
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INTELLIGENT SYSTEMS
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

CONSTRUCTIVE NEURAL NETWORKS
NEURONOVÉ SÍTĚ S PROMĚNNOU TOPOLOGIÍ

MASTER’S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Bc. TOMÁŠ ČERNÍK
AUTOR PRÁCE

SUPERVISOR doc. Ing. FRANTIŠEK ZBOŘIL, CSc.
VEDOUCÍ PRÁCE

BRNO 2016

Abstract
Master theses deals with Constructive Neural newtorks. First part describes neural net-
works and coresponding mathematical models. Furher, it shows basic algorithms for learn-
ing neural networks and desribes basic constructive algotithms and their modifications.
The second part deals with implementation details of selected algorithms and provides
their comparision. Further comparision with backpropagation algorithm is provided.

Abstrakt
Tato práce se zabývá neuronovými sítěmi - konkrétně sítěmi s proměnnou topologií. Teo-
retická část popisuje neuronové sítě a jejich matematické modely. Dále ukazuje základní
algoritmy pro učení neuronových sítí a rozebírá několik základních konstruktivních algo-
ritmů a jejich rozšíření. Praktická část se zaobírá implementací vybraných konstruktivních
algoritmů a uvádí jejich porovnání. Dále jsou algoritmy srovnány s učícím algoritmem
backpropagation.

Keywords
Neural Networks, Soft Computing, Constructive Neural Networks, C++, Recurent Neural
Networks, Cascade network

Klíčová slova
Neuronové sítě, Soft Computing, konstruktivní neuronové sítě, C++, rekurentní neuronové
sítě, Kaskádová síť

Reference
ČERNÍK, Tomáš. Constructive Neural Networks. Brno, 2016. Master’s thesis. Brno
University of Technology, Faculty of Information Technology. Supervisor Zbořil František.

Constructive Neural Networks

Declaration
Hereby I declare that this master’s thesis was prepared as an original author’s work under
the supervision of doc. Ing. František Zbořil, CSc. All the relevant information sources,
which were used during preparation of this thesis, are properly cited and included in the
list of references.

. .
Tomáš Černík
May 23, 2016

Acknowledgements
I would like to thank doc. Ing. František Zbořil, CSc., my master’s thesis supervisor, for
his great guidance and valuable advice, he helped to complete this work. I would also like
to thank to my family for their support during my studies.

c○ Tomáš Černík, 2016.
This thesis was created as a school work at the Brno University of Technology, Faculty
of Information Technology. The thesis is protected by copyright law and its use without
author’s explicit consent is illegal, except for cases defined by law.

Contents

1 Introduction 5
1.1 Content of thesis . 6

2 Artificial Neural Networks 7
2.1 Artificial neuron . 7
2.2 Classification of neural networks . 9

2.2.1 Classification according to topology 9
2.2.2 Classification according to number of layers 11

2.3 Topologies and computation . 11
2.3.1 Perceptron . 11
2.3.2 Feed-forward network . 11
2.3.3 Recurrent neural network . 12

3 Algorithms for learning neural networks 13
3.1 Perceptron learning algorithm . 13
3.2 Thermal perceptron learning rule . 14
3.3 Backpropagation . 15

4 Algorithms for topology development 16
4.1 C-Mantec algorithm . 16
4.2 Marchand’s algorithm . 18
4.3 New Constructive Algorithm . 19
4.4 Cascade-Correlation . 21
4.5 Cascade 2 Algorithm . 23
4.6 Percentage Average Synaptic Activity . 24
4.7 Neuroevolution . 25

4.7.1 Cellular Encoding . 25
4.7.2 NEAT . 27

5 Genetic Programming 29
5.1 Population initialization . 29
5.2 Operators . 30

5.2.1 Mutations . 30
5.2.2 Crossover . 32

6 Implementation 33
6.1 Requirements for implementation . 33
6.2 Neural network library . 33

1

6.2.1 Activation functions . 34
6.2.2 Basis functions . 35
6.2.3 Neuron . 36
6.2.4 Learning algorithms . 37

6.3 Evolutionary algorithms library . 37
6.3.1 Selection Operators . 38
6.3.2 Genetic programing . 38
6.3.3 Population initialization . 39

6.4 Cascade-Correlation . 39
6.5 Cascade 2 . 40
6.6 Cellular Encoding . 40

6.6.1 Cells . 40
6.6.2 Instructions . 41
6.6.3 Cellular Encoding . 42

7 Proposal of improvement 43
7.1 Random search of output weights . 43
7.2 Pruning of added neurons . 43

8 Experiments 44
8.1 Xor . 45
8.2 Parity of 3 values . 46
8.3 Parity of 4 values . 48
8.4 Chess 3x3 Problem . 50

9 Evaluation 53

10 Conclusion 54

Bibliography 55

Appendices 57
List of Appendices . 58

A Contents of attached CD 59

B Manual 60
B.1 Installation . 60
B.2 Usage . 60

C Cellular code for XOR 61

2

List of Figures

2.1 Artificial neuron . 8
2.2 Feed forward network . 10
2.3 Recurrent neural network . 10

4.1 C-Mantec algorithm . 17
4.2 Structure of C-Mantec algorithms for two-class function 18
4.3 Network built with Marchand’s algorithm 18
4.4 Structure of NCA . 20
4.5 New Constructive Algorithm . 20
4.6 Structure of Cascade-Correlation algorithm 22
4.7 Initial graphs of cells . 25
4.8 Starting point of algorithm . 26
4.9 State of algorithm after first step . 26
4.10 Developing of cells . 26
4.11 Dying of cells and creation of neurons . 27

5.1 Subtree mutation . 30
5.2 Shrink mutation . 31
5.3 Node replacement mutation . 31
5.4 Hoist mutation . 31
5.5 Subtree permutation . 32
5.6 Subtree crossover . 32
5.7 Arity-2 combination . 32

6.1 Activation function diagram . 35
6.2 Basis function diagram . 36
6.3 Neuron diagram . 37
6.4 Selection operators diagram . 38
6.5 Population initialization methods . 39

8.1 XOR cellular encoding convergence . 45
8.2 XOR backpropagation convergence . 46
8.3 Parity of 3 inputs Cellular encoding convergence 47
8.4 Parity of 3 inputs Cascade-Correlation and Cascade 2 convergence 48
8.5 Parity of 3 inputs backpropagation convergence 48
8.6 Parity of 4 inputs Cascade-Correlation and Cascade 2 convergence 49
8.7 Parity of 4 inputs Cascade-Correlation pruning 49
8.8 Parity of 4 inputs Cascade2 algorithm . 50
8.9 Ches 3x3 backpropagation convergence for 250 samples 50

3

8.10 Ches 3x3 Cascade-Correlaton convergence for 250 samples 51
8.11 250 samples for Chess 3x3 . 51
8.12 Ches 3x3 Cascade-Correlaton convergence for 1000 samples 52
8.13 1000 samples for Chess 3x3 . 52

C.1 XOR tree . 61

4

Chapter 1

Introduction

These days, neural networks are being used in many applications. In reality, the usage
for neural networks can be found in many technical sectors. We can use them in data
classification and filtering such as Email filter. They can also be found in games whereby
they act as our opponents when playing for example poker, classical ping–pong or chess.
Such opponents can adapt to our game style in order to achieve better results.

Neural networks can also be used in health care. Hybrid lung cancer detection system
named “HLND”[2] being based on an artificial neural network improves the accuracy of
diagnosis and the speed of lung cancer radiology.

Neural networks are a part of methods called soft computing, which is an alternative
way of approaching mathematical or computational problems. They are suitable for solving
many problems, where brute force algorithms fail. NP-complete problems or problems
with a wide variety of possible solutions could be given as a good example. In many cases
the goal of these methods is not to find the best solution – sometimes the best solution is
not known, but to find out a solution that is satisfactory. Moreover, neural networks can be
used when noisy or incomplete data appear on input – they are able to ignore imprecisions
and “guess” the rest of information.

As neural networks are becoming more and more common, a desire to be able to train
them quickly as well as scale them is arising. In the course of time, many approaches
to learning and building them have been developed. With increasing power of graphical
accelerators, the time necessary for computing and training of neural networks is getting
shorter. The speedup gained through transition from processors to graphical accelerators
has enabled learning to be realized within few hours instead of days. This speedup allows
to train networks faster, but the problem of selecting proper size still persists.

This thesis deals with algorithms for development of topology of neural networks. These
algorithms try to set the correct size and topology for selected problem to prevent common
deficients of neural networks – over-fitting or the inability to learn. The task of this thesis
is to examine current algorithms, propose possible improvements, implement them and
evaluate their performance on selected experiments.

5

1.1 Content of thesis
This thesis is subdivided into two logical parts. The first part deals with the theoretical
background of neural networks, training algorithms, constructive algorithms and genetic
programming. The second part consists of implementation of selected algorithms. Further,
possible improvements are proposed and experimentally evaluated.

Chapter 2 describes artificial neural networks and possible classifications of neural net-
works according to their topology. Chapter 3 describes standard algorithms for training
neural networks - Backpropagation, Perceptron learning algorithm and its modification
Thermal perceptron learning algorithm. Chapter 4 deals with algorithms for topology
development – constructive algorithms. These algorithms are divided into 3 categories –
constructive, pruning and neuroevolutionary algorithms. Chapter 5 describes genetic pro-
gramming, its operators and initialization methods.

Chapter 6 deals with specific implementation of selected algorithms and genetic pro-
gramming, which is used for development of code trees for neuroevolutionary algorithm.
Chapter 7 proposes possible improvements to implemented algorithms. These improvements
and original algorithms are compared in chapter 8 and finally evaluation of experiments is
presented in chapter 9.

6

Chapter 2

Artificial Neural Networks

An artificial neural network (ANN) is inspired by a biological neural network we know
from our brains. ANN is a set of artificial neurons and connections.

ANNs have been developed over the years and many types of ANNs have been in-
vented. These neural networks are different in many aspects. The difference can be found
in topology, type of activation or basis function or in a type of learning.

Another but not less important feature of ANNs is their Turing completeness. That
means they are able to compute all algorithms - as a classical computer. This fact was
proved by Franklin and Garzon, who have created Turing machine with an ANN [11].

2.1 Artificial neuron
Artificial neuron is a simplified model of a biological neuron. Artificial neurons are main
units in an artificial neural network. As the biological neuron, it has only one output
(Axon) and many inputs (Dendrits). “Body” of a neuron - in biology called Soma is
described by basis function.

The biggest difference between biological and artificial neuron is in the way neurons
“fire” their outputs. Artificial neurons are usually computed in terms of a discrete simu-
lation. In every step, the output of neuron is computed. On the other hand – biological
neuron fires when it has enough power (with every incoming input it consumes power and
when this gained power gets over value, it fires), this process is known as a continuous
simulation.

The first mathematical description of neuron was released in 1943 in the work of War-
ren McCulloch and Walter Pitts [12]. It was a very simple model, consisting of a linear
combination of inputs, a step function and only binary inputs and outputs. This model is
known as McCulloch–Pitts (MCP) neuron.

In this thesis neuron is defined more flexibly, as shown in figure 2.1.

7

1

𝑥1

𝑥2

𝑥𝑛

·
·
·

𝑣 𝑦

𝜃/𝑤0

𝑤1

𝑤2

𝑤𝑛

fa(𝑣)

Figure 2.1: Artificial neuron

In figure 2.1 array of neuron’s inputs �⃗� can be seen. Every input has its weight. Such
neuron can be described by the following equation.

