
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH
TECHNOLOGIÍ
ÚSTAV AUTOMATIZACE A MĚŘICÍ TECHNIKY

FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION
DEPARTMENT OF CONTROL AND INSTRUMENTATION

ZPRACOVÁNÍ OBRAZU V SYSTÉMU ANDROID -
DETEKCE A ROZPOZNÁNÍ SPZ/RZ

IMAGE PROCESSING USING ANDROID DEVICE

DIPLOMOVÁ PRÁCE
MASTER’S THESIS

AUTOR PRÁCE Bc. FRANTIŠEK HORTAI
AUTHOR

VEDOUCÍ PRÁCE Ing. PETER HONEC, Ph.D.
SUPERVISOR

BRNO 2014

 3

Abstrakt

Diplomová práce se zabývá návrhem pro zpracování obrazu v systému Android. Volba
vývojového prostředí a její implementace Pracovní postup řešení problematiky
vytvoření aplikací, grafického uživatelského rozhraní a interfejsu pro Android. Popisuji
můj postup při návrhu a funkcionality aplikace, komunikaci s kamerou, uložení a
načítání dat. Vysvětlí se, jaké algoritmy byly implementovány pro zpracování obrazu a
vyhodnocení snímku. Produkt práce je fungující aplikace, která dovoluje uživateli
snímat obrázky a datový proud videa. Z vstupujících údajů vyhodnotí umístění SPZ/RZ.
Aplikace umožňuje z obrázku rozpoznat text a čísla, taktéž je doplněna mnoho
praktickými funkcemi a možnostmi.

Klí čová slova

Android, zpracování obrazu, počítačové vidění, eclipse, Java, OpenCV, OCR,
detekce SPZ/RZ

Abstract

This thesis describes the design and workflow of creating an image processing
application in Android system, and what are the possibilities in choosing development
environment and how to implement them. Then I am writing about my solutions of
creating applications, graphical user interface and an interface for Android. I am
describing my approach in the design and functionality of the application,
communication with the camera, storing and retrieving data. Further I explain which
algorithms were implemented for image processing and image evaluation. Product of
this thesis is a functioning application that allows to its user to capture images and video
stream. The algorithm evaluates the entering data and shows the location of the license
plate. The application also allows recognizing texts and numbers from images. There
are other various practical features and options implemented within the application.

Keywords

Android, image processing, machine vision, eclipse, Java, OpenCV, OCR,
license plate recognition.

 4

Bibliografická citace:

HORTAI, F. Zpracování obrazu v systému Android - detekce a rozpoznání SPZ/RZ.
Brno: Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních
technologií, 2013. 60 s. Vedoucí diplomové práce byl Ing. Petr Honec, Ph. D.

 5

Prohlášení

Prohlašuji, že svou diplomovou práci na téma Zpracování obrazu v systému Android -
detekce a rozpoznání SPZ/RZ jsem vypracoval samostatně pod vedením vedoucího
diplomové práce a s použitím odborné literatury a dalších informačních zdrojů, které
jsou všechny citovány v práci a uvedeny v seznamu literatury na konci práce.
Jako autor uvedené diplomové práce dále prohlašuji, že v souvislosti s vytvořením této
diplomové práce jsem neporušil autorská práva třetích osob, zejména jsem nezasáhl
nedovoleným způsobem do cizích autorských práv osobnostních a jsem si plně vědom
následků porušení ustanovení § 11 a následujících autorského zákona č. 121/2000 Sb.,
včetně možných trestněprávních důsledků vyplývajících z ustanovení části druhé, hlavy
VI. díl 4 Trestního zákoníku č. 40/2009 Sb.

V Brně dne: 18. května 2014 …………………………
 podpis autora

 6

Poděkování

Děkuji vedoucímu diplomové práce Ing. Petru Honecovi, Ph.D. za účinnou metodickou,
pedagogickou a odbornou pomoc a další cenné rady při zpracování mé diplomové
práce.

V Brně dne: 18. května 2014 …………………………
 podpis autora

 7

Content

1 Android ... 11

1.1 System architecture ... 12

1.1.1 Linus kernel ... 12

1.1.2 Libraries .. 13

1.1.3 Android Runtime ... 13

1.1.4 Application Framework .. 13

1.1.5 Applications .. 14

1.2 Android Application Components .. 15

1.2.1 Activities ... 15

1.2.2 Services ... 15

1.2.3 Broadcast Receivers .. 16

1.2.4 Content Providers .. 16

1.2.5 Additional Components .. 16

1.3 Native code ... 17

1.4 Connecting Android devices with external peripherals .. 17

1.4.1 Debugging considerations ... 19

1.5 Managing the application .. 20

1.5.1 Android activity lifecycle .. 20

1.6 Installing and starting an application .. 22

2 The requiered Software to get Started .. 23

2.1 Java ... 23

2.2 Eclipse ... 24

4 possibilities of image pressing in Adroid System .. 25

4.1 OpenCV on Android ... 26

4.2 Optical Character Recognition .. 27

4.2.1 ABBYY-OCR ... 27

4.2.2 Aspire-OCR... 27

4.2.3 Online OCR API ... 28

4.3 Tesseract engine for OCR ... 28

5 Vehicle registration plate Recognition ... 30

5.1 Evaluating ... 32

6 Creating the basis of my application .. 33

6.1 Naming and creating an icon for the application .. 34

 8

6.2 Using the camera ... 34

6.3 Load and save .. 35

6.4 Get actual location using the location manager .. 35

6.5 Binding pieces together ... 36

7 Application Hfimage .. 37

7.1 Main activity ... 38

7.1.1 Find licence plate on image ... 41

7.2 OCR simple ... 43

7.3 Get location ... 44

7.4 About activity .. 45

7.5 Camera activity ... 46

7.5.1 Camera activity’s find plate mode .. 46

Conclusion .. 49

 9

List of figures

Figure 1.1: Description of the Android platform architecture ... 12

Figure 1.2: USB Host and Accessory Modes 15 .. 18

Figure 1.3: How debugging tools work ... 19

Figure 1.4: The activity lifecycle18 .. 21

Figure 4.1: OpenCv logo ... 26

Figure 4.2: tesseract OCR ... 29

Figure 5.1: Flowchart .. 32

Figure 6.1: Android emulator in Eclipse platform .. 33

Figure 6.2: HFimage application icon ... 34

Figure 6.3: HFimage application installation .. 36

Figure 7.1: HFimage application’s hierarchy .. 37

Figure 7.2: HFimage application’s main window ... 38

Figure 7.3: HFimage photo taking progress .. 39

Figure 7.4: HFimage image loading progress ... 40

Figure 7.5: HFimage two step method .. 41

Figure 7.6: HFimage three step method .. 42

Figure 7.7: HFimage four step method ... 42

Figure 7.8: HFimage OCR simple activity ... 43

Figure 7.9: HFimage OCR simple activity ... 44

Figure 7.10:About HFimage activity .. 45

Figure 7.11:Camera activity default preview .. 46

Figure 7.12: Find plate mode from greater distance ... 47

Figure 7.13: Find plate mode from closer ... 47

Figure 7.14: Find plate mode set to greater tolerance ... 48

Figure 7.15: Camera activity has found more plates ... 48

List of tables

Table 1.1: Additional Android Application components [11] ... 16

 10

Introduction

For most of us, our phones have become a part of us. We would no more leave the
house without the phone than we would without clothes in the 21st century. Most
people are near to their phones all day. So the creation of an application to a smartphone
is the closest way to be accessible to it most of the time. Android in 2013 ruled more
than 80% of smartphone market share. Of course there are a lot of other systems to use.

Computer vision is a field of science that includes methods for acquiring,
processing, analysing, and understanding images. The reason for the development in
this field has been to duplicate the abilities of human vision by electronically perceiving
and understanding an image.1 This image understanding can be seen as the
disentangling of symbolic information from image data using models constructed with
the aid of geometry, physics, statistics, and learning theory.2 One field of research in
pattern recognition, artificial intelligence and computer vision is the optical character
recognition, usually abbreviated as OCR3. OCR is the mechanical or electronic
conversion of scanned or photographed images of typewritten or printed text into
machine-encoded/computer-readable text. This topic belongs to the field of image
recognition and it is a very interesting area, which has great prospects.

My thesis describes and deals with the creation and design of an application for
image processing in Android system. The first part of my thesis is about the recognizing
of the solutions and the possibilities of creating applications and graphical user
interfaces for Android system. An individual chapter is devoted to the selection of
development environments. What are the possibilities and applications and where to
begin. What is required to begin with this type of project.

