
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INFORMATION SYSTEMS

ÚSTAV INFORMAČNÍCH SYSTÉMŮ

GENERIC DECENTRALIZED SELF-ADAPTIVE CONTEXT-

AWARE ARCHITECTURE MODEL
GENERIC DECENTRALIZED SELF-ADAPTIVE CONTEXT-AWARE ARCHITECTURE MODEL

EXTENDED ABSTRACT OF PHD THESIS

ROZŠÍŘENÝ ABSTRAKT DISERTAČNÍ PRÁCE

AUTHOR Ing. M. MOHANNED KAZZAZ

AUTOR PRÁCE

SUPERVISOR Doc. Ing. JAROSLAV ZENDULKA, CSc.

ŠKOLITEL

BRNO 2019

Abstract
The evolution in information system continuously raises demands for more efficient, effective
and adaptive cooperation between system’s components to cope with changes in the system
and to guarantee its best performance. Two main approaches have been introduced to
achieve these requirements. First, the self-adaptation approach which enables information
system to adapt to the changes in context information of the system and its surrounding
environment based on an adaptation strategy. Second, context-awareness approach which
enables to monitor the context information and recognize those changes that can trigger
the adaptation process.

In this work we introduce a generic context-aware self-adaptive architecture model to
support software system with adaptation functionalities that guarantee system’s availability,
operation conditions and performance. Moreover, we provide two real-life case studies as a
proof-of-concept of the applicability and re-usability of our proposed adaptation approach.

Abstrakt
Vývoj v informačním systému neustále zvyšuje nároky na účinnou, efektivní a adaptivní
spolupráci mezi komponenty systému, aby se vyrovnal se změnami v systému a zaručil tak
nejlepší výkon. K dosažení těchto požadavků byly zavedeny dva hlavní přístupy. Přístup
k adaptaci umožňuje informačnímu systému přizpůsobit se změnám v kontextu informací
systému a jeho okolního prostředí na základě adaptační strategie. Přístup ke zvyšování
informovanosti zase napomáhá sledovat informace o kontextu a rozpoznat změny, které
mohou proces adaptace vyvolat.

V této práci představujeme obecný kontextově orientovaný model vlastní adaptivní ar-
chitektury pro podporu softwarového systému s adaptačními funkcemi, které zaručují dos-
tupnost systému, provozní podmínky a výkon. Navíc poskytujeme dvě případové studie v
reálném životě jako důkaz konceptu použitelnosti našeho navrhovaného adaptačního přís-
tupu.

Keywords
Self-adaptation, software architecture, context model, decentralized control, context aware-
ness.

Klíčová slova
Adaptabilita, softwarová architektura, model kontextu, decentralizované řízení, sledování
kontextu.

Reference
KAZZAZ, M. MOHANNED. Generic decentralized self-adaptive context-aware architecture
model. Brno, 2019. EXTENDED ABSTRACT OF PHD THESIS. Brno University of
Technology, Faculty of Information Technology. Supervisor Doc. Ing. JAROSLAV ZEN-
DULKA, CSc.

Generic decentralized self-adaptive context-aware
architecture model

Declaration
I hereby declare that the thesis is my own work that has been created under the supervision
of doc. Ing. Jaroslava Zendulky CSc. It is based on the seven papers [11, 12, 13, 10, 14, 15,
16] that I have written jointly with my supervisor specialist RNDr. Marek Rychlý, Ph.D.
Where other sources of information have been used, they have been duly acknowledged.

. .
M. MOHANNED KAZZAZ

July 4, 2019

Acknowledgements
First, I would like to thank my parents and family for supporting me with their love and
prayers all my life. Thank you so much!

I would like to thank doc. Ing. Jaroslava Zendulka, CSs., for his invaluable advice,
support and guidance during his supervision of this work. Also, I would like to thank
RNDr. Marek Rychlý, Ph.D., who has been a great source of guidance, inspiration and
assistance during my doctoral studies.

Contents

1 Introduction 3
1.1 Motivation . 4
1.2 Thesis Objective . 4
1.3 Thesis Contribution . 5
1.4 Organization . 5

2 Self-Adaptive Context-Aware Architectures 7
2.1 Adaptive Systems . 7
2.2 Context-aware Systems . 8
2.3 Context-aware Adaptive Software Systems 9
2.4 Decentralized Self-Adaptive System . 10
2.5 Discussion . 10
2.6 Thesis Approach . 11

3 Context-aware Self-Adaptive Meta-Model 12
3.1 System Core Ontology . 12
3.2 Ontology-based Context Model . 13

4 The Decision-Making Process 15

5 Web Service Migration-based Adaptive Service Oriented Architecture
Model 18
5.1 Service Migration . 18
5.2 Web Service Migration Ontology . 18
5.3 Mobile Web Service Migration Framework Architecture 20

5.3.1 Discovery Module . 20
5.3.2 System Context Manager Module 20
5.3.3 Migration Module . 21

6 Service Migration Framework Architecture 22

7 Case Studies 24
7.1 Case Study 1 - Traffic Jam Detection Service Migration 24

7.1.1 Results . 24
7.2 Case Study 2 - Tourist Video Streaming Mobile Service Migration 25

7.2.1 Results . 25
7.3 Conclusion . 25

8 Conclusion 27

1

Bibliography 29
List of Appendices . 31

A Abbreviations 32

B Curriculum Vitae 33

2

Chapter 1

Introduction

The ever-developing nature of the distributed system arises demanding requirements of the
design process for an automatic and robust management means. To satisfy these require-
ments, Self-adaptation has been proposed to support software systems with the mechanism
to modify their behaviour and maintain their goals flexibly and robustly through an auto-
matic reaction to information context changes of 1) actor’s requirements, 2) surrounding
environment, 3) and, the system itself [19, 5]. The reaction is a result of specific monitoring
strategy the system should follow. Four functionalities have been defined in [22] as required
functionalities in Self-adaptive system, the system must: 1) monitor context information of
system and environment, 2) detect changes, 3) decide the adaptation plan to perform and
4) act by executing the chosen adaptation plan. On the other hand, Context Awareness
approach has been proposed to solve the problem of information misunderstanding between
system distributed components over different domains. It addresses the need to provide a
unified model of information context which helps the realization of system adaptation by
supporting system information context understanding, monitoring and discovery of context
changes in the operational environment.

The self-adaptive context-aware framework for stationary and mobile devices presented
in this thesis is a framework for enabling self-adaptation and context-awareness in infor-
mation system. It utilizes ontology-based model to describe system components including
their properties and preferences. Using an ontology-based model enables the adoption of
context awareness approach concepts of context modelling, monitoring and context rea-
soning. Moreover, the framework supports the utilization of a decision-making process to
choose the best adaptation scenario based on defined set of criteria. To present the ap-
plication of the decentralized context-aware adaptive architecture model proposed in this
research, we provided two case-studies with a detailed description of system configuration
and framework’s analysis and evaluation.