𝑦 = fa(fb(�⃗�, �⃗�))

Neuron consists of two functions – an activation function and a basis function.
Function (fb) is known as the basis function. This function describes how to combine

inputs and weights and how to compute the value (also known as a potential) of neuron.
This is described by the following equation.

𝑣 = fb(�⃗�, �⃗�)

Activation function (fa) computes output from neuron’s value. Often nonlinear function
is chosen and is described by the following equation:

𝑦 = fa(𝑣)

The activation function can be chosen for its specific behavior. If neural network should
approximate non-linear function, activation functions of neurons must be chosen from
non-linear functions. The overview of well known activation and basis functions is intro-
duced further.

Well known basis functions are:

∙ Linear basis combination (LBF)

fb(�⃗�, �⃗�) =

𝑁∑︁
𝑛=1

𝑥𝑛 · 𝑤𝑛

∙ Radial basis function (RBF)

fb(�⃗�, �⃗�) =

⎯⎸⎸⎷ 𝑁∑︁
𝑛=1

(𝑤𝑛 − 𝑥𝑛)2

8

Well known activation functions are:

∙ Gaussian function
fa(𝑥) = 𝑎𝑒

−(𝑥− 𝑏)2

2𝑐2

∙ Heaviside (Step function)

fa(𝑥) =

{︃
1 if 𝑥 ≥ 0

0 otherwise

∙ Linear function
fa(𝑥) = 𝑎𝑥+ 𝑏

∙ Logistic function
fa(𝑥) =

1

1 + 𝑒−𝑥

∙ Threshold function is a generalization of Heaviside

fa(𝑥) =

{︃
1 if 𝑥 ≥ 𝜎

0 otherwise

2.2 Classification of neural networks
Neural networks can be classified from many points of view, for example by the number of
layers, topology and application. Every type has its special features. Important classifica-
tions for this thesis are:

2.2.1 Classification according to topology

Feed-Forward network is a neural network, where every neuron output is connected
only to inputs of neurons in the successive layers. That means there is no cycle in network.
These networks are easier to learn and only one iteration is needed to get their output, but
they do not have a “memory”.

Well known feed-forward networks are fully-connected, in which the output of every
neuron from previous layer is connected to input of every neuron in the successive layer
[21]. We can evaluate this network by computing one layer after another starting from the
input layer. In figure 2.2 a fully-connected feed-forward network is depicted.

9

𝑛0_1

𝑛0_2

𝑛0_3

𝑛0_4

1

𝑥0

𝑥1

𝑥2

𝑥3

𝑛1_1

𝑛1_2

𝑛1_3

𝑛1_4

1

𝑛2_1

𝑛2_2

𝑦0

𝑦1

Figure 2.2: Feed forward network

Recurrent network is a neural network with at least one cycle. In this type of network
there are no layers. An advantage of this network is its abilities to memorize.

Due to recurrent connections, it is not possible to compute network as simply as feed-
forward network. These networks are evaluated iteratively – in the first step the value of
each neuron is computed whereas in the second we get their outputs.

These networks are well suitable for problems such as prediction, control of system or
speech recognition. However there is still one problem – it is hard to train them and it
consumes a lot of time.

𝑛1

𝑛2

𝑛3

𝑛4 𝑛5

𝑛6

𝑛7

1

𝑥0

𝑥1

𝑦0

𝑦1

Figure 2.3: Recurrent neural network

10

2.2.2 Classification according to number of layers

One layer networks are networks which are made of only one layer – the layer is input
and also output of network. Example of this network is Perceptron.

Many layer networks are networks which consist of more than one layer - we call this
layers input, output and hidden according to their position in network.

2.3 Topologies and computation
In this section we are going to describe well known networks and their computation models.

2.3.1 Perceptron

Perceptron was one of the first artificial neural networks. It is a special type of a single-
layer feed-forward network consisting of perceptrons. Perceptrons are neurons with a
step activation function and a linear basis function. It was invented by Frank Rosenblatt
in 1957[18]. At first, it was built as a machine called Mark 1 perceptron and it was
designed for an image recognition. This network is very limited due to the fact that it can
only learn and approximate linear functions. Its weights were encoded in potentiometers
and were updated by electrical motors.

Algorithm 1 describes, how to compute an output for this network.

Algorithm 1 Perceptron
1: procedure Perceptron(x, network) ◁ 𝑥 is input of network
2: 𝑦 = []
3: for 𝑖 = 0; 𝑖 < 𝑛𝑒𝑡𝑤𝑜𝑟𝑘.𝑜𝑢𝑡𝑝𝑢𝑡𝑆𝑖𝑧𝑒; 𝑖++ do
4: 𝑣𝑎𝑙𝑢𝑒𝑂𝑓𝑁𝑒𝑢𝑟𝑜𝑛 = 0
5: for 𝑗 = 0; 𝑗 < 𝑥.𝑠𝑖𝑧𝑒; 𝑗 ++ do
6: 𝑣𝑎𝑙𝑢𝑒𝑂𝑓𝑁𝑒𝑢𝑟𝑜𝑛+ = 𝑛𝑒𝑡𝑤𝑜𝑟𝑘.𝑤𝑒𝑖𝑔ℎ𝑡[𝑖][𝑗] · 𝑥[𝑖]
7: ◁ 𝑤𝑒𝑖𝑔ℎ𝑡[𝑖][𝑗] is weight of neuron 𝑖 to input 𝑗
8: end for
9: 𝑦[𝑖] = 𝑣𝑎𝑙𝑢𝑒𝑂𝑓𝑁𝑒𝑢𝑟𝑜𝑛 > 0?1 : 0

10: end for
11: return y
12: end procedure

2.3.2 Feed-forward network

Feed-forward network is one of the most common networks used. Further algorithm 2 for
computation of feed-forward network is described For simplicity, algorithm describes only
Linear basis function.

11

Algorithm 2 Feed-forward Network
1: procedure ComputeFFN(network, input)
2: 𝑜𝑢𝑡𝑝𝑢𝑡 = 𝐴𝑟𝑟𝑎𝑦[𝑛𝑒𝑡𝑤𝑜𝑟𝑘.𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝐿𝑎𝑦𝑒𝑟𝑠]
3: 𝑜𝑢𝑡𝑝𝑢𝑡[0] = 𝑖𝑛𝑝𝑢𝑡
4: for 𝑙𝑎𝑦𝑒𝑟 : 𝑛𝑒𝑡𝑤𝑜𝑟𝑘.𝑙𝑎𝑦𝑒𝑟𝑠 do
5: for 𝑛𝑒𝑢𝑟𝑜𝑛 : 𝑙𝑎𝑦𝑒𝑟.𝑛𝑒𝑢𝑟𝑜𝑛𝑠 do
6: 𝑣𝑎𝑙𝑢𝑒 = 0
7: for 𝑤𝑒𝑖𝑔ℎ𝑡 : 𝑛𝑒𝑢𝑟𝑜𝑛.𝑤𝑒𝑖𝑔ℎ𝑡𝑠 do
8: 𝑣𝑎𝑙𝑢𝑒 = 𝑣𝑎𝑙𝑢𝑒+ 𝑜𝑢𝑡𝑝𝑢𝑡𝑠[𝑙𝑎𝑦𝑒𝑟 − 1][𝑤𝑒𝑖𝑔ℎ𝑡] * 𝑛𝑒𝑢𝑟𝑜𝑛[𝑤𝑒𝑖𝑔ℎ𝑡]
9: end for

10: 𝑜𝑢𝑡𝑝𝑢𝑡[𝑙𝑎𝑦𝑒𝑟][𝑛𝑒𝑢𝑟𝑜𝑛] = 𝑓𝑎(𝑣𝑎𝑙𝑢𝑒) ◁ 𝑓𝑎 is activation value
11: end for
12: end for
13: return 𝑜𝑢𝑡𝑝𝑢𝑡[𝑛𝑒𝑡𝑤𝑜𝑟𝑘.𝑙𝑎𝑠𝑡𝐿𝑎𝑦𝑒𝑟]
14: end procedure

2.3.3 Recurrent neural network

In this section algorithm 3 for computing new value of fully-connected RNN is being
provided. This algorithm is more complex than the algorithm for computing feed-forward
network, because it is necessary to calculate new values for all neurons and then change
their outputs. This algorithm is provided for one iteration of computing values. For many
problems, output from one iteration is insufficient and many iterations are necessary to get
output of network. The number of iterations is usually selected in advance according to
specificity of case.

Let us imagine ANN playing chess. When an opponent makes a move, ANN needs
to respond immediately. If only one iteration has been computed, ANN could respond to
this move after next few rounds and it is too late to make that move – both the board and
the situation have changed.

Algorithm 3 Recurrent neural network
1: procedure ComputeRNN(network,input)
2: for 𝑛𝑒𝑢𝑟𝑜𝑛 : 𝑛𝑒𝑡𝑤𝑜𝑟𝑘.𝑖𝑛𝑝𝑢𝑡𝑁𝑒𝑢𝑟𝑜𝑛𝑠 do
3: 𝑛𝑒𝑢𝑟𝑜𝑛.𝑠𝑒𝑡𝑂𝑢𝑡𝑝𝑢𝑡𝑉 𝑎𝑙𝑢𝑒(𝑖𝑛𝑝𝑢𝑡[𝑛𝑒𝑢𝑟𝑜𝑛]) ◁ Set output of input neurons
4: end for
5: for 𝑛𝑒𝑢𝑟𝑜𝑛 : 𝑛𝑒𝑡𝑤𝑜𝑟𝑘.𝑛𝑒𝑢𝑟𝑜𝑛𝑠 do ◁ 𝑓𝑏 is basis function of neuron
6: 𝑛𝑒𝑢𝑟𝑜𝑛.𝑣𝑎𝑙𝑢𝑒 = 𝑛𝑒𝑢𝑟𝑜𝑛.𝑓𝑏(𝑛𝑒𝑡𝑤𝑜𝑟𝑘.𝑛𝑒𝑢𝑟𝑜𝑛𝑠, 𝑛𝑒𝑢𝑟𝑜𝑛.𝑤𝑒𝑖𝑔ℎ𝑡𝑠)
7: end for
8: for 𝑛𝑒𝑢𝑟𝑜𝑛 : 𝑛𝑒𝑡𝑤𝑜𝑟𝑘.𝑛𝑒𝑢𝑟𝑜𝑛𝑠 do
9: 𝑛𝑒𝑢𝑟𝑜𝑛.𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑛𝑒𝑢𝑟𝑜𝑛.𝑓𝑎(𝑛𝑒𝑢𝑟𝑜𝑛.𝑣𝑎𝑙𝑢𝑒) ◁ 𝑓𝑎 is activation function of neuron

10: end for
11: 𝑜𝑢𝑡𝑝𝑢𝑡 = []
12: for 𝑛𝑒𝑢𝑟𝑜𝑛 : 𝑛𝑒𝑡𝑤𝑜𝑟𝑘.𝑜𝑢𝑡𝑝𝑢𝑡𝑁𝑒𝑢𝑟𝑜𝑛𝑠 do
13: 𝑜𝑢𝑡𝑝𝑢𝑡[𝑛𝑒𝑢𝑟𝑜𝑛] = 𝑛𝑒𝑢𝑟𝑜𝑛.𝑜𝑢𝑡𝑝𝑢𝑡
14: end for
15: return 𝑜𝑢𝑡𝑝𝑢𝑡
16: end procedure

12

Chapter 3

Algorithms for learning neural
networks

The topic of this chapter are basic algorithms for learning artificial neural networks. These
algorithms are used by some of constructive algorithms that are introduced later in the
thesis.