In the practical part I have written about my workflow, as I progressed in my
solution, the choice of the development environment and its implementation. Then I
have described my approach in design of GUI and the basic functionality of image
processing for Android, further the description of communication with camera, saving
and loading data from storage. This work serves basis, where the algorithms are
implemented for image processing and image evaluation.

1 SHAPIRO LINDA, G. Computer vision. Vyd. 1. New Jersey: Prentice-Hall, 2001, 580 s. ISBN 01-303-0796-3.
2 FORSYTH, David a Jean PONCE. Computer vision: a modern approach. London: Prentice Hall, c2003, xxv, 693 p.
ISBN 01-308-5198-1.
3 OCR - Optical Character Recognition

 11

1 ANDROID

Android is an operating system based on the Linux kernel. Initially developed by
Android Inc., which Google backed up financially in the beginning and bought later in
2005.4 Android was unveiled in 2007 along with the founding of the Open Handset
Alliance: a consortium of hardware, software, and telecommunication companies
devoted to advancing open standards for mobile devices.5 The first publicly available
smartphone running Android was the HTC Dream and it was released on October 22,
2008. Now Android is the world's most widely used smartphone platform, overtaking
Symbian in 2010.6 Android in the end of 2013 ruled more than 80% of smartphone
market share.7

The main motivation for Android was to build a software that enables developers to
create compelling mobile applications that take full advantage of everything that
handset has to offer. It was built to be truly open. The applications can call upon any of
the phone’s core functionality such as making calls, sending text messages, using the
camera, or to use any other sensors which the device offers, allowing developers to
create richer and more cohesive experiences for users. Android utilizes a custom virtual
machine that was designed to optimize memory and hardware resources in mobile
environment. Android does not differentiate between the phone’s core applications and
third-part applications. They can all be built to have equal access to a phone’s
capabilities providing users with a broad spectrum of applications and services. Android
is an open source, it can be liberally extended to incorporate new cutting edge
technologies as they emerge. The platform will continue to evolve as the community of
developer works together to build innovative mobile applications.5

As it was mentioned Android is an open-source software and Google releases the
source code under the Apache License 2.0. This open-source code and permissive
licensing allows the software to be freely modified and distributed by device
manufacturers, wireless carriers and enthusiast developers. Precise definition of this
licence can be read from the source.8 In practice, Android devices ship with a
combination of open-source and proprietary software. Android has a large community
of developers, writing applications that extend the functionality of devices, written
primarily in the Java programming language.9

4 Ben Elgin: Google Buys Android for Its Mobile Arsenal [online]. Aktualizováno 2005-08-17 [cit. 2014.01.02]. Available from
URL: <http://www.webcitation.org/5wk7sIvVb>
5 Open handset alliannce: Android Overview [online]. [cit. 2013.12.30]. Available from URL:
<http://www.openhandsetalliance.com/android_overview.html>
6 Palo Alto.: Google’s Android becomes the world’s leading smart phone platform [online]. UK: 2011-01-31 [cit. 2014-01-03].
Available from URL: <http://www.canalys.com/newsroom/google%E2%80%99s-android-becomes-world%E2%80%99s-leading-
smart-phone-platform>
7 Tony Bradley: Android Dominates Market Share, But Apple Makes All The Money [online]. Forbes 2014, aktualizováno 2013-
11-15 [cit. 2014.01.02]. Available from URL: <http://www.forbes.com/sites/tonybradley/2013/11/15/android-dominates-market-share-but-
apple-makes-all-the-money/>
8 Apache License, Version 2.0 [online]. 2010 [cit. 2013-12-27]. Available from URL: <http://www.apache.org/licenses/LICENSE-
2.0>.
9 ORACLE. Java SE 7 Features and Enhancements [online]. aktualizováno 2012-13-12 [cit. 2013 12 28]. Available from URL:
<http://www.oracle.com/technetwork/java/javase/jdk7-relnotes-418459.html>

 12

To be accessible for development they created the Android SDK. Android can be
easily found on the internet and it provides lots of support, documentations and example
codes. Thanks to these features now we can find thousands and thousands of different
applications. They can be downloaded simply form Google Play.

1.1 System architecture

The official name is Android; it is a pack of software components that includes the
operating system, key applications and software for communication between them. The
Android operating system is roughly divided into five sections and four main layers as
shown below in the architecture diagram to make it more clear and understandable.

Figure 1.1: Description of the Android platform architecture 10

1.1.1 Linus kernel

Android is based on the Linus kernel - Linux 2.6 with approximately 115 patches.
This provides basic system functionality like process management, memory
management, device management like camera, keypad, display etc. The kernel also
handles all the things that in Linux is really good at, such as networking and a vast array
of device drivers, which take the pain out of interfacing to peripheral hardware. This
means that drivers and hardware specific code are all bound to the monolithic approach

10 Tutorialspoint.: Android [online]. 2014 [cit. 2014 01 02]. Available from URL:
<http://www.tutorialspoint.com/android/>

 13

of this well-known operation system. Manufacturers can branch the source tree and
write their own drivers for their devices.11

The next layers of this model use especially its stability, regardless of the energy
performance and the advanced approach for multi-threaded processing. The core,
however had to be cut because some of the features would be difficult to use in mobile
devices.

1.1.2 Libraries

On the top of Linux kernel there is a set of libraries including open-source web browser
engine WebKit, well known library libc, SQLite database which is a useful repository
for storage and sharing the application data, libraries to play and record audio and
video, SSL libraries responsible for Internet security etc.

1.1.3 Android Runtime

This is the third section of the architecture and available on the second layer from the
bottom. The Android runtime provides a set of core libraries which enable Android
application developers to write Android applications using standard Java programming
language.

There is an important key component that has to be introduced to the reader to
understand the problem behind real-time applications on Android, this is the Dalvik
Virtual Machine . Dalvik Virtual Machine is a kind of Java Virtual Machine which is
specially designed, re-implemented and optimized for Android. The Dalvik VM makes
use of Linux core features like memory management and multi-threading, which is
intrinsic in the Java language. The Dalvik VM enables every Android application to run
in its own process, with its own instance of the Dalvik virtual machine. It has many
advantages in resolving hardware incompatibilities for wide variety of Android devices.
Of course it has the side-effect of dropdown in performance. The overhead is caused by
Dalvik VM, which significantly decreases the ability of Android to host real-time
applications.

1.1.4 Application Framework

The Application Framework layer provides many higher-level services to applications
in the form of Java classes. The application developers are allowed to make use of these
services in their applications.

11 JANOVSKÝ, Martin. Návrh a implementace knihovny pro číslicové zpracování signálů na platformě Android:
diplomová práce. Brno: Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií, Ústav
telekomunikací, 2010. 54 s.

 14

1.1.5 Applications

All the Android applications are at the top layer and are written to be installed to this
layer only. Each application in the Android environment runs in its own process inside
its own Dalvik VM instance. The virtual machine has been designed to driving
efficiently with more of its instances. His whole concept is based on the Java VM.

 15

1.2 Android Application Components

The application components are the essential building blocks of an Android application.
These components are loosely coupled by the application manifest file
AndroidManifest.xml that describes each component of the application and how they
interact.12

There are four main components that can be used within an Android application:
• Activities
• Services

• Broadcast Receivers
• Content Providers

1.2.1 Activities

They dictate the user interface and handle the user interaction to the smartphone screen.
An activity represents a single screen with a user interface. For example, an email
application might have one activity that shows a list of new emails, another activity to
compose an email, and another activity to read emails. If an application has more than
one activity then one of them should be marked as the activity that is presented when
the application is launched. Each activity has its default window in which it can plot.
Commonly the window fills the entire screen. However the size and the position of
windows can be changed. On one screen there can also be more windows at the same
time, which can be variously overlapping each other.

Applications may contain one or more activities. How many there are, how they will
behave and refer to each depend on specific applications. One activity that is designed
as the first will be launch with the start of the current application. Switching from one
activity to another is accomplished by the current activity, which starting the following
activity. An activity is implemented as a subclass of Activity class as follows:

public class MainActivity extends Activity { … }

1.2.2 Services

They handle background processing which is associated an application. It is a
component that runs in the background to perform long-running operations. For
example: a service might play music in the background while the user is in a different
application or it might fetch data over the network without blocking user’s interaction
with an activity.