The introduced adaptive architecture model provides an answer to the question of how
to support information systems with a dynamic response to changes in their surrounding
environment. In other words, how to design a formal architectural model that supports
information system reconfiguration during runtime based on the changes in system compo-
nents and the current state of system environment. Moreover, the contribution of this thesis
leverages the adoption of system adaptation in service-oriented mobile architectures. Also,
it provides researchers with an adaptive architecture model supported with a multi-criteria
decision-making process, which facilitates and easies the design and implementation of new
adaptation scenarios through the utilization of the provided adaptive architecture model
and implemented framework.

3

In the next section we present the motivation scenario behind this work and our proposed
approach to support adaptation in software system and to solve the limitations of current
approaches.

1.1 Motivation
Inspired by [29, 23], let us consider a traffic jam detection system as a real-life scenario of
utilizing adaptation in car navigation system. The motivation behind utilizing the adap-
tation is to solve service’s loss situation and to help drivers to avoid traffic bottlenecks on
roadways.

To design such a system, it is required to enable traffic information exchanging between
cars. For that, traffic information should be formally modelled and correctly understood by
the navigation system application on each car. On the other hand, the navigation system
requires to be context-aware by continuously monitoring and analysing traffic status to
detect traffic jam situations that trigger a process of re-planning the route. Moreover, a
process of deriving of alternative routes and recommending the best one should be provided.
These requirements can be satisfied by defining a unified taxonomy of context terms to
describe the system and its components. Context information like car speed, position,
traffic status, route details, number of surrounding cars, etc., are pieces of information that
should be realized and exchanged between cars during run-time. This information should be
noted formally as car context model and published to be discovered by other cars. The usage
of car context model facilitates the integration of context-awareness approach by enabling
context changes monitoring and discovery. Moreover, it supports the utilization of self-
adaptation to traffic information changes (i.e., traffic jam status), by defining adaptation
conditions and the utilization of a proper decision-making process used to choose the best
adaptation decision.

The importance of our research resides in the following points:

• The introduced context model of system components allows to provide a formal and
common understanding of system context information between different application
domains.

• The abstract core self-adaptive architecture model can be extended and customized
to adopt new adaptation scenarios.

• The proposed framework facilitates system adaptation and service provision in mobile
architectures.

• The proposed framework supports the integration of self-adaptation on existing in-
formation systems regardless their technical implementations which minimizes the
upgrade effort to enable self-adaptation in those systems.

1.2 Thesis Objective
The general goal of this research is to design a decentralized self-adaptive architecture.
In this architecture, we want to provide the possibility of implementing self-adaptation
not only on the user side (i.e., end user interface) but also on the system itself in the
way that allows the system to adapt regarding context’s changes (i.e., light, temperature,
communication bandwidth, battery status) through a decentralized adaptation which can

4

minimize the adaptation costs, guarantee the quality of provided services and improve
system performance.

The specific objectives supporting the general objective can be summarized as follows:

O1 To provide a formal system context model which enables the understanding of context
and context’s changes meanings and promotes context awareness in the system.

O2 To provide a context-aware self-adaptive architecture model that adapts to the con-
text’s changes of system components and its surrounding environment.

O3 To provide a framework that supports adaptation in the system. The framework
allows different types of devices to cooperate in centralized controlled orchestrations
to solve a problem of context’s loss or uncertainty by including new services that do
not affect with the changes causing the problem.

O4 To analyse the efficiency of implementing the decentralized adaptation on system side
on appropriate case studies.

1.3 Thesis Contribution
According to the proposed objectives, the following contributions are provided:

1. A system ontology to support the usage of common understanding of context infor-
mation between different domains. A detailed description of the proposed ontology is
provided in Section 3.1 and Section 5.2.

2. A formal ontology-based context model that allows to describe system component
context model and provides a method to ease the discovery process of new context
providers in the system. See Section 3.2 for more details.

3. A framework for distributed context-aware self-adaptive system (presented in Sec-
tion 5.3), is provided to support an automatic system adaptation to context’s changes
of the system and environment. The adaptation guarantees the operation conditions
to keep a desired Quality of Service (QoS) performance level. Moreover, the dis-
tributed mechanism will improve system performance by distributing system tasks
of adaptation and context processing over several controllers which helps to avoid
system overloads that could happen when utilizing the centralized approach.

4. An extensible adaptation architecture model (see Chapter 3) that can be easily cus-
tomized by researchers over new case studies. The extensibility of the model eases and
stimulates conducting research work on both self-adaptation and context-awareness.

5. A decision-making process to support choosing the best adaptation scenario from a
set of alternative adaptations based on set of prioritized criteria. See Chapter 4 For
more details.

1.4 Organization
The rest of the thesis extended abstract is divided into five chapters as follows:

5

In Chapter 2, we review the existing literature implementing the self-adaptive and con-
text awareness approaches. Later, we demonstrate a motivation example using a real-life
scenario problem and our proposed approach to solve it.

In Chapter 3, we introduce our proposed context-aware self-adaptive SOA meta-model.
We present the ontology-based component context model proposed to describe system com-
ponents. In Chapter 4, we demonstrate the algorithms developed to support adaptation
decision making process in the system.

In Chapter 5, we provide an adaptive SOA based model by applying the meta-model
proposed in Chapter 3.

In Chapter 6. we present our framework implemented to support Web service migration
in SOA.

In Chapter 7. we provide two case studies to present the application and efficiency of our
service migration approach to solve this thesis motivation example provided in Chapter 2.

In Chapter 8, we summaries the thesis approach and highlight its contributions.

6

Chapter 2

Self-Adaptive Context-Aware
Architectures

In this chapter, we review the existing literature implementing the self-adaptive and context
awareness approaches in information systems. Later, we introduce an evaluation of the
existing researches and we present our proposed approach to solve the limitations found in
these researches.

2.1 Adaptive Systems
There have been many researches to introduce a formal or semi-formal architecture model
of adaptive systems that can adapt its behaviour or architecture in response to changes in
its environmental context [27, 26, 6].

Self-adaptation was first introduced by IBM through the ”Autonomic Computing“ ap-
proach [17] describing self-managing system using a central controller. The following func-
tionalities have been introduced to define self-managing software system.

• Self-configuration which presents a system’s ability to configure itself automatically
according to high level policies of its objectives.

• Self-optimization which is achieved by a system through continuously seeking to im-
prove and upgrade itself and its functionality by applying the latest versions of its
components.

• Self-healing of adaptive system which is the ability to detect, diagnose and repair its
components automatically.

• Self-protection which is the ability of continually predicting and defending system
failures or attacks.

Jade [3], an agent development framework that facilitates the development and manage-
ment of agent-based self-adaptive applications. It provides the tool to define agent platform,
containers and agents and their tasks. Agent tasks can be extended by defining new be-
haviour class together with a behaviour ontology describing the term of this behaviour
and then assigning the new behaviour class to the agent object. Jade framework supports
the utilization of different ontologies to support different application domains. Using the
ontology guarantees the correct understanding of messages between agents. Moreover, the

7

framework facilitates the integration of Web service through supporting a bidirectional
interconnectivity between agents and Web services. Web services can be registered/dereg-
istered in the Universal Description, Discovery, and Integration (UDDI) registry to be
discovered and invoked by Jade agents. Jade supports the mobility of its mobile agents be-
tween different containers of the same platform. However, moving a mobile agent between
Jade containers is only supported by a manual process requiring the definition of platform
hops for an agent to visit till it reaches the destination.

