be found, its associated type FanType can be either FanOut or
FanIn, and defines, which part of the communication channels binds to an address, and
which connects to it. With FanIn, the subscriber binds to a port, and multiple publishers
connect to it (used for receiving data from multiple exchange adapters), and with FanOut,
the publisher binds to a socket, and subscribers connect to it.

1 pub trait EndpointInfo {
2 type MsgType: RemoteMessage<Result=()> + Remotable;
3 type FanType: FanType = FanOut;
4 const ENDPOINT: &'static str;
5 }

Listing 4.2: EndpointInfo trait definition

The Publisher and Subscriber actors are generic over type parameter E, that must
implement the EndpointInfo trait, and contain methods for publishing and subscribing to
updates respectively.

Service load balancing

Other component necessary for our designed system was a way to perform load balancing
for Service handlers. This will be mainly used in the strategy evaluation component, since
this component will probably result in most of the computing load.

This component is implemented as 2 actors: the LoadBalancer and WorkerProxy,
which both have one type parameter S that must implement ServiceInfo. The LoadBal-
ancer binds 2 ServiceHandlers to single port. The first one is used for receiving service
requests from client, and the second one is used for receiving messages from workers.

The WorkerProxy internally contains a ServiceConnection, that connects to Load-
Balancer, and periodically subscribes for work. If LoadBalancer does not have any work

26

available, it sends an empty response to WorkerProxy, or, if available, it sends a work
unit to this worker. The WorkerProxy then sends received work to internal worker imple-
mentation, and after finishing, sends result to LoadBalancer as a separate request, that
is also used for requesting more work units.

Therefore, the LoadBalancer therefore serves as a load balancing broker, which per-
forms rendezvous between available workers and work units.

4.4 Data storage
Another crucial aspect of designed system is the storage of both the financial data and
general system data. These 2 types of data have different storage requirements.

4.4.1 System data

We use this term to describe data that denotes the system state. This means User accounts,
and data associated with these accounts. This set of data can bea easily mapped onto the
relational model, and therefore we chose to store it in relational database.

There are several very popular relational databases, each with their own advantages
and disadvantages. We elected to use PostgreSQL1 because of its vibrant open source
community, custom extensions, and support of large part of modern SQL standards [1].

The system data is described by following ER diagram:
1https://www.postgresql.org/

27

Figure 4.4: Entity-Relationship diagram of system data

4.4.2 Asset data

Along with the system data, we also need to store information about individual assets
that we receive from exchanges. This data has a particular format. It consists of periodic
updates about an asset, with each update containing several prices and some additional
information.

These prices are:
• Open - Price, that was used in first transaction in this time interval

• High - Highest price that was used in transaction in this time interval

• Low - Lowest price that was used in transaction in this interval

• Close - Price, that was used in last transaction in this time interval
In adition the these price, each interval is associated with its starting timestamp, and

cumulative volume of executed trades. We will refer to this type of data as OHLC data,
based on the OHLC chart which is used for displaying these datasets 2.

2https://www.investopedia.com/terms/o/ohlcchart.asp

28

There are several requirements put on storage solution that will be used for storing the
OHLC data. Since this data is received periodically, every minute, and is received for each
asset, the chosen storage solution will have to support large insert rates. For example, even
if we support only the Bitfinex3 exchange, we will have to store OHLC data for more than
200 assets, most of which are updated every 20 seconds. This puts a requirement of 10
inserted rows per second onto our storage solution.

Another aspect is retrieval of the data. We need to be able to retrieve several hundred
rows from last inserted data with low latency, and retrieve older data without hard latency
requirements. Also, we need to perform periodical maintenance of the data set for the
purpose of effective strategy execution (eg. filling missing data points). This task would be
much easier, if we had full SQL support.

4.4.3 Evaluated storage architectures

As mentioned earlier, we chose to utilize PostgreSQL to store system data. This decision
was mainly influenced by the ability to use modern SQL, and the ability to extend the
database with custom, and commercial extensions.

As for the storage of asset data, if we have to satisfy constraints outlined earlier, we
have several choices. These choices will have to support large insert rates, fast retrieval of
latest data, and preserve these properties even when amount of stored data grow to the
point when it can no longer be stored in memory. These requirements are common among
applications that deal with a steady stream of time dependant data (also called time-series
data).

The conceptual architectures that satisfy these requirements are:

• Cloud database - Utilizes a database provided by external provider, that is optimized
for large workloads.

• Distributed database - This approach utilizes a distributed - multi-master database,
that allows us to utilize several machines for storing and retrieving data

• Relational database with shared tables - This approach utilizes relational database, in
which we store the data in several sub-tables of limited size. Insert rates are improved,
because indexes are smaller.

4.4.4 Evaluated solutions

We evaluated several technologies, each based on an architecture outlined earlier.

Cloud database

As for external databases provided by cloud providers, we evaluated Google’s and Amazon’s
offering. Google provides their Cloud Bigtable database, that potentially could be used for
our purposes. It provides apache HBase API, and is basically a key-value store. But, even
if it provides very impressive perofrmance, the pricing of this technology is very steep, and
thus we elected to not use this technology for now.

Last year amazon announced their Timestream database, that seems it could possibly
support our usecase, but this technology is till in beta, and not available to public. In the
future, we might revisit this technology.

3https://www.bitfinex.com/

29

Distributed database

We evaluated Cassandra, and ScyllaDB distributed databases. Both of these technologies
provide same API, each of them provides impressive performance, and ability to scale to
multiple nodes. However, ScyllaDB has lower memory requirements and lower latencies,
thus it was preferred.

Both of these databases support only subset of SQL, which we found lacking. However,
the performance achieved vas very impressive, and if, in the future, we need to achieve
better performance, the migration to ScyllaDB would be a great way to achieve it.

Relational database

Since we are using PostgreSQL for storing system data, we could also store the asset
data in this database. This would greatly simplify the system. However, in order to
achieve performance figures required, we need to utilize table partitioning. We evaluated
TimescaleDB extension, that implements table partitioning, and provides extensive suite
of supporting functions for working with time-series data.

Chosen technologies

The ease of use, and relatively satisfying performance made the PostgreSQL + TimescaleDB
combination the chosen technology for storing the asset data. If this solution does not pro-
vide adequate peroformance in the future, we will probably migrate to using ScyllaDB,
along with separate component for data maintenance, that is currently performed by uti-
lizing andvanced SQL queries with PostgreSQL.

4.5 Web
As mentioned earlier, we elected to implement the web application with the single-page
approach. This requires dividing the application into 2 parts. The Backend part will run
on the server, and provide information to the Frontend running on the clients web browser.

4.5.1 Backend

The backend part of the web application is implemented in actix-web library, which, like
many other parts of this project, is built upon actix and its implementation of the actor
model. This component will provide several REST endpoints for working with system re-
sources like strategies, trader accounts, or strategy assignments. Internally, these endpoints
should perform validation of input data, and execute database queries, which modify the
state of the system.

Other languages were not considered for this task, because utilizing them would mean
that definitions of stored entities would have to be duplicated, and the cost of duplication
would not be outweighed by the benefits provided, since the Backend part of the application
is relatively small.

4.5.2 Frontend

For implementation of the Frontend part of the application, we evaluated several popular
technologies.