3.1 Perceptron learning algorithm
This algorithm 4 was developed by Rosenblatt in 1959 [13]. Algorithm modifies weights 𝑤𝑗

according to input pattern and difference between the actual computed value and desired
output. For simplification only algorithm for two-class classification is mentioned.

13

Algorithm 4 Perceptron learning algorithm
1: procedure ErrFunction(network,set)
2: 𝐸𝑟𝑟𝑜𝑟 = 0
3: for all (x,y): set do
4: 𝑦′ = 𝑛𝑒𝑡𝑤𝑜𝑟𝑘.𝑔𝑒𝑡𝑂𝑢𝑡𝑝𝑢𝑡(𝑥)
5: 𝐸𝑟𝑟𝑜𝑟+ = (𝑦′ − 𝑦)2

6: end for
7: return 𝐸𝑟𝑟𝑜𝑟/2
8: end procedure
9:

10: procedure Perceptron learning algorithm(network, set:{(𝑖𝑛𝑝𝑢𝑡, 𝑜𝑢𝑡𝑝𝑢𝑡)})
11: 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 = set weights and thresholds to small random values
12: 𝑖𝑡𝑒𝑟𝑀𝑎𝑥 = user defined value
13: 𝑚𝑎𝑥𝐸𝑟𝑟𝑜𝑟 = user defined value
14: 𝜂 = user defined value from range 0.0-1.0
15: while 𝐸𝑟𝑟𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑛𝑒𝑡𝑤𝑜𝑟𝑘, 𝑠𝑒𝑡) > 𝑚𝑎𝑥𝐸𝑟𝑟𝑜𝑟 & 𝑖𝑡𝑒𝑟 < 𝑖𝑡𝑒𝑟𝑀𝑎𝑥 do
16: (𝑥, 𝑦) = 𝑠𝑒𝑡[𝑖𝑡𝑒𝑟 mod 𝑠𝑒𝑡.𝑠𝑖𝑧𝑒]
17: 𝑦′ = 𝑛𝑒𝑡𝑤𝑜𝑟𝑘.𝑔𝑒𝑡𝑂𝑢𝑡𝑝𝑢𝑡(𝑥)
18: for all w: network.weights do
19: 𝑤 = 𝑤 + 𝜂(𝑦 − 𝑦′)𝑥
20: end for
21: iter++
22: end while
23: end procedure

3.2 Thermal perceptron learning rule
This algorithm was introduced by Frean M. in 1992[5]. It is a modification of the original
Perceptron learning algorithm aimed at obtaining a rule that provides stable linearly
separable approximation to non-linearly separable problems. It redefines the equation for
updating weight.

The original equation 𝑤 = 𝑤 + 𝜂(𝑦 − 𝑦′)𝑥 as shown in algorithm 4 is replaced by:

𝑤 = 𝑤 + 𝑥(𝑦 − 𝑦′)𝑇𝑓𝑎𝑐

The difference is that the thermal perceptron learning rule incorporates the factor 𝑇𝑓𝑎𝑐.
This value depends on the value of weight and on an artificially introduced temperature
𝑇 that is decreased as the learning process advances. This technique is commonly used in
process called simulated annealing. This value can be computed as shown:

𝑇𝑓𝑎𝑐 =
𝑇

𝑇0
𝑒𝑥𝑝(−|𝑣|

𝑇
)

In this equation, we define 𝑇 as an actual temperature, 𝑣 is value of neuron and 𝑇0 is
initial temperature set at the beginning of a learning process.

14

3.3 Backpropagation
Backpropagation is a well known method for supervised learning of neural networks. Back-
propagation calculates the gradient of an error function with respect to all weights in the
network. Then, the gradient is used by optimization method, which uses computed gra-
dients to update the weights in an attempt to minimize the error of network. Network
learned by backpropagation can be a single or multi-layer feed-forward network.[8]

Algorithm can be divided into two parts as shown in algorithm 5. First part consists
of computing slopes for changing weights of neuron. The second part update weights to
minimize error.

Algorithm 5 Backpropagation
1: procedure Backpropagate(x,y, network) ◁ 𝑦 is desired output, 𝑥 is input
2: Part 1. Compute slopes:
3: 𝑦′ = 𝑛𝑒𝑡𝑤𝑜𝑟𝑘.𝑔𝑒𝑡𝑂𝑢𝑡𝑝𝑢𝑡(𝑥) ◁ 𝑦′ is output of function
4:
5: Compute 𝛿𝑛 of every neuron 𝑛 of output layer according to:
6: 𝛿𝑛 = (𝑦′[𝑛]− 𝑦[𝑛]) · 𝑛𝑒𝑢𝑟𝑜𝑛.𝑓 ′

𝑎(𝑛𝑒𝑢𝑟𝑜𝑛.𝑣𝑎𝑙𝑢𝑒)
7: ◁ 𝑓 ′

𝑎 is derivation of activation function
8:
9: Compute 𝛿𝑛 of neurons of hidden layer 𝐿 starting from layer preceding output layer:

10: 𝛿𝑛 =
∑︀neurons of 𝐿+1

𝑗 (𝛿𝑗 · 𝑤𝑛𝑗) · 𝑛𝑒𝑢𝑟𝑜𝑛.𝑓 ′
𝑎(𝑛𝑒𝑢𝑟𝑜𝑛.𝑣𝑎𝑙𝑢𝑒)

11: ◁ 𝑤𝑛𝑗 is weight between neuron 𝑛 and 𝑗
12:
13: Part 2. Compute new weights:
14: For every hidden and output neuron 𝑛 of network and its weight 𝑗 change
15: weights according to:
16: Δ𝑛𝑗 = 𝛼 · 𝛿𝑛 · (output of neuron that is connected to weight 𝑗)
17: 𝑤𝑛𝑗 = 𝑤𝑛𝑗 +Δ𝑛𝑗

18: ◁ 𝛼 is learning coefficient
19: end procedure

15

Chapter 4

Algorithms for topology
development

As neural networks were successfully trained by many algorithms, the problem of selecting
proper topology by “trial and error” method was still inefficient. This problem involves
both choosing the right number of layers and hidden units for layered feed-forward network
and selecting proper connections between neurons in recurrent neural network. Over-sized
networks with more layers or hidden units are easier to over-fit while smaller networks are
not able to learn. This problem mostly affects predictive models, where over-fitting is well
seen and neural networks are not able to globalize this process well.

Constructive algorithms can be divided into two categories. The first category consists
of algorithms that start with a small network - usually with one hidden unit and work by
adding one by one until desired precision is reached. Algorithms from the second category
are called pruning. These algorithms start with a large network and eliminate unnecessary
weights and units one after another.

There is another special group besides these two groups. It is a group consisting of
algorithms based on evolutionary algorithms and is called neuroevolution.

4.1 C-Mantec algorithm
The Competitive Majority Network Trained by Error Correction algorithm creates
a structure with a single layer of hidden nodes using step activation function. For a two
classes function, it constructs a network with one output neuron computing the “majority
function” of the responses of hidden nodes as shown in figure 4.2. That means if more than
a half of the hidden neurons is activated the output neuron is activated too. We are going
to describe only a two class classifier, but an algorithm for creating multi-class classifier
also exists [20].

16

Figure 4.1: C-Mantec algorithm

Start

Are all training
patterns correcly

classified?
Finish

yes

Input a
random pattern

no

output==target?

yes

Select neuron
with largest 𝑇𝑓𝑎𝑐𝑡

no

Is the
selected neuron
𝑇𝑓𝑎𝑐 > 𝑔𝑓𝑎𝑐?

Modify selected
neuron weight ac-
cording to thermal

perceptron rule
yes

Add new neuron
and restart

temperatures

no

Eliminate noisy
examples

Algorithm starts with a single neuron in a hidden layer and adds more neurons every
time when the present ones are not able to classify a whole training set right. Learning is
separated into two levels. For a single neuron learning it uses Thermal perceptron learning
rule that was introduced in section 3.2. At a global level competition between neurons is
incorporated. This approach makes learning more efficient and allows for obtaining more
complex structures.

17

𝑥1

𝑥2

𝑥3

𝑥𝑛

.

.

.

1

ℎ0

ℎ1

ℎ2

ℎ𝑚

.

.

.

𝑜 𝑦

1
1

1

1

Figure 4.2: Structure of C-Mantec algorithms for two-class function

4.2 Marchand’s algorithm
Algorithm has been proposed by Mostefa Golea and Mario Marchand in the article “A
Growth Algorithm for Neural Network Decision Trees”[6]. Algorithm 6 describes building
of a feed-forward network for a two-class classification with only one hidden layer. This
structure is shown in figure 4.3.

𝑥0

𝑥1

𝑥2

𝑥𝑛

.

.

.

ℎ0

ℎ1

ℎ2

ℎ𝑚

.

.

.

𝑦

Figure 4.3: Network built with Marchand’s algorithm

The algorithm describes how to add neurons into a hidden layer one by one – when
the neuron helps ANN to classify at least one more new example to the appropriate class.
The algorithm ensures that a new neuron does not break correctly-classified examples by

18

neurons added previously. Algorithm ensures this by setting weights between newly-added
unit and output unit according to:

𝑤𝑘 =

{︃
1
2𝑘

if neuron k belongs to class 1
−1
2𝑘

if neuron k belongs to class 2

This algorithm works with two sets 𝑇+
𝑘 and 𝑇−

𝐾 - they represent patterns that are not
correctly classified in step 𝑘.

Algorithm 6 Marchand’s algorithm
1: procedure MarchandAlgorithm
2: 𝑘 = 0
3: 𝑇+

0 = set of samples from class 1
4: 𝑇−

0 = set of samples from class 2
5: while 𝑇+

𝑘 ̸= {} & 𝑇−
𝑘 ̸= {} do

6: 𝑘 = 𝑘 + 1
7: 𝑤 = 0
8: Create neuron 𝑛𝑘 in hidden layer that satisfies one of next cases.
9: case output of neuron 𝑛𝑘 is 0 for all samples from class 1 and 1 for at least one

case from class 1 then:
10: 𝑇−

𝑘+1 = 𝑇−
𝑘

11: 𝑇+
𝑘+1 = {𝑡 | 𝑡 ∈ 𝑇+

𝑘 & output of neuron 𝑛𝑘 for 𝑡 ̸= 0}
12: 𝑤 = 1

2𝑘

13: end case
14: case output of neuron 𝑛𝑘 is 0 for all samples from class 1 and 1 for at least one

case from class 2 then:
15: 𝑇+

𝑘+1 = 𝑇+
𝑘

16: 𝑇−
𝑘+1 = {𝑡 | 𝑡 ∈ 𝑇−

𝑘 & output of neuron 𝑛𝑘 for 𝑡 ̸= 0}
17: 𝑤 = − 1

2𝑘

18: end case
19: Add neuron to hidden layer with weight 𝑤
20: end while
21: end procedure

4.3 New Constructive Algorithm
New Constructive Algorithm (NCA) was proposed in 2009[9]. NCA creates a unique
topology shown in figure 4.4. Each hidden layer receives outputs of each preceding layer
(an input layer and hidden layers). Whereas the output layer receives all hidden layer
outputs. Every neuron from hidden layers uses a sigmoid activation function.

19

𝑥0

𝑥1

𝑥𝑛

.

.

.

0

1

𝑚

hidden layer 0

.

..