A service is implemented as a subclass of Service class as follows:
public class MyService extends Service { … }

12 Tutorialspoint.: Android [online]. 2014 [cit. 2014 01 02]. Available from URL:
<http://www.tutorialspoint.com/android/>

 16

1.2.3 Broadcast Receivers

Broadcast Receivers handle communication among applications or with the system,
they respond to broadcast messages. For example: applications can also initiate
broadcasts to let other applications know that some data has been downloaded to the
device and is available for them to use, so this is broadcast receiver which will intercept
this communication and will initiate appropriate action.13

A broadcast receiver is implemented as a subclass of BroadcastReceiver class and
each message is broadcasted as an Intent object:

public class MyReceiver extends BroadcastReceiver { … }

1.2.4 Content Providers

A content provider component supplies data from one application to others on request.
To handle data and database management issues, such requests are handled by the
methods of the ContentResolver class. The data may be stored in the file system, the
database or somewhere entirely else.13

A content provider is implemented as a subclass of ContentProvider class and must
implement a standard set of APIs that enable other applications to perform transactions:

public class MyContentProvider extends ContentProvider {…}

1.2.5 Additional Components

There are additional components which will be used in the construction of above
mentioned entities, their logic and wiring between them. These components are

Components Description

Fragments Represents behaviour or a portion of user interface in an Activity.

Views UI elements that are drawn onscreen including buttons, lists forms etc.

Layouts View hierarchies that control screen format and appearance of the views.

Intents Messages wiring components together.

Resources External elements, such as strings, constants and drawable pictures.

Manifest Configuration files for the application.

Table 1.1: Additional Android Application components [11]

One of the most used thing for designing GUI is the component View. The contents
of the windows are available through hierarchical views. These are the basic functions
of objects “View”. Each activity controls its own space inside the box. The basic View
object contains the union of these spaces. Each space also contains the functions for

13 Tutorialspoint.: Android [online]. 2014 [cit. 2014.01.02]. Available from URL:
<http://www.tutorialspoint.com/android/>

 17

user interaction. For example: by clicking inside a text input field the cursor begins to
blink. Android has a lot of these preconfigured extension classes of View including
buttons, text fields, sliders, menu items, etc. The entire content of the window is then
integrated into an activity by the method:

setContentView(R.layout.layout_name).
The sets which will appear in the window and how will the different spaces be

arranged in the window. It is determined by an XML template (XLM - eXtensible
Markup Language). It is possible to create and define a number of these templates so it
is easy to change the display of individual activities. 13

1.3 Native code

The SDK is based on Java language. The official documentation states that the primary
way of building applications is through this framework. It provides a standard set of
classes that are present in the Java API and additional classes associated with the
Android OS. A native tool-chain called NDK is provided as an optional part of the
SDK. It enables to write part of the application in a native language such as C or C++.
Some functions or libraries can be compiled to native libraries or shared libraries. A
specific interface, the Java Native Interface (JNI), is responsible for connecting these
native functions with the Java world. JNI is also responsible to handle the code when
calling C/C++ functions from Java or accessing Java objects from C++.14

The manufacturer says that the NDK will not benefit most apps. “As a developer,
you need to balance its benefits against its drawbacks. Notably, using native code on
Android generally does not result in a noticeable performance improvement but it
always increases your app complexity. In general, you should only use the NDK if it is
essential to your app—never because you simply prefer to programme in C/C++.” 14

Typical good candidates for the NDK are self-contained, CPU-intensive operations
that don't allocate much memory, such as signal processing, physics simulation and so
on. NDK module is supported from Android version 1.5 and the most supported
processors are from the ARM family.

The Android NDK is available at:
http://developer.android.com/tools/sdk/ndk/index.html

1.4 Connecting Android devices with external

peripherals

In order to connect anything with a mobile device it has to be equipped with a set of
ports which allows interaction with other devices. A wireless solution advantage is to
avoid the use of cables and to maintain the “mobility” of mobile devices. The Android

14 Android developers: Android NDK [online]. 2014 [cit. 2014.01.03]. Available from URL:
<http://developer.android.com/tools/sdk/ndk/index.html >

 18

OS has support for peripherals like a keyboard or a mouse thanks to the mentioned
Linux kernel which has a decent collection of drivers for external devices. Beside the
wireless methods a connection can also be made via the USB port.

Android supports a variety of USB peripherals and Android USB accessories
through two modes:

• USB accessory
• USB host.

In USB accessory mode, the external USB hardware acts as the USB host. When the
Android-powered device is in USB accessory mode, the connected USB hardware (an
Android USB accessory in this case) acts as the host and powers the bus. Examples of
accessories might include robotics controllers, docking stations, diagnostic and musical
equipment, kiosks, card readers and much more. This gives Android-powered devices
that do not have host capabilities the ability to interact with USB hardware. Android
USB accessories must be designed to work with Android-powered devices and must
adhere to the Android accessory communication protocol.15

In USB host mode, the Android-powered device acts as the host and it powers the
bus. Examples of devices include digital cameras, keyboards, mice, and game
controllers. USB devices that are designed for a wide range of applications and
environments can still interact with Android applications that can correctly
communicate with the device.15

Figure 1.2: USB Host and Accessory Modes 15

The primary purpose of an USB connector on a mobile device is to make connection
with a PC and for charging a battery. In these situations the PC has the role of a USB
host and the mobile or tablet acts as a USB device.

15 Android developers: USB Host and Accessory [online]. 2014 [cit. 2014.01.01]. Available at:
<http://developer.android.com/guide/topics/connectivity/usb/index.html>

 19

1.4.1 Debugging considerations

The Android SDK provides most of the tools that are needed to debug the applications.
It needs a JDWP-compliant debugger if it is wanted to be able to do things such as step
through code, view variable values, and pause execution of an application.16

When debugging applications that use USB accessory or host features, it is
necessary to have USB hardware connected to the Android-powered device. The
Android device has to allow the USB debugging. It is easy to allow in: Setting > System
> {} Developer Options > USB debugging.

Figure 1.3: How debugging tools work

Remade from source [16]

 This figure shows how the various debugging tools work together in a typical
debugging environment.

16 Android developers: Debugging [online]. 2014 [cit. 2014.01.03]. Available at:
<http://developer.android.com/tools/debugging/index.html#tips>

 20

1.5 Managing the application

This part describes the theory how to manage an application. It was necessary to
understand for me, because I am using more activities in my application which share
and transfer data among themselves. My application communicates with other
application (OpenCV manager) and handles they status. It also communicates and
handles system recourses, accessing camera and GPS locator, read and write files to
available storages. To put it in a nutshell, I had to put all this together and prevent my
application from any crash down and errors.

Whenever an Android components starts an application object is created. It is started
in a new process with a unique ID under a unique user. Even if you do not specify one,
the Android system creates a default object for you. This object provides the main
lifecycle methods.

The Android platform supports lifecycle event which are called in the case of
process or component termination as well as in case of a configuration change. The
developer is responsible for maintaining the state of the application. He is also
responsible for restore the activity instance state. The instance state of an activity is the
nonpersistent data that needs to be passed between activities restarts during a
configuration change to restore user selections. 17

Android system also allows recycling Android components to free up resources. The
activity state can be running, paused, stopped, killed (terminated by calling finish()
method). The user should not notice if an activity which is still part of an activity stack
has been terminate or not. For this the developer needs to store the state of the activity
at the right point in time and restore it. He also should stop any unnecessary actions if
the activity is not visible anymore to save system resources.

1.5.1 Android activity lifecycle

When an activity changes different states described above, it is notified through various
callback methods. All of the callback methods are hooks that can be overridden to do
appropriate work when the state of the activity changes. These methods define the entire
lifecycle of an activity.

The entire lifetime of an activity happens between the call to onCreate() and the call
to onDestroy(). The user can see the activity on-screen and interact with it within the
visible lifetime of an activity which happens between the call to onStart() and the call to
onStop(), which is called when a new activity starts and this one is no longer visible.