Da Silva et al. [26], proposed a generic framework for the automatic generation of
processes for self-adaptive software systems so that it can be applied to different applica-
tion domains. The framework uses workflows, model-based and artificial intelligence (AI)
planning techniques to design adaptation plans. They used a standardized AI planning
language, the Planning Domain Definition Language (PDDL) [7], to define a system model
that is composite of 1) a domain representation stating system’s actions (or available tasks
that can be used to formulate the adaptation plans), and 2) a problem representation that
defines the system initial state and the desired goal. However, the proposed representation
does not define relationships between system components and/or system properties. More-
over, the defined system context representation is limited to a static set of terms defined
during design time. Which does not answer the question of how to support the automatic
usage of newly available resources and tasks in the system during runtime.

FUSION framework for self-adaptive systems is based on self-tuning approach [6]. It
uses a technique of analysing system features to define a system model that copes dynam-
ically with the unanticipated system conditions. Feature relationships are used to improve
the adaptation planning during runtime. The feature model of the system consists of one
core and other features. These features are related by two kinds of relationships: 1) depen-
dency which defines the prerequisites of this feature, and 2) mutual exclusion that helps to
enable only one feature from the group of similar features. System context is presented as
a metric which is a measured value of system properties. Moreover, utility refers to a user’s
context or his/her preference about a specific metric. They presented an analytical method
to derive the behavioural model of the system by enabling or disabling system features
depending on metrics and utilities.

We see from these studies that system adaptation can be provided through modelling
both system’s behaviour and architecture explicitly. A formal model representing context
information must be defined to facilitate a shared understanding of system context infor-
mation and their possible changes to be discovered and uniformly understood between all
system components.

2.2 Context-aware Systems
Context-aware computing was introduced for the first time by [24] as the ability of a mo-
bile user’s application, which is constantly monitoring information about the surrounding
environment, to discover and react to changes in this environment.

Context-awareness modelling is presented by two mechanisms, context binding and
context triggering. The first one concerns with mapping between the input of service
operator and context sources automatically. The second one represents the contextual
adaptation of the services according to defined context constraints and a set of actions. The
context binding mechanisms enable more possibilities for automatic execution of service.

Dey et al. [1] considered a system is context-aware if it uses context to provide relevant
information and/or services to the user, where relevancy depends on the user’s task.

8

CONON [28] is an OWL-based ontology which provides a formal context model and
implements a Description Logic (DL) reasoning. A reasoning rules were used to reason over
a low-level (explicit) context to derive a high-level (implicit) context based on the proposed
ontology and by means of DL and Resource Description Framework (RDF) reasoners.

In [18], the authors use the Web Ontology Language (OWL) ontology and the Semantic
Web Rule Language (SWRL) rules to model context in a context-aware system using Rule-
Based Inference engine.

An OWL-based device ontology was provided by Bandara et al. [2] to describe devices
and their hardware and software components. However, the proposed ontology lacks for full
service descriptions as it only provides an initial representation for device’s services using
a relationship called hasService without providing a description of the service’s attributes.
On the other hand, in [4], an ontology has been used to provide a service’s description and
preferences and to allow match-making techniques on these descriptions.

2.3 Context-aware Adaptive Software Systems
As the context-awareness contribution is proposed to model, process, and manage context
information, self-adaptation approach focuses on the ability of a system to adapt its struc-
ture, goals, mechanisms regarding changes in the operating environments. A novel approach
was proposed by [8] to apply self-adaptive and context awareness together in software sys-
tems. In this survey, the requirements of integrating of these two approaches together have
been identified as follow:

1. The context modelling requirements need to be considered from the system-context
relationship perspective.

2. Self-adaptivity needs to have a system that can cope with the context/requirements
changes (both anticipated and unanticipated), and then the system needs to be de-
signed with adaptation in mind.

3. The requirements for the mechanism that integrates the context-awareness and self-
adaptivity needs to be considered.

An abstract architecture has been proposed in a later work [9] and it consists of three layers:

1. The functional system and its context layer comprise of 1) the functional system
element which presents system functionality through the running components and
inactive ones. 2) the context element that manipulates the system operation and/or
adaptation 3) theinterfaces with the management layer which role is divided to find
out the changes in the system or in its context and to apply the decided adaptation
plans of the management layers on system functionalities.

2. The system and its context representation layer provide up-to-date context model of
the environmental context and a system model of its running state. Moreover, it
provides the implementation of the operation for applying the actions of the change
management layer.

3. The change management layer checks any possible system consistency violation, de-
rives the high-level context information and decides the suitable adaptation plans
regarding to the context and/or requirements changes.

9

In this approach, system operation will adapt for both changes of system model andcontext
model, which could cause extra processing needs especially for modelling and deriving con-
text information and applying adaptation actions on the system.

2.4 Decentralized Self-Adaptive System
Self-adaptation approaches mainly presented adaptation as centralized or hierarchically
controlled systems. A new contribution [29] addressed self-adaptation in decentralized
managed software architecture. They divided the computational requirements for decen-
tralized controlled system into four groups: 1) coordinated monitoring through sharing
locally collected data of the partial system and its synchronization globally in the system,
as the monitoring process is managed locally and each partial system has only access to
his own knowledge; 2) coordinated analysis to provide a full analysis of each subsystems
data to provide full knowledge analysis of system data; 3) coordinated planning between
different planning units which could have different private goals that need to be reformed
in one adaptation plan avoiding any possible confliction; 4) coordinated execution needed
to synchronize and to manage execution plans of each partial system.

Self-healing subsystem is provided to recover camera failures using a self-healing man-
ager component which analyses the monitored data about the status of the cameras. This
manager executes a recovery strategy to ensure the consistency of the main system when a
camera failure or loss is detected.

This approach presented a framework approach of decentralized self-adaptive subsys-
tems which can avoid the bottleneck in processing of monitored data of participated devices
or recovering process in each subsystem. However, the authors did not address the possi-
bility of using other types of devices that can be participated in the proposed organization,
which could provide more possible adaptation plans and requires modelling of the acquired
data of different devices.

2.5 Discussion
In this section we identify the drawbacks of approaches demonstrated in the previous sec-
tions that should be addressed to support self-adaptation in software system. These limi-
tations are listed as follows:

L1 Limitation in system extensibility, as in [26, 29] that provides an adaptive design pat-
tern with a pre-defined set of tasks that can be considered in the design of adaptation
plan.

L2 Limitation in context information modelling, as in [27, 26, 25] addressed the adap-
tation but with a limited context model representation. However, context modelling
must be guaranteed to allow common understating of context information between
several domains and to support system extensibility. Moreover, context modelling is
essential to implement context-awareness and adaptation processes in the system.

