
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF ELECTRICAL ENGINEERING AND
COMMUNICATION
FAKULTA ELEKTROTECHNIKY
A KOMUNIKAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF CONTROL AND INSTRUMENTATION
ÚSTAV AUTOMATIZACE A MĚŘICÍ TECHNIKY

BASICS OF PEDESTRIANS DETECTION IN IMAGE BY
MACHINE LEARNING
ZÁKLADY DETEKCE OSOB V OBRAZU POMOCÍ METOD STROJOVÉHO UČENÍ

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR
AUTOR PRÁCE

Peter Lučanský

SUPERVISOR
VEDOUCÍ PRÁCE

Ing. Karel Horák, Ph.D.

BRNO 2019

Fakulta elektrotechniky a komunikačních technologií, Vysoké učení technické v Brně / Technická 3058/10 / 616 00 / Brno

Bakalářská práce
bakalářský studijní obor Automatizační a měřicí technika

Ústav automatizace a měřicí techniky
Student: Peter Lučanský ID: 197720
Ročník: 3 Akademický rok: 2018/19

NÁZEV TÉMATU:

Základy detekce osob v obrazu pomocí metod strojového učení

POKYNY PRO VYPRACOVÁNÍ:

Lokalizace i klasifikace chodců na snímku dopravní scény je obvykle prováděna modelováním konvolučními
neuronovými sítěmi. Tento přístup je i cílem této práce. Provedte:
1. rešerši literatury detekce chodců z pohledu autonomního vozidla
2. seznam dostupných datasetů (trénovací a testovací část)
3. implementace vybraného nebo návrh vlastního algoritmu ML
4. ověření kodu na datasetu typu CityPersons

DOPORUČENÁ LITERATURA:

1. Goodfellow I., Bengio Y., Courville A.: Deep Learning. MIT Press, 2016. ISBN 9780262035613.
(deeplearningbook.org)

2. Buduma, N., Locascio, N. Fundamentals of Deep Learning. O'Reilly Media, Inc. 2017. ISBN 9781491925614.

Termín zadání: 4.2.2019 Termín odevzdání: 20.5.2019

Vedoucí práce: Ing. Karel Horák, Ph.D.
Konzultant:

 doc. Ing. Václav Jirsík, CSc.
předseda oborové rady

UPOZORNĚNÍ:
Autor bakalářské práce nesmí při vytváření bakalářské práce porušit autorská práva třetích osob, zejména nesmí zasahovat nedovoleným
způsobem do cizích autorských práv osobnostních a musí si být plně vědom následků porušení ustanovení § 11 a následujících autorského
zákona č. 121/2000 Sb., včetně možných trestněprávních důsledků vyplývajících z ustanovení části druhé, hlavy VI. díl 4 Trestního zákoníku
č.40/2009 Sb.

ABSTRACT
This thesis deals with cutting-edge computer vision task the detection of persons/pedes-
trians in images by using machine learning methods with its possible utilization, history
of progress and explanations of functionalities. It also includes testing the today’s best
method available on various circumstances and comparing aspects that has impact on
its performance.
At the beginning the matter is fundamentally explained and then are in details described
up to date achievements in the subject of matter. In the following part are described
available datasets that may be used for training with pointed out their pros and cons. In
the last section is in details explained how to use the chosen method. Lastly is executed
its training on various situations and comparison of the results is made.

KEYWORDS
convolutional neural network, object detection, dataset, average loss, mean average
precision, intersection over union, batch size, iterations, feature extractor

ABSTRAKT
Táto Bakalárska práce sa zaoberá významnou problematikou v oblasti počítačového vi-
denia, ktorou je detekcia osôb/chodcov v obraze, za pomoci metod strojového učenia,
spolu s jej možným využitím, vývojom a vysvetlením princípov. Taktiež sa zaoberá tes-
tovaním dnes najlepšieho dostupného algoritmu, pričom sa porovnávajú faktory ktoré
vplívajú na kvalitu jeho činnosti.
Na začiatku je problematika stručne popísaná, potom sa prejde k podrobným popisom
dosiahnutých pokrokov. V nasledujúcej časti sú popísané dostupné datasety, ktoré by sa
dali použiť pri tréningu detekčného algoritmu. V poslednom rade sú vykonané trénovacie
procesy za rozličných podmienok, pričom sú jednotlivé výsledky porovnávané.

KLÍČOVÁ SLOVA
konvolučná neuronová sieť, detekcia objektov, testovaci dataset, trenovaci dataset, ave-
rage loss, mean average precision, extraktor príznakov, iterácie

LUČANSKÝ, Peter. Basics of pedestrians detection in Image by machine learning. Brno,
Rok, 57 p. Bachelor’s Thesis. Brno University of Technology, Fakulta elektrotech-
niky a komunikačních technologií, Ústav automatizační a měříci techniky. Advised by
Ing. Karel Horák, Ph.D.

Vysázeno pomocí balíčku thesis verze 3.03; http://latex.feec.vutbr.cz

http://latex.feec.vutbr.cz

DECLARATION

I declare that I have written the Bachelor’s Thesis titled “Basics of pedestrians detection
in Image by machine learning” independently, under the guidance of the advisor and
using exclusively the technical references and other sources of information cited in the
thesis and listed in the comprehensive bibliography at the end of the thesis.

As the author I furthermore declare that, with respect to the creation of this Bachelor’s
Thesis, I have not infringed any copyright or violated anyone’s personal and/or ownership
rights. In this context, I am fully aware of the consequences of breaking Regulation S 11
of the Copyright Act No. 121/2000 Coll. of the Czech Republic, as amended, and of
any breach of rights related to intellectual property or introduced within amendments to
relevant Acts such as the Intellectual Property Act or the Criminal Code, Act No. 40/2009
Coll., Section 2, Head VI, Part 4.

Brno .
author’s signature

Contents

1 Theoretical part 11
1.1 Sliding-Window Detector . 12
1.2 R-CNN . 12
1.3 SPP-net-based system . 13
1.4 Fast R-CNN . 16
1.5 Faster R-CNN . 18

1.5.1 Region Proposal Network(RPN) 18
1.5.2 Training Faster R-CNN . 19

1.6 YOLO . 21
1.6.1 Unified detection . 21
1.6.2 Selection of proposed boxes 21

1.7 SSD . 23

2 Datasets 25
2.0.1 Caltech Padestrian Detection Dataset 25
2.0.2 Seq Video Format . 25
2.0.3 Annotations . 26
2.0.4 Conclusion . 26

2.1 INRIA Person Dataset . 26
2.1.1 Original Images . 26
2.1.2 Normalized Images . 27
2.1.3 Conclusion . 27

2.2 Penn-Fudan Database for Pedestrian Detection and Segmentation . . 27
2.2.1 Conclusion . 28

2.3 GM-ATCI Rear-view pedestrians dataset 28
2.3.1 Conclusion . 29

2.4 COCO (Common objects in context) 29
2.4.1 Conclusion . 30

2.5 Other useful padestrians datasets . 30

3 Practical part 32
3.1 Choice of algorithm . 32
3.2 Choice of software . 32
3.3 Choice of hardware . 33
3.4 Running program and how to use it 33

3.4.1 Program compilation . 33
3.4.2 Running program . 33

3.4.3 Flaq and ext. output file . 35
3.5 Putting together test set . 36
3.6 Preparing the project for training . 36
3.7 Script that draws YOLO predictions, ground true boxes and IOU in

test images . 37
3.8 Training network on training sets of various sizes 37

3.8.1 Training on set of 100 images from Coco 39
3.8.2 Training on set of 200 images from Coco 39
3.8.3 Training on set of 500 images from Coco 40
3.8.4 Training on set of 1000 images from Coco 40
3.8.5 Training on set of 2000 images from Coco 40
3.8.6 Training on set of 4000 images from Coco 40
3.8.7 Conclusion on dependency of model precision on number of

training images . 41
3.9 Training network on sets of various portions of images without any

person . 44
3.9.1 Training on set of 500 images where every contains some person 44
3.9.2 Training on set of 500 images where 50% of them contains

some person . 45
3.10 Conclusion on proportion of images which does not contain any person 45
3.11 Training on mixed dataset . 47