Between these two methods, you can maintain resources that are needed to show the
activity to the user. For example, you can register a BroadcastReceiver in onStart() to
monitor changes that impact your UI, and unregister it in onStop() when the user can no
longer see what you are displaying. The system might call onStart() and onStop()

17 VOGEL, Lars. Android application and activity lifecycle. [online]. [cit. 2014-05-17]. Available at:
http://www.vogella.com/tutorials/AndroidLifeCycle/article.html

 21

multiple times during the entire lifetime of the activity, as the activity alternates
between being visible and hidden to the user. 18

The foreground lifetime of an activity happens between the call to onResume() and
the call to onPause(). During this time, the activity is in front of all other activities on
screen and has user input focus. For example onPause() is called when the device goes
to sleep or when a dialog appears. Because this state can transition often, the code in
these two methods should be fairly lightweight in order to avoid slow transitions that
make the user wait.18

For better understanding a figure is shown below. This flowchart shows when and
what method is called, illustrates loops and the paths an activity might take between
states. The rectangles represent the callback methods for implementation to perform
operations when the activity transitions between states

Figure 1.4: The activity lifecycle18

18 Android developers: Activities [online]. 2014 [cit. 2014.05.13]. Available at:
<http://developer.android.com/guide/components/activities.html>

 22

1.6 Installing and starting an application

Most applications as well as mine were written in the Java programming language. The
compiled code, along with the other data is packed in package with an extension *.apk.
This is then called an application that can be saved to the user’s device and can be
installed. For completing the final application the aapt tool is needed. The aapt
(Android Asset Packaging Tool) is the tool for creating applications from files with
extension *.apt on the Android platform. It is included in a wide range of tools which
are freely available to developers under one name Android SDK.

When an application start occurs, in a certain level of abstraction a separated world
is created. It is due to a separation of memory and creation of another instance of the
Dalvik VM. A Linux process with a unique identification of the user is formed on the
kernel layer. This ensures that the individual applications cannot access the memory and
files of other applications. Each user, in this case application has implicitly access only
to its “property”. To share data among applications special methods are created. There
may also be applications with the same user identification. It is one of several options
for sharing memory resources. This way Android ensures strength security, and yet not
loses its functionality.

There is a whole range of layers for starting an application, from running the process
in the background to the display methods. These processes will run regard to their
priority. The entire system ensures maximum utilization of system resources.

In case there is insufficient memory the low priority processes will be ended as first.
However, it is possible to disable individual parts of the applications. Applications in
Android are mainly built from four basic components. Those combined components
create the final application. The system is able to separate the components according to
their priority and then effectively manage the computing power and memory. However,
the priority of each component is not controlled only by the system. The priority of the
application´s components can be set during the development.

 23

2 THE REQUIERED SOFTWARE TO GET
STARTED

This chapter provides a generic introduction of the main notions used in this thesis: to
summarize the necessary information from the initial research gravitating towards the
Android OS and tries to filter the results through the viewpoint of this platform.

This chapter also includes my workflow at the beginning, how I install the necessary
software to create an application on my android device, how I install the tools on my
Microsoft OS the Java JDK, Eclipse and Android SDK. These software will be
explained in the subchapters. Connected to the chapter’s name it can also be used as a
handbook: how to begin to programme an application for an Android device.

The internet is full of explanations what is what and why it is used, as to my thesis I
try to use a shorter form of explanation to clear why I decided to use these SW.

2.1 Java 19

It is developed by the company Oracle. Java is the foundation of virtually every type of
networked application and is the global standard for developing and delivering mobile
applications, games, Web-based content, and enterprise software. There are lots of
developers worldwide, because Java enables its users to efficiently develop and deploy
exciting applications and services. With comprehensive tooling, a mature ecosystem,
and robust performance, Java delivers applications portability across even the most
disparate computing environments.20 Java is an object oriented programming language.
Source programmes will not compile into machine code but in the intermediate stage
called "Byte-code", which is independent from the used platform.

Writing Java applets and applications needs development tools like JDK. The Java
Development Kit (JDK) is an implementation of either one of the Java SE, Java EE or
Java ME platforms released by Oracle Corporation in the form of a binary product
aimed at Java developers on Solaris, Linux, Mac OS X or Windows. The JDK includes
the Java Runtime Environment, the Java compiler and the Java APIs.21

To use eclipse it was necessary to install Java (I choose Version 7 Update 45), it can
be simply downloaded from URL: www.java.com. To download it and use it you have
to accept their terms of the end user license agreement.

19 Java logo, [online]. 2014 [cit. 2014.01.03] available from official Java site: <http://www.java.com/en/about/>
20 ORACLE. Oracle and Java [online]. 2012-13-13 [cit. 2013.12.28]. Available from URL:
<http://www.oracle.com/us/technologies/java/overview/index.html>
21 ORACLE. Java SE 7 Features and Enhancements [online]. aktualizováno 2012-13-12 [cit. 2013.12.28]. Available from URL:
<http://www.oracle.com/technetwork/java/javase/jdk7-relnotes-418459.html>

19

 24

2.2 Eclipse22

Eclipse is an open source integrated development environment. It is mostly used to
develop applications in Java. Eclipse contains a base workspace and an extensible
plugin system for customizing the environment. So the current version supports various
programming languages, and it is easy to extend with further plugins. So by simply
adding a new module Eclipse is able to learn a completely new feature, from languages
like Java, C, C++ or XML and so on. There are some well-prepared packages already
with plugins in it and they can be easily downloaded from URL:
 http://www.eclipse.org/downloads/

I downloaded: Eclipse Standard 4.3.1. For creating Android application I had to
install the Eclipse plugin for Android Development Tools called “ADT”. Android offers
a custom plugin for the Eclipse IDE. This plugin provides a powerful, integrated
environment in which to develop Android apps. It extends the capabilities of Eclipse to
let its user quickly set up new Android projects, build an app UI, debug app, and export
signed (or unsigned) app packages (APKs) for distribution. There are step by step
instructions how to configure and install it. It can be downloaded from URL:
http://developer.android.com/sdk/installing/installing-adt.html

The next step was to install the Android Standard Development Kit called “SDK”.
The Android SDK provides the API libraries and developer tools necessary to build,
test, and debug apps for Android. To find it on the internet it is just to look it up by
Google “Android SDK” and it will throw out the appropriate link on
“developer.android.com”.

There is a possibility to download the full package with a single download. But the
step by step version helps to understand what it contains. The ADT Bundle includes
everything that is necessary to begin developing apps. ADT bundle already contains the
Eclipse + ADT plugin, Android SDK Tools, Platform-Tools and Android system image
for the emulator.

Now Eclipse with Android SDK is functioning on a MS Windows OS. The last step
is to download and install the existing versions of Android. It is the Platform-Tool
called Android SDK manager (it can be run from an icon in Eclipse). It was necessary
to install those versions on which I wanted to run my applications on my Android
devices. My device runs the 4.0.3 so I installed all the versions from 2.3 to the latest
version to secure the compatibility (Android 4.4 KitKat).

One part of this whole package is the emulator. It has similar options like a real
device. Of course some of the features are missing such as accelerometers or vibrations.
This tool can help while developing the application but the final application must be
tested directly on a specific device by the manufacturer.

22 Eclipse logo, [online]. 2014 [cit. 2014.01.03] available from official eclipse site: <http://www.eclipse.org/artwork/>

22

 25

4 POSSIBILITIES OF IMAGE PRESSING IN
ADROID SYSTEM

This part is small research what are the possibilities for image processing and evaluation
in Android system. Of course there are lots of other possibilities where to begin, but in
this part I would like to introduce shortly what I found. In the future I would like to
create some own libraries for image processing, to create own methods and classes
specified for my image processing evaluation.

JJIL is a Java image processing library. It includes an image processing architecture
and over 60 routines for various image processing tasks. JJIL is particularly targeted
towards mobile applications. It includes interfaces so images can be converted to and
from native formats for J2ME, Android, and J2SE. (In this library is a good Face-
recognition example)

It can be found at URL: https://code.google.com/p/jjil/
The Catalano Framework is a framework for scientific computing for Java and

Android. The project started as an initial port of the many features of the AForge.NET
and Accord.NET frameworks for .NET, but is steadily growing with more advanced
features which are now being shared between those projects. The project is organized
under the same architecture found in the afore mentioned frameworks. Experienced
users who would wish to leverage their expertise on Accord and AForge to work on
Android can rely on the same namespaces for: Image Processing, Fuzzy Logic, Math,
Statistics, Machine Learning, Neural Network

It can be found at URL: https://code.google.com/p/catalano-framework/
OpenCV (Open Source Computer Vision Library) is an open source computer vision

and machine learning software library. OpenCV was built to provide a common
infrastructure for computer vision applications and to accelerate the use of machine
perception in the commercial products. Being a BSD-licensed product, OpenCV makes
it easy for businesses to utilize and modify the code.