30

Polymer

Is a library developed by Google. It utilizes custom webcomponents4, Shadow DOM and
HTML Templating technologies to achieve remarkable set of functionality with only a
small extension build upon common web standards, that all major browsers implement.
This technology is based on the lit-html library, which can be used for creating HTML
templates directly from javascript. However, using polymer requires custom command line
tool, in order to build applications made with this technology.

Angular

One of the most popular web frameworks, provides large amount of functionality. It does
not use webcomponents or shadow dom, due to the fact that these advances came after
it was created, since its predecessor was first of these kinds of libraries. It provides two-
way databinding, utilizes MVC architecture and should be considered to be a framework
instead of a library due to opinionated nature of this library. It uses Typescript instead of
Javascript as main application implementation language.

React

Is is component based user interface library, with one of its targets being the web browser
DOM. Other targets include Android , iOS, UWP , and are implemented in React-native
branch of this library. React uses JSX indstead of plain javascript. This language is
an extension to javascript, that allows programmer to write inline HTML inside normal
javascript code, improving readability. React does not attempt to provide general applica-
tion framework, its only targeted at building user interfaces.It is based on its virtual-DOM
architecture. In this approach the entire application is rendered into memory representa-
tion of the resulting DOM, that is then compared to actual rendered DOM tree, and only
changes are applied. This reduces number of updates that must be performed, increasing
rendering performance at the cost of memory usage.

Flux & Redux

One of most important concepts used in React is the uni-directional data flow. Data flows
from components to their children, and notifications from children to parents. To support
this paradigm, we utilize the Flux architecture. In this architecture there are actions, that
flow through the central dispatcher to a store, and changes in the store are propagated
back to view. In react, this propagation is performed through component properties. This
approach is similar to observer pattern5 With this architecture, the properties passed to
a components are immutable. Only way the application state can be affected is through
sending actions to dispatcher.

Redux is the most well known implementation of this pattern. It features a single
store, and dispatchers are called reducers. The reducers are pure functions, that respond
to actions, and based on them modify this single source of truth.

4https://www.webcomponents.org/
5https://en.wikipedia.org/wiki/Observer_pattern

31

4.5.3 Frontend application

After experimenting with each of these technologies, the React library with Redux was
chosen ast the most suited technology for creating the frontend part of the web application.
Another aspect of the frontend part of the application to consider is the user experience.
The user must be able to:

• Create an account

• Login & Log out

• Create & edit strategies and exchange trading accounts

• Assign strategies and trading accounts to assets

• Visualize the results of strategy evaluation and executed trades

4.6 Exchange adapters
While all cryptocurrency exchanges use similar technologies to implement their APIs, each
of them is different. To reduce complexity of the system, these differences must be resolved
at the edge of our system, and should not permeate into other components. To bridge
the gap between external APIs, and internal communication, the system contains adapter
component for each exchange.

This component connects to real-time websocket API in order to receive notifications
about market updates, then translates this data into OHLC format, and sends it to the core
component. It also exposes a service endpoint for querying account state (wallet balances),
and executing trades, to which the core’s trader actor connects.

4.7 Strategies
In chapter 2 we have described several implementations of automatic trading systems. Each
one of them utilized some kind of programming language to define a trading strategy. In
this regard, our system is very similar to others.

The system will have to support execution of user-written code. This fact poses a se-
curity concern. Because the user written code can perform arbitrary actions permitted
by given programming language, we must carefully choose the programming language that
will be used. Because implemented strategy will be operating with large amount of finan-
cial data, another concern is performance. And finally, since the intended users of this
application are not programmers, the chosen language should be easy to use for beginners.

4.7.1 Language choice

These requirements severely limit possible choices. We can’t accept user-compiled code,
because of security concerns. Compiled languages like C/C++ are not acceptable because
of large amount of infrastructure needed to support on-demand compilation of user written
strategies.

Managed languages like Java or C# are a better choice, but they still require large
runtimes with long start up times, therefore are not well suited for running short-lived
scripts.

32

Scripting languages like Lua, Python or JavaScript seem like the best choice for this
goal, with the drawback of reduced performance.

4.7.2 Lua

Ultimately, the Lua language was chosen as a primary language for implementing user
defined strategies. There were several key properties, which caused this decision.

• Embeddability - Lua runtime is smaller than 256Kb, has virtually no start up time and
can be embedded in application. as a simple library. In comparison, neither Python
nor JavaScript runtimes can be embedded in the application, and both require large
standard libraries

• Extendability - Basic lua standard library can be easily extended with code written
in host language.

• Expressive power - While extremely simple, lua provides tools to model virtually any
programming paradigm with ease

• Speed - While lua is a scripting language, that can’t possibly compete with compiled
language in this space, it is one of the fastest scripting languages available.

4.7.3 Safety

By using an intepreted language for implementation of user strategies, we have successfully
eliminated a whole class of risks. By using a safe language, the probability of user code
crashing the executing process is virtually none. However, there still are several safety
issues, that have to be resolved, even with using an interpreted language.

Sandbox

As a basic strategy for ensuring the safety of strategy execution, we chose to utilize a
sandboxing mechanism. This mechanism is supported by LUA very well. The sandbox
mechanism consists of replacing the global environment table with a table, that contains
only functions deemed safe when executing user code. This simple replacement restricts
access to unsafe functions like read, removing the ability to of an malicious to to affect our
system

Execution control

Another attack vector considered was the ability of an attacker to perform A Denial-of-
Service(DOS) attack by submitting a strategy, that never terminates. Upon the start of
evalauation, this strategy would lock currently evaluation actor, reducing the amount of
available actors for strategy evaluation. After sufficient amount of attempts, this would
leave no available actors, and then, the system would be unable to function.

To ensure this attack is not possible, we limit number of LUA instructions that a
particular strategy can execute. This is done by utilizing the debug.sethook function.

33

4.7.4 Access to information

Method for strategy evaluation described so far should provide safe, and performant way
for users to write custom code, that can be run inside our system. However, we must allow
this code to access the financial data, and provide some kind of library for supporting the
strategies.

We expose a vector of OHLC data items inside the __ohlc global variable. Each item
in this vector has methods to access individual prices described in the subsection 4.4.2.

We also expose a set of functions implementing indicators for Technical analysis6. These
are available inside the ta global table.

4.7.5 Technical analysis library

This library is contained in a global variable named ta. It contains most common technical
indicators used in trading. These indicators are mathematical functions applied upon a se-
quence of OHLC data, mostly denoting some statistical property of the data. Implemented
indicators are:

• sma - Simple moving average

• ema - Exponential moving average

• macd - Moving average convergence-divergence

• rsi - Relative strength index

• tr - True range

• atr - Average true range

• min - Minimum value

• max - Maximum value

• fs - Fast stochastic oscillator

• ss - Slow stochastic oscillator

Each of these indicator has a precise mathematical definition, and aims to model an aspect
of the market, but explaining these details is outside the scope of this thesis.

These indicators can be accessed by calling a function in the ta global table with
appropriate number of arguments. Returned object provides a call operator, that can be
used for receiving the indicator value.

4.8 Evaluation
Since users can crate multiple strategies, and then apply these strategies to multiple different
assets on different exchanges, the amount of work associated with a single user can vary
extremely. In addition to that, the number of users of our system can vary. This variability
of computational load on the system was primary reason for designing the system as a
distributed application.

6https://en.wikipedia.org/wiki/Technical_analysis

34

The service that is most affected by this variability is the strategy evaluation service.
This service needs to dynamically change the amount of used resources.