4 Conclusion 51

Bibliography 53

List of appendices 56

A Contend of attached CD 57

List of Figures
1.1 Histogram of oriented gradient detector (HOG) 11
1.2 R-CNN System overview . 12
1.3 Selective search explanation . 13
1.4 Warped training samples from VOC 2007 train for R-CNN 13
1.5 SPP-net - cropping or warping to fit a fixed size, spatial pyramid

pooling network structure . 15
1.6 Visualization of the feature maps. 15
1.7 A network structure with a spatial pyramid pooling layer. 16
1.8 Fast R-CNN architecture. 17
1.9 R-CNN Test-time speed . 18
1.10 Faste R-CNN . 19
1.11 RPN problem . 20
1.12 RPN problem solution . 20
1.13 Regional Proposal Network (RPN) 20
1.14 The model of YOLO . 22
1.15 Error Analysis: Fast R-CNN vs. YOLO 22
1.16 Qualitative Results of YOLO . 23
1.17 SSD framework . 24
1.18 SSD comparison with YOLO . 24
2.1 Caltech dataset samples . 25
2.2 INRIA dataset samples . 27
2.3 Penn-Fudan example images . 28
2.4 Examples of GM-ATCI Rear-view pedestrians dataset 29
2.5 COCO (Common Objects in Context) 30
2.6 Examples of Daimler Mono Pedestrian Detection Benchmark Datase . 31
2.7 Examples of Tsinghua-Daimler Cyclist Detection Benchmark Dataset 31
2.8 Virtual-world padestrian dataset . 31
3.1 CMake configuration . 34
3.2 darknet-53 . 38
3.3 Graph for 100 images from Coco . 39
3.4 Test image with ground true box with YOLO prediction (net trained

on 100 images) . 40
3.5 Graph for 200 images from Coco . 41
3.6 Graph for 500 images from Coco . 42
3.7 Graph for 1000 images from Coco . 43
3.8 Graph for 2000 images from Coco . 44
3.9 Graph for 4000 images from Coco . 45

3.10 Images with grout true boxes and YOLO predictions (net trained on
4000 images). 46

3.11 Graph for 500 images from Inria where every contains some person. . 47
3.12 Graph for 500 images from Inria where 50% images contains any person. 48
3.13 Error predictions made by net trained on only "pos" images 49
3.14 Comparison of predictions . 49
3.15 Graph of set with 2000 images with same distribution as test set. . . 50

List of Tables
3.1 Dependency of achieved settled mAP on number of images from Coco

dataset in train set. 42

Introduction
Person or pedestrian detection in images is an essential and significant computer
vision task that can be used in various modern applications. For example in any
intelligent video surveillance system, as it provides the fundamental information for
semantic understanding of the video footages. It has also an obvious extension to
automotive applications due to the potential for improving safety systems and au-
tonomous driving systems. In recent years it presents subject of intense development
and significant progress.

The theoretical part mentiones and explaines some of the today most promising
detection methods such as R-CNN, its modifications, SPP-net, YOLO and many
others. Also with some of the older ones.

In the chapter of datasets there are mentioned datasets that may be potentially
useful for training and testing chosen detection system. Five of them are described
in more details with their pros and cons.

In the practical part is discussed chosen implementation of detection system, used
hardware and composition of sets that will be used in training process. Then all the
configurations including configuring and running project are described in details in
manual form. In the end of practical part is choosen system trained on sets that
were composed in various kinds of ways. While the development of parameters such
as loss and mAP are plotted in graphs. Obtained results are illustrated in attached
graphs and illustrative images. Then are the performances of those trained instances
criticaly discussed. In the conclusion is present the whole summary of results with
achievements of this thesis.

10

1 Theoretical part
Methods that solve padestrians detection problem without CNN are for instance,
Histograms of oriented gradients for human detection[1] Fig.1.1, Crosstalk cas-
cades for frame-rate pedestrian detection[2]. The most advanced algorithms of
them are probably modifications of the Deformable Part Model for Object Detec-
tion (DPM)[4][5], which uses histograms of oriented gradients. These methods are
today almost completely replaced with methods using Convolutional neural net-
works(CNN), that are more accurate. The only advantage of DPM may be the
real time speed but that was also outperformed by the latest CNN-based detectors.
Therefore in the next sections will be mentioned only methods that uses CNN.

As we know CNN are designed for image classification, but for detecting people
in scene we don’t need just classification, because in pedestrians images may have
various sizes and localizations within image, therefore we need to solve the local-
ization problem also. In the following sections will be described methods that was
successfully used in the past for classification well as localization. They are ordered
from the oldest and the most inferior of them to the newest and best performing.

Fig. 1.1: Histogram of Oriented Gradient(HOG) detectors cue mainly on silhouette
contours (especially the head, shoulders and feet). The most active blocks are
centred on the image background just outside the contour. (a)The average gradient
image over the training examples. (b)Each "pixel" shows the maximum positive
SVM weight in the block centred on the pixel. (c)Likewise for the negative SVM
weights. (d)A test image. (e)It’s computed R-HOG descriptor. (f,g)The R-HOG
descriptor weighted by respectively the positive and the negative SVM weights.

11

Fig. 1.2: R-CNN System overview

1.1 Sliding-Window Detector
This method uses CNN to classify objects in section of the picture (window) that
is sliding through the picture with fixed step (sliding-window approach). There
are used various-sized windows for detecting big objects as well as small ones. It
is typically useful for constrained objests such as faces and padestrians[3]. This
approach was used for localization using CNN at least two decades. Downside is
that wasteful number of image proposals have to be processed.

1.2 R-CNN
[7] R-CNN was first time introduced by Ross Girshick, Jeff Donahue, Trevor Dar-
rell and Jitendra Malik in October 2014. This object detection system consist
of three modules. The first one generates category-independent region proposals
(about 2000). The second is the CNN that extracts features and third the binary
SVN(support vector machine). The first module consists of selective search algo-
tithm, which generates category-independent region proposals, by running segmen-
tation algorithm that generates segmentation map, and then the bounding boxes
are placed arround every blob that was generated (about 2000)Fig.1.3.

After region was proposed image must be converted into the form that is com-
patible with CNN (originally fixed 227x227 pixel size). So regardless of the size or
aspect ratio of the box candidate region, all pixels are warped into bounding box
of required size as you can see in fig.1.4. For feature extraction was originally used
CNN described by Krizhevsky[8].with five convolutional layers that extracts 4096-
dimensional feature vector from each region proposal. Results on PASCAL VOC
2011-12 was 53.3%, which overcame every method in that time.

12

Fig. 1.3: Selecive search explanation, only 4 possible boxes are shown

Fig. 1.4: Warped training samples from VOC 2007 train.

However R-CNN has notable drawbacks:
1.Training is multi-stage pipeline firstly is tuned ConvNet on object proposals

using log loss. Then SVM is fit to ConvNet features. These SVMs act as object
detectors, replacing the softmax classifier. And in the third stage bounding-box
regressors are learned.

2. Training is expensive in space and time. During training features are extracted
from each object proposal in each image and written to disc, these features hundreds
of gigabytes of storage.

3. Object detection is slow Using CNN VGG16 detection takes about 47s/image
using GPU, because features are extracted from each object proposal.