The library has more than 2500 optimized algorithms, which includes a
comprehensive set of both classic and state-of-the-art computer vision and machine
learning algorithms. These algorithms can be used to detect and recognize faces,
identify objects, classify human actions in videos, track camera movements, track
moving objects, extract 3D models of objects, produce 3D point clouds from stereo
cameras, stitch images together to produce a high resolution image of an entire scene,
find similar images from an image database, remove red eyes from images taken using
flash, follow eye movements, recognize scenery and establish markers to overlay it with
augmented reality, etc. It has C++, C, Python, Java and MATLAB interfaces and
supports Windows, Linux, Android and Mac OS.

It can be found at URL: http://opencv.org/platforms/android.html

 26

4.1 OpenCV on Android

I asked around some experienced developers, asked on some forums and read some
google answers. Because image evaluation and character recognition needs much
computing I had to use some other tools and not just Java, what is not the best choice
for such types of work. Most of the responses recommended using OpenCv. So to move
to a real time environment I choose OpenCV.

I downloaded OpenCv for Android (version 2.4.9). Because OpenCV uses C and
C++ codes first I had to implement the latest NDK toolset that allows implementing
parts of application to use native-code languages. OpenCv4Android is available as a
SDK with a set of samples and Javadoc documentation for OpenCV Java API. It also
contains prebuilt apk-files, which can be run on an Android device “instantly“. The
second step was to implement the correct libraries to my application, which I did first
wrong. It made lots of trouble because to find out, that I had implemented the wrong
libraries for ARM hardware (library armeabi). I had to use (library armeabi-v7a) which
finally worked. To ensure full compatibility is good to implement all libraries (x86,
mips, armeabi-v7a, armeabi) to the application. OpenCV Manager shows the hardware
information about the current device, as an example my device‘s hardware information
are:

ARM v7 with Neon and VFPv4.
OS version: REL (4.0.4), API level 15.
For the proper functionality is necessary to install the latest OpenCV manager

which can be easily downloaded from Google play. OpenCV manager is an application
that provides the best version of the OpenCV for hardware. OpenCV library can be used
by other application for image enhancement, object detection, recognition and tracking
and so on. To prevent my application from crashes I had to handle OpenCV library
statuses, initializations and OpenCV Manager compatibility. This all can be easy
looking, but I had lot of trouble to implement it.

Figure 4.1: OpenCv logo

 27

(Source:

http://code.opencv.org/projects/opencv/wiki/OpenCVLogo.http://opencv.willowgarage.com/wiki/Open
CVLogo [online]. 2014 [cit. 2014.05.03])

4.2 Optical Character Recognition

Optical Character Recognition is used to extract text from an image or a scanned
document. This text is used for further processing such as it can be edited, formatted,
searched, indexed and automatically translated or converted to speech23

This thesis research also involved to study some of existing OCR libraries and
selected one of them for the thesis:

• Tesseract-OCR
• ABBYY-OCR
• Aspire-OCR

• Online OCR API

4.2.1 ABBYY-OCR

ABBYY is a company that provides software for document recognition, data capture
and linguistic software. They also provide OCR SDK for mobile platforms. Using their
SDK, developers can develop OCR based applications for mobiles. They provide SDKs
for following mobile platforms.

Mobile OCR Engine is a powerful software development kit which allows
developers of mobile and small footprint applications to integrate highly accurate
optical character recognition (OCR) technologies that convert images and photographs
into manageable and searchable text. Toolkit supports the most popular mobile
platforms and devices - iOS (iPhone) and Android.24

It was not for free to use and I did not want to be my application on a trial version.
So it is surely very useful, but I decided to search further. Unfortunately ABBY is not
the type of an open-source company.

4.2.2 Aspire-OCR

Aspire-OCR is an optical recognition engine that provides APIs for Java, C, C++,
Delphi, CSharp.Net, Visual Basic.Net and Visual C++.Net. It also includes functionality
for Barcode reading for Barcode reading.25 The SDK is used to develop Aspire-OCR
oriented applications and it has support for platform Windows, Mac, Linux and Solaris.
It takes almost every format of images like .png, .jpg, .bmp, etc. as input. They support
Java platform but it is hardly to find an existing application that uses this engine in
Android.

23 http://en.wikipedia.org/wiki/Optical_character_recognition [online]. 2014. [cit. 2014.05.13]
24 http://www.abbyy.com/mobileocr/ [online]. 2014. [cit. 2014.05.15]
25 http://asprise.com/home/. [online]. 2014. [cit. 2014.05.13].

 28

4.2.3 Online OCR API

As the name indicates, it is an online service that provides APIs for OCR. By using
these APIs, it is possible to develop different kinds of mobile and web based
applications. It supports various types of images to evaluate and can read text from
every well-known language. The handicap is that to use it you have be online and I
wanted to work it in offline mode too. So I decided to choose a built-it OCR engine
instead of an online OCR.

4.3 Tesseract engine for OCR

It is rumoured that Tesseract is the best open source OCR machine available. Some time
ago I had tried some other open source OCR programs without much success. So I
decided to try something new, to try Tesseract.

Tesseract is a good OCR machine, it works better than any other open source system
I have tried so far and the best on it that it is free to use anyone released under the
Apache License 2.0. Combined with the Leptonica Image Processing Library it can read
a wide variety of image formats and convert them to text in over 60 languages. It was
one of the top 3 engines in the 1995 UNLV Accuracy test. Between 1995 and 2006 it
had little work done on it, but since then it has been improved extensively by Google.
First it was released as open source in 2005 by Hewlett Packard, now. Tesseract
development has been sponsored by Google since 2006.26

My expectations were that if Android was backed up and bought by Google so
Tesseract was, it is surely to make then compatible if the Google answers recommend to
use it on Android, and there are some ups that they use is and are functioning. So that
task was set: implement Tesseract it in my application.

Tesseract works on Linux, Windows (with VC++ Express or CygWin) and Mac
OSX, so how to implement it on android the question remains. To use for other
platforms it has to be compiled. So that is the NDK tool needs to work again. To spare
time I tried it on other platform, when it finally worked to spare time in repeated
compiling I decided to compile it to native code the whole library and use it as a final
form that works (it became a quite bit data pack). The second reason is that the garbage
Collection in Java is carried by a daemon thread called Garbage Collector. C++ doesn't
have (built-in) garbage collection, but that doesn't mean that the developer should let
dynamically allocated memory stay allocated forever. The developer can and should
free it. The most basic way to do that is to free your object reference (or pointer, in case
of C++) manually when you don't need it anymore. When Tesseract finally worked I did
not wanted to touch it anymore, it made lots of trouble to debug C/C++ codes through
Java. (“Java garbage collector it’s like a beautiful woman who cannot see.”)

26 Google, [online]. 2014. [cit. 2014.05.13] available from site https://code.google.com/p/tesseract-ocr/

 29

The conclusion is that Tesseract is very usable OCR tool, especially for people who
can fix minor problems in the source and enable to use it on android. So I implemented
these parts to my application:

Tesseract OCR (https://code.google.com/p/tesseract-ocr/) [cit. 2014.05.03]
Leptonica (http://www.leptonica.com/) image processing libraries. [cit. 2014.05.03]
A v3.02 trained data file for a language. (https://code.google.com/p/tesseract-

ocr/downloads/list) [cit. 2014.05.03]. The language data files must be extracted to a
subdirectory named “tessdata”.

Figure 4.2: tesseract OCR

(Source: http://code.opencv.org/projects/opencv/wiki/OpenCVLogo. [online]. 2014 [cit. 2014.05.13])

 30

5 VEHICLE REGISTRATION PLATE
RECOGNITION

A vehicle registration plate is a metal or plastic plate attached to a motor vehicle or
trailer for official identification purposes. The registration identifier is a numeric or
alphanumeric code that uniquely identifies the vehicle within the issuing region's
database. In some countries, the identifier is unique within the entire country, while in
others it is unique within a state or province. Whether the identifier is associated with a
vehicle or a person also varies by issuing agency. Depending on the country, the vehicle
registration plate may be called a license plate or tag (United States), licence plate
(Canada), or number plate (United Kingdom, Australia et al.), or rego plate
(Australia).27

License plate recognition is a technology combining the methods of computer
vision, image processing and pattern recognition. The licence plate detection has to
comfort some difficulties which result from uncontrolled imaging, conditions such as
complex scene, weather conditions, low contrast, blurring viewpoint changes.