To implement this component, we will utilize the LoadBalancer actor defined earlier.
This will require specific architecture. The service will be divided into 2 parts. The control
and the worker layers. The control layer will be a single Kubernetes pod, that will serve
as an endpoint to rest of the system. It will receive strategy evaluation requests from Core
service, and will pass them to individual workers int the worker layer. Each worker will
be a single pod with multiple worker actors, each of which will register itself with control
layer.

The control layer will also perform load balancing, ensuring that no single worker is
over or underutilized.

35

Chapter 5

Implementation

In this chapter, we aim to present current state of the implementation, outline the problems
faced when trying to satisfy the requirements outlined in previous chapters, what method-
ologies and approaches were taken to solve them, and also point out some interesting aspects
of the implementation. Another goal of this chapter is to present the “operations” side of
this project, meaning the processes used for building and deploying the system, since that
was another important part of the implementation

5.1 Project structure
Like any other larger project, this project is also structured into several subdirectories. The
main subdirectory is code, which contains the code for system components, the common
library and several other libraries in the deps directory. The common library groups de-
pendencies that are shared by all components, and re-exports them for easier access and
centralized version selection. The deps subdirectory contains for actix-arch, actix-comm,
db libraries and other dependencies.

Then, the second core directory is the ops directory, that contains scripts and configu-
ration files needed for deploying and managing the system.

The main directory contains Cargo.toml file, that is used by the cargo tool. This
root file defines a workspace, and some configuration profiles for rust compilation. Each
directory containing sub-project of a library or an executable also contains the Cargo.toml
file.

The target directory contains build artifacts created byu cargo, and is also used to
store intermediate files produced by our custom build scripts, that will be described in the
following section.

5.2 Building and deploying
Thanks to the distributed architecture, the building and deployment processes also had to
be modified with this choice in mind.

The rust language utilizes custom tool named cargo for building rust projects, and
managing their dependencies. Having single tool manage both build process and depen-
dency management is extremely useful, but its not without drawbacks. Cargo cannot be
used for building anything else than rust projects, and while it allows to customization of

36

the build process by running pre-build custom scripts, it does not support customizing the
build process with any kind of post-build steps.

Therefore, to solve these drawbacks, we have to wrap cargo in a meta-build system, that
would manage building individual rust projects using cargo, and perform any additional
neccessary steps.

5.2.1 Makefile meta-build management

This meta-build system, does not have to do anything particularly complex, it only needs
to track what projects were changed, and depending on that information re-build, and
re-deploy them.

These requirements are perfectly satisfied by the ancient make unix tool. The project
root contains the root Makefile, which references supporting makefiles stored in the ops/make/
directory. It contains the deploy target, that builds all custom components, creates new
docker images from them, re-evaluates the kubernetes configuration templates, and finally
applies this configuration to currently active kubernetes cluster.

Building a component

One build target roughly corresponds to a cargo project, that produces an executable, and
a docker container that contains this executable. Implementation of this build process is
in ops/make/App.mk makefile. This makefile invokes cargo in an appropriate subdirectory,
it then creates a docker container image according to ops/docker/app.Dockerfile, and
emits container name and container tag into a file in target/docker/ directory. This
information is provided in a format that will later be loaded into an environment variable,
and used for substitution when building kubernetes configuration templates.

5.2.2 Kubernetes configuration templating

This is very well known drawback of kubernetes. It does not support any kind of templating
out of the box. There are existing solutions, that solve this issue, but many of them do so
with opinionated approach that is coupled with some kind of package management.

We elected to perform this templating manually, inside the makefiles implementing the
build process. For this purpose, build of each component emits built docker image tag
in the format of {COMPONENT}_IMAGE={IMAGE TAG}. Then, for each file in the ops/k8s
directory the main makefile loads it, performs environment variable substitution using the
envsubst tool, and saves modified file to target/k8s directory. There are dependencies
between these steps, which are also listed in the makefile, and therefore it does not re-build
components that were not modified.

Each image of a component is tagged with a special unique information identifying
application version. Currently, this is the first 10 characters of the sha256 hash of the
binary, but in the future, this should be changed to current git commit hash.

5.2.3 Build targets

Currently, the application is divided into 2 build targets. The web build target contains
the implementation of the web application(both frontend and backend), and the app build
target contains the implementation of every other component that in the system. This

37

grouping is an artifact of how the system was developed, and in the future should be
resolved by moving each system component into separate build target.

5.3 Component implementation
Most of the application is written in pure rust, with the exception of the frontend part
of the web application, which is written in javascript. The project uses multiple advanced
features of rust, that have not yet been stabilized, and therefore requires a nightly toolchain.
Currently, the project uses nightly toolchain from 2019-05-01. Main reason for using a
nightly toolchain with a specific version is the fact, that the implementation utilizes async-
await style programming, which has not yet been stabilized, recently had untergone several
changes. These features should be stabilized in several months.

The usage of asynchronous code is prevalent throughout the codebase. Almost every
actix actor is written in a way, that requires it to send and wait for message response when
responding to a message itself. With synchronous code, this would mean, that the through-
put of the system would be very low. With asynchronous code, the actor will perform some
synchronous actions, will send messages other actors, and will then asynchronously wait
for these messages. During this waiting, the actor can respond to other messages, greatly
improving throughput.

5.3.1 Core component

Core component is comprised of 3 main actors. As its name suggests, it implements the
core system logic, and other systems connect to it.

Ingest

The Ingest actor binds a Subscriber to a known port, and waits for publishers to connect
to it. The publishers are created by exchange adapters, and the ingest actor uses the
Subscriber to receive messages that contains newest OHLC data. The ingest actor then
discards old data, and publishes new, valid updates to a proxy actor, which sends them to
Rescaler actor

Rescaler

This actor is responsible for creating aggregate data streams, that are not provided by the
exchange adapter, but nonetheless are supported for trading by our system. In order to
perform this task, the actor must have at least 12 hours of data available in memory. This
data is loaded upon actor creation from the database, and the oldest data is periodically
discarded during the normal operation of the actor.

The incoming data is then published along with the virtual aggregate data over proxy
actor to the Decision actor.

Decision

This actor is responsible for deciding when a strategy should be evaluated. It periodically
loads whole assignments table into memory. This table contains all assignments of strategies
and trading accounts to individual accounts. It stores this information into B-Tree map
with the asset as a key, and a vector of assignments as a value.

38

Then, upon receiving update from Rescaler actor, the Decider actor traverses its
internal assignment map, and request strategy evaluation for each applicable strategy. This
request is sent using the ServiceConnection to eval component. These requests are
asynchronous, and therefore this actor can spawn hundreds of them without blocking the
rest of the system.

Then, after receiving result from evaluation, the actor can send a request to Trader
actor, but this is only possible, if the assignment used had a trading account associated
with it.

Trader

This actor is responsible for executing trades on individual exchanges. It receives position
change requests from the Decision actor. Then, it sends a request to get account balances
to exchange adapter. After receiving a response, the Trader actor decides if the trading
account has any available funds that could be used to strengthen the selected position, and
possibly executes a trade by sending a new request to the same exchange adapter.

Internally, the trader uses the anymap crate to store ServiceConnections to each
exchange adapter, since each adapter has its separate ServiceInfo. The anymap crate
allows this actor to store type-erased values, and then retrieve them on demand.