0

1

𝑙

hidden layer 1

.

..

𝑦0

𝑦1

𝑦𝑜

output layer

.

..

Figure 4.4: Structure of NCA

In figure 4.5 we can see major steps of NCA. These steps are going to be described in
detail further on.

Figure 4.5: New Constructive Algorithm [9]

20

∙ Create an initial ANN structure
Choose ANN with three layers - input layer, one hidden layer and one output layer.
Hidden layer contains one neuron.
Randomize all weights in ANN within a small range. Label the hidden layer 𝐶 and
its neuron 𝐼.

∙ Create a training set
Create a training set with AdaBoost for the neuron 𝐼 from layer 𝐶. Training set for
the first neuron 𝐼 and first layer 𝐶 is the original training set.

∙ Initial partial training
Use backpropagation to train neuron 𝐼 from layer 𝐶 using the set created in the
previous step.

∙ Stop ANN construction?
Check termination criterion for stopping ANN construction and return created net-
work if criterion is fulfilled.

∙ Stop initial training?
Compute error 𝐸 of ANN on training set. If an error is reduced by a predefined value,
go to the step Initial partial training, otherwise continue.

∙ Final partial training
Add a small amount of noise to all input and output connection weights of neuron
𝐼. Usually Gaussian distribution with a mean of zero and a variance of one is used.
Train neuron 𝐼 using backpropagation.

∙ Stop final training?
Compute error 𝐸 of ANN on training set. If an error is reduced by a predefined value,
go to step Final partial training, otherwise remove label 𝐼 and continue.

∙ Add hidden layer?
Check the criterion for adding a new hidden layer. If criterion is fulfilled go to Add
one hidden layer. Otherwise go to Add one hidden neuron.

∙ Add one hidden neuron
Add new neuron to layer 𝐶 and label it 𝐼. Initialize its input and output connections
with zero and go to the step Create a training set.

∙ Add one hidden layer
Add a new hidden layer with one neuron above layer 𝐶. Label this layer 𝐶 and the
first neuron 𝐼 and randomize all weights in ANN around zero. Continue with the step
Create a training set.

4.4 Cascade-Correlation
Algorithm Cascade-Correlation was proposed in 1990 [4]. This algorithm combines two
ideas. The first is a cascade structure, where neurons are added one by one, and after an
addition they never change again. The second one is a learning algorithm which creates new
hidden neurons. For every neuron, algorithm maximizes the magnitude of the correlation
between new unit’s output and residual error signal.

21

Algorithm starts with inputs and outputs but no hidden units. The number of inputs
and outputs is determined by a problem definition. Every output is connected to all inputs.
Either any linear function or any non-linear function can be used as an activation function.
When a new hidden neuron is added, it receives connections from all inputs and all previ-
ously added hidden neurons - thereof the name “cascade”. Such a structure is illustrated
in figure 4.6

𝑥0 𝑥1 𝑥𝑛

𝑦0 𝑦1 𝑦𝑛

𝑛0

𝑛1

Figure 4.6: Structure of Cascade-Correlation algorithm

Algorithm defines the sum of magnitude of correlation over all output units 𝑜 as:

𝑆 =
∑︁
𝑜

(︃∑︁
𝑝

(︀
𝑉𝑝 − 𝑉

)︀ (︀
𝐸𝑝,𝑜 − 𝐸𝑜

)︀)︃
Where 𝐸𝑝,𝑜 is error observed at unit 𝑜 with pattern 𝑝, 𝑉𝑝 is value of candidate unit. The

quantities 𝐸𝑜 and 𝑉 are values averaged over all patterns. The task is to maximize 𝑆. For
this task very similar derivation to backpropagation one is defined in the original paper:

𝜕𝑆

𝜕𝑤𝑖
=
∑︁
𝑝,𝑜

𝜎𝑜
(︀
𝐸𝑝,𝑜 − 𝐸𝑜

)︀
𝑓 ′
𝑝𝐼𝑖,𝑝

Where 𝜎𝑜 is the sign of correlation between candidate’s value and output 𝑜, 𝑓 ′
𝑝 is the

derivative for pattern 𝑝 of candidate unit’s activation function and 𝐼𝑖,𝑝 is the input of
the candidate for input unit 𝑖 and pattern 𝑝. After computing 𝜕𝑆

𝜕𝑤𝑖
, gradient ascent can

be performed. This step trains only output units and the usage of backpropagation or
quickpropagation is recommended.

Further algorithm 7 is provided. The provided algorithm uses equations described above.

22

Algorithm 7 Cascade-Correlation
1: procedure Cascade-Correlation
2: 𝑚𝑖𝑛𝑖𝑚𝑎𝑙𝐸𝑟𝑟𝑜𝑟𝑆𝑡𝑒𝑝 = user defined minimal error step
3: 𝑚𝑎𝑥𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 = user defined maximal number if iterations
4: 𝑒𝑟𝑟𝑜𝑟 = error treshold defined by user
5:
6: 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 = network with fully connected input/output layer and zero hidden neurons
7: 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 = 0
8: 𝑒𝑟𝑟𝑜𝑟 = 𝑇𝑟𝑎𝑖𝑛𝑂𝑢𝑡𝑝𝑢𝑡𝑈𝑛𝑖𝑡𝑠(𝑛𝑒𝑡𝑤𝑜𝑟𝑘)
9: while 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 < 𝑚𝑎𝑥𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠𝑎𝑛𝑑𝑒𝑟𝑟𝑜𝑟 < 𝑒𝑟𝑟𝑜𝑟𝑇𝑟𝑒𝑠ℎ𝑜𝑙𝑑 do

10: 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 = 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠(𝑛𝑒𝑡𝑤𝑜𝑟𝑘)
11: 𝑏𝑒𝑠𝑡𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 = 𝑡𝑟𝑎𝑖𝑛𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠(𝑛𝑒𝑡𝑤𝑜𝑟𝑘, 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠)
12: 𝑛𝑒𝑡𝑤𝑜𝑟𝑘.𝑎𝑑𝑑𝐻𝑖𝑑𝑑𝑒𝑛𝑁𝑒𝑢𝑟𝑜𝑛(𝑏𝑒𝑠𝑡𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒)
13:
14: 𝑒𝑟𝑟𝑜𝑟 = 𝑇𝑟𝑎𝑖𝑛𝑂𝑢𝑡𝑝𝑢𝑡𝑈𝑛𝑖𝑡𝑠(𝑛𝑒𝑡𝑤𝑜𝑟𝑘)
15: 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠++
16: end while
17: end procedure

4.5 Cascade 2 Algorithm
The algorithm Cascade 2 was proposed and implemented by Scott E. Fahlman. He also
wrote an article[3] in 1996, but the article was never published and it is not possible to get
to the original article anymore. Thankfully, it is possible to get C port of the original imple-
mentation1. Currently, it is possible to find another implementation of this algorithm in C
based neural network library FANN. Work done on FANN library is well documented in
the work “Large Scale Reinforcement Learning using Q-SARSA(𝜆) and Cascading Neural
Networks”[14].

The Cascade 2 is modified Cascade-Correlation algorithm, described in previous section.
Algorithm changes the way, it trains candidates and adds them to network. The main
difference is, that this algorithm also trains output weights for candidates. Algorithm is
trying to minimize the difference between the error of the output layer and the input from
candidate. Difference between candidate and output can be computed as follows:

𝑆2 =
∑︁
𝑜

(︃∑︁
𝑝

𝑒𝑝,𝑜 − 𝑜𝑝 · 𝑤𝑜

)︃
𝑒𝑝,𝑜 is the error observer at output 𝑜 for pattern 𝑝. This error can be computed as

𝑒𝑝,𝑜 = 𝑦𝑝,𝑜 − 𝑦′𝑝, where 𝑦 is the desired output and 𝑦′ is output computed by networks. 𝑜𝑝
is output of candidate for pattern 𝑝 and 𝑤𝑜 is weight between candidate unit and output 𝑜.

To minimize 𝑆2, 𝜕𝑆2
𝜕𝑤𝑜

is calculated.

𝜕𝑆2

𝜕𝑤𝑜
= −2

∑︁
𝑜

(𝑜𝑝 · 𝑤𝑜 − 𝑒𝑝,𝑜) · 𝑜𝑝

After computing of 𝜕𝑆2
𝜕𝑤𝑜

, gradient ascent can be performed.
1The C port of original Lisp code is possible to find at https://github.com/gtomar/cascade or

http://www.cs.cmu.edu/~sef/sefSoft.htm

23

https://github.com/gtomar/cascade
http://www.cs.cmu.edu/~sef/sefSoft.htm

4.6 Percentage Average Synaptic Activity
Pruning algorithm was proposed in the paper Dynamic Pruning In Artificial Neural Net-
works [1] by E. R. Caianiello , G. Orlandi , F. Piazza , A. Uncini , E. Guminari and A.
Ascone. In that paper, new algorithm for eliminating units in a way, that performance of
network did not worsen over the time. This algorithm develops a multilayer perceptron.
To verify if connection is necessary or can be removed, a simple formula was defined. For
understanding of this formula, steps to derive this equation are shown.

First, we need to define synaptic activity of connection from neuron 𝑖 to neuron 𝑗:

𝑎𝑖𝑗(𝑝) = (𝑤𝑖𝑗 ·𝐴𝑐𝑡𝑗(𝑝))2

This equation is defined relatively to training pattern 𝑝. In this equation 𝐴𝑐𝑡𝑗(𝑝) is the
activation of neuron 𝑗 for the input pattern 𝑝.

This value can be averaged through the whole training as follows:

�̂�𝑖𝑗 =

𝑁𝑝∑︀
𝑝
𝑎𝑖𝑗(𝑝)

|𝑁𝑝|
Where 𝑁𝑝 is the whole training set and |𝑁𝑝| is its size.
As we defined average synaptic activity between neurons 𝑖 and 𝑗, we need to define

synaptic activity of neuron, which is defined as:

𝐴𝑖 =

𝑁𝑖∑︁
𝑖

�̂�𝑖𝑗

where 𝑁𝑖 are all input neurons of neuron 𝑖. Now, we can define the Percentage
Average Synaptic Activity:

𝑃𝐴𝑆𝐴𝑖𝑗 =
100 · �̂�𝑖𝑗

𝐴𝑖

As we can see, PASA is defined as average activity of connection relatively to neuron’s
average activity. As we defined PASA, we still need to define the function, we can compare
this value to. Lets define threshold function 𝑇ℎ(𝑒𝑝) where 𝑒𝑝 is number of epoch in learning.
Parametric threshold function allows us to change threshold dynamically with learning
epochs. The original paper come with two possible comparisons of PASA and 𝑇ℎ(𝑒𝑝)
[4.1,4.2]. {︃

𝑃𝐴𝑆𝐴𝑖𝑗 < 𝑇ℎ(𝑒𝑝) connection 𝑖− 𝑗 is pruned
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 connection 𝑖− 𝑗 is retained

(4.1)

⎧⎨⎩
100
|𝑁𝑖|

−𝑃𝐴𝑆𝐴𝑖𝑗

100
|𝑁𝑖|

< 𝑇ℎ(𝑒𝑝) connection 𝑖− 𝑗 is pruned

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 connection 𝑖− 𝑗 is retained
(4.2)

First equation is affected by the number of synapses to neuron 𝑗. With higher number
of inputs, PASA is lower. This can be modified by introducing 100

|𝑁𝑖| to equation. In the
original paper the function 𝑇ℎ(𝑒𝑝) was defined as follows:

𝑇ℎ(𝑒𝑝) = 𝑣𝑒−
1
2
(𝑒𝑝−𝑚

𝜎
)2

where 𝑣,𝑚 and 𝜎 are constant values. This function is known as Gaussian function.

