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Abstract. Sparse matrices are occasionally encountered 
during solution of various problems by means of numerical 
methods, particularly the finite element method. ELLPACK 
sparse matrix storage scheme, one of the most widely used 
methods due to its implementation ease, is investigated in 
this study. The scheme uses excessive memory due to its 
definition. For the conventional finite element method, 
where the node elements are used, the excessive memory 
caused by redundant entries in the ELLPACK sparse 
matrix storage scheme becomes negligible for large scale 
problems. On the other hand, our analyses show that the 
redundancy is still considerable for the occasions where 
facet or edge elements have to be used. 
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1. Introduction 
The Finite Element Method, which has been origi-

nally developed for static problems of structural mechanics 
and initially used by mechanical and civil engineers, is one 
of the most widely used numerical methods by the scien-
tific community. It was first formulated in 1940s by Cou-
rant after a discussion regarding the versatility of piecewise 
approximations. In the 1950s, Argyris began putting to-
gether the many mathematical ideas (domain partitioning, 
assembly, boundary conditions, etc.) that form the basis of 
the Finite Element Method for aircraft structural analysis.  

In its original form, the method depends on represen-
tation and approximate evaluation of continuous scalar 
functions at the corners of the subdomains (referred as 
“element”s) of the whole problem domain. Even though 
this formulation proves to be sufficient in handling most 
problems in the structural mechanics, it was compulsory to 
extend and generalize the method in order to compute 
vector functions. This yielded the definitions of the so-
called edge and facet elements. Thanks to the definition of 

edge and facet elements, it is possible to solve electromag-
netic scattering and radiation problems as well as eddy 
current problems by means of the Finite Element Method. 
Tab. 1 enlists which element type is the most suitable one 
for evaluation of the major functions in electromagnetics. 

A major advantage of the Finite Element Method is 
that it yields sparse matrices throughout the solution proc-
ess. By means of special storage schemes, it is possible to 
store and solve very large scale matrices and matrix equa-
tions, respectively. 
 

 Node 
Elements 

Edge 
Elements 

Facet 
Elements 

Volume 
Elements 

Types of 
Represented 
Functions 

Scalar Vector Vector Scalar 

Represen-
tation 

Capability 
of 

Continuity 

Total 
Tangential 
Component 

Normal 
Component 

None 

Physical 
Types of 

Represented 
Functions 

Scalar 
Potential 

Fields, 
Vector 

Potentials 

Fluxes, 
Vector 

Densities 

Scalar 
Densities 

Examples 
from 

Electromagn
etic Theory 

Scalar 
Electric 
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(V or ) 

Vector 
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Potential A, 
Electric Field 
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Magnetic 

Field 
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Magnetic 
Flux Density 
B, Electric 

Field 
Density D, 

Current 
Density J 

Charge 
Density () 

Tab. 1. Element types and their representation capabilities. 

ELLPACK sparse matrix storage scheme [1–3] is one 
of the most widely used and preferred schemes in practice 
due to its implementation ease. This scheme stores a matrix 
A with size nn (1), 

 

























555452

4443

353432

2221

1311

00

000

00

000

000

aaa

aa

aaa

aa

aa

A  (1) 



998 G. AKINCI, A. E. YILMAZ, M. KUZUOĞLU, EXCESSIVE MEMORY USAGE OF THE ELLPACK SPARSE MATRIX STORAGE … 

by means of the following two matrices (2), 
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By this definition, both data and indices matrices are 
of the sizes nm; where m is the maximum number of 
nonzero entries in a row of A. 

The entries shown with symbols “*” are meaningless 
and redundant values held in the memory. These redundan-
cies are nothing but the aspects referred as the “generosity” 
of the ELLPACK sparse matrix storage scheme. 

We’ll carry out an analysis of how generous the 
ELLPACK sparse matrix storage scheme behaves during 
the finite element computations [4-6]; in other words, for 
various element types of various shapes in 2-Dimension 
(2D) (Fig. 1 and Fig. 2), we’ll try to compute the ratio of 
redundant (or meaningless entries shown with “*”) entries 
in the whole matrix. We’ll perform our analysis for node, 
edge, facet and volume elements for linear triangular [7] 
and quadrilateral [8] elements. 

      (a)                             (b)                                (c)                              (d)    
Node Element        Edge Element        Facet Element       Volume Element 

Fig. 1. Quadrilateral elements. 

 
          (a)                            (b)                            (c)                            (d) 
Node Element        Edge Element        Facet Element       Volume Element 

Fig. 2.  Triangular elements. 