5.3.2 Eval component

This component is responsible for evaluation of user strategies. As mentioned earlier, this
component consists of load balancing broker and a dynamic set of workers.

Load balancing broker

This broker is implemented by the LoadBalancer component described in previous chap-
ter. In itself, it is not extremely interesting. It runs in separate kubernetes deployment,
and is exposed by kubernetes service.

Workers

The evaluation workers are implemented by the EvalWorker actor. This actor uses a
WorkerProxy actor to connect to the load balancer. The proxy actor handles commu-
nication with the balancer, and communicates with EvalWorker. The EvalWorker is
written as a service handler, that accepts requests for strategy evaluation. Each request
contains the identifier of the strategy used, an asset identifier, and some additional infor-
mation like the timestamp that denotes the point in the data stream, on which the strategy
should be evaluated. The worker currently always reads the strategy, and the OHLC data
from the persistent storage. Adding some kind of cache could be an easy optimization.

After receiving the strategy and OHLC data from the database, the worker creates
a new LUA VM. It then initializes this VM by creating a technical analysis library and
attaching OHLC Data.

It then executes the strategy in a sandbox, that removes any functions that could be
used to access or modify system information from the environment. The execution is also
timed, and if the script executes for too long, it is automatically killed.

39

After the strategy evaluation, the EvalWorker returns the result to the load balancer,
and it in turn returns it to the original request source, which was the Decision actor in
the core component.

Strat-Eval library

The actual strategy evaluation is implemented in strat-eval library. This library could
be extended to support other types of strategies. It implements all concepts related to LUA
strategy evaluation outlined in section 4.7.

The technical analysis library mentioned in that section is implemented in Rust, and
exposed to lua through a global table ta that contains a set of UserData values(values
implemented in host language, and exposed to lua). This allows us to utilize rust for the
heavy computation, while allowing users to built upon this library in LUA.

5.3.3 Bitfinex adapter

This component consists of single actor. This actor currently performs several tasks at
once, and should be divided into multiple actors in the future. During creation, it con-
nects to Bitfinex websocket API, requests a list of available assets, and then subscribes for
notifications for each asset.

After subscribing, the actor starts to receive notifications, that are then promptly trans-
lated into OHLC data and published to the Ingest actor in the core component.

Another task that is performed by this actor is the serving of wallet balance and trade
requests from the trader actor. These request are translated into REST API calls, that are
performed by the http client from actix-web library.

The bitfinex adapter actor is also implemented in an asynchronous way, increasing
throughput.

Future adapters will follow similar design to the bitfinex adapter, therefore extending
the system to support additional exchange should be extremely easy.

The bitfinex adapter is also managed ky kubernetes deployment and exposed by a
service.

API access implementation

Access to exchange APIs is implemented in the apis library in the code/deps direc-
tory. This library implements primitives that could be shared between different exchange
adapters, and contains a bitfinex submodule that contains definitions of types received
from API calls, and implementations of these API calls as asynchronous rust functions.

This pattern of implementation of specific API exchange in a submodule will be con-
tinued when extending the system with other exchange adapters.

5.3.4 Persistence

This component is responsible for storing OHLC and user data. As mentioned earlier, we
elected to use PostgreSQL with the TimescaleDB extension as the primary storage solution.
This currently runs in a single large docker container, that is also managed by kubernetes
deployment and exposed by a service. This could pose a problem, since usage of only one
database instance provides a single point of failure. We could potentially resolve this issue

40

by utilizing multiple DBMS instances that would be synchronized using Postgres’ streaming
replication.

However, this approach would only allow components to read data in an event of a
unavailability of the master database. Writing new data ito the database would not be
possible, since Postgres does not provide multi-master solution to streaming replication.

However, if we used fully distributed database like ScyllaDB, we leverage its multi-
master capabilities, and along with increased performance obtain some data redundancy.

During the implementation of persistence component, we have evaluated both of these
approaches. For now, we have elected to utilize PostgreSQL with TimescaleDB as a primary
storage solution for both system and asset data. This greatly simplified the development
and management of this component. However, if at any point in the future this approach
does not fulfill our performance requirements, we have implemented minimal connection to
ScyllaDB, that can be swapped with PostgreSQL implementation for storing and retrieving
asset data with virtually no downtime.

Figure 5.1: Database structure diagram

41

Database access

The access to the database, is implemented by the db library in the code/deps subdirectory.
This library utilizes the diesel library to access the database and generate queries. We
could call this library an ORM(Object-Relational Mapper). However, it operates on a lower
level than most ORM solutions.

One drawback of diesel is the inherently synchronous nature of database adapters pro-
vided by this library. In order for this component to effectively work with other components,
we first must provide an asynchronous interface to the database. There are 2 key techniques
we utilize.

First of all, each component does not have only one connection to the database, We
utilize the r2d2 library to create a pool of reusable connections. Then, in order to execute
queries concurrently, we run database queries in dedicated actors. These actors utilize
Actix’s SyncContext instead of normal Context. The main difference is that when
using SyncContext, each actor runs in separate thread, and runs synchronously, while
responding to messages with asynchronous Futures. Each component runs at least 4 of
these actors.

For ease of development, we created the Database struct, that encapsulates all this
behavior, and provides a set of asynchronous methods, which implement required actions.
Most of these method implement common actions from the CRUD pattern (Create-Read-
update-Delete), which creates a lot of redundancy. We aim to reduce this redundancy by
implementing generic Repository pattern. However, due to diesel’s heavy use of complex
traits, we were unable to do so within this thesis’ time frame.

5.3.5 Web component

This system component implements the REST API necessary to access the system. This
API is then in turn used by the frontend web application. In theory, this API could be
published for consumption by other developers that wish to extend our system.

The API is implemented using the actix-web library, that utilizes the actor model
to its fullest, being one of the fastest HTTP library in the world[2]. This library allows
programmer to attach individual functions to HTTP URIs, and these functions are then
invoked by a set of worker actors, whenever they receive a request matching said URI. The
library also performs automatic parsing of path and query parameters and request bodies.
Another core part of the library interface is the programmer defined state, that can be
attached to a running web server. This state can be then retrieved inside every handler
function.

Our implementation uses it to store handle to database access actors, which are then
used for retrieving data. This is implemented using the Database wrapper struct, that
was described earlier.

Most of the implemented endpoints act as a simple interface to the database, that
performs some validation, but there are some custom logic.

This part of the system heavily relies upon the async-await style of programming, that
requires the nightly compiler. Every single handler method is implemented as an async
function which internally calls several other async functions.

42

1 async fn api_detail((req, id): (HttpRequest, Path<i32>)) -> Result<impl Responder> {
2 let db: Database = base.state.db.clone();
3 let base = await_compat!(BaseReqInfo::from_request(&req))?;
4 require_login!(base);
5
6 let (strat, user) = await_compat!(db.strategy_data(id.into_inner()))?;
7 let evals = await_compat!(db.get_evals(strat.id))?;
8 require_cond!(strat.user_id == base.auth.uid, "Not authorized");
9

10 Ok(Json(strat).respond_to(&req).unwrap())
11 }

Listing 5.1: Example web handler function

The Listing 5.1 code sample shows an example of a handler method, that is used for
retrieving a strategy from the database. First important aspect is the method argument,
which is a tuple of the request and a path parameter, that is automatically extracted by
the library.

