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Abstract
In this Bachelor thesis, the main goal was applying Stress-strain analysis of the railway bridge in
Zahradky near Ceska Lipa. The structure of the Bridge was simplified and modeled as a truss
construction. The first section of this bachelor thesis was dedicated to searching and obtaining the
input data and essential information from the technical documentation of the Bridge. Then truss
models for the Bridge were created with various levels of simplification. Therefore we split the
analytical section into two parts. The first one was dedicated to statically indeterminate structure
the second one was dedicated to the statically determinate structure. Also, every part contains both,
self-bridge load and a passing trainload. However, because these equations were quite long, we
have used Maple software to help us with calculations. The limit state of buckling was also checked
for both structures, but we chose just two variants the lightest, which is self-load, and the heavies,
which is the fourth Phase of a passing train. After accomplishing the analytical section, it was
essential to verify the results. Therefore, we used the finite element method using Ansys software
in the numerical section to verify the analytical part. All calculations were done in 2D. The only
exception is in the numerical section, where we added a 3D model to compare with the 2D model.

Abstrakt

Cilem této bakalaiské prace je vyuziti deformacné napétové analyzy na Zelezni¢ni most v
Zahradkach u Ceské Lipy. Konstrukce mostu byla zjednodusena a vymodelovana jako nosnikové
konstrukce. Prvni ¢ast bakalaiské prace byla vénovana ziskavani vstupnich dat a z&kladnich
informacich z technické dokumentace mostu. V nosnikovém modelu bylo vyuzito nékolik
zjednoduSeni. Prvni model povazujeme za staticky neurcity, zatimco druhy jako staticky urcitou
konstrukci. Kazdy model tedy obsahuje zat¢z z diavodu vlastni vahy a zatizeni zpuisobeno
projizd€jicim vlakem. Z diivodu objemnosti rovnic, vyuZivame k vypoctu software Maple.
Zkontrolovali jsme 1 mezni stav vzpéru pro oba modely, avSak jsme uvaZovali pouze zatizeni
vlastni vahou a zatiZeni zpiisobeno vlakem. Po ziskani analytickych dat bylo dulezité tyto vysledky
ovéfit. Toto bylo docileno vyuzitim metody konecnych prvku za pomoci programu Ansys. Veskeré
vypocty byly provedeny pro 2D modely. Jedina vyjimka je numerické sekce, kde byl ptidan 3D
model za uc¢elem porovnani s 2D modelem.

Keywords
Node, bar, structure, tension, compression, buckling, statically determinate structure, statically
indeterminate structure, strain analysis, stress analysis.

Klicova slova
Sty¢nik, prut, soustavd, tah, talk, vzpér, staticky urcita soustava, staticky neurcita soustava,
napétostné analyza, deformacni analyza.
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1 Introduction

1.1 History of the Bridge

It is a steel structure bridge which is located in Ceské4 Lipa Zahradkach. The first operation of the
bridge started in 1898, and the bridge was constructed to connect between two hills as we can see
in fig.1., where the figure on the left shows the bridge before reconstruction, and the figure on the
right shows the bridge after reconstruction.

FiG. 1.2 LOCATION OF THE BRIDGE ON THE Fic. 1.1 LOCATION OF THE BRIDGE ON THE
MAPS.[3] MAPS.[4]

Replacement and reconstruction for the whole bridge took place in 2013, as we can see the
difference between fig. 1.1 and fig. 1.2. the bridge is used for railways only, where trains can only
move in one direction at once. The bridge is divided into two parts, and the structure is made of
steel bars and nodes of steel material which made it a strong structure. The bridge is located south
of Ceska Lipa more in fig.1.3, 1.4, 1.5.

Jeskyné

Zeleznicni most
v.Zahradkach

& peklo U Sosnové
~

Zelezniéni'most

F1G. 1.4 LOCATION OF THE BRIDGE
F1G. 1.3 LOCATION OF THE ON THE MAPS. [5]

BRIDGE ON THE MAPS. [5]
10



o\/ratislav

Drazdany’s Lk
~ " Zelezniéni‘most
viZahradkacha .,

|

F1G. 1.5 LOCATION OF THE BRIDGE ACCORDING TO THE CZECH REPUBLIC ON THE MAPS.[5]

In this thesis, we will analyze the deformation and stress of this bridge using two methods,
analytical by using Maple software and numerical by using Ansys software.

2 Objectives
The first step we considered in this thesis was finding input data, which were taken from the
Railway and transport administration. The second step was to make deformation and stress
analysis, The loading applied on the bridge are statical, and they are two types of loadings, the first
type is generated by the weight of the bridge itself, and the second type is generated by the weight
of a passing train on the bridge, The analysis of both cases has been performed separately using
two methods, analytical with Maple and numerical using finite element method with Ansys, at the
end, both methods will be compared in each case to dlscrlmlnate that there are no mistakes with
the analytical approach. Moreover T

both cases will be compared to A
distinguish which case will have
more minor deformation and fewer
stresses. As we can see in fig. 2.1,
we chose just one part of the bridge :
because they Are identical where ==
each has its own supports, which &
means the results will be for sure &
the same in both parts, so when we
mention the word bridge in the
thesis, it means just the one part.