1.3 SPP-net-based system
[6] This method solves problem where CNNs require inputs of fixed sizes, which
limits the aspect ratio and the scale of the input image. And was introduced by
Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun in April 2015. Without
SPP-net we have to edit pictures that do not fit either via cropping or warping as
in fig.1.5. But cropping may eliminate usefull parts of the object and warping may

13

results in unwanted geometric distortions. So authors asked themselves, why do
CNNs require a fixed input size. As we know CNNs consists of convolutional layers
and fully-connected layers. The convolutional layers outputs the feature maps via
convolution, which represent the spatial arrangement of the activations fig.1.6, but
convolutional layers don’t need input of fixed size, in fact they can generate feature
maps of any size from inputs of any sizes, but on the other hand, the fully connected
layers strictly require fixed-size inputs. Therefore the fixed-size constraint of CNNs
comes from fully connected layers that comes after the convolutional layers. What
is special about SPP-net is that there was added the SPP(Spatial Pyramid Pooling)
layer right after the last convolutional layer to eliminate the fixed-size constraint of
the network. So we don’t have to crop or warp image in the beginning see in fig.1.5.

The idea of Spatial Pyramid Pooling is derived from traditional Bag of Visual
Words algorithm[9]. In detection system the spatial pyramid is constructed on the
top of the region of interest. Where the first level of the pyramid is a region of
interest itself. On the second level of pyramid, the region is divided into four cells
(2x2 grid) and on the third level, region is divided for example into 16 cells (4x4
grid). Average or max pooling is applied to each cell. If the last convolutional layer
has for instance 256 maps, then pooling in each cell produce one vector with length
256. Feature vectors for all cells that were generated are then concatenated, and
then passed as input to the fully connected layer. fig.1.7

SPP-net not only hepls making representations from arbitrarily sizes, but also
hepls during training, because it allows us to feed in the variable-size images during
training. Which increase scale-invariance and reduce over-fitting.

SPP-net for object detection works similarly to R-CNN but it eliminates some
of its drawbacks the most significant is the speed, which is of magnitude faster.

In the first stage of Detection Algorithm of SPP-net for Object Detection is
used algorithm for selective seach that is similar to that in R-CNN. Then the image
is resized and feature map is extracted from entire image at once. Which is a
big advantage against R-CNN and is the cause that SPP-net is way much faster
than R-CNN, where feature map was generated for each candidate. Then in each
candidate is used Spatial Pyramid Pooling and these representations are provided
to fully-connected layers.

SPP-net-based system for object detection is 24-102x faster than R-CNN, while
having better or same accuracy. It takes about 0.5s to process image what makes it
practical for real-world applications.

14

Fig. 1.5: Top: cropping or warping to fit a fixed size. Middle: a conventional CNN.
Bottom: spatial pyramid pooling network structure.

Fig. 1.6: Visualization of the feature maps. (a) Two images in Pascal VOC 2007. (b)
The feature maps of some conv5 filters. The arrows indicate the strongest responses
and their corresponding positions in the images. (c) The ImageNet images that have
the strongest responses of the corresponding filters. The green rectangles mark the
receptive fields of the strongest responses.

15

Fig. 1.7: A network structure with a spatial pyramid pooling layer. Here 256 is the
filter number of the last convolutional layer.

1.4 Fast R-CNN
[10] This network method was introduced by Ross Girshick in Microsoft Research
in September 2015. It is built on previous R-CNN and SPP-based network. Besides
better accuracy Fast-RCNN is much more faster than R-CNN in detecting as well
as in training.

Fast R-CNN gains from advantages that SPP-based-network posses, for instance
the feature map is made only once per image and in the beginning we don’t warp the
candidates. But fast R-CNN also solves some drawbacks that SPP-based Network
still possess:

• 1. Training is multi-stage pipeline that involves extracting features, fine-tuning
a network with log loss, training SVMs, and finally fitting bounding-box re-
gressors.

• 2. All features are also written to disc as in R-CNN.
• 3. Unlike R-CNN, the fine-tuning algorithm in SPP cannot update the con-

volutional layers that precede the spatial pyramid pooling.
Fast R-CNN comes with a new features that fixes the disadvantages of both R-CNN
and SPP-net, while improving on speed and accuracy.

Fast R-CNN takes as input whole image and region proposals. The network
firstly processes whole image through convolutional and max-pooling layers to create
the feature map. Then for each region proposal a region of interest pooling layer
extracts constant-size feature vector for fully connected layers that branch into two
sibling output layers. Where one ouputs the softmax probability of K object classes.

16

Fig. 1.8: Fast R-CNN architecture. An input image and multiple regions of interest
(RoIs) are input into a fully convolutional network. Each RoI is pooled into a fixed-
size feature map and then mapped to a feature vector by fully connected layers
(FCs). The network has two output vectors per RoI: softmax probabilities and per-
class bounding-box regression offsets. The architecture is trained end-to-end with a
multi-task loss.

And second outputs 4 real-valued numbers refining bounding-box posistion for each
of the object classes. fig.1.8

Region of interest pooling layer is modified spatial pyramid pooling layer where
we use only one pyramid level. So we use max-pooling in each cell of constant 7x7
grid.

To eliminate our third problem where the back propagation through spatial pyra-
mid pooling layer is highly inefficient, we sample minibatches hierarchically, first by
sampling N-images(typically 2) and then by sampling R/N(ordinary 64) regions of
interests from each image. This method unlike the SPP-based network takes advan-
tage of sharing features of one whole image during training. This also saves required
memory for training.

For streamlined training process(where in one stage softmax classifier is jointly
optimized with bounding box regresor) we use for training a multi-task loss. This
multi-task loss is the rate of sum of classification loss (log. loss) and bounding box
regression box loss(L1 loss). Because there is not separate SVM training, therefore
end-to-end training is allowed, what is much faster and doesn’t require intense write
and read to the hard drive. Precision was also improved.

17

Fig. 1.9: Comparison of test-time speed of object detection algorithms.

1.5 Faster R-CNN
[11] Computaional demands drastically decreased from R-CNN to fast R-CNN,
thanks to sharing of feature map. Now the only handicap appears to be the region
proposals. Region proposal takes as much time as the detection network. Faster
R-CNN comes with solution where proposals are computed by Region Proposal Net-
work (RPNs) that shares convolutional layers with object detection network, that
was described in previous sections.

1.5.1 Region Proposal Network(RPN)

RPN is a kind of fully convolutional network[12] and serves as a proposal generator.
And can be made by adding a few additional convolutional layers on the top of shared
convolution layers. In the original paper of faster R-CNN[11] was used Zeiler and
Fergus model[14](ZF), which has 5 shareable convolutional layers and the Simonyan
and Zisserman model[15](VGG-16), which has 13-shareable layers.

Experiments in neural network visualizations have shown that by decoding con-
volutional responses that comes from one place, we can still roughly guess the object
outline. And that is what RPN does.

Region Proposal Network is a relatively small network that is slided over con-
volutional feature map. Its input size is usually 3. RPN simultaneously classify
the object as unknown object and regress the bounding box locaion. Position of
the sliding window provides localization information, with reference to the image
and box regresion provides finer localization with reference to this sliding window.
At each sliding window position is defined a set of object proposals. Each of these
proposal has different size and aspect ratio. Such proposals are called anchors.

18

Fig. 1.10: Faster R-CNN is a single, unified network for object detection. The RPN
module serves as the ‘attention’ of this unified network.

In training process of RPN the proposed anchors are marked as positive example
if intersection over union with ground true particular example is larger than 0.7, or
if none of them reached this value we take anchor that reached the maximum value
of intersection. And as negative examples are anchors marked if intersection over
union is lower than 0.3. The box regresion is trained to regress the boxes of positive
examples to ground truth boxes.

However, it can be very difficult for RPN to handle objects of very different
scales, because the receptive field is fixed. There appears problems when receptive
field is larger that receptive field or opposite, as you can see in the fig.1.11. This
problem is sloved by using RPNs of various scales. These various scales are achieved
by placing each RPN after different convolutional layers, so the receptive fields will
be of various sizes fig1.12. This method will significantly improve network ability to
detect objects of various sizes.