The function first clones a handle to the database wrapper, and then retrieves basic info
from the request. The BaseReqInfo struct primarily contains the authorization informa-
tion. This retrieval must be asynchronous, since it might require a database access. This
asynchronous operation is then wrapped in a await_compat macro, which internally wraps
the await macro.

Then, the strategy is retrieved from database, and require_cond macro is used for
ensuring that user can only access strategies that he owns.

Finally, the strategy is serialized wrapped in the Json struct, that performs serialization
into Json in the respond_to method.

5.4 Web application frontend
As mentioned earlier, the frontend application is implemented as a react single page applica-
tion. This approach was chosen after a long series of experiments with multiple approaches
to web applications.

The first tried approach was completely server-side rendered site that utilizes static
html forms for submitting data. While this approach did work, the problem was extremely
poor UX, and very complex generated forms that utilized hidden fields in order to preserve
information for form submission.

The completely server-side generated site was then progressively rewritten into combined
application, that used forms for submitting data, but utilized custom web components based
LitElement library to reduce complexity and provide some amount of dynamic behavior,
improving user experience. However, there were problems with this approach too. The user
experience still did not meet the standards expected by modern users, and the application
logic was now in 2 languages distributed acros 2 codebases, greatly complicating futher
development.

After both of these approaches failed, we elected to rewrite the web interface part of
the system from scratch. This time, the backend was rewritten to the form of a REST API
described earlier, and the frontend application was rewritten in React. We also decided
to use Redux1 to manage application state, and Material-UI library to provide set of base
components, foregoing any kind of complex UI template.

1https://redux.js.org/

43

5.4.1 React

As mentioned earlier, React is javascript library for writing user interfaces, that utilizes
custom JSX syntax. The web applciation code resides in code/web/app and during compi-
lation of the web component, the compiled web application is bundled inside the web binary
using includeddir library.

This web applicaiton is then provided on the /app prefixed URI routes, while the api
prefix contains all the REST endoints. The web server provides the same index.html page
for every subroute under the app prefix, and this generated index file imports resources
from the /static prefix, that refers to individual files of compiled react application.

5.4.2 Components & Routing

The application is divided into several root components, each root component roughly
corresponding to single ’page’ of the application. Because the server provides index.html
for every URI under the /app prefix, the routing between indivudual components that
reside under this prefix is performed in the browser using the react-router library. This
library switches rendered component based on current path. Follwoing example shows the
JSX for the root of the application.

1 <div className="App">
2 <ConnectedRouter history={history}>
3 <Switch>
4 <Route exact path="/app/auth" component={Login}/>
5 <Route path="/app" render={props => (
6 <Dashboard>
7 <Switch>
8 <Route exact path="/app/" component={Home}/>
9 <Route exact path="/app/strategies" component={StrategyList}/>

10 <Route exact path="/app/strategies/:id" component={StrategyDetail}/>
11 <Route exact path="/app/assignments" component={AssignmentList}/>
12 <Route exact path="/app/traders" component={TraderList}/>
13 </Switch>
14 </Dashboard>
15)}/>
16 </Switch>
17 </ConnectedRouter>
18 </div>

Listing 5.2: React application routing JSX

Dashboard

This component contains the base layout of the web application, rendering the toolbar
with title, navigation bar, and also rendering nested components. In our case, the nested
component is the react-router Switch, that ensures only one route from a set of route
elements is active at one time. This Switch component with the set of inner routes contains
the individual pages.

5.4.3 Redux

Another important aspect of the web application was the storage, and management of state.
The earlier attempts failed because the management of state was untenable with growing

44

application complexity. the Redux library was developed precisely to solve this problem.
As described earlier, the library is based on the Flow architecture pattern, which has 3
core concepts.

Figure 5.2: Redux general diagram

The redux store contains the application state, and is only mutable inside reducers.
The redux reducers are used to modify state, based on the actions,that are published by
components, and the components then in turn react to changes of state.

Our usage of redux creates the state upon application creation, along with a single
reducer which is responsible for storing data received from the REST API inside this state.
The access to the REST API is implemented in api/baseApi.js file. This file contains a
metadata object for each entity exposed by the API, and a Api class that contains methods
for executing common methods.

However, this class is not used directly, its only used from the actions/apiActions.js
file, that provides methods for contacting the API and then dispatching the results as redux
actions. It utilizes the redux-thunk middleware.

These actions are then processed by the dataReducer, which is responsible for reflecting
the changes inside the data store. First versions did so manually, but the growing com-
plexity forced us to adopt the Redux-ORM library. This library provided simple ORM-like
experience, and definitely made the development easier.

45

5.4.4 Material-UI

This library was chosen as a base library of components, upon which our custom components
were built. It implements commonly needed components that conform to Google’s Material
design guidelines2. These components are also written with first class support of mobile
devices, opening up the pathway for making our web application into a Progressive Web
Application3.

Core component used in our custom components is the Paper component, which creates
a surface with the appearance of an elevated piece of paper. This concept of an elevated
surface is also at the core of Material design guidelines.

Each custom component is implemented as a list of these Paper surfaces, each one
holding some kind of information. Most commonly, these surfaces contains tables that
show existing entities of a given type, along with a button to add new entity.

EditDialog

The creation and editing of data entities is performed by editing a set of fields inside a
modal dialog containing a form. During development, this pattern of a modal dialog with
form organically appeared at multiple points, and therefore we decided to implement a
single component that would replace individual forms.

This resulted in the implementation of EditDialog react component, which performs
editing of a javascript object according to properties passed into it.

1 <EditDialog
2 open={this.state.open}
3 data={this.state.newTrader}
4 title="New trader"
5 text="Create a new trading account"
6 onData={(d) => {
7 this.setState({newTrader: d})
8 }}
9 attrs={[

10 {name: "name", title: "Name", type: "text"},
11 {name: "api_key", title: "Api key", type: "text"},
12 {name: "api_secret", title: "Api secret", type: "text"},
13 {name: "exchange", title: "Exchange", type: "select", values: values, text: (e) => e}
14]}
15 onDismiss={(save) => {
16 this.setState({open: false});
17 if (save) {
18 dispatch(postOne(TYPE_TRADER, this.state.newTrader)).then(() => {
19 this.setState({open: false});
20 })
21 }
22 }}
23 />

Listing 5.3: EditDialog for creation of Trader account

The Listing 5.3 contains code for rendering an EditDialog, that performs creation of
new trader account. It uses data-binding to to pass properties, and callback functions into
the dialog.

2https://material.io/design/
3https://en.wikipedia.org/wiki/Progressive_web_applications

46

• open - Whether the dialog is shown or hidden

• data - Data object for editing

• title - Title of the dialog

• text - Information text of the dialog

• onData - Callback function that receives changed object

• attrs - A list of attributes, that should be mapped to editable fields

• onDismiss - Callback function invoked when dialog is dismissed, receives whether the
dismissal was performed by the OK button or otherwise.

47

Chapter 6

Testing and evaluation

This chapter aims to describe the methodology that was used for evaluating the imple-
mented system, and project results as a whole. Another goal is to outline authors expe-
rience with the used technologies, and provide some guidelines for future projects of this
type.

6.1 Testing
While 2 primary implementation languages of this project (Rust + React Javascript) have
excellent support for unit testing, this approach for ensuring software correctness was used
in minimal capacity.