Assume that, we have a problem domain as shown as 
Fig. 3(a). In case the problem domain is homeomorphic to 
a rectangle; this domain in the xy-plane can be mapped to 
a rectangular domain in a uv-plane, as seen in Fig. 3(b). 
Hence, we’ll carry out our further analysis in the uv-plane, 
without loss of generality. 

 
Fig. 3. Problem domain mapped to a regular rectangle in the 

uv-plane. 

2. Quadrilateral Elements 
First of all, we’ll perform our analysis for quadrilat-

eral node, edge, facet and volume elements, separately. 

2.1 Quadrilateral Node Elements 

If we consider that this mesh consists of node ele-
ments, then the total number of unknowns (i.e. number of 
nodes) will be Kquad-node= (N + 1) (L + 1), which means 
that the size of the global system matrix obtained through-
out the finite element solution will be Kquad-nodeKquad-node. 

Let us consider how much memory the ELLPACK 
sparse matrix storage scheme will allocate for storing this 
matrix. For this purpose, first, we have to consider the 
maximum number of nonzero entries in one row of this 
matrix.  

 
Fig. 4.  A node shared by 4 elements. 

As seen in Fig. 4, a node can maximally be shared by 
4 elements. This means that this node will have 8 neighbor-
ing nodes; which means that the row corresponding to this 
node will have 8 off-diagonal nonzero entries in addition to 
1 diagonal nonzero entry. Namely, in this case, the maxi-
mum number of nonzero entries in one row will be 9. 

Hence data and indices matrices of ELLPACK will be 
of size Kquad-node   9. This means that each matrix will 
require 9   (N + 1)   (L + 1) entries in the memory. 

2.2 Quadrilateral Edge Elements 

If we consider that this mesh consists of edge ele-
ments, then the total number of unknowns (i.e. number of 
edges) will be Kquad-edge= 2NL + N + L, which means that 
the size of the global system matrix obtained throughout 
the finite element solution will be Kquad-edgeKquad-edge.  

As seen in Fig. 5, an edge can be shared at most by 2 
elements. The row corresponding to this edge will have 6 
off-diagonal nonzero entries in addition to 1 diagonal non-
zero entry. Namely, in this case, the maximum number of 
nonzero entries in one row will be 7. 

 
Fig. 5.  An edge shared by 2 elements. 
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Hence data and indices matrices of ELLPACK will be 
of size Kquad-edge   7. This means that each matrix will re-
quire 7   Kquad-edge= 7   (2NL + N + L) entries in the 
memory. 

2.3 Quadrilateral Facet Elements 

All computations regarding the number of unknowns 
and number of nonzero entries will be equal to that of the 
edge elements. 

Hence data and indices matrices of ELLPACK will be 
of size Kquad-facet  7. This means that each matrix will re-
quire 7   Kquad-facet= 7   (2NL + N + L) entries in the 
memory. 

2.4 Quadrilateral Volume Elements 

If we consider that this mesh consists of volume 
elements, then the total number of unknowns (i.e. number 
of centroids) will be Kquad-volume= N   L, which means that 
the size of the global system matrix obtained throughout 
the finite element solution will be Kquad-volume  Kquad-volume. 

A centroid is owned by one element only; it is not 
shared. Hence,  
 Only diagonal terms in the matrix,  
 Only NL entries in the memory.  

(ELLPACK or any other sparse matrix storage scheme is 
unnecessary. It is sufficient to compute and store the 
diagonal terms in an ordinary array) 

3. Triangular Elements 
We’ll perform our analysis for triangular node, edge, 

facet and volume elements. 

3.1 Triangular Node Elements 

We can obtain a triangular element mesh from 
a quadrilateral mesh in a straightforward manner; which 
will yield 2NL elements. No new nodes are introduced, the 
total number of unknowns (number of nodes) will be iden-
tical to the quadrilateral case; that is Ktri-node=  
Kquad-node= (N + 1)   (L + 1). 

A node can be shared at most by 6 elements as seen in 
Fig. 6. The matrix row corresponding to this node will 
have 6 off-diagonal nonzero entries in addition to 1 diago-
nal nonzero entry. Namely, in this case, the maximum 
number of nonzero entries in one row will be 7.  

 
Fig. 6.  A node shared by 6 elements. 

Hence each matrix will require 7   Ktri-node= 
7   (N + 1)   (L + 1) entries in the memory. 