L3 Limitation in adaptation strategies, as in [25] that requires a pre-defined adapta-
tion strategy and limits the proposed approach for limited context-aware adaptation
scenarios.

10

L4 Limitation in decision making during adaptation process, as in [27, 26, 29, 6] due to
the limitation in the system context model representation or due to the consideration
of a goal-oriented approach during system design. The decision-making process should
be extensible to adopt new terms of system context model that can be used in making
decision to support adaptation process.

2.6 Thesis Approach
Based on our evaluation of current approaches, we see that a context-aware self-adaptive
SOA model is required to overcome the existing limitations of current approaches. It is
required to provide a generic adaptation model that can promote service reusability and
system extensibility in software system through the implementation the SOA principles
during the design of system architecture. Moreover, it is required to provide a formal
context representation of system components to support context awareness and monitoring
of context changes in the system. Finally, we it is required to provide a dynamic decision-
making process to support the utilisation of different adaptation strategies and to select
the best adaptation plan based on metrics defined in the system context model.

To achieve context modelling, we choose to use the ontology-based approach for context-
modelling not only because it describes a system semantically with a proper definition of
the relationships between its components, but also regarding to its capability to reason with
the Semantic Web. For example, Ontology Based Language (OWL) uses DL reasoner to
derive new contextual information about system component which will be used in making
the adaptation decision.

By the usage of a decentralized controlled adaptive units, we intend to speed up the
adaptation process in the system so that the monitoring and executing adaptation efforts
will be distributed over different controllers.

To avoid possible device-type-specific failures regarding some special environmental
circumstances, different types of devices (for example, mobile phone, stationary devices)
should be considered to participate in the adaptation process. Which also can allow service
provisioning on mobile devices and extend the utilization of self-adaptation approach in
mobile architectures.

11

Chapter 3

Context-aware Self-Adaptive
Meta-Model

In this chapter, we introduce our meta-model proposed to describe SOA-based system and
enable the utilization of context-awareness and self-adaptation. The meta-model is pre-
sented in our ontology-based component model schema. The proposed component model
allows to describe system components including their properties and preferences. It allows
system architects to describe general system operational conditions that should be guaran-
teed during the run-time. Moreover, it supports the definition of system adaptive behaviour
to context changes through a planned self-adaptation strategy.

3.1 System Core Ontology
The core ontology is a set of terms of architecture components and relationships between
them. It basically describes SOA-based system as a set of Services and Service Providers.
Shown in Figure 3.1, the core ontology is presented using Protégé1, and it consists of the
following classes. The Service class, defining Service components in SOA, has a relationship
with the ServiceProvider class called providedBy. A ServiceProvider, is identified by host-
name and protocol properties. The relationship between ServiceProvider and its Service is
called provides.

An object property hasProperty is defined in the ontology to describe properties of
system components. A component’s property object is defined as an instance of ontology
class Property.

TheProperty class has the following attributes

• propertyName: is the name of the Property.

• propertyType: is the data type of the Property.

• propertyValue: is the value of the Property.

• criteria: it states the CriteriaProperty that affects the Property instance during the
decision-making process.

The CriteriaProperty has the following attributes:
1 www.protege.stanford.edu/

12

• name: is the name of criterion that governs the property of system component.

• owner: it has a value of “origin”, “destination”, and “service”, and limits possible
owners of the properties which are referring to a particular criterion (for example,
a criterion with the owner value set to “service” can be referred only from service
context models’ properties, i.e., it can be applied only on services, not on service
providers).

• valueWithHighestWeight: indicates which values of properties referring a particular
criterion are considered to be the most important during the decision-making process.

• valueWithLowestWeight: indicates which values of properties referring a particular
criterion are considered to be the least important during the decision-making process.

• criteriaPriority: indicates a general importance of a particular criterion by integer
values between 1 and 10. The criteriaPriority property of a criterion determines the
priority of a preference rule affected by the criterion.

Property CriteriaProperty

String

String

propertyType

propertyValue

String String

String String

owner name

intCriteriaPriority

valueWithHighestWeightvalueWithLowestWeight

ServiceProvider ProvidedService Servicesubclass

String

String

hostname

protocol

provides

providedBy

Figure 3.1: System Core Ontology. The ontology proposed to describe SOA component.

3.2 Ontology-based Context Model
In this section we demonstrate our context model defined based on the core ontology intro-
duced in the previous section. Using the semantic terms proposed in the core ontology, the

13

context model defines SOA components and provides a semantic description of the joined
service providers and hosted Web services stating their specifications and properties. The
context model describes the preferences and conditions that control system’s components
through semantic-based rules. The full system context model is created by aggregating sys-
tem components models. A higher-level context is inferred from the final composed system
context model through a reasoning process so that new context information can be used in
making the adaptation decisions.

The importance of utilizing a dynamically generated model of SOA service providers
becomes highly demanding in order to identify and perform the proper reactions to changes
in service providers resources. On the other hand, the fixed pre-defined service model can
be enriched to contain relevant information about system preferred resources that possibly
affect service performance.

A Service model holds the context information designed to be used in planning of the
adaptation process provided in the system. Similarily, aServiceProvider model contains
context information stating its properties, work preferences and conditions that specify the
possible hosted services.

{ ”name“:”defines the name of system component“,

”type“:”contains the type of system component. i.e., “Service”
or “ServiceProvider“,

”noPreferenceRules“:” “true” if there is rules element in the
model, “false” if there is not“,

”properties“: {”propertyName“:”states the name of the
property“,

”propertyValue“:”states the value of the property“,

”propertyType“:”states the data type of the property, for exam-
ple, “INT”“,

”criteria“:”ServicePriorityCriterion“},

”rules“:”[RDFS rule: ...]“
}

Figure 3.2: A simplified schema of the system component.

In Figure 3.2, we present this proposed component context model which has consists of
the following elements:

• name: is a JSON element stating the name of a Service to be identified in the system.

• type: is a JSON elements stating the type of related service.

• properties: is an array of JSON Objects, describing component’s object properties.

• rules contain sub rule tags of string expression. Each rule represents one RDFS-
based rule describing component’s operation preference possibly related to its defined
properties.

• noPreferenceRules: is a data property with a value of ‘false’ if the service has prefer-
ences and ‘true’ if it has not.

14

Chapter 4

The Decision-Making Process

The process of enabling software system to make an adaptation must contain a sub-process
of making a decision. Such a mechanism is needed to make the decision that satisfies
system’s and components’ rules and requirements. Usually there will be a set of possible
decisions to choose from and several factors affecting the decision-making process. These
factors must be considered in order to make more reliable and optimal decisions. To support
the decision making process, the Analytic Hierarchy Process (AHP, [21]) method is utilized
so that the best decision will be selected from a set of all possible adaptation decisions
previously found by ontology reasoning on the context model.