FIG. 2.1 CHOOSING ONE PART OF THE BRIDGE.[6]

11



3 Theory
The theoretical part of this thesis is taken from resources [8] unless it is mentioned.

3.1 Bar
The bar is the simplest model of a real body which must fulfill assumption geometry, deformation,
loads, supports, and stress states. And these assumptions will be labeled as Bar Assumption.

3.1.1 Bar Assumptions
The bar assumptions are geometry, deformation, loads, supports, and stress states:

A) Geometrical assumption

The geometrical definition of a bar is a centerline Y that is defined by a cross-section v in each
point of it as in fig. 3.1.

h(s)

F1G. 3.1 CENTERLINE AND BARS CROSSSECTION.

= The centerline Y has a finite length, and it must be ':
smooth. It cannot be 90 degrees curved more as shown ) "thTC il i“‘; not

in fig. 3.2. _
» The cross-section must be a continuous plane region. smooth

SV

Fi1G. 3.2 CENTERLINE AT A BENT BAR.

12



B) Deformational Assumption
= During deformation, the centerline doesn't change its continuity and smoothness, as in

fig.3.3.

It doesn't matter which type of deformation @\
acts on a bar. The important thing is that T N
the cross-sections remain perpendicular to NO!
the centerline and planar. Moreover, the FIG. 3.3 MAINTAINING THE SMOOTHNESS OF
types of deformation affecting a bar are T

described below more in figures 3.4, 3.5, THE CENTERLINE.

3.6, 3.7.

-

B P B

-
-
ul TR

a) Tension

NIAVANY;

-
4 N

Fi1G. 3.4 TENTION IN A BAR.

b) Flection

C) Torsion

F1G. 3.6 TORSION IN A BAR.

13



d) Shear

Fi1G. 3.7 SHEAR IN A BAR.

C) Loadings Assumption

= Supports restrict displacement and rotation.

= All external loading acts only on the centerline of the bar.

= We model supports and loadings to make them act on the centerline. In that Place,
according to the saint-venant's principle, there is a different state of stress act on the
centerline, which leads to break bar assumptions more in fig. 3.8.

A ———————— /‘_

SE nahrada 9_

F1G. 3.8 SIMPLIFICATION FROM A BAR INTO CENTERLINE.

S

D) Stress state Assumption
Normal and shear stresses in the cross-section determine the state of stress, and thanks
to symmetry, remaining stresses are equal to zero as in fig. 3.11.

Fi1G. 3.10 BAR STATE OF STRESS F1G. 3.9 BAR STATE OF STRESS DISPLAYED ON A

DISPLAYED ON A UNIT CUBE. MOHR'S CIRCLE.
Op Tay O o 7 0
To=| Tya 0 O |=|7 00
0 0 0 0 0 O

Fi1G. 3.11 STRESS TENSOR FOR BAR IN

14



3.2 Geometrical characteristic of a cross-section

To calculate stress and deformation, we will have to use a formula that contains a quantity called
geometrical characteristic of the cross-section, which characterizes cross-sections. These
characteristics are divided into two groups dependent on the characteristics and independent of the
choice of the coordinate system.

3.2.1 Cross-section area
As you can see in fig.3.12, the body does not depend on the coordinate

system. Because of that, we will use the following formula. dy Y
Ye 20
T N ::
dSE&
g L . i~ 2 ke \
S = fdfa = /f(lyth [m } %
¥ n o
y v,

FiG. 3.12 CROSS-SECTIONAL
AREA.

3.2.2 Linear static moment
By using these formulae, we can calculate the static moment, which depends on the coordinate

system.
Qs = / y dA
A

Qyz‘/Aa:dA

Arbitrary Cross Section

Fi1G. 3.13 ARBITARY CROSS-SECTION
AREA.

= The following formula is to determine the center of gravity of a given body in the x and
the y axis.

15



3.2.3 Quadratic moment of a cross-section y

The axial quadratic moment, this type of moment is always calculated to the coordinate axis as we
can see in the following formula it is calculated to the y-axis. the unite we use here is m*. The
quadratic moment is primarily used in bending cases which we don’t need in our analysis except
in buckling limit state analysis. Therefore, we add the /,, Into our theoretical part and the formula
is as follows.