24

4.7 Neuroevolution
Neuroevolution is a bit special group within constructive algorithms. These algorithms use
other Soft-computing methods to develop topology and weights. Some of these methods
develop only topology, whereas others are able solve both tasks.

We can put algorithms into two groups - algorithms that use direct encoding and
algorithms that use indirect encoding. When direct encoding is used, concrete neurons
and connections are represented by genes. On the other hand indirect encoding describes
how to construct neural network. It allows to create compact genomes that are able to
create bigger neural networks or are able to define simply multiple occurrences of the same
sub-network.

Many algorithms, that fall within this group have been developed. In the next section
two of them are described.

4.7.1 Cellular Encoding

Cellular Encoding is a method for encoding neural networks. This technique developed
in 1994 [7] uses indirect encoding. Algorithm introduces cells that execute “cellular
code” and turn into neurons when they finish code execution. The code is represented by a
tree (also called “cellular code”). This tree consists of instructions and its nodes – number
of nodes depends on instruction. Roots with terminal instructions doesn’t contain nodes,
while nonterminal ones contain one or two – depending on whether instruction divides into
two cells or not. Every cell executes instructions according to its position in the code.
When the cell gets to the end of code, it “dies” and turns into neuron.

Algorithm uses the initial tree. There are two types of trees defined – cyclic and acyclic
as shown in figure 4.7. This tree is used for initial development.

INPUT

Cell 1

OUTPUT

INPUT

Cell 1

OUTPUT

Figure 4.7: Initial graphs of cells. There is an acyclic graph on the left side and a cyclic
graph on the right side.

Further, the algorithm is run for an inspiration with a simple “cellular code”. Algorithm
starts with a single cell pointing to the beginning of the code as shown in figure 4.8.

25

SEQ

PAR SEQ

END END END END

INPUT

Cell

OUTPUT

Position of cell

Figure 4.8: Starting point of algorithm

Cell 1 then interprets the instruction – SEQ in this case and it results in creating a
new cell with an input connection to the first cell and its output to the output as shown in
figure 4.9

SEQ

PAR SEQ

END END END END

INPUT

Cell 1

Cell 2

OUTPUT

Position of cell 1
Position of cell 2

Figure 4.9: State of algorithm after first step

In the next step of algorithm, all cells interpret next instructions again. Cell 2 in
this case points to SEQ and cell 1 to PAR. Instruction PAR is also division one. This
instruction creates a new cell, that inherits the same inputs and outputs as the first cell –
that means a parallel division. This can be seen in figure 4.10.

SEQ

PAR SEQ

END END END END

INPUT

Cell 1 Cell 3

Cell 2

Cell 4

OUTPUT

Position of cell 1

Position of cell 2

Position of cell 3

Position of cell 4

Figure 4.10: Developing of cells

26

In the last step all the cells point to the instruction END. This instruction turns cells
into neurons. This conversion can be seen in figure 4.11.

SEQ

PAR SEQ

END END END END

INPUT

Neuron 1 Cell 3

Neuron 2

Cell 4

OUTPUT

Position of cell 3

Position of cell 4

Figure 4.11: Dying of cells and creation of neurons

The original paper introduces many instructions, nevertheless the instructions provided
below are satisfactory for development of every possible topology. Other instructions are
just making process of development quicker and cellular code more compact.

∙ SEQ – sequential division of a cell into two. The first created cell inherits all input
links and second outputs. These two cells are connected with weight 1.

∙ PAR – parallel division is the second type of a division. Both new created cells
inherit inputs and outputs from the original cell.

∙ END – ending-program symbol ends editing of a cell.

∙ DECBIAS/INCBIAS - these symbols modify bias of neuron – increase or decrease
it.

∙ DECLR/INCLR – these symbols modify a value of link register

∙ VAL-/VAL+ – these symbols set a value of link register to -1 or +1

∙ CUT – it modifies topology by removing link pointed by link register.

4.7.2 NEAT

Algorithm NeuroEvolution of Augmenting Topologies was invented by Stanley and
Miikkulainen [19]. This method develops both topology and weights. This method is based
on genetic algorithms – it uses direct encoding of genes and crossover.

This algorithm develops linear genome, consisting of two types of genes (Connection
Gene and Node Gene). The ability of developing topology comes with problems – how to
make crossover of two different genomes with different sizes and how to crossover two same
networks with different topology. NEAT comes with solution – every genome gets its ID,
that is never changed. This ID is inherited, so it is possible to get ancestor of concrete gene.
This solves the problem of making crossover of two different genomes. When crossover is
done, all genes are paired with same IDs and one gene of group gets to newly created
genome.

When a new topology is created – i.e. a new neuron or connection is added, it can break
fitness of newly created individuals. To avoid losing such an individual – its topology can

27

be better, but weights are not developed, NEAT comes with splitting of individuals into
species. This allows to create continuous development of genomes with different topologies.
Every time, a new genome that is different from other species is evolved, a new species
is created. This dissimilarity is computed from number of unpaired genes (number of not
paired IDs) and the difference in weights.

𝛿 =
𝑐1𝐸

𝑁
+

𝑐1𝐷

𝑁
+ 𝑐3 ·𝑊 (4.3)

Equations 4.3 describes dissimilarity of two genomes. 𝑐1, 𝑐2, 𝑐3 are coefficients affecting
impact of factors. 𝑁 is length of longer genome, 𝑊 is average of differences between weights.
𝐸 is number of excess genes – the number of genes of one individual, that have higher ID
than the highest ID of gene from the second genome. 𝐷 is the number of genes, that can
not be paired – ID of genes are in only one genome.

28

Chapter 5

Genetic Programming

Genetic programming falls into the category of evolutionary algorithms. This algorithm
works either with linear code or code encoded into trees. In this chapter, genetic program-
ming for code encoded into trees is introduced and methods for selection, mutation and
crossover are described.

5.1 Population initialization
Initialization of population is the first step of genetic programming algorithm. The way
population is initialized affects the speed of convergence to local (global) optimum. Usually
individuals with short code decrease diversity whereas too complex and deep code tree can
result in inefficient solutions. For initialization of trees, usually two methods are used –
grow method and full method. These methods need one parameter – the “maximum
tree depth”. This parameter restricts the size of tree. Apart from “maximum tree depth”
it receives also set of terminals and nonterminals, it generates tree from.

The Grow method 8 creates tree, where in every step where depth is smaller than
maximum depth, node is selected from all symbols. In the maximum depth, node is selected
only from terminal symbols [22].

Algorithm 8 Grow method
1: procedure Grow(depth)
2: if 𝑑𝑒𝑝𝑡ℎ < 𝑚𝑎𝑥𝑖𝑚𝑢𝑚𝐷𝑒𝑝𝑡ℎ then
3: 𝑛𝑜𝑑𝑒 = 𝑟𝑎𝑛𝑑𝑜𝑚(𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑙 ∪𝑁𝑜𝑛−−𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑙)
4: for 𝑖 : 𝑛𝑜𝑑𝑒.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 do
5: 𝑛𝑜𝑑𝑒.𝑐ℎ𝑖𝑙𝑑𝑖 = 𝑔𝑟𝑜𝑤(𝑑𝑒𝑝𝑡ℎ+ 1)
6: end for
7: else
8: 𝑛𝑜𝑑𝑒 = 𝑟𝑎𝑛𝑑𝑜𝑚(𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑙)
9: end if

10: return node
11: end procedure

The Full method 9 is similar to Grow method, but generates trees of the depth equal
to maximum depth – it selects only non-terminal symbols when the depth is smaller than
maximum depth.

29

Algorithm 9 Full method
1: procedure Full(depth)
2: if 𝑑𝑒𝑝𝑡ℎ < 𝑚𝑎𝑥𝑖𝑚𝑢𝑚𝐷𝑒𝑝𝑡ℎ then
3: 𝑛𝑜𝑑𝑒 = 𝑟𝑎𝑛𝑑𝑜𝑚(𝑁𝑜𝑛−−𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑙)
4: for 𝑖 : 𝑛𝑜𝑑𝑒.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 do
5: 𝑛𝑜𝑑𝑒.𝑐ℎ𝑖𝑙𝑑𝑖 = 𝑔𝑟𝑜𝑤(𝑑𝑒𝑝𝑡ℎ+ 1)
6: end for
7: else
8: 𝑛𝑜𝑑𝑒 = 𝑟𝑎𝑛𝑑𝑜𝑚(𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑙)
9: end if

10: return node
11: end procedure

There exists one more method – “ramped half-and-half”. This method combines the
two previous. It initializes half of population by grow method and the second half by full
method.

5.2 Operators
Operators are crucial part of genetic programing. Operators define the way individuals
mutate or crossover. During experiments, new operators were implemented to achieve
better results. We divide operators into two categories – mutations and crossover.

5.2.1 Mutations

Mutation is unary operator and it changes genetic information of individual. This operator
is useful, when generation is approaching optimum and crossover between individuals makes
big differences in code trees [16].

Subtree mutation 5.1 is basic mutation operator, which selects random subtree in
individual and replaces it with randomly generated tree. Newly generated subtree must be
generated with reasonable depth, any algorithm mentioned in Genetic code initialization
can be used.

Parent 1 O spring Randomly

generated tree

Figure 5.1: Subtree mutation

Shrink mutation 5.2 reduces the complexity of code. This operator selects random
subtree that is replaced by subtree with the first instruction being terminal. This can be

30

pictured on following equation: 𝑝𝑜𝑤(𝑥) · (𝑥+0), that can be turned after application of this
operator to 𝑝𝑜𝑤(𝑥) · 𝑥.

Parent O spring

Figure 5.2: Shrink mutation

Node replacement mutation 5.3 replaces instruction by another with the same sig-
nature (arity, return or parameter types) [10].

Parent O spring

tation

oint

Replace with

ew node

Figure 5.3: Node replacement mutation

Hoist mutation 5.4 is very specific operator. This operator can be though as opposite
to shrink mutation and is also useful for reducing complexity of code. It selects random
subtree and replaces whole tree node with it – the selected subtree is new solution.

Parent O spring

Figure 5.4: Hoist mutation

Subtree permutation 5.5 is the last described mutation operator. This operator is
applicable only, when modified instruction is not commutative. Operator switches operands
(subtrees of node) of instruction. This can be seen on formula change from 𝑎/𝑏 to 𝑏/𝑎.

31

Parent O spring

Figure 5.5: Subtree permutation

5.2.2 Crossover

Crossover operators are binary operators. These operators select two individuals from
generation and creates new one using their genetic information.

Subtree crossover [17] is the first introduced operator. This operator selects node in
both parents and switches these two subtrees as can be seen in figure 5.6.

Parent 1 Parent 2 O spring

Figure 5.6: Subtree crossover

Arity-2 combination is specific operator. This operator combines both parents with
usage of binary instruction. This combination can be seen in figure 5.7.

Parent 1 Parent 2 O spring

Figure 5.7: Arity-2 combination

32

Chapter 6

Implementation

This chapter describes requirements and implementation of neccessary parts for the thesis.
Description of specific modules and components is also provided.

6.1 Requirements for implementation
The essential requirement for the final design was the possibility of extension of implemented
features for the future. Due to this fact the code is divided into 3 logical parts. The first
part is library for neural networks. The second part is library for evolutionary algorithms
and the last part consists of experiments incorporated in the thesis. Implementation of
libraries is provided in the two following sections. The second requirement was speed and
portability. For this fact the language C++ was chosen.