To properly test the individual components and ensure their correct behavior, another
approach was chosen. because of the fact, that the project uses kubernetes for management,
and deployment of the implemented system, allowed us to create separate testing environ-
ment. The system was then primarily deployed into this environment, and was observed.
This approach allowed us to observe the system in virtually the same environment, in which
it will be deployed. Several complex behaviors arisen from interaction of individual compo-
nents were observed, and subsequently fixed. We wouldn’t be able to observe these issues
without all the components integrated together, so subjectively, we feel that the chosen
approach was correct.

Example case - Silent disconnects

One of the observed complex interaction behaviors was the problem of long-lived connections
in the environment, in which components are removed and added dynamically. The ZeroMQ
library has a complex internal networking layer, that utilizes several sockets, and a separate
thread for managing them.

Our actix_net uses ZeroMQ, and uses several different virtual socket types provided
by it. These sockets are long-lived. They should stay open during the whole time the
component runs. However, in the kubernetes environment, components can be killed at
virtually any time. This poses a problem. For Router and PUB socket types that were
used in ServiceHandler and Publisher actors respectively, the ZeroMQ library does not
detect disconnects, or detects them after some time.

This duration between disconnect and detection of it caused an issue with a large amount
of missed messages, which destabilized the whole system. The component that was affected

48

the most, was the Ingest actor in the core component, which could not detect missing
OHLC updates, since it was a binding SUB socket that created a SUB topology.

The approach, that we chose to fix this issue was to use features of the TCP protocol
implementation know as Keepalive. This feature is so called, because it can be usd to keep
a TCP connection alive and well, and determine when it was dropped from the other side.

The primary mechanism for performing this service is to periodically send empty TCP
packets, that must be acknowledged from the other side. If a sequence of packets is not
acknowledged in some pre-defined time, the connection is considered cloesd from the other
side, and is dropped. Usage of this feature required the modification of tokio-zmq library,
that provides asynchronous implementation of ZeroMQ sockets. This change allowed setting
custom options on the underlying sockets.

6.1.1 Debugging

However, sometimes it was necessary to observe the internal state of a particular component
while it is integrated in the system. Initially, this provided to b quite a difficult challenge,
since kubernetes utilizes containers, and accessing the container internals is difficult.

But, after some research, we discovered the Telepresence1 command line tool. This
tool is written in python, and it creates a vpn tunnel to a container that is running in the
kubernetes cluster. Allowing local applications to run as if the were ran inside the actual
kubernetes environment.

The fact that we could now run individual components locally, with a debugger greatly
simplified the testing and bug fixing process.

6.1.2 Monitoring

Another important aspect was the monitoring of deployed system, with particular emphasis
put upon the monitoring of system performance, and access to individual container logs.

At first, we only used the kubectl command line tool. But during during the develop-
ment the system kept growing in size, and with it the number of components that needed
to be monitored has grown too. We solved this issue by installing

a Kubernetes Dashboard2 into our cluster, and using this dashboard for monitoring,
visualization and log access.

Currently, we use only the metrics provided by kubernetes dashboard out of the box,
but in the future, we might export custom metrics specific to our application, that would
allow us to better understand the internal system status.

6.2 Implementation evaluation
The need for low latency, scalability and predictable performance was one of the driving
forces for multiple key decisions in this project. The implementation language, communica-
tion technology, deployment strategy were all chosen in order to achieve these goals. This
section aims to evaluate, whether we achieved these goals.

1https://www.telepresence.io/
2https://github.com/kubernetes/dashboard

49

6.2.1 Measurement methodology

In order to precisely measure key aspects of the implementation, the system had to be
modified. the primary change is addition of a Measurement component in the system,
that receives data from other components and holds the “global” clock. Because of the
distributed nature, the true global clock does not exist, but using a component that will
utilize its internal clock to annotate events in the system should provide enough precision
for our purposes, since we are measuring on the scale of milliseconds.

Latency measurements

First step to allow for measuring latency is annotating a data update with unique identifier,
which will be passed on throughout the system. The components will the use this identifier
to uniquely identify all messages associated with a particular update. Then, throughout
normal system function, each component in the system will send messages denoting the state
of a particular message along with its identifier to measuring component. This approach
might add some latency, but considering that several of the processing steps take several
milliseconds, it should be precise enough for our purposes.

Scalability measurements

The scalability measurement is closely associated with the latency measurement. We mea-
sured the scalability of the system by adding virtual strategies and corresponding assign-
ments to the system, increasing the load put upon it. Then , we measured, how the system
latency was affected. With the increase in computing requirements, the computing resources
available to the kubernetes cluster were also increased.

6.3 Performance measurements
The performance measurements were taken in production environment. We utilized cus-
tom component described earlier. This component aggregated messages from all other
components, marking each event with the timestamp, the moment it was received. Then,
periodically, this data was processed in memory, and written into a CSV file, that was then
copied from the docker container this component was running inside. After obtaining the
measured data, some basic statistical analysis was performed.

6.3.1 Collected information

Since the core metrics we are interested in are the individual latencies. We collect latencies
of individual steps locally, and aggregate the results on the Measure component. The data
was collected using several configurations and system loads. These configurations are:

Config Nodes Core Postgres Balancer Workers Price# Type # Type

C1 2 2 vCPU
2 GB RAM

100 mCPU
100 MB

500 mCPU
500 MB

200 mCPU
100 MB 3 300 mCPU

150 MB
$ 30

C2 4 2 vCPU
2 GB RAM

200 mCPU
100 MB

1.5 CPU
1.5 GB

400 mCPU
100 MB 8 $ 60

50

As you can see, we started with a simple configuration utilizing 2 nodes, and limiting
resources available to individual components. Then, as we increased load put upon the
system, we increased the number of nodes, and increased resources available to individual
components accordingly.

Strategy

The strategy used for testing is the following:

1 -- Fast exponential moving average closely follows price while smoothing out
2 -- random swings
3 local ema_fast = ta.ema(3)
4 -- Slow exponential moving average tracks longer term trend
5 local ema_slow = ta.ema(29)
6
7 -- We use RSI to determine when an asset is overbought or oversold
8 local rsi = ta.rsi(14)
9

10 -- Triggering signal for buying and selling
11 local buy_signal = ema_fast() > ema_slow() * 1.001
12 local sell_signal = ema_fast() < ema_slow() * 0.999
13
14 -- RSA guards for overbought or oversold markets
15 local rsi_overbought = rsi() > 80
16 local rsi_oversold = rsi() < 20
17
18 if buy_signal and not rsi_overbought then
19 return 'long'
20 elseif sell_signal and not rsi_oversold then
21 return 'short'
22 else
23 return 'neutral'
24 end

Listing 6.1: Example strategy

This simple strategy utilizes 3 indicators from ta library, applied to different timeframes
of data, and performs some arithmetic operations to determine the state of the market. For
measurement purposes, we removed foreign key constraints from the database, and used
this strategy for numerous virtual users.

51

6.4 Results
After performing several test runs, we measured the latency of the some parts of the system,
and also the global system latency. These measurements were then performed for different
configurations and different amount of load put upon the system.

Figure 6.1: Aggregate performance measurements

The Figure 6.1 shows measured latencies for data passing through whole system for
multiple configurations and number of assignments. The x axis stands for specific mea-
surement, and the Y axis shows latency of the system. The graph also contains values of
average and maximum latencies measured.