License plate detection through Haar-like features
OpenCV provides us tools and functions to implement Haar-like features. In

OpenCV, Haar-like features are implemented through Haar-Training. Haar-like feature
is a training process for lots of license plate samples. It can learn where the license plate
is located. From the trained data it can than predict on other new information where it
will be. To execute this on Android would be quite complicated for me. First I did not
have a large amount of training data (meaning by thousands of samples). Second to
learn it is needed a computer with high computing power where another platform is
used. Then the compatibility issues are present to implement it on Android. So I choose
another way to achieve my goal.

License plate detection through Edge Detection
To find license plate for humans is easy, because we can separate forms and we can

read. To explain to the computer it is necessary to prepare an algorithm that explains it
what to do. So a license plate need has form of a rectangle. So the task is to find a
rectangle object within an image which includes numbers and characters. So the first
step is to find edges on the image. There are more possibilities how to achieve this I will
explain my approach. We live in the 21th century so I expected to return the license
plate in coloured image if it is possible to achieve it from the accrued one. First step
load the image or acquire a camera frame and store it in the memory (in case of
coloured image it is a 3D matrix). To spare counting time it was necessary to simplify it
and for evaluating it is also necessary because it is hard to find an edge in 3D matrix
what is displayed in 2D display. So from the coloured image make a grey scale image.
Transform every loaded/acquired pixel from different coloured pixel types (for

27 Wikipedia. [online]. 2014. [cit. 2014.05.18] Avalaible from:
<http://en.wikipedia.org/wiki/Vehicle_registration_plate>

 31

example: RGB+alfa pixel can be 4*8bit) to a 1x8bit different intensities shades of
grey. The next step is to make is binary from this grey scale image make a threshold to
set it to binary.

Here are some explanations of the uses functions:
To simply the edges first it is needed to blur it. Blur an image using a Gaussian

filter. The function convolves the source image with the specified Gaussian kernel. In-
place filtering is supported.

Finds edges in an image using the [Canny86] algorithm. The function finds edges in
the input image and marks them in the output map edges using the Canny algorithm.
The smallest value between threshold1 and threshold2 is used for edge linking. The
largest value is used to find initial segments of strong edges. See
http://en.wikipedia.org/wiki/Canny_edge_detector

Finds contours in a binary image. The function retrieves contours from the binary
image using the algorithm [Suzuki85]. The contours are a useful tool for shape analysis
and object detection and recognition. See squares.c in the OpenCV sample directory.

imgproc.Imgproc.arcLength(MatOfPoint2f curve, boolean closed) Calculates a
contour perimeter or a curve length. The function computes a curve length or a closed
contour perimeter.

Approximates a polygonal curve(s) with the specified precision.
The functions approxPolyDP approximate a curve or a polygon with another

curve/polygon with less vertices so that the distance between them is less or equal to the
specified precision.

approxCurve Result of the approximation. The type should match the type of the
input curve. In case of C interface the approximated curve is stored in the memory
storage and pointer to it is returned.

epsilon Parameter specifying the approximation accuracy. This is the maximum
distance between the original curve and its approximation.

closed If true, the approximated curve is closed (its first and last vertices are
connected). Otherwise, it is not closed.

boundingRect(MatOfPoint points). Calculates the up-right bounding rectangle of a
point set. The function calculates and returns the minimal up-right bounding rectangle
for the specified point set. Input 2D point set, stored in std.vector or Mat.

 32

5.1 Evaluating

The flowchart represents the simplified algorithm.

Figure 5.1: Flowchart

 33

6 CREATING THE BASIS OF MY
APPLICATION

After the development environment was installed and the tools plugins and libraries are
implemented. Everything is tested the code writing can begin.

My workflow began by creating a new android application project in Eclipse (File >
New > Android Application Project). I chose to support systems versions from Android
2.3 to the latest version 4.4. It included approximately 95% of the Android system
market. Then it I began to write my code. To test my first steps I also created a similar
virtual android device as my smartphone by clicking on the icon Android Virtual Device

Manager .
By the way I noticed that my computer has not enough computing power to use the

tools and the simulator at same time. It was very slow and it handicapped me to do my
work. So I had to use my GSmart G1362 smartphone for testing and debugging my
application. So in my further documentation when I mention the words “my Android
device” I mean this smartphone produced by company Gigabyte. The disadvantage - to
depend on my Android device - has an advantage that the application is always tested
directly on a specific device and of course my phone was always fully recharged.

Figure 6.1: Android emulator in Eclipse platform

 34

6.1 Naming and creating an icon for the application

To make it easy to find my application among the applications I choose the icon to be
the logo of our faculty. The application is called “HFimage”. So if you installed it look
for it under this information.

Figure 6.2: HFimage application icon

6.2 Using the camera

In my application I use the built-in camera in my Android device. To ensure that
devices with no camera cannot find the application I added to the Manifest.xlm file:

<uses-feature android:name="android.hardware.CAMERA"/>
Add permission:
<uses-permission android:name="android.permission.CAMERA"/>
At the beginning the application’s icon will be shown in the main activity’s image

view. The camera can be loaded by pushing the Photo taking menu item. It will call the
camera provider and show it if it is accessible. When its camera is accessible the screen
shown us what is acquired from the camera, after pushing the photo item image
capturing action will be executed. After the acceptance of the taken picture it will be
streamed and stored in a bitmap and shown in main activity’s image view part. The
built-in gyroscope should send information how the picture was taken and the picture
should be automatically rotated and shown in the correct form.

The other using for the camera is while the Camera activity is on. It shows on the
screen the information from the camera’s stream. In the menu can be set one of the
various acquiring effects or choose the evaluating method.

The third camera using is to access camera’s flash light and use it as a torch. The
user can choose whether to turn it on or off.

 35

6.3 Load and save

The main task is to create a folder of the application and for that it searches for the
device’s external storage. It creates a directory and saves its data files. For other use of
these functions can be used by pushing the menu items Save picture/text and Load
picture. This serves as a request for the application to do the correct task. While saving
and loading is necessary take care accessing memory and storage properly I solved it
with a buffered stream. Buffered input and output stream ensured prevention form
memory collapses, without it sometimes unfortunately crash when working with large
sized images.

To save files it is needed to add permission in Manifest.xlm file:
<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />

To load files it is needed to add:
<uses-permission android:name="android.permission.READ_EXTERNAL_STORAGE"/>

6.4 Get actual location using the location manager

To enable to the application location services it was necessary to add a permission in the
Manifest.xlm file:

<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"/>

The activity for location implements LocationListener and uses LocationManager
methods. LocationListener is used for receiving notifications from the
LocationManager when the location has changed. These methods are called if the
LocationListener has been registered with the location manager service using the
request update methods.

LocationManager class provides access to the system location services. These
services allow applications to obtain periodic updates of the device's geographical
location, or to fire an application-specified Intent when the device enters the proximity
of a given geographical location. To request for location updates is necessary to register
for location updates using the named provider, and a pending intent. Parameters:

• Provider: the name of the provider with which to register.
• MinTime: minimum time interval between location updates.

• MinDistance: minimum distance between location updates.
• LocationListener: whose LocationListener.onLocationChanged method will

be called for each location update
The user can choose from which provider they want to acquire updates.

 36

6.5 Binding pieces together

In the end there were 7 activities and with different layouts, 3 different menus, various
Java, Android and 2 external imported libraries. All seven activities has they own
classes, private and public methods, icons and string resources. The layouts and menus
are written in Extensible Markup Language (XML). Every activity calls the proper
items and set their content view and if it is necessary it creates an options menu so I had
to override their onCreate methods. Of course I had to override plenty of other methods
to ensure proper data sharing among the activities, to create references for Java builder,
add permissions and so on. Data transfer and data sharing is ensured with intents and
public static variables. To enable methods for other activities some methods are public
too, it was necessary while developing and testing functionality.

At the end an *.apk file is crated and named HFimage.apk what is the install pack
for my application for Android system.

Figure 6.3: HFimage application installation

 37

7 APPLICATION HFimage

This chapter summarize and explains the final application and its functionality. After
the “FEKT-HFimage.apk” is installed it makes a runnable icon among the other apps.
On starting the application it first tries to connect the OpenCV Manager application,
when it is missing it toast to install the latest version from Google play. After
successfully accessing the OpenCV Manager the HFimage starts, the implemented
OpenCV libraries should be compatible with all ARMv7 processors. After running first
it searches the accessibility of the device’s external storage and looks for the
application’s directory. If the “HFimage” directory cannot be found the application
creates a new directory and names it after itself. If HFimage directory exists but if there
are missing some subdirectories it creates them. There are two subdirectories “data” and
“Mytexts”. In data is located the Tesseract tessdata language trained data pack if its
missing the application creates it. Mytexts is created if the application OCR activity is
called and here is the location where it saves the evaluated text files if necessary. The
saved photos are stored in the main HFimage directory. After all this it shows the main
activity.