6.2 Neural network library
For the specific needs of this thesis, a personal library was developed. This library is called
NeuralNetworkLib. This unit is not completely original, it was originally developed as
a part of my master’s degree studies subject. This library is provided as an open-source1.
For this thesis, this library has been extended by:

∙ Recurrent network

∙ Cellular encoding

∙ Cascade network implementation

∙ Constructive algorithms

∙ AVX implementation of basis function

∙ Problem sets

∙ Serialization of networks
1Library can be found at https://github.com/Shin-nn/NeuralNetworkLib or

http://gitlab.ishin.cz/shin/NeuralNetworkLib

33

https://github.com/Shin-nn/NeuralNetworkLib
http://gitlab.ishin.cz/shin/NeuralNetworkLib

This library aims to provide high-speed functionality framework as well as simple object-
oriented design. Due to the fact, that these objectives go against each other, I dropped
this clean object-oriented design. Every element of this library knows how to serialize itself
as “JSON object” as well as deserialize. Format JSON was chosen for its lightness and
easy readability. The ability and uniformity of serialization of every object comes with the
ability to simply combine parts together and store networks to disks and load once again.
We can imagine this functionality on serialized neuron in listing 6.1.

{
"class" : " NeuralNetwork :: Neuron ",
" activationFunction " : {

"class" : " NeuralNetwork :: ActivationFunction :: Sigmoid ",
" lambda " : -0.800000

},
" basisFunction " : {

"class" : " NeuralNetwork :: BasisFunction :: Linear "
},
"id" : 3,
" output " : 0.483658 ,
"value" : -0.081738 ,
" weights " : [-8.339814 , 3.148232 , 3.169152 , 6.976029]
}

Listing 6.1: Neuron serialised as JSON

This library is divided into logical parts, each representing part of neural network.
Further, each part is introduced.

6.2.1 Activation functions

Activation functions are first essential part of this library. These classes represent different
activation functions. We can see implemented functions and class dependency in figure
6.1. Each function provides function to compute output of neuron from its value – function
operator() as well as function for computing derivation – function derivatedOutput.
Derivated output is used for example during backpropagation.

34

Figure 6.1: Activation function diagram

6.2.2 Basis functions

The second part of library are basis functions. Each function implements the computation
from weights and inputs – function operator().Due to the fact, that in most cases linear
basis function is used, it was tuned to be as efficient as possible.

To satisfy this goal, linear basis function was implemented with streaming instructions
– AVX and SSE. In the time of compilation, compiler tool decides, whether instruction
set is available on its platform. This allows to write portable program as well as target
high speed. The usage of these instruction sets allows neural network to run multiple times
quicker. Given the fact, that more than 95 percent of time spent on evaluating neural
network is in linear functions, the speed up is in the case of SSE instruction set almost by
4 and in the instruction set of AVX almost by 8.

35

Figure 6.2: Basis function diagram

6.2.3 Neuron

Neuron is the most important point of this library. Its interface and attributes can be
seen in figure 6.3. The neuron’s main, and the most computationally intensive function is
operator(). This function receives vector of inputs, uses basis function to compute inner
value of neuron and activation function to compute its output, which is returned. This
two values, are then stored inside the neuron for further usage (backpropagation, etc.).
This composition allows neuron to be used in all types of discrete networks. Networks’
responsibility is to pass inputs to neuron in correct order, and the rest is done inside
neuron. Further, the neuron provides interface for changing and getting weights, activation
and basis function. It also allows to resize number of inputs, to be able to change topology
on the run.

36

Figure 6.3: Neuron diagram

6.2.4 Learning algorithms

Another part of library are learning algorithms. Implemented algorithms relevant to this
thesis are backpropagation and quickpropagation. Algortihms can be found in namespace
LearningAlgorithms. These two algorithms can be used for learning any feed-forward
network and are used for learning output layers in algorithms Cascade-Correlation and
Cascade 2.

6.3 Evolutionary algorithms library
This library serves as multipurpose library. Library is provided as open-source2. It unifies
algorithm such as genetic programing, genetic algorithms and so on. Library is based on
common base – template called EvolutionaryAlgorithm. This template defines the pro-
cess of initializing new generation and generating new one. It provides all core functionality
to specific routines – only operators and types of individuals are necessary to specify. The
workflow can be modified in many ways - number of selected individuals from previous

2Library can be found at http://gitlab.ishin.cz/shin/EvolutionaryAlgorithms

37

http://gitlab.ishin.cz/shin/EvolutionaryAlgorithms

generation, size of generation and terminal criterion. It is also responsible for creating
statistics of generations.

6.3.1 Selection Operators

Library implements several selection operators. These operators can be used for selecting
individuals to next generation or individuals for mutation or crossover. Implemented oper-
ators and corresponding diagram can be seen in figure 6.4. Operators are implemented as
templates. Further, implemented operators are described.

Figure 6.4: Selection operators diagram

Elite selection selects first best 𝑁 individuals. This operator is usually used, when
best individuals should be placed to new generation.

Roulette Wheel selection selects individuals according to their fitness. Selection can
be imagined on a roulette wheel, where every place represents individual and the proportion
of size is the same as proportion of fitness. This operator suffers from problems, where fitness
differs very much – that way, only few best individuals are selected.

Rank Selection is trying to reduce the problems, that comes with Roulette Wheel
selection. It works, the same way as previous operator, but the proportion of space is
computed by their rank in population. Worst individual gets rank 1, second worst gets
rank 2 and the best gets rank 𝑁 – size of population. There is one problem with this
operator – as diversity of selected individuals increases, the convergence can be slower.

Tournament selection comes with an idea of comparing random individuals to each
other. Operator selects randomly 𝑘 (the size of tournament) individuals from the popula-
tion. The individual with best fitness is the winner of tournament.

6.3.2 Genetic programing

Genetic programing is based on previously described class EvolutionaryAlgorithm. It
provides individuals with trees. Every tree can contain zero, one or two nodes. Number of
nodes depends on concrete instruction. Every instruction must specify its number of nodes,
it uses.

38

6.3.3 Population initialization

Library implements all initialization methods described in section 5.1. These methods can
be found in namespace GeneticPrograming::InitializationFunction as we can see in
figure 6.5. These methods implement method operator()() that returns initialized tree.

Figure 6.5: Population initialization methods

6.4 Cascade-Correlation
This algorithm is implemented in class ConstructiveAlgorihtms::CascadeCorrelation.
This class provides all neccessary functions for constructing cascade-network. This algo-
rithm needs many configurations, thus functions for setting or getting following configura-
tions are provided:

∙ Number of candidates – number of candidates generated in each epoch

∙ Maximum candidate learning iterations – maximal number of iterations, candi-
dates are learned

∙ Error treshold – when error on learning set is lower than threshold, algorithm ends
construction

∙ Radom weight range – range, where weights are generated

∙ Maximum output layer learning iterations – maximal number of iterations for
learning output layer

∙ Maximum output layer learning iterations without change – maximal number
of iterations for learning output layer, when response is not getting better

∙ Maximum candidate learning iterations without change – maximal number
of iterations for learning candidates, when correlation is not increasing

Entrance function for construction of network is construct(vector of TrainingPat-
terns). Function creates Cascade network with empty hidden layer. Then it adds new units
according to algorithm described in section 4.4. Given, the fact, that Cascade-Correlation
and Cascade2 algorithm differ only in the way, they train candidates (and their outputs),
class provides virtual function – trainCandidate(), that is overridden by Cascade2. This
function returns candidate neuron and weights to output units.

39

6.5 Cascade 2
Cascade 2 algorithm is implemented in class ConstructiveAlgorithms::Cascade2 and
inherits from described class ConstructiveAlgorithms::Cascade2Correlation. This
class overrides method trainCandidate(). Given the fact, that no original documentation
exists, it was complicated to reproduce the original algorithm. During development, original
code was studied as well as the code provided in FANN library.

6.6 Cellular Encoding
Cellular Encoding is implemented in namespace ConstructiveAlgorithms::CellularEncoding.
This class contains method construct(), which returns common recurrent neural network.
Implementation consists of many classes, to summarize, it consists of:

∙ Cell

∙ Cellular Encoding

∙ Instructions

Every part is going to be described in details further.

6.6.1 Cells

Cell is implemented in class ConstructiveAlgorithms::CellularEncoding::Cell. Cells
represent elements of system. Cells are modified by instructions, thus this class provides
interface for modification of its status.

Every cell contains information about itself and neuron, it is going to be transformed
to on the end of algorithm. More specifically, it contains:

∙ position in tree – pointer to current position in tree

∙ bias – bias value for neuron

∙ life – life, for recursive cellular code

∙ links – vector of links to the cell

∙ link register – index to current position in links vector

∙ output flag – whether cell results in output neuron

∙ input flag – whether cell results in input neuron

For all of these attributes functions enabling to set or get the value are provided. Link
can be pictured as triplet (𝑠𝑡𝑎𝑡𝑢𝑠, 𝑤𝑒𝑖𝑔ℎ𝑡, 𝑐𝑒𝑙𝑙), where status is the status of neuron with
values 𝑂𝑁 , 𝑂𝐹𝐹 . Weight is representing weight connection between neurons and cell is
identification of a cell.

40

6.6.2 Instructions

Part of Cellular encoding implementation represent instructions. All implemented instruc-
tions derive from base class. Every instruction needs to implement 3 functions – run(),
numberOfOperands() and toString().

The last function toString() is used for stringification of code. The second function
numberOfOperands() is used for creating and changing code tree. Function returns
number of nodes it uses. The first function run() represents entry point for cell. When cell
gets on the move, it calls run on current instruction it points to. This function modifies
cell, and its surrounding.

Every instruction is implemented in its own class and these classes are located in names-
pace ConstructiveAlgorithms::CelularEncoding::Instruction. Implemented instruc-
tions and classes are:

∙ IncBias – This instruction modifies cell by incrementing bias by one.

∙ DecBias – This instruction modifies cell by decrementing bias by one.

∙ MulBias – This instruction modifies cell by multiplying bias by one.

∙ DivBias – This instruction modifies cell by dividing bias by one.

∙ SetBiasZero – This instruction modifies cell by setting bias to zero.

∙ SetBiasOne – This instruction modifies cell by setting bias to one.

∙ SetBiasMinusOne – This instruction modifies cell by setting bias to minus one.

∙ Par – This instruction creates new cell from current one. New cell is connected
parallely and copies all registers to new cell.

∙ Seq – Instruction creates new cell, that is connected sequentially to original and
copies all registers to new cell.

∙ End – This instruction ends development of cell and turns cell to neuron.

∙ Rec – This instruction conditionally sets the code pointer to the beginning of code
when the life > 1 and in the case of life equals one, it ends the same way as END.

∙ Wait – This instruction does nothing, it just stops cell for one step.

∙ On – This instruction modifies the state of link. It turns on the link specified by the
link register.

∙ Off – This instruction modifies the state of link. It turns off the link specified by the
link register.

∙ Div – This instruction modifies the value of link. It divides the value of link specified
by the link register by 2.

∙ Mult – This instruction modifies the value of link. It multiplies the value of link
specified by the link register by 2.

∙ Inc – This instruction modifies the value of link register by incrementing it by one.

41

∙ Dec – This instruction modifies the value of link register by decrementing it by one.