Jy = f z*dS
i

3.2.4 Saint Venant’s principle

In a real-life, we cannot determine the distribution of
forces acting on the surface of a body, so to make this
problem solvable, we simplify it into a model of a
substituted force interaction acting on the exact same
place causing the same effect and same stress. The
model for sure is statically equivalent to the original
problem more in fig. 3.15.

reality model

sugported 9

supported
ody E Q

ody

Fi1G. 3.14 LOADING IN REALITY
VS IN MODEL.

reality R SE load @ SE load @ > X

FiG. 3.15 LOAD DISTRIBUTION ACCORDING TO THE VENANT
PRINCIPLE.

= As you can see in fig. 3.14 is a comparison between the real problem and a substituted
model the graph shows the relation between the stress sigma x and the deformation; as
we can see, the is an insignificant difference which is not a problem for calculations.

3.2.5 Saint venant’s principal Advantages.
4 ){ U

| . G
- Itenables us to use computational models T

of loads (volume and area forces)
correctly. g-i_é é;_t ;LLL

F1G. 3.16 APPLICATION OF S.V. PRINCIPLE.

[9]
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- It enables us to introduce computational
models of contact between bodies
correctly.

- It proves the incorrectness of some
substitutes (Commonly used in statics ) for real body model for solving model for solving

stress analyses. with supports static equilibrium stresses (and strains)

////

FiG. 3.17 COMPUTATIONAL MODELS.

3.3 System of bars

The bar system is a computational model for lattice structures, where straight slender bodies are
modeled by bars and they are connected in the reality by elements (rivets, welds ...), but in the
computational models are replaced by so-called joints (pins), which realize rotational or spherical
bonds. These adjustments are made to facilitate the analytical calculation. Prerequisites for using
the bar system model. [10]

The system of bars is the most simple method used in modeling bridges, it consists of bars and
joints, also called nodes.
= The main idea of this method is that there is a bar connected to a node, the internal bo is

modeled as rotary, thanks to that, we can neglect the bending moment, which means that
the bars are loaded just by tension and compression.
= To apply that the bars are loaded just by tension and compression, we have to consider
the following facts.
e The loading is applied just on the nodes nowhere else.
e The system of bars ars at less connected to two nodes which leads to that the bars
are not movable.
e The bar has to be as we already defined it in chapter 3.1.
= Before starting to design the structure, we must check the limits state of elasticity for bars
that are loaded by compression. In some cases, buckling may occur, which leads to loss-
of stability.

3.3.1 Types of bars system
= In order to solve a certain system, we have to know if the system is statically determinant
or statically indeterminant, thank to that, we can determine how many we will have
deformation conditions for the system.
a) External Statically determinant

It relates to the determination of external unknown contact forces released of the bar body from
the usable conditions of static equilibrium, the external static equilibrium is given by the relation.

Vext = Uext
Where V., is the application of equilibrium condition, and p,,; Is the number of unknown

parameters of external contact forces. The degree of external uncertainty is given by the formula.
Sext = Hext = Vext
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b) Internal statically determinant

It relates to the determination of axial forces in members, conditions of static equilibrium
bar systems are linearly dependent on a system of static equilibrium conditions joints, in
other words, for the system to be solvable, the number of unknown internal parameters
must equal the number of equations, the condition of the internal static equilibrium is given
by the following formula.

3K—6=P ....... For 3D systems of bars.

2K—-3=P ........ For 2D systems of bars.

Where K is the number of nodes and P is the number of bars.

c) Statically indeterminant
The system becomes statically indeterminant. When the number of unknowns
exceeds the number of equations, so to solve this problem, we have to add boundary
conditions, the relation to calculate the boundary conditions is as follows.

3K =P + Ueyte----- For 3D systems of bars.
2K =P+ pext------ For 2D systems of bars.

3.4 Methods solving system of bars
There are so many methods to solve a system of a bar, but the more useful are two Methods,
method of nods and method of sections.

3.4.1 Method of nods

In order to apply this method, we have to draw a free body diagram for all nods in the system after
that, we establish applicable static equilibrium conditions, then we will get a set of linear algebraic
equations after that, we can put the equations into a matrix and use a software to solve it, this is
the universal method.

3.4.2 Method of sections

In order to apply this method, we draw a free body diagram for certain nods that are statically
determinate, this method concentrates on the easier type of problems because that this method is
not viable, it is better to use the Method of nods.

3.5 Tensil, compressive stress acting on a bar

3.5.1 Abslute tenion and compression
Simple tension/compression is a type of loading a straight prismatic bar if the following conditions
are applied.

a) Bar assumptions are satisfied.

b) Cross-sections mutually draw away (near) and consequently deform isotropically
(i.e., they change their magnitude but not the shape).

¢) Normal force N is the only non-zero component of the inner resultant,

d) Deformations are not substantial from the viewpoint of the static equilibrium of an
element. .
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3.5.2 Geometrical relations

The geometric relations are showing us the dependence
between the displacement and the deformation if we
assumed that we make a cut and which is further
analyzed due to the load and the element is stretched, and
at the same time, its cross-section decreases as shown in
fig. 3.18 the right angels remain the same even after

deformation, and therefore, the bevels are zero, the

angular length is calculated by the equation €y = Z—Z,

where du is displacement and €y is the strain in the X-
direction.