We tested 2 system configurations. In the first, configuration, the system was able
to preserve total system latency below 1 second for 99 % of cases with at most 4000
assignments. In second configuration, the system was able to preserve this latency when
serving at most 16 000 assignments. Considering the target audience, it is very unlikely,
this particular system will ever see utilization this high.

6.4.1 Measurement stages

However, we were not able to achieve the necessary latency when system had insufficient
resources for a specific number of assignments. To determine which part of the system was
bottleneck in which configuration, we measured different stages of the system separately.

These stages are:

• Save - Duration of saving newly received data into the database

• Dispatch - Duration between sending a evaluation request, and worker processing this
request

• Load - Duration of lading historical data from database

• Exec - Duration of actual strategy execution

52

Specific stage measurements

Graphs for these stages follow:

Figure 6.2: Saving data performance measurements

Figure 6.3: Data dispatch performance measurements

53

Figure 6.4: Loading data performance measurements

Figure 6.5: Execution performance measurements

If we examine these graphs in detail, we can discern how configuration changes affected
the system. In each configuration, the load and execute stages latencies had stayed relatively
stable.

C1

In first configuration, the system was able to support at most 4000 assignments. When
the system load exceeded this number, the time spent in the dispatch stage had risen
considerably. This points to an issue with not enough workers evaluating strategies.

54

C2

In second configuration, the system was able to support 16000 assignments seamlessly
however, when system had to serve 32000 assignments, the database subsystem was unable
to handle the load, and the time required to save incoming data into the database has risen
considerably. This increase in latency was certainly a result of increased general database
load.

6.4.2 Further scaling

We performed some experimental testing with even larger configurations and assignment
counts up to 128 thousand, but, due to limited time, we were unable to get the system into
working state,since in these configurations, the system had to service several thousand re-
quests per second. Considering the expected system load, we abandoned this configuration.

6.4.3 Automatic scaling

Configurations shown were created manually. This resulted in some mismatch between
amount of resources available, and provided to specific components. In the future, we
plan to utilize both horizontal and vertical pod autoscaling capabilities of kubernetes to
automatically scale individual components. Along with pod autoscaling, several kuber-
netes implementations also provide automatic cluster scaling. By combining these 2 tools,
we could make the system totally independent, even in the event of sudden increased or
decreased load.

6.5 Problems
While we can point to many positive aspects of the system, we would be remiss, if we
wouldn’t take its problems into consideration as well. Some of these problems were observed
throughout the development, and some were only discovered upon testing.

6.5.1 Database bottlenecks

When scaling the system to several thousand users, the chosen database solution seems to
perform inadequately. When faced with high loads the database is no longer able to provide
historical data for individual workers fast enough. This, in turn slows down dispatching
of new requests since existing workers are busy loading data from database, and therefore
the load balancing component must wait for new workers to become available. The actual
strategy execution stage has relatively stable latency.

To solve this problem, we will have to increase the number of available workers even
further, and introduce some kind of local cache for historical data that would reduce the
database pressure.

6.5.2 Readability problems

While most of the implementation benefited greatly from the use of Rust as primary imple-
mentation language, the combination of this language, with its very explicit asynchronous
style of coding resulted in some sections of the code being very hard to read, and therefore
understand. We hope, that this drawback is resolved by full migration to async-await style
programming upon its stabilization within the language.

55

The system as a whole probably requires a refactoring pass, since it was developed over
the course of a year, and some decisions taken at the beginning proved to be wrong, and
the system had to be adapted.

6.5.3 Deployment updates - Disconnects

As mentioned in our overview of system testing, the individual components of the system
suffered from silent disconnects. While this issue was mostly resolved, it points to a much
deeper issue with the use of ZeroMQ as a transport technology. It requires management.
If we have used simple HTTP based REST api to communicate between components, the
disconnections would have resulted in individual call failures almost immediately, greatly
reducing the instability of the system during an upgrade.

However, we hope to fix this issue, by adding multiple ZeroMQ sockets to single commu-
nication actor, with some of them being used for sending heartbeats and therefore detecting
network or component failures.

6.6 Impact of selected technologies
Due to design constraints, we have elected to use rather uncommon set of technologies.
Now, after measuring system performance, we can evaluate, how these choices affected our
results

ZeroMQ

We elected to use ZeroMQ instead of using raw TCP sockets or higher level approach of using
HTTP. This choice brought low latency messaging, which ultimately was overshadowed by
general system latency. However, the different socket types proved useful for implementing
custom communication patterns. Ultimately, we believe, that the choice of ZeroMQ was a
right one, and in the future, when the system is more optimized, its benefits will overshadow
the initial difficulties encountered.

Rust

The choice of Rust for main implementation language was primarily influenced by availabil-
ity of very good library implementing The actor model (Actix), low overhead and primitives
for asynchronous programming. Thanks to the use of this language, all components of the
system require very low amounts of RAM, most of which is consumed by kubernetes. The
use of Actix somewhat reduced the readability of code, but allowed us to create fully asyn-
chronous components, which increased system throughput considerably.

Overall, we regard this choice as a good one. With some updates to the language which
should be available soon (Await syntax) we should be able to increase the readability of the
code, while preserving all the benefits.

Lua

Based on measurements we collected over large amount of strategy executions, we can
safely say, that the implementation of strategies in LUA was a good choice. The evaluation
workers have shown very stable latency, and thanks to the use of this language, we were
able to create a sandbox, securing the system from this attack vector.

56

Postgres

And finally, the choice of PostgreSQL with TimescaleDB for storing asset data. In the
beginning of this project, this choice vas very attractive, since it allowed us to use single
database for System and asset data, greatly reducing complexity of the system. This choice
provided adequate performance throughout the development of the system.

However, when testing the system with a significant load, the asset data storage solu-
tion proved to be inadequate, being one of the main bottlenecks, reducing system latency.
Through configuration changes, we were able to tune the database. These changes allowed
us to serve around than 16000 assignments with acceptable latency.

However, if the system gains more users, we will have to change the storage solution, or
provide some caching mechanisms, to reduce database pressure.

Overall, we regard this choice as not very good one, and in the future, we would generally
choose a different approach(probably scyllaDB) for these kinds of storage requirements.

57

Chapter 7

Conclusion & Future work

The aim of this thesis was design and creation of a distributed system with with very
specific constraints. These constraints aimed our approach to the system, and affected our
choice of technologies.

The system was implemented as a distributed application with a Single-page application
as web frontend. We utilized ZeroMQ for communication, and based the general system
architecture on the actor model.

As part of this thesis, we have designed and implemented 2 libraries (actix-comm and
actix-net), which will released as open-source into the Actix library ecosystem.

We measured the performance achieved by the system depending on the load being put
on it, and its ability to scale to utilize more computational resources in accordance with
the rise in system load.

The system designed was submitted into the Excel@FIT student conference. The feed-
back provided by attendees of this conference was invaluable, and will certainly influence
the future of the system.

While we feel we successfully satisfied all the requirements put forward in the initial
stages of this thesis, we feel that both the set of technologies chosen, and the implemented
system have bigger potential, than was realized. We aim to explore this unrealized potential
even after this thesis is finished by continued development, and eventual release of the
implemented system as a fully functional service.

Future Work
The system created during the course of this thesis is currently deployed, and available to
users. To fully realize capabilities of the system, we aim to improve it in several ways.