∙ ValPlus – This instruction modifies the value of link. It sets the value of link specified
by the link register to 1.

∙ ValMinus – This instruction modifies the value of link. It sets the value of link
specified by the link register to -1.

∙ Declr – This instruction modifies the value of link. It decrements the value of link
specified by the link register by 1.

∙ Inclr – This instruction modifies the value of link. It increments the value of link
specified by the link register by 1.

6.6.3 Cellular Encoding

Cellular Encoding is the class, that encapsulates whole algorithm to user and “converts”
cellular code to network. Class provides functions to set initial graph, life and maximum
number of steps. The last parameter was introduced for possibility of controlling algorithms
run. In every step, algorithm goes over all cells that are alive and interprets instruction.
When number of steps overcomes the maximum set by user, exception is thrown and algo-
rithm is ended.

During development, implementation was tested on sample cellular codes provided in
original thesis to assure correct implementation and the same results. Despite this, it was
hard to obtain results that are described in original work. This is due to the fact that many
relevant information are not mentioned in original work. These aspects are covered in the
following paragraphs.

Timing of cells step is very important during cell development. Different timing
results in different topology. To provide same results as original work, new cell must be
added to execution just right after the cell it was separated from.

Cell registers must be set in divided cells during development.
Number of inputs and outputs is given by the cellular code. It is not possible

to set the number of inputs or outputs and developed network must be tested on the size
of input and output layers.

Terminality of symbols is not given by instruction. In the instruction set, there
is only one instruction that is always terminal – END. Also division instructions are never
terminal. Other instructions can be both terminal and non-terminal. This depends on
current set specification. The ability to change the terminality of symbol allows to create
specific instruction set for problems and increase convergence.

42

Chapter 7

Proposal of improvement

This chapter proposes two possible improvements for Cascade-Correlation and Cascade
2. In the course of experiments, I have observed that in some situations adding candidate
unit to network made response of network worse. To solve this effect, two modifications are
proposed. These proposals are described in the two next subsections and then in the next
chapter these two proposals are evaluated.

7.1 Random search of output weights
This modification is based on the idea of wrongly generated weights between input and
hidden units and output units. There are cases, when backpropagation doesn’t converge,
or convergence is slow. To suppress this effect, I suggest the following addition to the basic
algorithm:

Instead of learning output layer by backpropagation, generate pool of 𝑁 +1 (the one is
the original network) copies of current network. Leave one network as it is and randomize
the connections between input and hidden units and output units in other networks. Then
learn the whole pool. In the end of the step select network with the best response.

During experiments with this modification I observed that the profit from this modi-
fication comes with more then 95% probability in the first epochs. Thus, the number of
generated networks can be modified in the following manner without reduction of profit.

𝑁 =

{︃
𝑁 ′ if 𝑒𝑝𝑜𝑐ℎ mod 𝑆 = 0

𝑁 ′/𝑒𝑝𝑜𝑐ℎ otherwise
Where 𝑆 is user specified constant, in this thesis 𝑆 = 15. 𝑁 ′ is the maximal number of

generated networks. This approach speeds the learning dramatically.

7.2 Pruning of added neurons
This modifications introduces a new variable 𝜖 – floating threshold for minimal convergence
between added neurons. The modification can be specified as follows: When the response
of network after learning of output layer is not better by the factor of 𝜖, remove the last
added neuron. This can be written as the following condition:

𝐼𝑓(𝜖 · 𝑙𝑎𝑠𝑡𝐸𝑟𝑟𝑜𝑟 < 𝑒𝑟𝑟𝑜𝑟) {remove last added neuron}

Variable 𝜖 should be set between (0, 1⟩. The smaller the variable is, the stricter the pruning.

43

Chapter 8

Experiments

This chapter describes typical benchmark problems and results of implemented algorithms
and their improvements. These algorithms are compared to each other and to backpropa-
gation.

As experiments, XOR, Parity of three and four inputs and Chess board 3x3 problems
had been chosen.

For each experiment precise parameters and configurations of algorithms are provided
for the possibility of future reproduction of experiments and corresponding results. For cel-
lular encoding, a table describing usage of operators, initialization and other configuration
is presented.

If not specified in the text of experiment, experiment was executed for a number (usually
30) of runs, then compared by resulting mean squared error and the median solution was
selected. This selection of result gives us an idea of the medium solution.

44

8.1 Xor
Xor is typical benchmark for neural networks. This benchmark was used to show validity of
algorithms and in case of cellular encoding, it was used to examine the influence of different
selection operators and activation functions on the speed of convergence.

Generation size: 500
Non-terminals: PAR, SEQ, INCLR, DECLR, INC, VAL-, INC, DEC, WAIT

Terminals: END
Fitness function: 6.0- sum of differences between output and desired output -

𝑠𝑖𝑧𝑒 · (𝑠𝑖𝑧𝑒+ 2)

Target fitness: Maximum
Terminal criterion: generation >50 or fitness >5.4

Initialization: ramped half-and-half(3)
Selection: Elite(15)

Activation function: Heaviside(0.0)
Mutation/Crossover: SubTreeMutation(1.0), HoistMutation(0.5), Crossover(1.0),

Permutation(0.5), NodeReplacementMutation(0.5)

Table 8.1: Table of genetic programming configuration for XOR

Table 8.1 represents configuration for cellular encoding. For this configuration, experi-
ments with different activation functions were run. Results can be seen in figure 8.1. These
results were obtained by selecting the best run from 20. In number, 80% of runs were
successful in the case of Heaviside activation function. Example of generated code can be
seen in appendix C. In the case of sigmoid function, the rate of success dropped to only
about 8%. Due to this fact, further experiments only present data for Heaviside activation.

Figure 8.1: XOR cellular encoding convergence

During this experiment, different selection operators for mutations and crossover were

45

compared from the point of convergence speed. Table 8.2 describes results of this compar-
ison of selection operators.

Selection operator Mean generation

Rank: 52
Roulette: 43

Tournament of size 5: 25
Tournament of size 9: 35

Tournament of size 15: 37

Table 8.2: Influence of selection operators on convergence

Cascade-Correlation and Cascade2 algorithms correctly classify all four patterns in just
one step with one hidden neuron with 100% success. Due to this fact, no table with results
is presented.

Figure 8.2: XOR backpropagation convergence

These results can be compared to backpropagation algorithm featured in figure 8.2. The
result of backpropagation was selected from 20 runs of this algorithm by selecting median
solution compared by mean squared error. In this example, backpropagation converges far
quicker in terms of time than cellular encoding even with minimal possible topology.

8.2 Parity of 3 values
This problem represents selecting, whether the number of inputs of value 1 is odd or even.

46

Generation size: 500
Non-terminals: VAL-, PAR, SEQ, WAIT

Terminals: BIAS-, BIAS0, BIAS+
Fitness function: 10.0- sum of differences between output and desired output

Target fitness: Maximum
Terminal criterion: generation >50 or fitness >9.0

Initialization: ramped half-and-half(3)
Selection: Elite(15)

Activation function: Heaviside(0.0)
Mutation/Crossover: SubTreeMutation(1.0), HoistMutation(0.5), Crossover(1.0),

Permutation(0.5), NodeReplacementMutation(0.5)

Table 8.3: Table of genetic programming configuration for Parity of 3 values

Table 8.3 describes configuration of cellular encoding and corresponding genetic pro-
gramming. For this configuration, 30 runs of cellular encoding was executed. From these
runs only 3 runs were successful which makes algorithm successful only in 10% of cases.
Again, the medial result is presented in figure 8.3. This figure shows, that initially, 3 pat-
terns are classified well, and in the future generations, the number of wrongly classified
patterns decreases one by one.

Figure 8.3: Parity of 3 inputs Cellular encoding convergence

47

Figure 8.4: Parity of 3 inputs Cascade-Correlation and Cascade 2 convergence

Figure 8.4 shows the graph of Cascade-Correlation and Cascade 2 algorithms conver-
gence. We can see that both algorithms are able to solve this problem Very quickly. In
this example, algorithms do not profit from proposed improvements. On the other hand,
backpropagation as can be seen in figure 8.5 needs hundreds to thousands steps to learn
this function. These results were obtained from 30 runs by selecting the median solution
compared by mean squared error. Nevertheless, the differences between solutions were
negligible.

Figure 8.5: Parity of 3 inputs backpropagation convergence

8.3 Parity of 4 values
This problem is similar to the previous one, but the number of inputs is 4. This section
provides results of Cascade-Correlation and Cascade 2. Results of Cellular-Encoding are
not provided due to the fact, that algorithm failed to solve this problem.

48

Figure 8.6: Parity of 4 inputs Cascade-Correlation and Cascade 2 convergence

In the figure 8.6, we can see the graph of Cascade-Correlation convergence. Classical
version of Cascade-Correlation converges in 9 learning steps, that means 8 neurons is added
to network. Proposed improvement random search of output weights decreases the
number of learning to 4 and three neurons. Both algorithms successfully resolved the
problem in all executed experiments.

Figure 8.7: Parity of 4 inputs Cascade-Correlation pruning, red crosses represent epochs,
where pruning was performed

Figure 8.7 describes the convergence of Cascade-Correlation pruning with 𝜖 = 0.98. Red
crosses represent epochs, where pruning was performed. We can see, that the number of
epochs increased to 15, while the number of neurons decreased to three.

49

Figure 8.8: Parity of 4 inputs Cascade2 algorithm

Figure 8.8 shows convergence of Cascade 2 algorithm. This algorithm was run with
input in range ⟨−1, 1⟩. With usage of proposed improvement random search of output
weights, the number of epochs decreases to 3 and the number of hidden neurons to 2.
When pruning was enabled, algorithm failed to converge in all of thirty executions.

8.4 Chess 3x3 Problem
This problem consists of classification of boxes on chessboard. For experiments, chessboard
of size 3x3 had been chosen. Experiments with different number of patterns were run. First,
experiments with 250 samples were executed.

Figure 8.9: Ches 3x3 backpropagation convergence for 250 samples

In figure 8.9 we can see convergence of backpropagation. This can be compared to
convergence of Cascade-correlation, that is depicted in figure 8.10. From this figure, we

50

can see, that random search of output weights resulted in lower error and quicker
convergence, while pruning made response worse.

Figure 8.10: Ches 3x3 Cascade-Correlaton convergence for 250 samples

Figure 8.11 depicts response of network. We can see over-fitting on the picture of
cascade-correlation, while backpropagation is more fuzzy.

Figure 8.11: 250 samples for Chess 3x3, response of backpropagation can be seen on the
left side, cellular encoding right, each axis describe one input of network, and color its class

51

Figure 8.12: Ches 3x3 Cascade-Correlaton convergence for 1000 samples

Figure 8.12 depicts convergence of Cascade-Correlation. The speed of convergence is
comparable to the speed of convergence for 250 samples. Random search of output
weights results in lower error, but the speed of convergence is slower in the first epochs.
Improvement of pruning fails to converge again.

Figure 8.13: 1000 samples for Chess 3x3, response of backpropagation can be seen on the
left side, cascade-correlation right, each axis describe one input of network, and color class,
network classifies corresponding input to

We can see, that response of backpropagation in figure 8.13 is blurred, while response
of cascade-correlation is sharper, but over-fitting is well seen.

52

Chapter 9

Evaluation

This chapter deals with evaluation of implemented algorithms one by one and in the end
of the chapter the possibilities of further work are proposed.