FiG. 3.18 DEFORMATION OF AN
ELEMENTARY ELEMENT BY
SIMPLE TENSION.

For tensile-compressive stress, it is possible to express the strain tensor as follows.

e, 0 O
Ts =10 Sy 0
0 0 &g,

3.5.3 Tension
Because the bevels are zero and the stress is uniaxial, there is only one non-zero stress tensor
component at a non-zero loading force. The stress is constant across the cross-section. Therefore,
all points have the same safety to the limit state of elasticity. Since the only non-zero component
of the resulting internal effects is the normal force, the stress can be determined.
N

o = E
This relationship only applies to the central coordinate system. Therefore, all loads must act on
the centerline axis.

3.5.4 Determination of stress-energy and displacements
When there is a load applied on a body, the body deforms, the applied forces do work. This
energy can be translated to work, and it is stored in the deformed body as stress energy.

1 N2
w = EJ ﬁ dx
The stress-energy per unit volume is the specif}fc stress-energy.
dw o? 1 )
A=w= gz EE
The deflection on the part of a bar of length can be expressed as.

XR XR N
uR=J sdx=J — dx
0 0

E-S
Where E is the cross-sectional stiffness, similarly, the displacement can be expressed using
Castigliano's theorem.
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3.6 Castigliano's theorem

,, Castigliano’s theorem is the most important theorem of the linear theory of elasticity from the
viewpoint of practical application because it enables us to calculate deformation characteristics of
any linear elastic body, provided that we are able to formulate a relation for its strain energy. The
whole system of bodies must be included in the strain energy if the deformations of the neighboring
bodies (or of the frame) are not negligible in comparison with the deformations of the investigated
body. “.

, A negative sign of the displacement (or turning angle) means that the orientation of this
displacement (angle) is opposite to the orientation of the corresponding force (a couple of forces).
Castigliano’s theorem is independent of sign conventions because a positive work always means
that the displacement is oriented according to the orientation of the acting force.*.

Castigliano's theorem is a powerful tool to solve static indeterminate structures (truss system)
because, in this type of problem, we always end with inequality between the number of equations
and unknown parameters, so in this system that many equations miss as many, the system is
statically indeterminate. By using the Castigliano theorem, it is possible to compile deformation
conditions that complete the missing equations. Deformation conditions compile at the point of
displacement or rotation, which means at the supports. We release as many supports to make the
system statically determinate, and by assembling the deformation, conditions mean partial
releasing. Castigliano’s theorem can also be used to determine the displacements or rotations in a
place no force or moment acts on by considering an additional force or moment that has zero
magnitudes.

3.7 Limit states

Generally, this is a state when a body is under load stops fulfill its function; in other words, when
a functionally permissible deformation of failure changes into functionally impermissible, so it's
all about how the body is loaded according to that limit states can be divided into two groups. [2]

a) Limit state associated with deformation.
= Limit state of deformation.
= Limit state of elasticity.
= Limit state of buckling.
= Limit state of fracture.

b) Limit states associated with the violation.
= |Limit state of crack initiation.
= Limit state of fracture.

=  Fragile.

= Malleable.
= Fatigue.

= Creep.
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3.7.1 Limit state of deformation

,, All parts deform under any load, i.e., they change their shape, dimensions, tolerances between
them (clearance or interference). If these changes do not disturb the function of the equipment, as
defined in specifications and technical standards valid for the equipment (concerning the accuracy
of production, mobility of the components, etc.), we call them admissible deformations. “.

3.7.2 Limit state of elasticity

The limit state of elasticity is the state in which the first microplastic deformation begins to occur,
and it is measurable. We can describe this limit state using a stress value which is called the yield
strength, therefore up to this limit state, the material behaves elastically after unloading the material
returns to its original condition, but if the ultimate yield strength has been exceeded, the material
will be permanently deformed. The yield strength can be obtained from the tensile test. The output
of this test will be a tensile diagram. This diagram is showing the relationship between stress and
strain the force can be converted to stress using the original cross-section of the tested specimen.

Stressed into
Plastic Region,
stress, o A z[iluslic + Plastic

Stress Removed,
Plastic Deformation
Remains

—| &p strain, &
[N
plastic strain

FI1G. 3.19 ELASTIC AND PLASTIC DEFORMATION.[12]

So, to indicate if a specimen is safe or not, we have to calculate the factor of safety according to
the limit state of elasticity, and it is as the following formula.

Ok
Kk =

Gmax

Where K;,... factor of safety.

Oy... yield stress.

Omax--- Maximum stress calculated of the specimen.