The AHP starts with creating comparison criteria matrix A, which is an m×m matrix
of real numbers where m is the number of considered criteria. In the matrix, aij is the
importance of the ith criterion over the jth one (diagonal entries aii are set to 1). If the
ith criterion has the same importance as the jth one, aij entry is set to 1, otherwise values
of aij entry range over 3, 5, 7, or 9, which indicate that the ith criterion is slightly more
important, more important, strongly more important, or absolutely more important, than
the jth criterion, respectively.

Usually, in existing applications of the AHP method, entries of the matrix above are set
directly through a user’s judgment. In our case, we can automate this process by utilization
of decision making criteria (and the related properties and preference rules published by
services and service providers) to compute individual aij entries of the matrix. We use
the InitializeCriteriaMatrix algorithm (see Figure 4.1) to calculate the aij entries in the
upper-right triangular part of matrix A by comparing criteria priorities and in the lower-left
triangular part of matrix A as reciprocal values of the symmetric entries in the upper-right
triangular part. The algorithm guarantees the consistency of judgments between the criteria
and satisfies a consistency ratio condition of comparison matrix A to be less than 10% as
required for AHP.

After initializing A matrix, AHP computes matrix Ā by normalizing A entries to make
the sum of each column entries equals to 1 through equation

āij =
aij∑m

k=1 akj
(4.1)

Then, AHP computes weight vector w of criteria by computing the average value of
each row of normalized matrix Ā through equation

wi =

∑m
k=1 āik
m

(4.2)

15

Require: 〈p1, p2, . . . , pm〉 as values of CriteriaPriority of criteria 〈c1, c2, . . . , cm〉
Ensure: A is a pair-wise criteria comparison matrix for given criteria 〈c1, c2, . . . , cm〉

1: for i← 1 to m do
2: aii ← 1
3: for j ← i+1 to m do
4: difference ← |pi − pj |
5: if difference ≥ 8 then
6: judgment ← 9
7: else
8: judgment ← 2bdifference2 c+ 1
9: end if

10: if pi > pj then
11: aij ← judgment
12: else
13: aij ← judgment−1

14: end if
15: aji ← a−1

ij

16: end for
17: end for
18: return A

Figure 4.1: The InitializeCriteriaMatrix algorithm to compute a pair-wise criteria compar-
ison matrix for AHP based on CriteriaPriorities of individual criteria.

Finally, the InitializeDecisionMatrices algorithm (see Figure 4.2) is executed for each
considered criterion ck, where k = 1, . . . ,m, of criteria set C = {c1, c2, . . . , cm}. The
multiple executions of the InitializeDecisionMatrices algorithm are used to create n × m
matrix V = [V (1), V (2), . . . , V (m)], where n is the number of possible adaption decisions
found before. In the matrix V , each V (k) is a transpose of the weight vector of matrix S(k)

obtained by an individual execution of the InitializeDecisionMatrices algorithm.
By applying the InitializeDecisionMatrices algorithm for all m considered criteria we

get m weight vectors of possible decisions, where each vector is related to one criterion.
Finally, AHP computes the composite weight vector p of all possible n decisions through
equation

p = V · w (4.3)

where V is the n×m matrix obtained by multiple executions of the InitializeDecisionMa-
trices algorithm as described before (one execution for each each criterion) and w is the
weight vector of criteria from Equation 4.2.

The decision with the highest composite weight entry of the vector p is considered to
be the best decision and it is selected to be executed.

16

Require: criterion k and its attributes valueWithHighestWeight(k) and valueWithLowest-
Weight(k); 〈p1, p2, . . . , pn〉 as values of services or service providers properties that con-
sider k as their criterion

Ensure: n× n matrix S(k) as a decision comparison matrix based on criterion k
1: for i← 1 to n do
2: sii ← 1
3: for j ← i + 1 to n do
4: range ← valueWithHighestWeight (k) − valueWithLowestWeight (k)

5: diffValue ← pi − pj
6: fifthOfDiff ← range/5
7: if diffValue > 4 ∗ fifthOfDiff then
8: sij ← 9
9: else if diffValue ≤ 4 ∗ fifthOfDiff ∧ diffValue > 3 ∗ fifthOfDiff then

10: sij ← 7
11: else if diffValue ≤ 3 ∗ fifthOfDiff ∧ diffValue > 2 ∗ fifthOfDiff then
12: sij ← 5
13: else if diffValue ≤ 2 ∗ fifthOfDiff ∧ diffValue > fifthOfDiff then
14: sij ← 3
15: else if diffValue ≤ fifthOfDiff then sij ← 1
16: end if
17: if range ∗ diffValue < 0 then
18: sij ← s−1

ij

19: else if range ∗ diffValue = 0 then
20: sij ← 1
21: end if
22: sji ← s−1

ij

23: end for
24: end for
25: return S

Figure 4.2: The InitializeDecisionMatrices algorithm to compute an adaptation decision
comparison matrix based on a given criterion.

17

Chapter 5

Web Service Migration-based
Adaptive Service Oriented
Architecture Model

The migration of a particular service should be considered if its provider is not able to
guarantee the functionality or quality of the service and there is no alternative service or
service composition that will match a semantic and qualitative description of the original
service, i.e., that can provide the same functionality and required quality. In the next section
we provide a supplementary study demonstrating specific research work on supporting
information system with migration adaptation.

5.1 Service Migration
The service migration itself can start when a particular service is selected to be migrated to
a particular destination service provider by a migration controller located in the migration
framework hosted on each service provider. An orchestration controller can perform service
migration by getting a deployment package of the service and deploying it to the destination.
During this process, the migrating service is stopped, and its internal state is stored and
sent to the destination provider. All further incoming calls of the service are postponed until
the migration is completed, i.e., until the migrated service is initiated in the new location,
its internal state is restored, and until the service is able to handle incoming messages.

5.2 Web Service Migration Ontology
To enable service migration with the proposed adaptive approach, we need to accommodate
Service and ServiceProvider types and their properties. For that, we extend the system
core ontology presented in Section 3.1 by defining sub-classes of Service, ServiceProvider
and Property to enable the description of service migration case study.

Demonstrated in Figure 5.1, the new sub-classes are listed as follows:

• ProvidedService: is a subtype Service provided by a ServiceProvider of Service.

• MigratableService: a subtype of ProvidedService class which possible to be migrated
from one ServiceProvider to another one.

18

• FrameworkService: a subtype of ProvidedService class, it is an auxiliary service
concerned with managing the migration process.

• CandidateForMigrationService: a subtype of ProvidedService class, which rep-
resents the service found with violated preference and/or causing violations of its
current service provider preferences, so, it is recommended to be migrated to other
service providers by classifying it by this subtype.

Property CriteriaProperty

ServiceProvider

ProvidedService Service
subclass

pr
ov
id
es

pr
ov
id
ed
By

PermanentStorageSizeFreeMemory BatteryLifeTimeServicePriority

crieteria

subclass subclass subclasssubclass

FrameworkService

MigratableService

CandidateDestination
ServiceProvider

CandidateOrigin
ServiceProvider

subclasssubclass

subclass

subclass

CandidateForMigration
Service

possibleProvidedService

possibleDestinationProvider

subclass

Figure 5.1: Service Migration Ontology. The ontology of web service migration system.