3.2 Triangular Edge Elements 

While conversion from the quadrilateral mesh to 
triangular mesh NL new edges are introduced; hence, 
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As seen in Fig. 7, an edge can be shared at most by 2 
elements. The matrix row corresponding to this edge will 
have 4 off-diagonal nonzero entries in addition to 1 diago-
nal nonzero entry. Namely, in this case, the maximum 
number of nonzero entries in one row will be 5.  

 
Fig. 7.  An edge shared by 2 elements. 

Hence each matrix will require 5   Ktri-edge = 
5   (3NL + N + L) entries in the memory. 

3.3 Triangular Facet Elements 

All computations regarding the number of unknowns 
and number of nonzero entries will be equal to that of the 
edge elements and each matrix will require 5   Ktri-facet= 
5   (3NL + N + L) entries in the memory, too. 

3.4 Triangular Volume Elements 

If we consider that this mesh consists of triangular 
volume elements, then the total number of unknowns (i.e. 
number of centroids) will be Ktri-volume= 2NL. 

A centroid is owned by one element only; it is not 
shared. Hence, 
 Only diagonal terms in the matrix, 
 Only 2NL entries in the memory. 

4. Exact Number of Nonzero Entries 
We’ll determine exact number of nonzero entries for 

each element type. 

4.1 Quadrilateral Node Elements 

There are 3 types of nodes inside the mesh. 

Type 1 node: A node owned by only one element at 
the corner of the problem domain. There are 4 nodes of this 
sort. For such nodes, the corresponding row will have only 
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3 off-diagonal and 1 diagonal nonzero entries; i.e. 4 non-
zero entries. 

Type 2 node: A node owned by 2 elements at the bor-
der of the problem domain. There are (2N + 2L - 4) nodes 
of this sort. For such nodes, the corresponding row will 
have 5 off-diagonal and 1 diagonal nonzero entries; i.e. 6 
nonzero entries.  

Type 3 node: A node owned by 3 elements. There are 
(N - 1)   (L - 1) nodes of this sort. For such nodes, each 
row will have 9 nonzero entries. Hence, the actual number 
of nonzero entries is equal to, 
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ELLPACK stores 9   (N + 1)   (L + 1) entries and 
redundancy rate is 
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4.2 Quadrilateral Edge Elements 

There are 2 types of edges. 

Type 1 edge: An edge shared by only 1 element at the 
border of the problem domain. There are NL edges of this 
sort. Rows corresponding to these edges have 3 off-diago-
nal and 1 diagonal nonzero entries; i.e. 4 nonzero entries. 

Type 2 edge: An edge shared by 2 elements. There 
are NL + N + L edges of this sort. Rows corresponding to 
these edges have 6 off-diagonal and 1 diagonal nonzero 
entries; i.e. 7 nonzero entries. Hence, the exact number of 
nonzero entries will be 11NL + 7N + 7L. 

ELLPACK stores 14NL + 7N + 7L entries and redun-
dancy rate is 
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4.3 Quadrilateral Facet Elements 

All computations regarding the number of unknowns, 
number of nonzero entries and redundancy rate will be 
equal to that of the edge elements. 

4.4 Triangular Node Elements 

There are 4 types of nodes inside the mesh. 

Type 1 node: A node owned by only one element at 
the corner of the problem domain. There are 2 nodes of this 
sort. For such nodes, the corresponding row will have only 
2 off-diagonal and 1 diagonal nonzero entries; i.e. 3 non-
zero entries. 

Type 2 node: A node shared by only 2 elements at the 
border of the problem domain. There are 2 nodes of this 
sort. For such nodes, the corresponding row will have only 
3 off-diagonal and 1 diagonal nonzero entries; i.e. 4 non-
zero entries. 

Type 3 node: A node shared by 3 elements. There are 
(2N + 2L – 4) nodes of this sort. For such nodes, the corre-
sponding row will have only 4 off-diagonal and 1 diagonal 
nonzero entries; i.e. 5 nonzero entries. 

Type 4 node: A node shared by 6 elements. There are 
(NL – N – L + 1) nodes of this sort. For such nodes, the 
corresponding row will have only 6 off-diagonal and 1 
diagonal nonzero entries; i.e. 7 nonzero entries. Hence, the 
exact number of nonzero entries will be 
7NL + 3N + 3L + 1. 

ELLPACK stores 7NL + 7N + 7L + 7 entries and 
redundancy rate is 
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4.5 Triangular Edge Elements 

There are 2 types of edges inside the mesh. 