So, if the factor of safety is greater than one, the specimen did not exceed the limit state, and it is
safe. Still, if the safety factor is smaller than one, it means that the sample exceeded the limit
state, and plastic deformation for sure will occur.
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3.7.4 Limit state of buckling

, Limit state of buckling is such a state among the operational states of the body when

the equilibrium shape of the body becomes unstable, and
a stepwise shape change to another stable geometrical
configuration can occur.”’

so the bar has to be under a compressive force which
means a negative magnitude of a normal force to occur
buckling. In addition to compression, there is a sudden
deflection in the bar that leads to a change from
compressive stress into bending stress. So this limit state
IS sensitive because a situation can happen where we can
continue in compressive loading, and we get a sudden
loss of stability (buckling). Between these two states is a
critical point called a Bifurcation point, more in fig. 3.20.

as we can see in fig. 3.21 the critical

Bifurcation
. point
. Limit
-
y % P ... Snapittrough
.
-
"
® Fundamental
[+]
- path
Bifurcated path

Displacement

FiG. 3.20 BIFURCATION POINT IN
BUCKLING.[11]

unstable

force F, Is the interface between the F ¢
pressure and bending and the critical  Wmax branch 2 kr
force is defined at this point which T .p1e
indicates the loss of stability and is bending

=

given by the following relationship.
a’-E-]

Fir = 1—22

Where parameter o depends on the

A"

branch 1

equilibrium
max

stable equilibrium

type of support of the bar more in fig. .
322, E is Young's modulus of /W,

elasticity, J, is the minimum stable i — labile
quadratic moment, and [ isthe length ~ Shortening  shortening

of the bar.

Bred

F F}kT

r

FiG. 321 VALUES OF COEFFICIENTS A DEPOSITS.

F1G. 3 22 VALUES OF COEFFICIENTS A DEPOSITS.
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For an ideal bar under an ideal load, we can check the factor of safety by the following formula.
F,
KV = %
Therefore, if the force that compresses the bar greater than the critical force, the bar is bent, and if
the force is smaller than the critical force, the bar is stable the deflection did not occur, it can also
be that the force equals the critical force and this is the critical point which is called the Bifurcation
point.
What we dealt with was an ideal bar with ideal assumptions, but in real-life application, it can be
different since the limit state of elasticity can occur before the buckling stability limit state,
therefore to deal with this situation, the quantity slenderness and critical slenderness of bar are
introduced, however easily if the magnitude of bar’s slenderness is greater than the magnitude of
critical slenderness, it means that the limit state of buckling has been exceeded, but if the situation
was the opposite it means that the limit state of elasticity will occur before the limit state of
buckling. To calculate the slenderness and the critical slenderness of a bar, the following formula
can be used.

=  The slenderness of a bar.

= The critical slenderness of a bar.

= To calculate the Normal stress at the buckling limit state.

Fer a?-E-] a*'E

N Y
= The dependence of the stress at which the limit 5, 4 !
state of loss of buckling stability on slenderness i BEulerian hyperbola

occurs is called the Euler hyperbola fig. 3.23.
% So, to conclude, the limit states are assessed as

ductile state
follows. OK

o o of material
= |If A < Ak, then the limit state of elasticity
occurs first, therefore, to check the safety, we
have to use this formula K = —%.
Omax
= If A > Ak, then the buckling stability limit - }. >
state occurs first, therefore, to check the safety, K )
we have to use this formula K, = Fir F1G. 3 23 DEPENDENCE OF

F
COMPRESSIVE STRESS 0k;,. ON THE

SLENDERNESS A FOR A TOUGH
MATERIAL.
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4 Analytical calculations

4.1 Statically indeterminate assignment

The bridge we are analyzing, Contains 71 bars and 32 nodes, and they are affected by simple
tension and compression because it is a truss system, The bridge is made of steel and individual
bars connected by nodes, the total length of the part is 414010 which means it’ll be 41400 mm
long, with a width of 3000 mm, and a height of 4000 mm, This part of the bridge is supported by
two supports, on the left pin support which allows just rotation on Z-axis (perpendicular) and the
right is supported by roller support which means that the part of the bridge can move horizontally
and rotate around the Z-axis (perpendicular).

4.1.1 The main descriptions of the bridge

The bridge was simplified from the real- == "
life bridge more in fig. 4.1 and described ——
as simple as possible As it is shown in fig.
4.2, to make it accessible in calculations |
and orientations, using an alphabet system &
and numbering.

F1G.4.1 BRIDGE IN THE REAL-LIFE.

[6]

4.1.2 The main dimensions
The main dimensions describe the full length of the part of the bridge, which is 41400 mm, the
height, which is 4000 mm, the length of one block, which is 4140 mm, the length of inner bars

which is 5757 mm, and the angle between the bars which is 4401

Fig. 4.2 Bridg’s dimensions.
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4.1.3 Numbering the bars
This part of the bridge contains 71 bars separated by nodes, so they were numbered from 1 to 71,
starting from the bottom left, then the top part, then the middle part, as in fig. 4.3.