• CandidateOriginServiceProvider : is a service provider having the required aux-
iliary FrameworkService-s to send its migratable services to another service provider.
A CandidateForMigrationService must be hosted on service provider of CandidateO-
riginServiceProvider to be able to migrate successfully.

• CandidateDestinationServiceProvider : is a service provider that can be a des-
tination for one or more services of the type CandidateForMigrationService.

Additionally, we defined two object properties to express the relationships between the
MigratableService and ServiceProvider.

19

• possibleDestinationProvider : is the object property defining the relationship be-
tween the MigratableService and CandidateDestinationServiceProvider classes as the
domain and range respectively.

• possibleProvidedService: is the object property defining the relationship between
the CandidateDestinationServiceProvider and MigratableService classes as the domain
and range respectively.

5.3 Mobile Web Service Migration Framework Architecture
In this section we demonstrate the framework architecture for service migration presented
in Section 5.1. The framework’s Controller running on service provider will lead both the
context-awareness and adaptation processes. On the first hand, context-awareness process
is presented in the system through the following functionalities:

• discovering the connected service providers in the network.

• checking the destination service provider availability.

• monitoring the quality of service after migration and deciding if another migration is
required.

On the other hand, system adaptation is presented through the ability of the framework
controller on a service provider to migrate a service to a new service provider and assure
the availability of the migrated service.
The architecture of proposed framework consists of three modules shown in Figure 5.2.

5.3.1 Discovery Module

The Discovery Module is responsible for a service provider discovery process and retrieves
a list of connected service providers in the network. Moreover, it is responsible for the
discovery of FrameworkService-s and MigratableService-s (see Section 5.2) hosted on each
discovered service provider so that their models can be requested in order to be considered
in the Context Manager Module’s reasoning process.

5.3.2 System Context Manager Module

This module is responsible for generating, monitoring and reasoning system context period-
ically to enable system context awareness. The module creates system core context model
and all partial context models of discovered service providers and MigratableService model
intended for migration. Then, the Controller looks for a destination service provider that
can host MigratableService where the pre-defined rules of both MigratableService and the
destination service provider can be satisfied.

Through reasoning the system context model process, new context information of pos-
sibleDestinationProvider for MigratableService are generated in the mdodel together with
other information of MigratableService as a possibleProvidedService.
The output of this module is a list of triple entries stating the MigratableService, the source
service provider, and the possible destination service provider. This list of entries is the
input of the decision-making process performed by the Migration Module.

20

Figure 5.2: Mobile Web service migration architecture.

5.3.3 Migration Module

This unit is responsible for selecting the best migration to perform from the input set of
possible migrations. It utilizes the algorithms proposed in Chapter 4 to initiate the required
matrices used by the multi-criteria decision-making method AHP to choose the migration
with the highest priority calculated based on priority values of the defined criteria.

21

Chapter 6

Service Migration Framework
Architecture

To support the Web service migration process, we designed a generic framework. The
framework describes an overall service-oriented architecture supporting the service migra-
tion and defines interfaces which can be implemented to adapt the framework to a particular
Web service implementation technology. It also provides extension points for user-defined
migration decision strategies, i.e., the strategies deciding when the migration of a particular
service is needed and how it will be performed. To utilise the framework, demonstrated in
Figure 6.1, an implementation of interface MigrationDecisionStrategy and auxiliary classes
with interfaces ProviderStatus, ServiceStatus, and ServiceSemanticDescription, represent-
ing state and semantic information, is provided.

22

+ getStatus() : ServiceStatus
+ getSem ant icDescript ion() : Sem ant icServiceDescript ion
+ getDeploym entPackage() : ServiceDeploym entPackage
+ m igrateToTarget (targetService : MigratableService) : void
-get InternalStatus() : ServiceInternalState
init iateInternalStatus(status : ServiceInternalState) : void
start () : void
-redirectToAnotherService(redirect ionTarget : MigratableService) : v...
stop() : void

< < Interface> >
M igrat ableService

+ setMigrat ionDecisionStrategy(m igrat ionDecisionStrategy : Migrat ionDecisionStrategy) : void
+ findProviderWithMigrat ionNecessity(providers : Migrat ionProvider []) : Migrat ionProvider
+ findServicesWithMigrat ionNecessity(services : MigratableServices []) : MigratableServices []
+ findSuitableMigrat ionTarget (providers : Migrat ionProvider [] , service : MigratableService) : Migrat ionProvi...
+ m igrateServiceToProvider(m igratedService : MigratableService, targetProvider : Migrat ionProvider) : void

< < Interface> >
M igrat ionCont roller

+ getStatus() : ProviderStatus
+ getHostedServices() : MigratableService []
+ deployService(package : ServiceDeploym entPackage) : MigratableService
+ rem oveService(service : MigratableService) : void

< < Interface> >
M igrat ionProvider

< < Interface> >
ProviderSt at us

+ getProviderMigrat ionNecessity(providerStatus : ProviderStatus) : byte
+ getServiceMigrat ionNecessity(providerStatus : ProviderStatus, serviceStatus : ServiceStatus) : byte
+ getTargetSuitability(providerStat ist ics : ProviderStatus, serviceDescript ion : ServiceSem ant icDescript ion) : b...

< < Interface> >
M igrat ionDecisionSt rat egy

< < Interface> >
ServiceSem ant icDescript ion

< < Interface> >
Service Int ernalSt at e

< < Interface> >
ServiceDeploym ent Package

< < Interface> >
W ebService

< < Interface> >
ServiceSt at us

< < Interface> >
Seria lizable

1

0..*

Figure 6.1: The interface of the framework’s controller and the interfaces implemented by
participating services and service providers to enable the service migration.

23

Chapter 7

Case Studies

In this chapter we demonstrate the proposed self-adaptive service-oriented architecture
for Web service migration between stationary and mobile service providers through two
case studies. The case studies have been provided as proof-of-concept of the proposed
migration adaptation mechanism for Web service in real-life scenarios. The experiments
conducted in this chapter show the applicability and efficiency of the proposed decentralized
migration-based service-oriented architecture which is the main goal of the thesis described
in Section 1.2.

7.1 Case Study 1 - Traffic Jam Detection Service Migration
We demonstrate a case study of service migration for traffic jam detection using the pro-
posed Web Service migration framework. This case study is inspired by the traffic jam
scenario presented in [20] where the migration framework is installed on a group of cooper-
ative cars. The adaptation is performed to support a car navigation application while the
location service is down or unreachable. The system controller adapts to this service loss
by migrating a Traffic Jam Detection Service to another car to perform the computation
needed to get the missed traffic information about a specific area and send it back to the
original car.

7.1.1 Results

The case-study provides a proof-of-concept of the applicability of our implemented frame-
work for TrafficJamSearch service migration between cooperative cars. Through this case
study we present the functionality and usability of the context-aware self-adaptive Web
service migration approach proposed in this thesis and the possibility to be customized
for different real-life scenarios. The experiment results show the efficiency of the proposed
decision-making process demonstrated by the time required to make the decision compared
to the total time of the migration process. Moreover, the results show that the framework’s
performance is seamless and suitable for real-time implementations.