1.5.2 Training Faster R-CNN

Faster R-CNN is trained as one network using the following four losses:
1. RPN classification loss (good/bad anchor)
2. RPN regression loss (anchor->proposal)
3. Fast R-CNN classification loss (over classes)
4. Fast R-CNN regression (proposal->box)

19

Fig. 1.11: RPN problem with objects of various sizes. I the left the receptive field
is much smaller than object itself and in the right the object is much smaller than
receptive field.

Fig. 1.12: Structure of using multiple RPNs for various sizes of receptive fields.

Fig. 1.13: Left: Region Proposal Network (RPN). Right: Example detections using
RPN proposals on PASCAL VOC 2007 test. Method detects objects in a wide range
of scales and aspect ratios.

20

1.6 YOLO
[16] YOLO (you only look once) comes with revolutionary approach of detection that
is more simple than complex faster R-CNN and it is remarkably faster. Base model
of YOLO process images in real-time at 45 frames per second. Smaller version,
fast YOLO process 155 frames per second, while still achieving double the mAP of
other real-time detectors. Compared to state-of-art detection systems, YOLO makes
more localization errors but is less likely to predict false positives on background.
YOLO is also better in learning general representations of objects, therefore is better
performing in other domains of images like artwork Fig.1.16.

YOLO was inspired by human glance at an image, where humans instantly know
what objects are in the image, where they are and they interact.

1.6.1 Unified detection

YOLO uses single convolutional network that simultaneously predicts multiple bound-
ing boxes and class probabilities for those boxes. This also enables end-to-end learn-
ing.

Here is how YOLO works: Firstly is the image divided into SxS grid. Then each
grid cell predicts B bounding boxes, that are assigned to those predefined anchors
that has similar shapes.

Each bounding box consist of 5 predictions: x, y, w, h and confidence. X, y
represents coordinates of box center, they are relative to the bounds of grid cell.
W and h represents width and height of box relative to the whole image. Finally
confidence represents the intersection over union of predicted box with ground true
box(IOU), in other words this number reflects how certain is the network that the
box is accurate and how certain it is that the box is containing an object.

Each grid cell also predicts C conditional probabilities, Pr(Class|Object). These
probabilities are conditioned on the grid cell containing an object. Only one set of
probabilities are predicted per grid cell, regardless the number of boxes.

Then those two numbers are multiplied, which give us class-specific confidence
score for each box. These scores encode both the probability of that class appearing
in that box and how well the predicted box fits an object. Fig.1.15 In the original
paper was used S=7, B=2, and number of classes C=20.

1.6.2 Selection of proposed boxes

We obtained yet SxSxB, bounding boxes in total, with their class specific confidence.
As first step those class-specific confidences of each box are compared with some
threshold (usually about 0.6), boxes with lower class-specific confidence are then

21

Fig. 1.14: The Model. Our system models detection as regression problem. It
divides the image into an S×S grid and for each grid cell predicts B bounding
boxes, confidence for those boxes, and C class probabilities. These predictions are
encoded as an SxSx(B*5+C) tensor.

comparison.png

Fig. 1.15: Error Analysis: Fast R-CNN vs. YOLO These charts show the percentage
of localization and background errors in the top N detections for various categories
(N = objects in that category).

22

Fig. 1.16: YOLO running on sample artwork and natural images from the internet.
It is mostly accurate although it does think one person is an airplane.

eliminated. Then the Non-Max Suppression algorithm is applied, which eliminates
multiple boxes that corresponds to the same object. Here is how it works: Firstly
we get box with the highest confidence and then delete all boxes that has higher
intersection over union with that box than some threshold (ordinary 0.5). Then we
repeat this process with the next remaining box with lower confidence until there is
none box left.

1.7 SSD
[17] SSD (Single Shot MultiBox Detector) was introduced in December of 2016.
Although the YOLO is much faster than faster R-CNN it posses worse detection
accuracy (for PASCAL VOC 63.4% mAP), than faster R-CNN (73.2%). Most errors
made by YOLO cames from images of different scales. This problem solves the SSD
algorithm. Its principle of working is very similar to YOLO but has some other
beneficial features.

The core of SSD is as in YOLO in the predicting fixed-size collection of category
scores with box offsets for a fixed set of default-shaped bounding boxes(in YOLO
called anchors), using small convolutional filters(in YOLO the spliting of picture
into SxS grid) applied to the feature map. But in SSD we apply it to several feature
maps of different resolutions, as resolution decreases from early layers to end. Then
are used tresholding and non-max suppression to extract only relevant proposals.

23

Fig. 1.17: (a) SSD only needs an input image and ground truth boxes foreach object
during training. In a convolutional fashion, we evaluate a small set (e.g. 4)of default
boxes of different aspect ratios at each location in several feature maps withdiffer-
ent scales (e.g.8×8and4×4in (b) and (c)). For each default box, we predictboth the
shape offsets and the confidences for all object categories ((c1,c2,···,cp)).At train-
ing time, we first match these default boxes to the ground truth boxes. Forexample,
we have matched two default boxes with the cat and one with the dog, whichare
treated as positives and the rest as negatives. The model loss is a weighted sumbe-
tween localization loss (e.g. Smooth L1 [6]) and confidence loss (e.g. Softmax).

Fig. 1.18: A comparison between two single shot detection models: SSD and
YOLO [5].Our SSD model adds several feature layers to the end of a base network,
which predictthe offsets to default boxes of different scales and aspect ratios and
their associatedconfidences. SSD with a300×300input size significantly outperforms
its448×448YOLO counterpart in accuracy on VOC2007testwhile also improving the
speed.

24

2 Datasets
2.0.1 Caltech Padestrian Detection Dataset

[20] The first version of this dataset was introduced by Piotr Dollár on his site in
2009. It was made for training and evaluating the padestrians detection algorithms.
There are also charts of the most advanced detection algotihms at that time. This

Fig. 2.1: Caltech dataset samples: images with labels.

dataset consists of approximately 10 hours of 640x480 30Hz video, taken from vehicle
driving through regular traffic in urban environment. I is about 250,000 frames in
137 approximately minute long segments, with a total of 350,000 bounding boxes
and 2300 unique padestrians were anotated.

The whole dataset is divided into two parts:

• training data consists of six training sets, approximately 1GB
each and each contains 6-13 one-minute long seq files, along with
all annotation information.

• testing data consists of 5 similar sets.

2.0.2 Seq Video Format

A seq file is a series of concatenated image frames with a fixed size header. It is
essentially the same as merging a directory of images into a single file. Seq files are
convenient for storing videos because:

• no video codec is required
• seek is instant and exact
• seq files can be read on any operating system

This datasets websitealso contains authors Matlab toolbox for handlig seq files (read-
ing/writing/manipulating). It can also be used to to extract an seq fie to a directory
of images.

25

2.0.3 Annotations

The annotations use a custom "video bounding box" (vbb) file format. The site also
contains utilities to view seq files with anotations overlaid (the labeled boxes). It
also contains evaluation routines for evaluating algorithms and labeling tool that
was used to create the dataset and can be used for creating a new dataset.

2.0.4 Conclusion

Since this dataset consists of videos it contains a huge number of images what is
only good for machine learning in computer vision. But there may also appears a
problem that the network will overfit those images, because they were all taken in
the same enviroment. And sequence of images from video are verry simmilar others
in that video.

2.1 INRIA Person Dataset
[21] This dataset was collected as part of research work on detection upright people
in images and video. The research is described in paper Histograms of Oriented
Gradients for Human detection[1] by Navneet Dalal and Bill Trigg in 2005.

The dataset contains PNG images from these sources:
• Images from older dataset Graz01, but annotations were made newly.
• Authors personal digital image collections.
• Images taken from the web using google images.

Author also mentioned that only upright persons (with height over 100cm) are
marked in each image. And not all annotations may be 100% right.