F1G. 4.3 NUMBERING THE BARS.

4.1.4 The names of nods

This part of the bridge contains 32 nodes, so they were named alphabetically, starting from bottom
left by letter A to the bottom right by letter K, the upper part of the bridge was copied from the
bottom, but with adding one like this (A1) and so on, the nodes which are in the middle of the
bridge were named starting by L ending with V, skipping the letter U, as in fig. 4.4.

Al Bl c1 D1 El F1 G1 H1 Il J1 K1

B C D E F G H I ] i
Fi1G. 4.4 NAMING THE NODES.

4.1.5 Cross-sections
For the construction of the bridge, 19 different types of cross-sections were used, and they are as

follows.
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FiG. 4.5 CROSsS-SECTION O1, O2. [1] F1G. 4.6 CROSS-SECTION O3.[1] o5
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.4.16 CROSS-SECTION T2, T3.

S

T4, T5

P10x150
S355 JZ4N

4

P10x320
§355 J2+N\7HL

4

S

320

340

150

FiG.4.17 CROSS-SECTION T4, T5.
[1]

P16x200
S355 J2+N \

TN

P10x320
S335 J2+N

320

352

FIG. 4. 19 CROSS-SECTION S. [1]
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4.1.5 Coloring the bridge for better orientation of cross-sections
We decided to add color effects to the bridge for more illustration and to make it easier to find
wanted cross-sections. There are in total 15 different colors that can be found in the tab. 4.1.

TAB. 4.1 COLOR AND NUMBERS OF CROSS-SECTIONS

Cross-sections Number of bar Cross-section corrggécc))rnsding
Name area in mm? to bar
01,02 11,12,19,20 22000

03 13,18 26000
04,05 14,15,16,17 29000
U1,U2 1,2,9,10 211200

U3,U4,U5 3,4,5,6,7,8 22720

D1 23,24,67,70 16320

D2 28,29,62,65 11200

D3 33,34,57,60 11840

D4 38,39,52,55 10240

D5 43,44,47,50 7200

T1 22,25,68,69 8200
T2,T3 27,30,32,35,63,64,58,59 7200
T4,T5 37,40,42,45,53,54,48,49 6200

S 26,31,36,41,46,51,56,61,66 9600
SO 21,71 18400

= 1 2

o

3

F1G. 4. 20 FINDING THE POSITION OF CROSS-SECTION BY

COLORS.
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4.2 Static analysis

We make static analysis of any truss system to distinguish if the system is statically internally or
externally determinate or indeterminate. Basically, by doing the analysis, we can find out how
many equations we have and how many unknown parameters we have, so if the number of
equations is the same as the number of unknown parameters, so the system is statically
determinate, otherwise, if the number of equations doesn’t equal the number of unknown
parameters then the system is statically indeterminate, so for our case, it will be explained better
in the next step.

4.2.1 External static analysis

Well, we have to consider our system of the truss (bridge) as one whole rigid body then apply a
free body diagram which means just draw the reaction forces from the supports, in our case we
have in the bottom left pin support and in the bottom right roller support. We are free to choose
the direction of the forces. We can check if the direction of the force was chosen right if the
magnitude was positive if not so it should be in the opposite direction. The designation of the
forces was done to be similar as in Maple software to avoid confusion otherwise, the big letters
should also be an index of the force, and they are as in fig. 4.21.

Fi1G. 4.21 RELACED SUPPORTS.

= Soas we can observe from fig. 4.21 we have three unknown forces NP = {FxA,FyA,FyK}
= In our case, we have the 2D system, so we have three static equilibrium equations from
the formula below we can get.

Sex = Mex = Vex

Mex = 3
Vex = 3
Sex = 0

= As we can observe from the formula, we got S.x = 0, which means that our bridge is
an external static determinant.
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4.2.2 Internal static analysis
When it comes to internal static analysis it is a bit different from external static analysis case, as
we know that we are solving our bridge based on a truss theory which means that we have to
consider our system of the truss (Bridge) as so many bars connected with others with nodes.

= |n the system, we have 71 bars and 32 nodes, using the following formula we get.

= P=71

= K=32

= P=(2xk—-3)=>71=(2%x32-3)
= 71+61

= For the system to be statically determinate, both sides of equality have to be the same.
= The system is, therefore, 10 x internally statically indeterminate, therefore S;,, = 0.

e This means that our system is statically indeterminant basically, we have 10 more
unknowns, as we know from our knowledge from algebra, to solve a system of equations,
the number of the equation has to be the same as the number of unknown parameters.

e S0, to decipher this problem, we have to use Castigliano's theorem to find out these ten
unknown parameters to make both sides equal.