Algorithm Cascade-Correlation gives very good results in all introduced experiments.
This algorithm was able to resolve parity of 3 and 4 values and XOR very quickly with
minimal topology in all executed cases. On the chess 3x3 problem, the over-fitting of
network could be seen. This behavior was also observed by other authors [15].

Cascade 2 algorithm shows very promising results for XOR and parities. Even though,
for chess 3x3 problem algorithm does not converge. Given the fact that algorithm was never
published, it is not possible to compare this results to other works. This can indicate the
fact, that the algorithm works well for bipolar inputs, but further work is needed for decision
about correctness of this claim.

The first proposed improvement random search of output weights gives promising
results in the case of Chess 3x3 and parity of 4 values, but further experiment is needed
for verification of these results. This improvement decreases the number of epochs on both
Cascade-Correlation and Cascade 2, but on the other hand it increases the time spent
on learning.

The second proposed improvement pruning of added neurons decreases the num-
ber of neurons added by Cascade-Correlation, but makes the algorithm less stable. In
the case of Cascade 2, this improvement shows unpredictable behavior and I would not
recommend to use it.

Cellular-Encoding is a promising way for developing artificial neural networks, but
needs extra work. I was not able to obtain the same results as described in the original
thesis due to the fact, that genetic programming configuration was not precisely described
in the original dissertation. I see the necessity of setting wide number of configurations
for this algorithm as a big deficit. The algorithm is dependent on configuration of genetic
programming and selected instruction set. The convergence when using a wider – complete
instruction set is much slower and the rate of success in problem solving dramatically
decreases. Algorithm suffers next to these two deficiencies by the way it develops the
number of input and output units. This number is given by cellular code and can’t be
hardcoded. The algorithm works relatively well, when these parameters are well tuned, but
given the complexity of configuration, I would not recommend this algorithm as production-
ready.

53

Chapter 10

Conclusion

The goal of this work was the implementation of selected algorithms, exploration of possi-
ble improvements and evaluation of algorithms. This goal was achieved by implementing
algorithms in C++ language.

The theoretical part of this thesis describes the fundamentals of neural networks, math-
ematical models of neurons and networks. Further it presents basic algorithms for learn-
ing neural networks and explores algorithms for topology of neural networks development.
Algorithms are divided into three groups – pruning, constructive and neuroevolutionary.
Pruning algorithms start with a large network and remove neurons and connections to make
them smaller. On the other hand constructive algorithms start with small networks - usu-
ally without hidden neurons and add neurons and weights. Neuroevolutionary algorithms
develop neural networks by using evolutionary algorithm, for example genetic programming
or genetic algorithm.

The practical part deals with description of concrete algorithm implementation. One
of the selected algorithms, Cascade 2 was never published. These algorithms were imple-
mented as a part of the existing library NeuralNetworkLib. Besides these algorithms, a
new library for genetic programming was introduced.

The last part of the thesis describes performed experiments with these algorithms. It
compares these algorithms with each other and shows influence of proposed improvements.
These experiments show that one algorithm responds well to all performed experiments –
Cascade-Correlation. The algorithm Cascade 2 provides nice results on bipolar exper-
iments. The last selected algorithm – Cellular encoding works on only one experiment.
Possible reasons for this are described in the evaluation chapter.

Two proposed improvements random search of output weights and pruning of
added neurons decrease the number of used neurons, but on the other hand, the time for
training is increased.

Further possibility of extensions could be expansion of instruction set for Cellular en-
coding or solving its problem of hard-coded sizes of inputs and outputs. Another possible
extension lies in implementing more constructive algorithms and comparing them.

54

Bibliography

[1] Caianiello, E. R.; Orlandi, G.; Piazza, F.; et al.: Dynamic Pruning In Artificial
Neural Networks. 1991.

[2] Chiou, Y.; Lurecorrespondence, Y.: Hybrid Lung Nodule Detection (HLND) system.
In Cancer Letters. 1994. pp. 119–126. doi:doi:10.1016/0304-3835(94)90094-9.

[3] Fahlman, S. E.; Boyan, J. E.; Baker, D.: The cascade 2 learning architecture
(UNPUBLISHED). In Technical Report CMU-CS-TR-96-184. Carnegie Mellon
University. 1996.

[4] Fahlman, S. E.; Lebiere, C.: The cascade-correlation learning architecture. In
Advances in Neural Information Processing Systems 2. Morgan Kaufmann. 1990. pp.
524–532.

[5] Frean, M. R.: A ”Thermal“ Perceptron Learning Rule. Neural Computation. vol. 4,
no. 6. 1992: pp. 946–957.

[6] Golea, M.; Marchand, M.: A Growth Algorithm for Neural Network Decision Trees.
EUROPHYSICS LETTERS. vol. 12. 1990: pp. 205–210.

[7] Gruau, F.; lyon I, L. C. B.; Doctorat, O. A. D. D.; et al.: Neural Network Synthesis
Using Cellular Encoding And The Genetic Algorithm. 1994.

[8] Hecht-Nielsen, R.: Neural Networks for Perception (Vol. 2). chapter Theory of the
Backpropagation Neural Network. Orlando, FL, USA: Harcourt Brace & Co.. 1992.
ISBN 0-12-741252-2. pp. 65–93.

[9] Islam, M. M.; Sattar, M. A.; Amin, M. F.; et al.: A New Constructive Algorithm for
Architectural and Functional Adaptation of Artificial Neural Networks. 2009.

[10] Koza, J. R.: Genetic Programming: On the Programming of Computers by Means of
Natural Selection. Cambridge, MA, USA: MIT Press. 1992. ISBN 0-262-11170-5.

[11] Kárný, M.; Warwick, K.; Kùrková, V.: The Psychological Limits of Neural
Computation. In Dealing with Complexity. Perspectives in Neural Computing.
Springer London. 1998. ISBN 978-3-540-76160-0. pp. 252–263.
doi:10.1007/978-1-4471-1523-6_17.

[12] McCulloch, W.; Pitts, W.: A Logical Calculus of Ideas Immanent in Nervous
Activity. In Bulletin of Mathematical Biophysics. 1943. ISBN 0007-4985. pp. 115–133.
doi:doi:10.1007/BF02478259.

55

[13] Michel, O.; Herrmann, A.: Perceptron Learning Algorithm. 1999.
Retrieved from:
http://lcn.epfl.ch/tutorial/english/perceptron/html/learning.html

[14] Nissen, S.: Large Scale Reinforcement Learning using Q-SARSA(𝜆) and Cascading
Neural Networks. 2007.

[15] Ondráček, T.; učení technické v Brně. Fakulta informačních technologií, V.:
Adaptivní vícevrstvé neuronové sítě. Vědecké spisy: PhD Thesis. Vysoké učení
technické. 2006. ISBN 9788021431263.

[16] Piszcz, A.; Soule, T.: A Survey of Mutation Techniques in Genetic Programming. In
Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation.
GECCO ’06. New York, NY, USA: ACM. 2006. ISBN 1-59593-186-4. pp. 951–952.
doi:10.1145/1143997.1144165.

[17] Poli, R.; Langdon, W. B.: Genetic Programming with One-Point Crossover and Point
Mutation. In Soft Computing in Engineering Design and Manufacturing.
Springer-Verlag. 1997. pp. 180–189.

[18] Rosenblatt, F.: The Perceptron, a Perceiving and Recognizing Automaton Project
Para. Report: Cornell Aeronautical Laboratory. Cornell Aeronautical Laboratory.
1957.

[19] Stanley, K. O.; Miikkulainen, R.: Evolving Neural Networks through Augmenting
Topologies. Evolutionary Computation. vol. 10: page 2002.

[20] Subirats, J. L.; Franco, L.; Jerez, J. M.: C-Mantec: A novel constructive neural
network algorithm incorporating competition between neurons. Neural Networks.
vol. 26. 2012: pp. 130–140. doi:10.1016/j.neunet.2011.10.003.

[21] Svozil, D.; Kvasnička, V.; Pospíchal, J.: Introduction to multi-layer feed-forward
neural networks. Chemometrics and Intelligent Laboratory Systems. vol. 39, no. 1.
1997: pp. 43 – 62. ISSN 0169-7439.

[22] Walker, M.: Introduction to Genetic Programming. 2001.
Retrieved from:
https://www.cs.montana.edu/~bwall/cs580/introduction_to_gp.pdf

56

http://lcn.epfl.ch/tutorial/english/perceptron/html/learning.html
https://www.cs.montana.edu/~bwall/cs580/introduction_to_gp.pdf

Appendices

57

List of Appendices

A Contents of attached CD 59

B Manual 60
B.1 Installation . 60
B.2 Usage . 60

C Cellular code for XOR 61

58

Appendix A

Contents of attached CD

∙ thesis_print.pdf – pdf of thesis for printing

∙ thesis_hyper.pdf – pdf of thesis for viewing

∙ src/ – source codes for programs

– lib/ – folder with library NeuralNetworkLib
– README – file describing how to compile and run programs
– cascade2.cpp – Cascade 2 experiments
– cascadecor.cpp – Cascade Correlation experiments
– cellular_encoding.cpp – Cellular encoding experiments
– setup.sh – setup for configuration and building

∙ doc/ – source code for this paper

59

Appendix B

Manual

B.1 Installation
Program needs to be compiled, since it is written in language C++. The prerequisites for
compilation are:

∙ cmake version 3.2+

∙ g++ with c++14 support, tested on 5.2.1

∙ OpenGL

∙ GLUT Library

When software is installed, run script setup.sh. This script compiles all necessary
source codes and builds programs in folder build. If argument -f is provided, it downloads
all libraries that are attached again.

B.2 Usage
This work consists of 3 programs – cascade2, cascadecor, cellular_encoding. These
programs allow to run experiments. When argument -h is passed, they provide documen-
tation. If programs are run without argument, they execute experiment with XOR.

60

Appendix C

Cellular code for XOR

SEQ

END

Par Val-

Declr

END

Val-

Wait

END

Val-

IncB

IncB

Inclr

END

Wait

Inclr

Inclr

Declr

Inc

Inclr

END

Inc

Declr

Par

Dec

Declr

Wait

Inc

Wait

Inclr

Dec

SEQ

Figure C.1: XOR tree

61

	Introduction
	Content of thesis

	Artificial Neural Networks
	Artificial neuron
	Classification of neural networks
	Classification according to topology
	Classification according to number of layers

	Topologies and computation
	Perceptron
	Feed-forward network
	Recurrent neural network

	Algorithms for learning neural networks
	Perceptron learning algorithm
	Thermal perceptron learning rule
	Backpropagation

	Algorithms for topology development
	C-Mantec algorithm
	Marchand's algorithm
	New Constructive Algorithm
	Cascade-Correlation
	Cascade 2 Algorithm
	Percentage Average Synaptic Activity
	Neuroevolution
	Cellular Encoding
	NEAT

	Genetic Programming
	Population initialization
	Operators
	Mutations
	Crossover

	Implementation
	Requirements for implementation
	Neural network library
	Activation functions
	Basis functions
	Neuron
	Learning algorithms

	Evolutionary algorithms library
	Selection Operators
	Genetic programing
	Population initialization

	Cascade-Correlation
	Cascade 2
	Cellular Encoding
	Cells
	Instructions
	Cellular Encoding

	Proposal of improvement
	Random search of output weights
	Pruning of added neurons

	Experiments
	Xor
	Parity of 3 values
	Parity of 4 values
	Chess 3x3 Problem

	Evaluation
	Conclusion
	Bibliography
	Appendices
	List of Appendices

	Contents of attached CD
	Manual
	Installation
	Usage

	Cellular code for XOR