First, we will focus on the usability of the system, improving the frontend application,
and creating some kind of tutorial. Then after the system is ready to be released, we hope
to get some feedback from real users, and focus on areas determined by the feedback.

From the system side, we aim to clean up the code of the actix-net and actix-arch
libraries, and release them in the crates.io ecosystem.

58

Bibliography

[1] SQL Feature Comparison. [Online; accessed 05-May-2019].
Retrieved from: https://www.sql-workbench.eu/dbms_comparison.html

[2] TechEmpower Framework Benchmarks. [Online; accessed 05-May-2019].
Retrieved from: https://www.techempower.com/benchmarks/

[3] Actix. January 2019. [Online; accessed 05-January-2019].
Retrieved from: https://actix.rs/

[4] Akka. January 2019. [Online; accessed 05-January-2019].
Retrieved from: https://akka.io/

[5] Kubernetes. January 2019. [Online; accessed 05-January-2019].
Retrieved from: https://kubernetes.io/

[6] Agopyan, A.; Şener, E.; Beklen, A.: Financial Business Cloud for High-Frequency
Trading A Research on Financial Trading Operations with Cloud Computing. 2010.

[7] Anderson, B.; Bergstrom, L.; Goregaokar, M.; et al.: Engineering the Servo Web
Browser Engine Using Rust. In 2016 IEEE/ACM 38th International Conference on
Software Engineering Companion (ICSE-C). May 2016. pp. 81–89.

[8] Blandy, J.: The Rust Programming Language: Fast, Safe, and Beautiful. O’Reilly
Media, Inc.. 2015. ISBN 9781491925447.

[9] Coulouris, G.; Dollimore, J.; Kindberg, T.; et al.: Distributed Systems: Concepts and
Design. USA: Addison-Wesley Publishing Company. fifth edition. 2011. ISBN
0132143011, 9780132143011.

[10] Hewitt, C.: Actor Model for Discretionary, Adaptive Concurrency. CoRR. vol.
abs/1008.1459. 2010. 1008.1459.
Retrieved from: http://arxiv.org/abs/1008.1459

[11] Hintjens, P.: 0MQ - The Guide. 2011. [Online; accessed 05-January-2019].
Retrieved from: http://zguide.zeromq.org/page:all

[12] Hoare, C. A. R.: Communicating Sequential Processes. Upper Saddle River, NJ,
USA: Prentice-Hall, Inc.. 1985. ISBN 0-13-153271-5.

[13] Hoare, G.: Rust Progress. 2010. [Online; accessed 05-January-2019].
Retrieved from: https://web.archive.org/web/20140815054745/http:
//blog.mozilla.org/graydon/2010/10/02/rust-progress/

59

https://www.sql-workbench.eu/dbms_comparison.html
https://www.techempower.com/benchmarks/
https://actix.rs/
https://akka.io/
https://kubernetes.io/
1008.1459
http://arxiv.org/abs/1008.1459
http://zguide.zeromq.org/page:all
https://web.archive.org/web/20140815054745/http://blog.mozilla.org/graydon/2010/10/02/rust-progress/
https://web.archive.org/web/20140815054745/http://blog.mozilla.org/graydon/2010/10/02/rust-progress/

[14] J. McGowan, M.: The Rise of Computerized High Frequency Trading: Use and
Controversy. Duke Law and Technology Review. vol. 16. 11 2010.

[15] Leveson, N. G.; Turner, C. S.: An investigation of the Therac-25 accidents. Computer.
vol. 26, no. 7. July 1993: pp. 18–41. ISSN 0018-9162. doi:10.1109/MC.1993.274940.

[16] Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. 2008. [Online; accessed
05-January-2019].
Retrieved from: http://bitcoin.org/bitcoin.pdf

[17] Stroustrup, B.; Sutter, H.; Dos Reis, G.: A brief introduction to C++’s model for
type-and resource-safety. 2015.

[18] Tesauro, G.; Das, R.: High-performance Bidding Agents for the Continuous Double
Auction. In Proceedings of the 3rd ACM Conference on Electronic Commerce. EC
’01. New York, NY, USA: ACM. 2001. ISBN 1-58113-387-1. pp. 206–209.
doi:10.1145/501158.501183.
Retrieved from: http://doi.acm.org/10.1145/501158.501183

[19] Traver, V. J.: On Compiler Error Messages: What They Say and What They Mean.
Adv. in Hum.-Comp. Int.. vol. 2010. January 2010: pp. 3:1–3:26. ISSN 1687-5893.
doi:10.1155/2010/602570.
Retrieved from: http://dx.doi.org/10.1155/2010/602570

[20] Verma, A.; Pedrosa, L.; Korupolu, M. R.; et al.: Large-scale cluster management at
Google with Borg . In Proceedings of the European Conference on Computer
Systems (EuroSys). Bordeaux, France. 2015.

[21] Wikipedia: Algorithmic trading — Wikipedia, The Free Encyclopedia. January 2019.
[Online; accessed 05-January-2019].
Retrieved from: https://en.wikipedia.org/wiki/Algorithmic_trading

[22] Wikipedia: Cloud computing — Wikipedia, The Free Encyclopedia. 2019. [Online;
accessed 05-January-2019].
Retrieved from: http://en.wikipedia.org/w/index.php?title=
Cloud%20computing&oldid=871497546

60

http://bitcoin.org/bitcoin.pdf
http://doi.acm.org/10.1145/501158.501183
http://dx.doi.org/10.1155/2010/602570
https://en.wikipedia.org/wiki/Algorithmic_trading
http://en.wikipedia.org/w/index.php?title=Cloud%20computing&oldid=871497546
http://en.wikipedia.org/w/index.php?title=Cloud%20computing&oldid=871497546

	Introduction
	Objectives

	Current state & existing solutions
	Examples
	Gekko
	CryptoTrader

	Theory
	Trading & Exchanges
	Algorithmic trading

	Distributed systems
	Additional properties

	Actor model
	Alternative models
	Implementations

	Rust
	Language basics
	Features
	Generic programming, traits
	Traits
	Marker traits
	Memory management
	Concurrency primitives
	Asynchronous programming
	Build system and package manager

	Actix
	Actor in actix
	Networked actors in actix

	Cloud environment
	Virtual machine model
	Container model
	Kubernetes

	Web applications

	Design
	General system design
	Component design
	Individual component architecture

	Communication, actix-comm and actix-arch
	Underlying protocol
	Library interface
	Communication protocol
	Message format, actor state
	Actix-arch

	Data storage
	System data
	Asset data
	Evaluated storage architectures
	Evaluated solutions

	Web
	Backend
	Frontend
	Frontend application

	Exchange adapters
	Strategies
	Language choice
	Lua
	Safety
	Access to information
	Technical analysis library

	Evaluation

	Implementation
	Project structure
	Building and deploying
	Makefile meta-build management
	Kubernetes configuration templating
	Build targets

	Component implementation
	Core component
	Eval component
	Bitfinex adapter
	Persistence
	Web component

	Web application frontend
	React
	Components & Routing
	Redux
	Material-UI

	Testing and evaluation
	Testing
	Debugging
	Monitoring

	Implementation evaluation
	Measurement methodology

	Performance measurements
	Collected information

	Results
	Measurement stages
	Further scaling
	Automatic scaling

	Problems
	Database bottlenecks
	Readability problems
	Deployment updates - Disconnects

	Impact of selected technologies

	Conclusion & Future work
	Bibliography