4.3 Bridge's self-weight load
In this case, we took into consideration self-weight loading because it plays a massive role in the
calculations of bridge’s deformation, normal forces, and nominal stresses, the loading must be
applied only to the nodes, to make this happen, all bars had been split into half their length after
the split prosses each node in the structure take half of the bar then multiply it by gravitational
acceleration and the density, well by doing that we got the weight of the bridge certainly, we also
added the weight of the bridge deck, the following example of the calculation of the forces acting
on the nodes had been included for better orientation and explanation, and it is as follows.
= Let us take as an example node (A) to avoid mistakes in the equation because it is quite
long, the masses of the bars had been calculated individually the calculation was as
follows.
* m=Ff XV => m=F X X XS, where £=7850 [kg/m?3] ...density
X = length of the bar [m]
S = cross-section of the bar [mm?]
g=9.81[" /52] ...gravitational acceleration.

1
Fg=7Xxg= (my + myy + my3 + My + My, + Myyy,)
= As we can observe, the index of the letter m indicates the numbering of the bar and the

parameter mg, mr,., M., are the parameter of the bridge’s deck.
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FI1G. 4.22 GRAVITATIONAL FORCE FROM BRIDGE’S SELF-WEIGHT.

TAB. 4.2 GRAVITATIONAL LOADING ACTING ON NODES.

Gravitational Forces [N]
FgA 12715 FgAl 10485 FglL 10870
FgB 14705 FgB1 14815 FgM 8157
FgC 14850 FgC1 14317 FgN 8441
FgD 14589 FgD1 15353 FgO 7288
FgE 13545 FgEl 15477 FgP 5940
FgF 13324 FgF1 15025 FgQ 5940
FgG 13545 FgG1 15477 FgR 7288
FgH 14589 FgH1 15353 FgS 8441
Fgl 14850 Fgll 14317 FgT 8157
Fgl 14705 Fgll 14815 FgV 10870
FgK 12715 FgK1 10485

4.3.1 Free body diagram
We had also done a free body diagram for the construction, which means that each node is released,
then we got a static equilibrium equation per each node, as in fig.4.23.

— — — i —= — — —=
Fab1 FaEl FaF1 facl FgHl Fall Fall FoKl
— s — — —> — — —
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_ —> — —> — —2 — — —> —> —>
N2 N3 N NS N N37 N3O N42 NAA N47 N4O N3 N54 N7 N N2 N6 Ne7 Ned
= —= — = — —= —
N2 N26 x N30 x N36 X N41 x N46 NS1 x NS5 X N61 N6G N71
2 = =l s Vs = = st s =Y
W N2 Fqi'Eg N2 ﬁq" 30, N33 R N3 , N3 NA0 , N3 B a5 N487g5 NSO , N53 Fgr NS5, N58FGE NGO , N63 Fgf NG5 , N68 eV B
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NT N2 N3 N4 NS NG N7 NS N ¥> N10
=
j — — —_— o — — — — —_— —
= Faf = FoD FoE FoF Fat Fofl Fot Fol Fok

F1G. 4.23 FREE BODY DIAGRAM.
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After releasing the nodes, we got 64 static equilibrium equations, Y. ., = 0 and Y. F, = 0, for each
node, we got an equation for X and Y, the equation for the moment can not be applied because it

equals zero.

4.3.2 Static equilibrium equations

TAB. 4.3 RELEASED NODES.

Figures Released Node
el
N21
FiG. 4. 24 .
RELEASED NODE R N
A e —_—
N1
A
FoA
ﬁ.
N26
Fi1G. 4. 25 .
RELEASED NODE NS N2
B NT <L#-5 N
—‘_I..
FgB
.
N30
Fi1G. 4. 26 EREE
RELEASED NODE VA
C N_f N3
—
FaC
—=
N36
FiG. 4. 27 .
RELEASED NODE N35 = N38
D e s
N3 N4
Fab
—=
MN41
Fic.4.28 .
RELEASED NODE N4D . N43
E e gf%ﬂ; —
N4 NS
—
FagE
—
N46
Fi1G. 4. 29 > =
RELEASED NODE N4>
F —_— o [~ J—
N5 é;—ﬁ%ﬂa NG
—=
Faf

Equations
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Fic. 4.30
RELEASED NODE
G

Fic. 4.31
RELEASED NODE
H

Fic. 4.32
RELEASED NODE
|

FiG. 4.33
RELEASED NODE
J

Fic.4.34
RELEASED NODE
K

FiG. 4.35
RELEASED NODE
L
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—=
N54

—=
N52

Fic. 4.36
RELEASED NODE

FiG. 4.37
RELEASED NODE

FiG. 4.38
RELEASED NODE

Fic. 4.39
RELEASED NODE

FiG. 4.40
RELEASED NODE

Fic.4.41
RELEASED NODE
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Fi1G. 4.48
RELEASED NODE
D1