24

7.2 Case Study 2 - Tourist Video Streaming Mobile Service
Migration

We propose a case study of service migration between mobile devices to demonstrate the
validity, applicability and efficiency of the self-adaptive migration-based service-oriented
architecture approach. We perform experiments to demonstrates the improvement on the
QoS gained by the migration based on decentralized adaption mechanism. Also, we provide
a performance analysis to show the light-weight impact of migration adaptation process
and framework on the resources of mobile devices as example of resource restricted service
providers.

7.2.1 Results

• Migration Process Time: Based on the performed measurements, we see that the
proposed framework enables a seamless adaptation in SOA to redistribute system
components.

• CPU Usage Consumption: The measurements show that the framework total CPU
usage is 23% in average (18% in User mode and 5% in Kernel mode), while it is 8%
and 50% at its minimum and maximum values respectively.

• Battery Consumption: The battery level drop is by 4% higher when the framework
is disabled (OFF).

7.3 Conclusion
In this section we describe the contributions that have been provided through this work to
solve the limitations of current approaches (see Section 2.5) and to support adaptation in
software systems. The contributions of our approach are listed as follows:

1. A SOA-based architecture meta-model has been provided in Chapter 3 to support
system adaptation and context-awareness in stationary and mobile architectures.

2. To solve limitation L1, the limitation of reusability and extensibility in the system, we
adopt the SOA principles of service reusability and extensibility in designing our ar-
chitecture model. As presented in our case studies (see Chapter 7), service reusability
has been a key factor to support customization of our architecture model to support
different adaptation plan.

3. To solve limitation L2, the limitation in context information modelling in the sys-
tem, an ontology has been provided (see Section 3.1 and Section 3.2) to guarantee
a dynamic and sharable understanding of context information between system com-
ponents, which also supports system extensibility over different domains. Moreover,
a generic ontology-based component context model has been introduced to describe
system components semantically and to support content information modelling. The
provided component context model supports the usage of the OWL-S description of
Web service. It enables the utilization of system adaptation and context awareness
by providing a method to semantically describe system services and devices including
their properties and preferences to be used in planning the adaptation.

25

4. To overcome limitation L3, the limitation in adaptation strategies, a customizable
adaptation approach has been provided in Chapter 3 to support different adaptation
plans by extending the system ontology core model and integrating rules stating the
adaptation plans. In our case studies (see Chapter 7), we customized our adaptation
model to support service migration as example of adaptation plan and demonstrated
its application through two real-life scenarios.

5. To overcome limitation L4, the limitation in the adaptation making process, a dy-
namic multi-criteria decision-making process has been provided to choose the best
adaptation to perform from the possible adaptation plans (see Chapter 4). The pro-
vided decision-making process is extensible so that the newly ontology-defined terms,
metrics, properties and criteria that can be dynamically considered in the adaptation
decision making process.

26

Chapter 8

Conclusion

The research work of the thesis has been conducted based on the objectives presented in
Section 1.2. The main objective of the thesis is reached by the proposal of a decentralized
context-aware self-adaptive service-oriented architecture approach.

Following the objective O1, we proposed a formal representation of system context using
ontology. The proposed ontology enables a common understanding of the semantic meaning
of system components and allows to define system components models and realizes changes
in these models. A context model states the description of a system component including
its attributes and operation conditions to consider in system adaption.

With regard to objective O2, we introduced a decentralized context-aware self-adaptive
architecture model that enables SOA-based software system to react to context changes
in the surrounding environment and/or the status of system components. We presented a
formal description of service migration strategy to demonstrate the behavioural description
of service migration-based adaptive SOA.

To reach objective O3, we developed a framework that supports service migration adap-
tation and allows stationary and mobile devices as service providers to join the adaptation
process. The implanted framework enables system component context modelling, context
exchange, context reasoning, decision making, service migration adaptation, service provi-
sioning on both Android and Windows platforms.

Finally, regarding to objective O4, we presented two case studies to demonstrate the
applicability and efficiency of the thesis approach. The experiment results are provided as
proof-of-concept to show the validity of the decentralized context-aware adaptive architec-
ture model. The results provide measurements to presents the efficiency of the proposed
approach through showing improvements in system performance and quality of service fac-
tor by considering the thesis approach.

In comparison with the related approaches, our approach utilizes context-awareness
and self-adaptivity to guarantee and improve system performance. Using the proposed
context-aware self-adaptive meta-model allows to provide semantical description for both
Web services and service provides. Moreover, the thesis promotes the extension of service-
oriented architecture on mobile devices and enables the participation of type different types
of context resources and devices independently from their computing platform.

For future work, we consider empowering the proposed approach with other discovery
methodologies of service and service provider in large-scale network. Moreover, we intend
to extend the implementation work to join new types of devices and services. Another part
of the future work is to test the approach through other real-life examples with different
adaptation scenarios.

27

28

Bibliography

[1] Abowd, G. D.; Dey, A. K.; Brown, P. J.; et al.: Towards a better understanding of
context and context-awareness. In International symposium on handheld and
ubiquitous computing. Springer. 1999. pp. 304–307.

[2] Bandara, A.; Payne, T. R.; de Roure, D.; et al.: An ontological framework for
semantic description of devices. 2004.

[3] Bellifemine, F.: Jade-a white paper. exp. vol. 3, no. 3. 2003.

[4] Bianchini, D.; De Antonellis, V.; Melchiori, M.; et al.: Lightweight ontology-based
service discovery in mobile environments. In 17th International Workshop on
Database and Expert Systems Applications (DEXA’06). IEEE. 2006. pp. 359–364.

[5] Cheng, B.; De Lemos, R.; Giese, H.; et al.: A research roadmap: Software engeering
for self-adaptive systems. In Schloss Dagstuhl Seminar, vol. 8031. 2009.

[6] Elkhodary, A.; Esfahani, N.; Malek, S.: FUSION: a framework for engineering
self-tuning self-adaptive software systems. In Proceedings of the eighteenth ACM
SIGSOFT international symposium on Foundations of software engineering. ACM.
2010. pp. 7–16.

[7] Fox, M.; Long, D.: PDDL2. 1: An extension to PDDL for expressing temporal
planning domains. Journal of artificial intelligence research. vol. 20. 2003: pp. 61–124.

[8] Hussein, M.; Han, J.; Colman, A.; et al.: An architecture-based approach to
developing context-aware adaptive systems. In 2012 IEEE 19th International
Conference and Workshops on Engineering of Computer-Based Systems. IEEE. 2012.
pp. 154–163.

[9] Hussein, M.; Han, J.; Colman, A.; et al.: An architecture-based approach to
developing context-aware adaptive systems. In 2012 IEEE 19th International
Conference and Workshops on Engineering of Computer-Based Systems. IEEE. 2012.
pp. 154–163.