Type 1 edge: An edge owned by only one element at 
the border of the problem domain. There are 2NL edges of 
this sort. For such nodes, the corresponding row will have 
only 2 off-diagonal and 1 diagonal nonzero entries; i.e. 3 
nonzero entries. 

Type 2 edge: An edge owned by 2 elements. There 
are NL + N + L edges of this sort. For such nodes, the 
corresponding row will have only 4 off-diagonal and 1 
diagonal nonzero entries; i.e. 5 nonzero entries. Hence, 
exact number of nonzero entries will be 11NL + 5N + 5L. 

ELLPACK stores 15NL + 5N + 5L
 

entries and 
redundancy rate is 

 
LNNL

NL
r

5515
4


 . (8) 

4.6 Triangular Facet Elements 

All computations regarding the number of unknowns, 
number of nonzero entries and redundancy rate will be 
equal to that of the edge elements. 

5. Results and Their Implications for 
Real-Life Problems 

5.1 Wrapping-Up the Results of the Analyses 

Summarizing our analysis results in Fig. 8 and Fig. 9, 
we observe a very interesting aspect of the ELLPACK  



RADIOENGINEERING, VOL. 23, NO. 4, DECEMBER 2014 1001 

 
Fig. 8.  Redundancy rate vs. different values of N = L (for 

various types of triangular elements). 

 
Fig. 9.  Redundancy rate vs. different values of N = L (for 

various types of quadrilateral elements). 

sparse storage scheme. For node elements, as a matter fact, 
the redundancy of the scheme becomes quite negligible (at 
the order of 0.001%) for very large scale problems. This 
means that the scheme can be confidently implemented and 
used in case of node elements. For volume elements, the 
scheme can also be used safely since there is no redun-
dancy. 

On the other hand, for the edge and facet elements, 
which are quite frequently used in electromagnetic scat-
tering problems, the redundancy rate converges to 26.6% 
for triangular edge/facet elements; and to 21.5% for quad-
rilateral edge/facet elements. This means that it should be 
noted that there will be a considerable amount of redundant 
resource usage of ELLPACK storage scheme for very large 
scale electromagnetic scattering problems.  

5.2 Real Life Problems 

5.2.1 Bistatic Radar Cross Section Computation for 
Isolated Scatterers 

In order to give an idea about the situation in real life 
electromagnetic scattering problems, let us now consider 
some conventional problems modeled in two-dimensional 
space. 

First, we will consider an isolated scatterer extending 
to infinity (or so long in that direction such that this as-
sumption is valid) in one direction. For such problems, the 
main aim is to obtain the bistatic Radar Cross Section 

(RCS) of the scatterer. For this purpose, an incident plane 
wave of an arbitrary direction at a specific frequency (or 
wavelength ) is assumed onto the scatterer, and the scat-
tered field caused by the scatterer at all directions (towards 
any elevation and azimuth angle) is computed by means of 
the Finite Element Method. As seen in Fig. 10, the scatterer 
can be thought as occupying a space modeled with N1  L1 
elements. Here, it should be noted that it is common prac-
tice to choose the element size no more than 0.1 in case of 
linear elements for an acceptable level of solution 
accuracy.  

On the other hand, since the FEM is not suitable for 
direct use in open problem domains, the “Absorbing 
Boundary Conditions (ABCs)”, particularly the so-called 
Perfectly Matched Layers (PMLs) [9] shall be applied to 
such problems in order to terminate the computational 
domain. The most common approach for PML implemen-
tation is the complex-coordinate stretching [10], and this 
method requires attaining a thickness of at least 3 elements 
to the PML for the convergence of the solution.  

Perfectly Matched Layer (PML) 

(thickness: min. 3 elements) 

Huygens Surface

N segments 

L
segments 

Free Space 

(thickness: min. 2 elements so 

that the Huygens Surface can 

be placed inside) 

Isolated Scatterer  

(size: N1L1 elements) 

 
Fig. 10.  Sample 2-D problem modeled via the Finite Element 

Method for computation of the RCS of an isolated 
scatterer.  

Moreover, RCS computation requires far-field solu-
tions. In order to preserve the computational resources, far-
field is not computed directly. This is rather achieved by 
applying Huygens’ Surface Equivalence Principle. For this 
purpose, a closed surface (over which the near field is 
known) totally inside the free space shall be constructed. 
By taking the necessary surface integral over this surface 
[11], [12], it is possible to compute the far-field from the 
near-field without extending the computational domain 
dramatically. Certainly, the cost of application of Huygens’ 
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Surface Equivalence Principle is to surround the scatterer 
with at least 2-element free space in order to be able to 
choose a closed surface totally residing in free space, as 
seen in Fig. 10.  