Dataset contains 2 types of "subdatasets":
• Original Images
• Normalized Images

2.1.1 Original Images

Contains original, non resizes images and Consists of two folders ’Train’ and ’Test’.
Both folders have three sub folders: (a) ’pos’ (positive training or test images), (b)
’neg’ (negative training or test images), and (c) ’annotations’. Annotation files for
positive images are in Pascal Challange format.

26

Fig. 2.2: INRIA dataset samples.

2.1.2 Normalized Images

Contains normalized images of sizes 64x128, 96x160, 70x134 pixels with margins
around each side for avoiding boundary conditions. It also contains 64x128 images
without margins. Each folder of Normalized images is divided same sa folders with
original images.

2.1.3 Conclusion

This dataset contains approximately 2500 images what is much less than in Caltech
dataset, but INRIA images are much more varied thus could make detection system
more general. Other problem may be the low resolution of images. Also small and
not-upright people are not labeled, which could be in some cases usefull.

2.2 Penn-Fudan Database for Pedestrian Detection
and Segmentation

[22] The images are taken from scenes around campus of University of Pennsylvania
and Fudan and urban street. Each image has at least one pedestrian in it. The
heights of labeled pedestrians in this database fall into [180,390] pixels. All labeled
pedestrians are straight up.

There are 170 images with 345 labeled pedestrians, among which 96 images are
taken from around University of Pennsylvania, and other 74 are taken from around
Fudan University.

The annotation format is compatible with PASCAL Annotation Version 1.00.

27

Fig. 2.3: Penn-Fudan example images with labeled masks and detection boxes.

2.2.1 Conclusion

This dataset is the smallest of all mentioned datasets. Advantage may be the precise
bounding boxes.

2.3 GM-ATCI Rear-view pedestrians dataset
[23] This dataset was collected using a vehicle-mounted standard automotive rear-
view display camera for evaluating rear-view padestrian detection. The production
180 degrees fisheye-lens camera was mounted in front of the vehicle in the typical
rear-view installation pose: 107cm height and 25 degrees downward tilt angle. The
dataset contains 15 filming sessions, each taken in a different day with different
scenarios. Each session contains multiple clips with duration ranging from several
seconds to several minutes. In total, the dataset contains 250 clips with a total
duration of 76 minutes and over 200K annotated pedestrian bounding boxes. But for
free there is only available the test portion comprising 70 of the clips. There are two
types of sessions, containing either staged or “in-the-wild” pedestrians. The staged
scenarios include mainly pedestrians walking in front of the camera at different
positions and directions in a controlled manner, spanning the different use cases of
a rear alert or braking automotive feature. In the remaining sessions the vehicle
drove either in public roads or in parking lots and captured incidental pedestrians.
The different locations include: indoor parking lots, outdoor paved/sand parking
lots, city roads and private driveways. Authors filmed both day and night scenarios,

28

Fig. 2.4: GM-ATCI Rear-view pedestrians dataset examples of output of some de-
tection system.

with different weather and lighting conditions. More information can be found in
the rear-view detection system papers[18][19].

The videos are same as in Caltech dataset in Seq format and annotations in vbb.

2.3.1 Conclusion

This dataset contains relatively big number of annotated padestrian boxes also of
non-upright people. There was used camera that wasn’t used in any other dataset,
what makes this dataset only beneficial, also in general the detection systems has a
high potential to be used with car cameras like was used in making this dataset.

2.4 COCO (Common objects in context)
[24][25] This relatively new dataset firstly appeared in 2014 with support from Mi-
crosoft. Its goal is advancing the state-of-art in object recognition by placing the
question of object recognition in the context of the broader question of scene under-
standing. This is achieved by gathering images of complex everyday scenes contain-
ing common objects in their natural context. Dataset contains photos of 91 object
types, with total of 2.5 million labeled instances in 328k images. It supports novel
interfaces for category detection, instance spotting and instance segmentation.

29

Fig. 2.5: COCO example - (a)image classification, (b) object detection, (c) semantic
pixel-level segmentation, (d) segmenting individual object instances.

2.4.1 Conclusion

As this dataset is composed of 328k images, where approximately half of them
contain person, it makes this dataset very useful. Its annotations are also very
precise and images comes from various contexts and scenarios.

2.5 Other useful padestrians datasets
• Daimler Mono Pedestrian Detection Benchmark Dataset[26] Fig.2.6
• Tsinghua-Daimler Cyclist Detection Benchmark Dataset[27] Fig.2.7
• Data61 Pedestrian Dataset from NICTA[28]
• CVC-ADAS: datasets including pedestrian videos acquired on-board, virtual-

world pedestrians (with part annotations), and occluded pedestrians[29] Fig.2.8

30

Fig. 2.6: Daimler Mono Pedestrian Detection Benchmark Datase examples.

Fig. 2.7: Tsinghua-Daimler Cyclist Detection Benchmark Dataset examples.

Fig. 2.8: Virtual-world padestrian dataset

31

3 Practical part
Up to now, we were dealing only with possibly useful algorithms and datasets rather
in the theoretical level. In this chapter practical things will be tried, one algorithm
will be chosen, one set (representing dev and test dataset at once) will be composed
from mentioned datasets. And then chosen Algorithm will be trained on various
types of set and tested on composed "test" set.

3.1 Choice of algorithm
If one look for simplicity of implementation, then Sliding-Window Detector would
be the best option by far, but there are already many of precisely implemented
models available in open-sourse. The most accurate appears to be faster R-CNN
or possibly YOLO which makes less positive errors. SSD is relatively new and
not well developed yet with eventual potential, but that task would be far beyond
scope of this thesis. Moreover if we take into account the speed of detection, then
YOLO is the best option, therefore in the ongoing sections we will be handling with
YOLO algorithm in its most advanced version the YOLOv3 (see YOLO version 3
improvements [30]).

3.2 Choice of software
Author of YOLO algorithm offers his implementation on his own website [31] for
free. YOLO was there implemented in neural network framework named Darknet
which was written in C and CUDA and supports CPU as well as GPU computation.
Manual for his implementation is also described on mentioned website.

On some github repositories such as [32] are available the Tensorflow implemen-
tations of YOLO. This could appears more "friendly" to those who uses Tensoflow
and wants to try tweaking the implementation possibly with Tensorboard environ-
ment. What is also favourable is that functions for the detection that are available
on this github repository can be simply used in other python applications, but the
chosen implementation comes from this github repository [33]. It offers Windows
and linux version of Darknet YOLOs v3 and v2, where also modern tensor cores can
be used.

Here are the main improvements in chosen repository because of which it was
picked out:

• improved neural network performance Detection 3x times, Training 2 x times
on GPU Volta (Tesla V100, Titan V, ...) using Tensor Cores

• added correct calculation of mAP, F1, IoU, Precision-Recall

32

• added drawing of chart of average-Loss and accuracy-mAP during training

3.3 Choice of hardware
As my laptops graphical card (Intel HD) does not support CUDA parallel comput-
ing platform, it makes detection using my laptops CPU not very nimble. It takes
approximately 30s to complete detection on the single frame after the compilation
was completed. After taking into consideration that training is even more tedious
process, I decided to use cloud service.

One option is Floydhub that is deep learning platform which offers cloud GPU
units. But it is not so well designed for chosen type of project (not python project),
therefore the classical cloud machine from Google Cloud Platform was chosen. This
instance posses:

• 4 vCPUs, 15 GB memory
• GPU - NVIDIA Tesla T4 (posses 2,560 CUDA cores with 320 tensor cores)
• OS - Microsoft Server 2016

Great advantage is also that we can change number of GPUs in our VM instance
according to our demands anytime.