Figure 7.1: HFimage application’s hierarchy

 38

7.1 Main activity

After a successful initialization the Main activity is shown. This activity serves as a
global window where all other activities are accessible. The main window serves as the
part that takes care for image evaluation from files. On the main screen are found all
necessary objects to enable this. All shown items and functions are explained and
shown below.

An image view item to show which is loaded and a text view item to show
temporary evaluation answers and acquired information.

There are two push buttons Find plate and Evaluate. To use them is necessary to
load an image first. If no image is loaded they pop out a toast that there is no image to
evaluate. How they work is in detail explained in its subchapter.

The menu can be found it right top corner of the main window. It contains all the
items to call the other available activities and functions for image loading and image
saving. It also contains the exit function. After pushing menu items they began the
intents they predetermined to do. The menu items are:

• Photo taking
• Save picture

• Load picture
• Get location

• Camera
• OCR simple

• About
• Exit & Close

Figure 7.2: HFimage application’s main window

 39

Lights
If there is room for menu items the Lights menu item shows itself as a light bulb. It

serves as intent to lights activity. By pushing it automatically calls the lights activity
and turn on the camera lights as a torch. The activity itself enables to turn on and off the
camera flashlights. By ending the lights activity the lights are turned off and the camera
is released to use by another action. This function is just a practical plug-in in the
application, this was my first successfully attempt to commutate with the camera. It can
be useful sometimes when you need to see in the dark.

Photo taking
Photo taking menu item calls a standard Intent action that can be sent to have the

camera application capture an image and return it. The caller may pass an extra
EXTRA_OUTPUT to control where this image will be written. If the
EXTRA_OUTPUT is not present, then a small sized image is returned as a Bitmap
object in the extra field. This is useful for applications that only need a small image. If
the EXTRA_OUTPUT is present, then the full-sized image will be written to the Uri
value of EXTRA_OUTPUT. So if no picture was taken and gone back from camera
photo taking mode nothing happens, but when photo was taken and the user agreed with
it, the image is buffered and shown in the main window’s image view.

Figure 7.3: HFimage photo taking progress

Load
To filter the images, taken photos and pictures among the tremendous amount of

files the Media provider declaration is called. This declaration contains meta data for all
available media on both internal and external storage devices, the images part of meta
data contains all available images. The user can choose how to complete the action
using de pre-set gallery provider or other application. After the uses chooses the image
the cursors path resolved and get the content resolved to acquire the file path. The
whole process is shown on picture below.

 40

Figure 7.4: HFimage image loading progress

Save
The shown image in the main window’s image view is saves as flushed output

stream within an Uri. The image is compressed to .jpg format with max quality
available and saved to the HFimage root directory. If it cannot find the directory it
creates it.

The created file is named after the calendar’s actual date, actual time, an index
number and other available data if there are found (location data). The index number
represent the number how much saves have been provided from the application start.

“D=yyyy-MM-dd” + ”T=HH-mm-ss” + "N=" + Index + "+" + recievedLocationData

For an example a full named file can be:
D=2014-05-13T=14-10-36N=2+Lat=49.23113815Lon=16.57100772.jpg

Get location
Get location menu item calls intent to get to the location activity. This activity is

explained in its subchapter.
Camera
Cameramenu item calls intent to get to the Camera activity. This activity is

explained in its subchapter.
OCR simple
OCR simple menu item calls intent to get to the OCR simple activity. This activity is

explained in its subchapter.
About
About menu item calls an intent to get to the About activity. This activity is

explained in its subchapter.

 41

Exit & close
Pushing the Exit & close menu item a pop-up window will appear. This widow ask

for if the user is sure they want to exit the application and the choice remains on the
user whether or not to exit the application. There is another possibly to exit the
application pushing the system back button. Both methods call the onDestroy() method
what should take care the memory garbage the application created.

7.1.1 Find licence plate on image

So after the image is loaded it can be evaluated in few steps. Every type is explained
with step by step instructions and shown with a figure example.

There is the “two step” method which does not need to find the licence plate,
because the licence plate is the picture’s only content. So the user needs just push the
evaluate button and the recognized characters will be shown in the text view part.

Figure 7.5: HFimage two step method

The “three step” method is that type which needs to find the licence plate first. The

user has to push the find plate button. If one piece of licence plate is found while the
evaluation it will be cut out from the image and shown in the image view part. The next
step is to push the evaluate button and the recognized characters will be shown in the
text view part.

 42

Figure 7.6: HFimage three step method

The “four step” method is that type which needs also find the licence plate first. The

user has to push the find plate button. If case that more piece of licence plate are found
while the evaluation it will call the plate activity to offer the user which one should be
cut out from the image and shown in the image view part. The user can look up for the
proper one by using navigation buttons and be clear with the shown information. The
next step is to push the evaluate button and the recognized characters will be shown in
the text view part.

Figure 7.7: HFimage four step method

 43

7.2 OCR simple

OCR simple activity allows loading images and saving texts. The loaded images are
shown in the image view field. If loaded images contain text the activity can extract
them to character field located under the image view. The extraction can be executed by
pressing the “Recognize text from image”. The extraction can be set to continuation
mode. For example if the user want to create continues text from more images the
continuous mode has to be turned on. The next extracted text will be shown next to text
that was already shown in the text field. The user can edit the text simply by touching it
the keyboard pop out to typewrite or edit. After the user us satisfied with the text they
can save it. Saving process is accessed by the menu “Save text” item. The file will be
saved in the HFimage “MyTexts” subdirectory. If the activity cannot find the directory
it creates it.

So the text is saved, but it still shown in the text field. The user do not have to delete
it. Simply by set continuous mode to off the next extraction will clear the text field and
show the new text. Settings menu item should serve for choosing various languages,
which will be allowed in the next version ok HFimage.

Go back to the main window can be done by pushing system back button or
accessing it by the menu item “Back to main”. Both way executes the onDestroy()
method for the activity.

Figure 7.8: HFimage OCR simple activity

 44

7.3 Get location

This part serves for finding the location of the user, to authenticate where was the
picture taken. Together with the date and time information should serve as an
information of the photo when and where was it taken. So if there are any available
location data it can be taken back and set as an add-on in the naming process of the
image. For example: if there is a car parking in a wrong place where it is not allowed to
park, the location data together with time plus date data and licence plate data should
authenticate that the taken photo describes the reality and the owner of the car should be
penalized. First I wanted to create hash function to prevent data faking, but at the end I
noticed even this localization activity is something beyond of the goal this thesis wanted
to achieve.

The user can choose from which provider wants to acquire location data, there is a
possibility to use GPS satellites or online network if it is supported. Passive providers
can be other applications which can localize themselves and share location data with
other applications. Because it take some time for communication synchronization of the
provider after choosing a provider the data acquiring a leave the channel opened. Its
interrupted after the application closes. When this activity is never called no channels
are opened for providers and no location data are received. When the the providers are
turned down by the system the activity is just waiting for the right moment if something
has changed. I did not wanted to pop up some windows to ask the user if he wants to
turn it on, I actually hate those types of notifications. If the users want they should do it
manually the activity will respond to it.

The figure below shows how the activity reacts when there are available information
or not. (The second picture was taken while I was going home from school in Brno by
foot).

Figure 7.9: HFimage OCR simple activity

 45

7.4 About activity

This activity serves as a reference for contact and added information where was
application developed. It shows the name of the work’s author and the supervisor. The
user can choose for more languages such English, Czech and Slovak. Because long text
is shown a vertical slider helps the user to scroll the shown text. At the end is located
the back button which takes the user back to the main window. It looks like the picture
below:

Figure 7.10:About HFimage activity

 46

7.5 Camera activity

The camera activity’s layout orientation is set to horizontal. The layout includes an
OpenCV Java camera view where the camera stream is shown as frames. It also shows
the cameras resolution and frames per second.

To use the prepared functions a menu is created. Two menu items are shown in the
activity header other can be accessed by pushing the right top corner. By pushing it a
scroll menu will appear. It is up to the user which they want to use. The
NORMAL RGB mode is set as a default mode where the coloured camera stream is
shown in the camera view. The default and built-in modes are shown in appendix of this
thesis on the figures pictures

The user can go back to the main window by pushing the prebuilt back button or can
be choose ” Back” menu item.