Summing up all the issues listed in the previous para-
graphs, let us now consider an isolated scatterer with size 
3  3, i.e. a typical problem for which the Finite Element 
Method can be applied. First, let us assume that quadrilat-
eral edge elements are used. For such a case, considering 
an element size of no more than 0.1, the scatterer shall be 
modeled with at least N1  L1 = 30  30 elements. The 
space occupied by this scatterer shall be surrounded by  
(i) free space with a minimum thickness of two elements, 
and (ii) PML with a minimum thickness of two elements. 
This yields a computational domain of at least 
NL = [30 + (22) + (23)]  [30 + (22)+ (23)] = 4040 
elements. The analysis held out Sections 3 and 4 as well as 
the results shown in Fig. 9 show that for this very typical 
scattering problem (which can be considered as a mid-scale 
problem), the redundancy rate of the ELLPACK sparse 
storage scheme is about 20.9 % if modeled by quadrilateral 
edge elements.  

Now, let us assume that the same problem be modeled 
via linear triangular edge elements. With all considerations 
listed above, the computational domain shall be divided in-
to at least 2  N L = 2[30 + (2  2) + (2  3)]  [30 + 
(2  2) + (23)] = 24040 elements. Again, the analysis 
held out Sections 3 and 4 as well as the results shown in 
Fig. 9 show that for the same scattering problem, the re-
dundancy rate of the ELLPACK sparse storage scheme is 
about 26.2 % if modeled by triangular edge elements. 

In case the scatterer of interest is a Perfect Electric 
Conductor (PEC), the volume occupied by the scatterer can 
be excluded from the computational domain as seen in 
Fig. 11. The PEC assumption imposes the fact that the total 

 

Perfectly Matched Layer (PML) 

N segments 

L 
segments 

Free Space 

Isolated PEC Scatterer  

(size: N1L1 elements) 

N1L1 elements 

thrown away 

(excluded) in order to 

save computational 

resources 

 
Fig. 11.  The same 2-D problem for which the volume occupied 

by the isolated PEC scatterer is excluded.  

electric and magnetic field inside the scatterer is exactly 
zero, and it is not required to spend any effort for that par-
ticular volume. Hence, exclusion of the relevant volume 
can be made conveniently in order to decrease the number 
of elements and the number of unknowns. 

In this case, the computational domain contains at 
least (40  40) – (30  30) = 700 elements when quadrilat-
eral edge elements are used. Again, the analysis held out 
Sections 3 and 4 as well as the results shown in Fig. 9 
show that for this case, the redundancy rate of the 
ELLPACK sparse storage scheme is about 20.9 %.  

Similarly, if triangular edge elements are used for the 
PEC scatterer, this will yield at least 2  [(40  40) –
(30  30)] = 2  700 = 1400 elements. Eventually, this will 
yield a redundancy rate of 26.0 % for the ELLPACK 
sparse storage scheme. 

5.2.2 Scattering Parameters’ Computation for the Peri-
odic Structures 

Another common application of the Finite Element 
Method as regards the real life electromagnetic scattering 
problems is nothing but the computation of the scattering 
parameters for periodic structures. A singly-periodic struc-
ture, which can be modeled via 2-D finite element formu-
lation, can be considered as an infinite series of a particular 
structure cascaded to each other. For such problems, the 
main aim is to obtain the reflection (the so-called S11 pa-
rameter) and the transmission (the so-called S21 parame-
ter) characteristics of the periodic structure. For this pur-
pose, usually a normal incident plane wave at a specific 
frequency (or wavelength ) is assumed onto one side of 
the scatterer, and the scattered fields caused by the scatterer 
at forward and backward directions (towards any elevation 
and azimuth angle) are computed by means of the Finite 
Element Method. Analyses of such structures are quite 
crucial in real life especially at the design process of Fre-
quency Selective Surfaces (FSSs), Radomes (Radar 
Domes) and Electromagnetic Band-Gap Structures (EBGs).  