3.4 Running program and how to use it

3.4.1 Program compilation

For project compilation the following dependencies had to be installed:
• CMake
• MS Visual Studio 2015/2017/2019
• CUDA > 10.0, cuDNN > 7.0
• OpenCV > 2.4

After installing all the mentioned dependencies, setting all the required system vari-
ables and cloning chosen repository, generation of project may be started using
CMake (generator to x64). Configuration should look as in Fig.3.1. Then the
project is just build in release mode using Visual Studio.

3.4.2 Running program

In this section are described only basics of launching program that are sufficient for
our purposes. Program is run by command line from its folder by typing:

"darknet.exe detector [mode] [data file] [cfg file] [weights] [flaq] [ext.
output file if -ext_output flaq was added]"

33

Fig. 3.1: CMake configuration

34

In the folowing subsections are all the arguments described:

Mode

If one choses "test"-mode it makes detection on given photo, where the output is the
given picture with bounding boxes and labels.

Using "demo" mode we can make detection on video, webcam and external device.
We can also train out network using "train" argument.

Data file

This argument refers to the small 5-lines long file which defines number of classes,
relative paths to text files containing relative paths to training and all the valida-
tion images. Also defines relative path to "names" file where are just listed names
of classes that corresponds to the first number in YOLO annotation format, which
represents class type. Backup variable defines the relative path to location of sav-
ing the trained weights after every 1000 iterations and last trained weights before
program stopped. (Relative paths are meant to be relative to darknet.exe file.)

Cfg file

These prearranged "cfg" files are located in folder named cfg. Purpose of cfg-file
is definition of layout and configuration of all the convolutional and "YOLO" lay-
ers. As far it is not in our intention to tweak configuration of network, we let the
convolutional layers unchanged. What we have to change are parameters "classes"
an "filters" ((classes+5)*3) in YOLO layers according to number of classes that are
being detected. (In yolov3 there are 3 YOLO layers in different "depths" of the
network to detect objects of various sizes.)

There are also defined other parameters that configures network and training,
such as batch size, learning_rate, max_batches, anchors,...

For our purpose of training the network, we will change the batch and subdivision
size to 64 which is recommended for our size of sets. max_batches defines for how
much iterations we want our training to last.

3.4.3 Flaq and ext. output file

We can determine on which picture or video we want our detection to be done by
the last parameter, but before we have to type flaq -ext_output. There is are also
available -map flaq to show mAP chart during training.

35

3.5 Putting together test set
I want to mention that this set will represent the test and validation set at once. In
this work I will reffer to it just as test set.

After consulting the test set problem with the head of my thesis. I decided to
compose test set from 2 datasets:

• Inria person dataset
• COCO dataset

The main reason is that other datasets are not very precisely labeled and leads
to wrong evaluation in testing. Furthermore other datasets has almost the same
context of images. Therefore it does not matter whether we use more datasets.
Test dataset consists of 600 images, where 400 comes from Inria and the ramining
200 from Coco. Inria dataset has more simmilar content to CityPerson dataset.
Therefore I have chosen bigger number of images from this dataset, despite the coco
is much bigger.

To remain the distribution of content of datasets I have copied random images
to test set, using command line command:

"gci sourceFolder | random -c numOfImages | mi -dest destinationFolder"

3.6 Preparing the project for training
YOLO dataset format requires images and text files with defined labels to be in the
same folder. One text file corresponds to one image where text file has to have the
same name as corresponding image. Each line in text file is for each bounding box
in the image. The labels definitions are in format:

<object-class> <x> <y> <width> <height>
Where x, y, width, and height are relative to the image’s width and height. X

and y defines position of center of image.
There are available programs and scripts to convert other formats of datasets

into YOLO format. For example in project folder named "scripts" is present python
scipt named "voc_label.py" for converting Pascals Voc labest to our text files.

In this link [34] are present scripts for converting labels from "vbb" format that
was used in Caltech or Daimler Mono Pedestrian Dataset. And scipt to convert
"seq" video format to separate images.

For converting COCO "json" format there is available pre-build Java program in
this link [35]. The maual how to use it is present.

For training we need to have:
• 2 folders with pictures and "txt" files one folder for training and second for

evaluation.

36

• 2 "txt" files with relative paths to every image, one "txt" file for each folder with
images. For making that file I made simple python script "sprav_txt_s_cestami"
that generates those paths. format of command is following:
"python sprav_txt_s_cestam [name of "txt" output fie] [folder containing im-
ages]"

• correctly configured "data" file as we described in subsection "Data file" from
section 3.5.2.

• "cfg" file with defined network structure (we use Darknet-53 see Fig.3.2) and
variables configuring training process (we had to change number of classes to
1 and filters to 18 for every YOLO layer, baches to 64, max_batches and steps
according to concrete training set. Anchors we let in default as we work with
various-sized images.).

• Pre-trained weights, I used pre-trained weights on Imagenet from network
configuration Darknet-53, that are available on YOLO authors website in this
link[31].

3.7 Script that draws YOLO predictions, ground true
boxes and IOU in test images

This script outputs given images with predicted boxes by YOLO (green color), gound
true boxes (blue color) and intersection over union (orange color), see in fig.3.4. This
script takes as input path to directory with images with its predicted labels and the
second argument is path to directory with ground true boxes. It outputs the edited
images to other predefined folder, but before we can run that script we need to
execute the "pseudo" labeling by our trained model by command:

"darknet.exe detector test data-file cfg-file weights -dont_show -save_labels <
text-file"

where text-file contains relative paths to images we want to make labels.

3.8 Training network on training sets of various sizes
In this section will be examined the dependency of mAP on number of images in
testing set. These images in training set will come only from Coco dataset. It is
also ensured that there are not same image twice in every training and test set.

37

Fig. 3.2: Darknet-53, the network specialized for image classification which is used
as feature extractor

38

3.8.1 Training on set of 100 images from Coco

This number of images was the lowest for which I succeeded in training the network
to "meaningful" state. As you can see in Fig.3.3 model reaches its settled mAP
value, 38% on average after just 1000 iterations with relatively sharp fluctuation.
Output makes a lot of true positive as well as false positive errors and labels has
poor intersection over union with ground true boxes, see fig.3.4.

Fig. 3.3: Grafh of average loss and mAP for 100 images from Coco dataset

3.8.2 Training on set of 200 images from Coco

See in Fig.3.5 model reaches its settled mAP value, 49% on average after approxi-
mately 1200 iterations.

39

Fig. 3.4: Test Image with ground true box and YOLO prediction (net trained on
100 images)

3.8.3 Training on set of 500 images from Coco

See in Fig.3.6 model reaches its settled mAP value, 56% on average after approxi-
mately 1500 iterations.

3.8.4 Training on set of 1000 images from Coco

See in Fig.3.7 model reaches its settled mAP value, 58% on average after approxi-
mately 1300 iterations. And appears to be still growing, therefore I set max-batches
to 2000 set to 8000 in the next training.

3.8.5 Training on set of 2000 images from Coco

See in Fig.3.8 model reaches its mAP settled value, 61% on average after approxi-
mately 1100 iterations.

3.8.6 Training on set of 4000 images from Coco

See in Fig.3.9 model reaches its mAP settled value, 65% on average after approxi-
mately 1500 iterations. And appears to have the lowest fluctuation. As we expected
the achieved mAP was the highest from previous examples. As you can see in
Fig.3.10 the intersection over union can reach very high values in contrast to model
trained on 100 mages Fig.3.4. But still we can find some images with false positive

40

Fig. 3.5: Grafh of average loss and mAP for 200 images from Coco dataset

and true negative errors mainly made in photos from unusual environment, with low
illumination Fig.3.10.