[10] Kazzaz, M.; Rychly, M.: Ontology-based context modelling and reasoning in the Web
service migration framework. Acta Electrotechnica et Informatica. vol. 13, no. 4. 2013:
pp. 5–12.

[11] Kazzaz, M. M.: Semantic Services Migration. In Proceedings of the 18th Conference
STUDENT EEICT 2012 Volume. Brno University of Technology. 2012. pp. 386–390.

29

[12] Kazzaz, M. M.; Rychlỳ, M.: A web service migration framework. In ICIW 2013, The
Eighth International Conference on Internet. The International Academy, Research
and Industry Association. 2013. pp. 58–62.

[13] Kazzaz, M. M.; Rychlỳ, M.: Web service migration with migration decisions based on
ontology reasoning. In Proceedings of the Twelfth International Conference on
Informatics-Informatics. 2013. pp. 186–191.

[14] Kazzaz, M. M.; Rychlỳ, M.: Web service migration using the analytic hierarchy
process. In 2015 IEEE International Conference on Mobile Services. IEEE. 2015. pp.
423–430.

[15] Kazzaz, M. M.; Rychlỳ, M.: Restful-based mobile Web service migration framework.
In 2017 IEEE International Conference on AI & Mobile Services (AIMS). IEEE.
2017. pp. 70–75.

[16] Kazzaz, M. M.; Rychlỳ, M.: A Case Study: Mobile Service Migration Based Traffic
Jam Detection. International Journal of Systems and Service-Oriented Engineering
(IJSSOE). vol. 8, no. 1. 2018: pp. 44–57.

[17] Kephart, J. O.; Chess, D. M.: The vision of autonomic computing. Computer. , no. 1.
2003: pp. 41–50.

[18] Lee, K.-C.; Kim, J.-H.; Lee, J.-H.; et al.: Implementation of ontology based
context-awareness framework for ubiquitous environment. In 2007 International
Conference on Multimedia and Ubiquitous Engineering (MUE’07). IEEE. 2007. pp.
278–282.

[19] Oreizy, P.; Gorlick, M. M.; Taylor, R. N.; et al.: An architecture-based approach to
self-adaptive software. IEEE Intelligent Systems and Their Applications. vol. 14,
no. 3. 1999: pp. 54–62.

[20] Riva, O.; Nadeem, T.; Borcea, C.; et al.: Context-aware migratory services in ad hoc
networks. IEEE Transactions on Mobile Computing. vol. 6, no. 12. 2007: pp.
1313–1328.

[21] Saaty, T. L.: Multicriteria decision making: the analytic hierarchy process: planning,
priority setting resource allocation. 1990.

[22] Salehie, M.; Tahvildari, L.: Self-adaptive software: Landscape and research
challenges. ACM transactions on autonomous and adaptive systems (TAAS). vol. 4,
no. 2. 2009: page 14.

[23] Santa, J.; Pereñíguez, F.; Moragón, A.; et al.: Experimental evaluation of CAM and
DENM messaging services in vehicular communications. Transportation Research
Part C: Emerging Technologies. vol. 46. 2014: pp. 98–120.

[24] Schilit, B. N.; Theimer, M. M.: Disseminating Active Mop Infonncition to Mobile
Hosts. IEEE network. 1994.

[25] Sheng, Q. Z.; Pohlenz, S.; Yu, J.; et al.: ContextServ: A platform for rapid and
flexible development of context-aware Web services. In Proceedings of the 31st
International Conference on Software Engineering. IEEE Computer Society. 2009.
pp. 619–622.

30

[26] da Silva, C. E.; de Lemos, R.: A framework for automatic generation of processes for
self-adaptive software systems. Informatica. vol. 35, no. 1. 2011.

[27] Tang, S.; Peng, X.; Yu, Y.; et al.: Goal-directed modeling of self-adaptive software
architecture. In Enterprise, Business-Process and Information Systems Modeling.
Springer. 2009. pp. 313–325.

[28] Wang, X.; Zhang, D.; Gu, T.; et al.: Ontology Based Context Modeling and
Reasoning using OWL. In Percom workshops, vol. 18. Citeseer. 2004. page 22.

[29] Weyns, D.; Malek, S.; Andersson, J.: On decentralized self-adaptation: lessons from
the trenches and challenges for the future. In Proceedings of the 2010 ICSE Workshop
on Software Engineering for Adaptive and Self-Managing Systems. ACM. 2010. pp.
84–93.

31

Appendix A

Abbreviations

AHP Analytic hierarchy process
CPU Central Processing Unit
DL Description Logic
FUSION FeatUre-oriented Self-adaptatION
JSON JavaScript Object Notation
OWL The W3C Web Ontology Language
OWL-S The Web Ontology Language for Services
PDDL Planning Domain Definition Language
QoS Quality of Service
RDF Resource Description Framework
RDFS Resource Description Framework Schema
SOA Service Oriented Architecture
SWRL Semantic Web Rule Language
UDDI Universal Description, Discovery, and Integration

32

Appendix B

Curriculum Vitae

Personal Information
Name M. Mohanned Kazzaz
Title Ing.
Nationality Syrian
Date of Birth 18.05.1983
Contact Information
Address Halap Al-jaddeda, C5, Aleppo, Syria
E-mail mohanned.kazzaz@gmail.com
Phone +420 774 923 358
LinkedIn www.linkedin.com/in/mohannedkazzaz
Education

2011 - present

Faculty of Information Technology, Brno University of Technology
doctoral study (PhD.)
Computer Science and Engineering
http://www.fit.vutbr.cz/∼ikazzaz/

2010
Brno University of Technology, Brno. Czech Republic.
Master’s degree of Computer Engineering and Networks –
Education Recognition.

2001-2007

Faculty of Electronic and Electrical Engineering, University
of Aleppo, Aleppo, Syria.
Bachelor’s degree of Electronic Engineering “Computer
Engineering”.

Work Experience
8/2009 - 10/2011 Software Engineer

Employer: Aleppo City Council, Aleppo, Syria.

33

	Introduction
	Motivation
	Thesis Objective
	Thesis Contribution
	Organization

	Self-Adaptive Context-Aware Architectures
	Adaptive Systems
	Context-aware Systems
	Context-aware Adaptive Software Systems
	Decentralized Self-Adaptive System
	Discussion
	Thesis Approach

	Context-aware Self-Adaptive Meta-Model
	System Core Ontology
	Ontology-based Context Model

	The Decision-Making Process
	Web Service Migration-based Adaptive Service Oriented Architecture Model
	Service Migration
	Web Service Migration Ontology
	Mobile Web Service Migration Framework Architecture
	Discovery Module
	System Context Manager Module
	Migration Module

	Service Migration Framework Architecture
	Case Studies
	Case Study 1 - Traffic Jam Detection Service Migration
	Results

	Case Study 2 - Tourist Video Streaming Mobile Service Migration
	Results

	Conclusion

	Conclusion
	Bibliography
	List of Appendices

	Abbreviations
	Curriculum Vitae