As seen in Fig. 12, the periodic structure can be 
thought as occupying a space modeled with N1  L1 ele-
ments. Again, the criterion for the element size to be no 
more than 0.1 (in case of linear elements) is still valid for 
an acceptable level of solution accuracy. PMLs shall be 
applied to such problems in order to terminate the compu-
tational domain, as well. Similarly, attaining a thickness of 
at least 3 elements to the PML for the convergence of the 
solution is required. The far field is computed by means of 
Huygens’ Surface Equivalence Principle. Eventually, the 
cost of application of Huygens’ Surface Equivalence Prin-
ciple is to place at least 2-element free space above and 
below the free periodic structure in order to be able to 
choose two surfaces (the former for computation of the 
scattered field and the latter for the transmitted field) to-
tally residing in free space, as seen in Fig. 12.  

The difference in modeling the periodic structures is 
at the step of imposing the so-called “Periodic Boundary 
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Conditions” in order to apply Floquet’s Theorem, by which 
the magnitude of the total fields at the Side Walls are set 
and forced to be identical, and the phase difference of the 
total fields are set to be constant [11], [12]. By this manner, 
it is possible and sufficient to carry out the computations 
only at a single period of the periodic structure (i.e. it is not 
necessary to carry out the computations over numerous 
periods, which would dramatically increase the computa-
tional cost).  

Again, let us consider a periodic structure of which 
the cross section can be modeled via N  L1 quadrilateral 
elements as seen in Fig. 12. Assume that the thickness of 
the periodic structure is about 0.2 (i.e. 2 elements). This is 
a valid assumption for practical cases since the FSSs, Ra-
domes or EBGs are required to be as thin as possible. Also, 
it is common practice to adjust the period of such structures 
more than , particularly about 2 (i.e. 20 elements). 

Perfectly Matched Layers (PMLs) 

(thickness: min. 3 elements) 

Huygens Surface #1 

(for evaluation of the 

reflection characteristics) 

N segments 

L 
segments 

Free Space 

(thickness: min. 2 elements so that 

the Huygens Surface can be placed 

inside) 

Periodic Structure  

(size: N  L1 elements) 

Huygens  

Surface #2 

(for evaluation 

of the 

transmission 

characteristics) 

Side 

Wall #1 

Side 

Wall #2 

Note: “Periodic Boundary Conditions”  imposed at 

Side Wall #1 and #2  in order  to apply the Floquet 

Theorem  

Plane wave incidence generally in this direction

 
Fig. 12.  Sample 2-D problem modeled via the Finite Element 

Method for computation of the scattering parameters 
(transmission and reflection characteristics) for a sin-
gly periodic structure.  

Hence, the computational domain will contain at least 
N  L = 20  [2 + (2  2) + (2  3)] = 20  12 elements if 
quadrilateral elements are used. From the results of the 
previous sections and Fig. 9, it is apparent that the redun-

dancy rate of the ELLPACK storage scheme will be about 
19.6 % for such a typical problem. 

If the same problem is modeled by means of triangu-
lar edge elements, there will be at least 2  N  L =2   
20  [2 + (2  2) + (2  3)] = 2  20  12 elements, which 
will yield a redundancy rate of 25.9 % for the ELLPACK 
storage scheme. 

6. Conclusions 
Due to its implementation ease, ELLPACK sparse 

matrix storage scheme is one of the most commonly used 
schemes in practice. On the other hand it has some amount 
of excessive memory usage. Even though this amount 
seems to be negligible at first glance, as demonstrated in 
the previous sections, it might be in the order of 1/5 in case 
of edge elements. 

Particularly, throughout the finite element modeling 
and solution of the very large-scale electromagnetic scat-
tering problems, ELLPACK sparse storage scheme have 
a redundancy rate about 26.6 % for triangular edge/facet 
elements; and about 21.5 % for quadrilateral edge/facet 
elements.  

Moreover, the analyses held out in Section 5.2 dem-
onstrate that for mid-scale real life problems (i.e. in which 
the electrically mid-size isolated scatterers or periodic 
structures are in concern) the redundancy rates are still 
quite significant: about 25.9 to 26.2 % for triangular 
edge/facet elements; and about 19.6 to 20.9 % for quadri-
lateral edge/facet elements.  

Once again, it should be noted that all our analyses 
address any 2-D problem domain which is homeomorphic 
to a rectangle. Hence, the results can be generalized to any 
structured but non-uniform mesh consisting of triangular or 
quadrilateral mesh. On the other hand, what happens for 
the case of unstructured mesh (i.e. mesh with nodal dis-
continuities requiring the so-called “mesh refinement”), is 
still an open question. Even though it might not be possible 
to come up with generalized concrete formulation as in the 
structured mesh, our ongoing studies are focused on ex-
traction of similar formulas especially for some popular 
benchmark electromagnetic scattering problems yielding 
unstructured mesh. 
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