3.8.7 Conclusion on dependency of model precision on number
of training images

In the table Tab.3.1 and chart Chart.3.8.7, one can see that the more training
images the better results we can expect. But for bigger numbers of images (about
2000) the improvement of mAP is almost insensible. In previous graphs it is also
visible that with smaller sets the average loss decreases much quicker and to lower
values. The number of iterations after which the models mAP precision settles does
not depend on sets sizes. It means that model is trained after constant number of
iterations (for one class approximately 1300 using batch size 64), no matter the size
of set. In the summary we can say that ideal set size could be 2000 and number

41

Fig. 3.6: Grafh of average loss and mAP for 500 images from Coco dataset

of iterations approximately 1500 for detecting one class. What is interesting is that
network does not seem to everfit training set even after big amount of iterations,
that may be caused by batch normalization implemented in Darknet-53 (network
used as feature extractor).

num. of images 100 200 500 1000 2000 4000
achieved mAP 38% 49% 56% 58% 61% 65%

Tab. 3.1: Dependency of achieved settled mAP on number of images from Coco
dataset in train set.

42

Fig. 3.7: Grafh of average loss and mAP for 1000 images from Coco dataset

0 5001,000 2,000 4,0000

20

40

60

80

100

num. of images

ac
hi

ev
ed

m
A

P[
%

]

Chart 3.8.7: Achieved value of mAP on number of images.

43

Fig. 3.8: Grafh of average loss and mAP for 2000 images from Coco dataset

3.9 Training network on sets of various portions of
images without any person

Now we will examine the dependency of trained instance performance on proportion
of images that does not contain any person ("neg" images opposite is "pos" images).
The sets are composet only from Inria dataset.

3.9.1 Training on set of 500 images where every contains some
person

See in Fig.3.11, we reached the mAP settled value 57%. what is little better than
we saw on training on 500 images from coco. Examples of outputs with ground true
boxes are present in Fig.3.14, Fig.3.13.

44

Fig. 3.9: Grafh of average loss and mAP for 4000 images from Coco dataset

3.9.2 Training on set of 500 images where 50% of them contains
some person

As you can see in Fig.3.12 the loss decreases more rapidly to lowest values. The
mAP reaches its average value on 54%, what is 3% less than we saw in previous set.
Result with ground true box can be seen in Fig.3.14.

3.10 Conclusion on proportion of images which does
not contain any person

After comparing results from 2 previous sets we can see that proportion of "neg"
images in set does not seem to have negative impact on performance to some point. It
has however bigger influence on descent of loss parameter, so with bigger proportion

45

(a) True positive prediction

(b) False positive prediction (c) True negative prediction

Fig. 3.10: Images with grout true boxes and YOLO predictions and IOU (net trained
on 4000 images).

46

Fig. 3.11: Graph for 500 images from Inria where every contains some person.

of "neg" images we can expect diminishing the performance caused by low number
of "pos" images and consequent overfitting.

We can see by comparing pictures that the instance trained only on "pos" images
predicts more precise bounding boxes, see fig.3.14, but on the other side it makes
more false positive and true negative errors for example fig.3.13.

As summary we can say that images that do not contain any person may be
favorable, but only then if we have sufficient number of images containing some
person.

3.11 Training on mixed dataset
The instance will be now trained on the set that is supposed to be the ideal according
to previous findings. It is composed of Inria and Coco datasets in exactly the same
ratio as in test set (2:1). Set contains 2000 images where 1330 comes from Inria

47

Fig. 3.12: Graph for 500 images from Inria where 50% contains any person.

(half of images does not contain any person) and 670 images from coco.
As you can see in 3.15, the results are the best so far. With achieved mAP 69%.

All 600 test images with output and groud true boxes can be seen in attached CD.

48

(a) False positive prediction by net trained on
only "pos" images

(b) True negative prediction by net trained on
only "pos" images

Fig. 3.13: Errors made by net trained on only "pos" images

(a) Trained on set of 50% of "pos" images (b) Trained on set of 100% of "pos" images

Fig. 3.14: Comparison of predictions of nets trained on different proportions of "neg"
images

49

Fig. 3.15: Graph of set with 2000 images with same distribution as test set.

50

4 Conclusion
The analysis of theoretical part chapter leads to findings how essential the convolu-
tional neural networks are in object detection. One may see that those state-of-art
methods are changing almost every year in principles, while improving in perfor-
mance.

After analyzing the available pedestrians/people datasets, it was realized that
many of them has either poor annotation precision such as M-ATCI Rear-view pedes-
trians datase and Caltech or are too small as Penn-Fudan dataset, but fortunately
there are present some datasets that meet our demands in precision, size and also
content, for example Coco, Pascal or Inria.

Practical part shows how was proceeded the choice of implementation with train-
ing and testing processes, which resources were chosen with their preceding cog-
itations. As result the YOLO method was chosen as detection method. Then as
methods implementation was chosen the original authors implementation with some
added improving features, that comes handy in using. These features also speeds up
training and testing, due to its ability to use graphical card possessing tensor cores
inside. As far as my computer does not posses any useable graphical card neither
the tensor-cores, I had to choose some cloud services where I have chosen Google
cloud platform. After hardware demands were satisfied, in the following text is in
details described the whole process how to launch the implementation from down-
loading to running the program. 2 python scripts were made to make this process
more friendly (scripts generates required files).

Great attention was paid on composing the testing dataset that reflects perfor-
mance of trained instances. As result Coco and Inria datasets were put together
into 600 images where 400 images comes from Inria. By analyzing generated graphs
during training process, it leads to conclusion that the number of images used for
training only improves performance but just up to some point when it starts to
stagnate (approximately 2000). Number of iterations does not appear to be depend
on number of training images.

Results of the next experiment shows that adding images without any object
(that is being detected) to our training set may only leads to improvement of per-
formance especially in reducing false positive and true negative errors. But one
should not forget to have sufficient number of images that contains some object
(that is being detected). These results can be seen in pictures that were generated
by my python script which put the predicted and ground true bounding boxes with
their intersection over union into pictures Fig.3.14.

In the last training process is examined the performance of instance trained on
set, that is expected to be ideal according to previous findings. As we can see in

51

Fig.3.15, the outstanding 69% of mAP(50%treshold) was reached what is 12% more
than official results of YOLOv.3 trained and tested on COCO dataset, see results in
[31]. The main reason of that perfect result is that only one type of object is being
detected, what makes it for detection algorithm easier. Also pedestrian is a type of
object that cannot be so easily mistaken with other types of objects.

The main downsides of this thesis may be that the desired number of training
processes were not executed. The main reason is lack of computational power with
time I possessed for training process.

This bachelors thesis presents a great asset for my knowledge as I gained con-
siderable outlook not only in object detection but also in other machine learning
disciplines.

52

Bibliography
[1] N. Dalal and B. Triggs. Histograms of oriented gradients for human detectio.

In CVPR, 2005.

[2] P. Dollar, R. Appel, and W. Kienzle. Crosstalk cascades for frame-rate pedes-
trian detection.

[3] P. Sermanet, K. Kavukcuoglu, S. Chintala, and Y. LeCun. Pedestrian detection
with unsupervised multi-stage feature learning. In CVPR, 2013.

[4] J. Yan, Z. Lei, L. Wen, and S. Z. Li. The fastest deformable part model for
object detection. In Computer Vision and Pattern Recognition (CVPR), 2014
IEEE Conference on, pages 2497–2504. IEEE, 2014

[5] M. A. Sadeghi and D. Forsyth. 30hz object detection with dpm v5. In Computer
Vision–ECCV 2014, pages 65–79. Springer, 2014

[6] K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling in deep convo-
lutional networks for visual recognitio. In ECCV, 2014.

[7] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for
accurate object detection and semantic segmentation. In CVPR, 2014.

[8] A. Krizhevsky, I. Sutskever, and G. Hinton. ImageNet clas-sification with deep
convolutional neural network. In NIPS, 2012.

[9] J. Sivic and A. Zisserman, “Video google: a text retrieval approach to object
matching in videos,” in ICCV, 2003.

[10] R. Girshick, “Fast R-CNN,” in IEEE International Conference on Computer
Vision (ICCV), 2015.