Figure 7.11:Camera activity default preview

7.5.1 Camera activity’s find plate mode

The communication with the camera is enabled and it is functioning properly. The next
step is to implement the evaluating algorithms to find the correct rectangles on the
camera frames. This is included to the activity’s find plate mode. The acquired is copy
into a matrix and the evaluating algorithm is executed. The suitable rectangles are
excepted as the license plate coordinates on the frame and drawn into the original
camera frame what is shown to the user by the camera view on the display. If the
algorithm found more suitable rectangles all of them are drawn.

It has been tested for various distances; the proper distance when it is functioning
correctly is from 0.5 to 5 meters. When greater tolerance is allowed it can evaluate even
licence plates within a rotation tolerance, but the false evaluating grows. To show which
types of license plates can be evaluated a picture is also shown with various license
plate in it. To show these operations more examples are shown below:

 47

Figure 7.12: Find plate mode from greater distance

Figure 7.13: Find plate mode from closer

 48

Figure 7.14: Find plate mode set to greater tolerance

Figure 7.15: Camera activity has found more plates

 49

CONCLUSION

This work describes what I needed to study and obtain to get enough information for
solutions and the possibilities of creating an Android application. How I selected and
configured my development environment.

In the practical part I have written my workflow, as I progressed in my solution. I
described my approach in design of GUI and the basic functionality of image processing
for Android. Then the communication with the camera is explained, how I
accomplished saving and loading data from storage. This served as the basis for my
application where the algorithms were implemented for image processing and image
evaluation.

Further I explain which algorithms were implemented for image processing and
image evaluation. Product of this thesis is a functioning application that allows to its
user to capture images and video stream. The algorithm evaluates the entering data and
shows the location of the license plate. The application also allows recognizing texts
and numbers from images. There are other various practical features and options
implemented within the application.

As to my opinion, I was glad to work on this project. It was interesting and I
obtained a new view of an operation system. I have not gone deeper into Android and
Java programming before. It was interesting and my pleasure to get to know it better.
Sometimes it was even hard to progress in my work because I wanted to try the
enormous amount of the possibilities that Android system provides.

Of course there is much more to be done. Set more precisely the parameters of
evaluating, to try other evaluating methods and compare them with themselves. To
enable language selections for other counties, to evaluate the characters of cars
registration number of other countries too. Of course I want to implement more
possibilities and expand my application even with more functions. I think there is much
more to discoverer for me in this field and to get more accurate and advanced
application.

 50

References
• Abby. http://www.abbyy.com/mobileocr/ [online]. 2014. [cit. 2014.05.15]

• Android developers: Activities [online]. 2014 [cit. 2014.05.13]. Available at:
<http://developer.android.com/guide/components/activities.html>ff

• Android developers: Debugging [online]. 2014 [cit. 2014-01-03]. Dostupné na
URL: http://developer.android.com/tools/debugging/index.html#tips

• Android developers: Debugging [online]. 2014 [cit. 2014.01.03]. Available at:
http://developer.android.com/tools/debugging/index.html#tips

• Android developers: USB Host and Accessory [online]. 2014 [cit. 2014.01.01].
Available at:
http://developer.android.com/guide/topics/connectivity/usb/index.html

• Apache License, Version 2.0 [online]. 2010 [cit. 2013-12-27]. Available from
URL: <http://www.apache.org/licenses/LICENSE-2.0>.

• Aspire. http://asprise.com/home/. [online]. 2014. [cit. 2014.05.13].

• Ben Elgin: Google Buys Android for Its Mobile Arsenal [online]. Aktu
alizováno: 2005-08-17 [cit. 2014.01.02]. Available from URL:
http://www.webcitation.org/5wk7sIvVb

• Eclipse logo, [online]. 2014 [cit. 2014.01.03] available from official eclipse site:
http://www.eclipse.org/artwork/

• FORSYTH, David a Jean PONCE. Computer vision: a modern approach.
London: Prentice Hall, c2003, xxv, 693 p. ISBN 01-308-5198-1.

• Google, [online]. 2014. [cit. 2014.05.13] available from at site
https://code.google.com/p/tesseract-ocr/

• JANOVSKÝ, Martin Návrh a implementace knihovny pro číslicové zpracování signálů
na platformě Android: diplomová práce. Brno: Vysoké učení technické v Brně, Fakulta
elektrotechniky a komunikačních technologií, Ústav telekomunikací, 2010. 54 s.

• Java logo, [online]. 2014 [cit. 2014.01.03] available from official Java site:
<http://www.java.com/en/about/>

• Open handset alliannce: Android Overview [online]. [cit. 2013.12.30]. Available
from URL: http://www.openhandsetalliance.com/android_overview.html

• RACLE. Java SE 7 Features and Enhancements [online]. aktualizováno 2012-
13-12 [cit. 2013 12 28]. Available from URL:
http://www.oracle.com/technetwork/java/javase/jdk7-relnotes-418459.html

 51

• ORACLE. Oracle and Java [online]. 2012-13-13 [cit. 2013.12.28]. Available
from URL: http://www.oracle.com/us/technologies/java/overview/index.html

• Palo Alto.: Google’s Android becomes the world’s leading smart phone platform

[online]. UK: 2011-01-31 [cit. 2014‑01‑03]. Available from URL:
http://www.canalys.com/newsroom/google%E2%80%99s-android-becomes-
world%E2%80%99s-leading-smart-phone-platform

• SHAPIRO LINDA, G. Computer vision. Vyd. 1. New Jersey: Prentice-Hall,
2001, 580 s. ISBN 01-303-0796-3.

• Tony Bradley: Android Dominates Market Share, But Apple Makes All The
Money [online]. Forbes 2014, aktualizováno 2013-11-15 [cit. 2014.01.02].
Available from URL:
http://www.forbes.com/sites/tonybradley/2013/11/15/android-dominates-market-
share-but-apple-makes-all-the-money/

• Tutorialspoint.: Android [online]. 2014 [cit. 2014 01 02]. Available from URL:
http://www.tutorialspoint.com/android/

• VOGEL, Lars. Android application and activity lifecycle. [online]. [cit. 2014-
05-17]. Available at:
http://www.vogella.com/tutorials/AndroidLifeCycle/article.html

• Wikipedia. [online]. 2014. [cit. 2014.05.18] Avalaible from:
http://en.wikipedia.org/wiki/Vehicle_registration_plate

• Wikipedia. http://en.wikipedia.org/wiki/Optical_character_recognition [online].
2014. [cit. 2014.05.13]

 52

List of appendices

Appendix 1:

Camera activity’s modes as snapshots:

Appendix 2:

Content of the uploaded zipped pack into the information system of BUT

Appendix 3:
Content of the provided CD

 53

Camera activity’s modes as snapshots

NORMAL RGB

MODE_SEPIA

 54

MODE_SOBEL

MODE_PIXELIZE

 55

MODE_POSTERIZE

MODE_OBJECT_FIND

 56

MODE_CANNY

MODE_CANNY2 (Blurred Canny)

 57

MODE_ZOOM

MODE_HIST

 58

Content of the uploaded zipped pack into the IS

BRNO UNYVERSITY OF TECHNOLOGY:
(The application and source codes)
HFimage.apk - install file for the application

FEKT-HFimage directory:
AboutActivity.java
CameraActivity.java
GPSActivity.java
LightsActivity.java
MainActivity.java
PlateActivity.java
TextActivity.java

Layout directory:
activity_about.xml
activity_cam.xml
activity_gps.xml
activity_lights.xml
activity_main.xml
activity_plate.xml
activity_text.xml

Menu directory:
cammenu.xml
main.xml
mainmenu.xml
textmenu.xml

Values directory:
dimens.xml
strings.xml
styles.xml

Other files:
AndroidManifest.xml
ic_launcher-web.png

 59

Contents of the provided CD
HFimage.apk - install file for the application

UploadedFilesToIS directory:
Uploaded zipped pack into the information of BUT

Samples directory:
Provided *.jpg images for testing the application

ScreenShots directory:
Provided screenshots how the application words and what is contained within

SourceCodes directory:
FEKT-HFimage importable project with source codes, built files and the application
OpenCV Library - 2.4.9
tess-two: library for Tesseract OCR engine
with compiled source code to native code
[English language trained data file v3.02 included]

Video directory:
Video sample of installing the application on new device.
Video samples showing the application working in real time.