[11] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time object
detection with region proposal networks. arXiv preprint arXiv:1506.01497, 2015.

[12] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for se-
mantic segmentation,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2015.

[13] C. Szegedy, A. Toshev, and D. Erhan, “Deep neural networks for object detec-
tion". In International Conference on Learning Representations (ICLR), 2015.

[14] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional neu-
ral networks, Computer Vision and Pattern Recognition (CVPR), 2015

53

[15] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-
scale image recognition,” Computer Vision and Pattern Recognition (CVPR),
2015

[16] Joseph Redmon, Santosh Divvala, Ross Girshick, Ali Farhadi, "You Only Look
Once: Unified, Real-Time Object Detection" In University of Washington, Allen
Institute for AI, Facebook AI Research, 2016.

[17] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,
Cheng-Yang Fu, Alexander C. Berg, "SSD: Single Shot MultiBox Detector" In
ECCV 2016.

[18] Tracking and motion cues for rear-view pedestrian detection. Dan Levi and Shai
Silberstein. In IEEE Intelligent Transporation Systems Conference (ITSC) 2015.

[19] Vision-Based Pedestrian Detection for Rear-View Cameras. Shai Silberstein,
Dan Levi, Victoria Kogan and Ran Gazit. In IEEE Intelligent Vehicles Sympo-
sium 2014.

[20] Caltech dataset website - http://www.vision.caltech.edu/Image_
Datasets/CaltechPedestrians

[21] Inra dataset website - http://pascal.inrialpes.fr/data/human/

[22] Penn-Fudan dataset website - https://www.cis.upenn.edu/~jshi/ped_
html/

[23] GM-ATCI Rear-view pedestrian dataset website - https://sites.google.
com/site/rearviewpeds1/

[24] Coco dataset website - http://cocodataset.org/#home

[25] Microsoft COCO: Common Objects in Context. Tsung-Yi Lin Michael Maire
Serge Belongie, Lubomir Bourdev, Ross Girshick, James Hays, Pietro Perona,
Deva Ramanan, C. Lawrence Zitnick, Piotr Dollár. In Microsoft 2015.

[26] Daimler Mono Pedestrian Detection Benchmark Dataset - http://www.
gavrila.net/Datasets/Daimler_Pedestrian_Benchmark_D/Daimler_Mono_
Ped__Detection_Be/daimler_mono_ped__detection_be.html

[27] Tsinghua-Daimler CYclist Detection Benchmark Dataset - http:
//www.gavrila.net/Datasets/Daimler_Pedestrian_Benchmark_D/
Tsinghua-Daimler_Cyclist_Detec/tsinghua-daimler_cyclist_detec.
html

54

http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians
http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians
http://pascal.inrialpes.fr/data/human/
https://www.cis.upenn.edu/~jshi/ped_html/
https://www.cis.upenn.edu/~jshi/ped_html/
https://sites.google.com/site/rearviewpeds1/
https://sites.google.com/site/rearviewpeds1/
http://cocodataset.org/#home
http://www.gavrila.net/Datasets/Daimler_Pedestrian_Benchmark_D/Daimler_Mono_Ped__Detection_Be/daimler_mono_ped__detection_be.html
http://www.gavrila.net/Datasets/Daimler_Pedestrian_Benchmark_D/Daimler_Mono_Ped__Detection_Be/daimler_mono_ped__detection_be.html
http://www.gavrila.net/Datasets/Daimler_Pedestrian_Benchmark_D/Daimler_Mono_Ped__Detection_Be/daimler_mono_ped__detection_be.html
http://www.gavrila.net/Datasets/Daimler_Pedestrian_Benchmark_D/Tsinghua-Daimler_Cyclist_Detec/tsinghua-daimler_cyclist_detec.html
http://www.gavrila.net/Datasets/Daimler_Pedestrian_Benchmark_D/Tsinghua-Daimler_Cyclist_Detec/tsinghua-daimler_cyclist_detec.html
http://www.gavrila.net/Datasets/Daimler_Pedestrian_Benchmark_D/Tsinghua-Daimler_Cyclist_Detec/tsinghua-daimler_cyclist_detec.html
http://www.gavrila.net/Datasets/Daimler_Pedestrian_Benchmark_D/Tsinghua-Daimler_Cyclist_Detec/tsinghua-daimler_cyclist_detec.html

[28] Pedestrian Dataset from Nicta - https://research.csiro.au/data61/
automap-datasets-and-code/#pedestrian-dataset

[29] CVC-ADAS dataset - http://adas.cvc.uab.es/elektra/datasets/
pedestrian-detection/

[30] Joseph Redmon, Ali Farhadi: YOLOv3: An Incremental Improvement. In Uni-
versity of Washington 2018

[31] YOLO website - pjreddie.com/darknet/yolo/

[32] https://github.com/thtrieu/darkflow

[33] Github repository of used project - https://github.com/AlexeyAB/darknet

[34] Caltech to YOLO annotation format converter - github.com/mitmul/
caltech-pedestrian-dataset-converter

[35] Coco(.json) to YOLO annotation format converter - http://commecica.com/
wp-content/uploads/2018/07/cocotoyolo.jar

55

https://research.csiro.au/data61/automap-datasets-and-code/#pedestrian-dataset
https://research.csiro.au/data61/automap-datasets-and-code/#pedestrian-dataset
http://adas.cvc.uab.es/elektra/datasets/pedestrian-detection/
http://adas.cvc.uab.es/elektra/datasets/pedestrian-detection/
pjreddie.com/darknet/yolo/
https://github.com/thtrieu/darkflow
https://github.com/AlexeyAB/darknet
github.com/mitmul/caltech-pedestrian-dataset-converter
github.com/mitmul/caltech-pedestrian-dataset-converter
http://commecica.com/wp-content/uploads/2018/07/cocotoyolo.jar
http://commecica.com/wp-content/uploads/2018/07/cocotoyolo.jar

List of appendices

A Contend of attached CD 57

56

A Contend of attached CD
At the end of Thesis is attached the CD, with the following contend.

/..root folder of CD
test_set_images_with_gt_and_predicted_boxes_by_weights_trained_on_mixed_set
pedestrian_with_predicted_boxes.mp4
weights_trained_on_mixed_set.weights
weights_trained_on_100_images.weights
bachelor_thesis.pdf
README.txt

57

	Theoretical part
	Sliding-Window Detector
	R-CNN
	SPP-net-based system
	Fast R-CNN
	Faster R-CNN
	Region Proposal Network(RPN)
	Training Faster R-CNN

	YOLO
	Unified detection
	Selection of proposed boxes

	SSD

	Datasets
	Caltech Padestrian Detection Dataset
	Seq Video Format
	Annotations
	Conclusion

	INRIA Person Dataset
	Original Images
	Normalized Images
	Conclusion

	Penn-Fudan Database for Pedestrian Detection and Segmentation
	Conclusion

	GM-ATCI Rear-view pedestrians dataset
	Conclusion

	COCO (Common objects in context)
	Conclusion

	Other useful padestrians datasets

	Practical part
	Choice of algorithm
	Choice of software
	Choice of hardware
	Running program and how to use it
	Program compilation
	Running program
	Flaq and ext. output file

	Putting together test set
	Preparing the project for training
	Script that draws YOLO predictions, ground true boxes and IOU in test images
	Training network on training sets of various sizes
	Training on set of 100 images from Coco
	Training on set of 200 images from Coco
	Training on set of 500 images from Coco
	Training on set of 1000 images from Coco
	Training on set of 2000 images from Coco
	Training on set of 4000 images from Coco
	Conclusion on dependency of model precision on number of training images

	Training network on sets of various portions of images without any person
	Training on set of 500 images where every contains some person
	Training on set of 500 images where 50% of them contains some person

	Conclusion on proportion of images which does not contain any person
	Training on mixed dataset

	Conclusion
	Bibliography
	List of appendices
	Contend of attached CD