Fi1G. 4.49
RELEASED NODE
El

FiG. 4.50
RELEASED NODE
F1

Fi1G.4.51
RELEASED NODE
Gl

FiG. 4.52
RELEASED NODE
H1

FiG. 4.53
RELEASED NODE
11
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FiG. 4.54
RELEASED NODE
J1

Fic. 4.55
RELEASED NODE
K1

4.3.2 Solving the system of equations
After applying the free body diagram, we got static equilibrium equations where their number was
64 equation since we got in our internal static analysis in chapter 4.2.2 ten times statically
indeterminate, so to solve this system, we had to use Castigliano’s theorem to get 10 more
equations.
= We made a partial free body diagram more in fig.4.56, we randomly chose 10 bars to
apply the partial free body diagram on them, and the bars are ( N22, N27, N32, N37, N42,
N47, N52, N57, N62, N67 ).
= (Castigliano’s theorem will be as follows.
71 (Li _Ni dN;

- *
t=1Jo Exs; dN;

*dxl-=0

Where :

N... is the normal force

E... is Young's modulus of elasticity in tension
S...Iis a Cross-section area of the bar

Nj...the index j changes according to the index of normal forces, which had been partially
released.

— —> — — — —> — — — —> —>
FgAl FgB1 FgCl FgD1 FgEl FgFL FgG1 FgH1 Fall Fall Fgk1
2z N7 e T N ‘e 53 s = N6
Hay /) Fart FoN” Fa0” FoP Fad FoR Fos RaT AN
By FoA FoE FoC a5 3 o oy Far” a Ry FaK

Fi1G. 4. 56 PARTIAL FREE BODY
DIAGRAM.
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The solving process was done by a software called Maple, so at the beginning, after ordering the
equation from eq. 1 to eq. 64 we used command solve({equations},{unknown parameters}),
basically what this command did was making equations as a function of the partial released normal
force (N22, N27, N32, etc.) more in the chapter 4.3.2, fig. 4.57 is the solved equation to clarify
more, the yellow underlines are the 10 normal forces we gained from the partial free body diagram,
that we made the equations as a function of them.

{Fm= 0., Fya=1.957297190 105. Fyk=1.957297190 105. NOI=-0.7191619645 N22 + 1.785673797 105. NO2=-0.7191619645 N27 + 3.097043349 105. NO3
=-0.7191619645 N32 + 4.036130350 105, N04=-0.7191619645 N37 + 4.576467277 105, NO5S=-0.7191619645 N42 + 4.746943643 105, NO6=-0.7191619645 N47
+ 4.569492687 105, NO7=-0.7191619645 N32 + 4.030165232 105, NO§=-0.7191619645 N57 + 3.098511684 105, N09=-0.7191619645 N62 + 1.771632848 105,

N10=-0.7191619645 N67 + 5625.558503, N1 = -0.7191619645 N22, N12 = -0.7191619645 N27 — 1.729418212 105‘ NI3=-0.7191619645 N32 — 3.054828713 105,
N14=-0.7191619645 N37 — 3.992447379 105‘ NI15=-0.7191619645 N42 — 4.538749425 105, N16=-0.7191619645 N47 — 4.716200380 105, NI7=
-0.7191619645 N52 — 4.538749425 105. NI§=-0.7191619645 N37 — 3.992447379 105. N19=-0.7191619645 N6 — 3.054828713 105. N20=-1.729418212 10°
—0.7191619645 N67. N21 = -0.6948424777 N22 — 10485.34394, N23 = N22 — 2.482992546 105, N24=N22 — 2.404768742 105, N25=N22 — 7822.380466, N26 =
-0.6948424777 N22 + 1.522784738 10° — 0.6048424777 N27, N2§ = N27 — 1.901692809 105, N29=N27 — 1.842993047 105, N30=N27 — 5869.976191, N3/ =
-0.6948424777 N27 + 1.137412266 10° — 0.6948424777 N32,N33=N32 — 1364507143 105, N34=N32 — 1.303765651 105, N35=N32—6074.149230, N36=
-0.6948424777 N32 + 75237.34487 — 0.6948424777 N37, N3§ = N37 — 81208.39632, N39 = N37 — 75963.70120, N40 = N37 — 5244.695115, N4 =
-0.6948424777 N37 + 37305.44330 — 0.6948424777 N42, N43 = N42 — 28949.55908, N44 = N42 — 24674.68583, N43 = N42 — 4274873254, N4o =
-0.6948424777 N42 + 2119.860988 — 0.6948424777 N47, N4§=N47 + 20399.81257, N49=N47 + 24674.68583, N30 = N47 — 4274 873254, N5I =
-0.6948424777 N47 — 32622.38290 — 0.6948424777 N52, N33 =N32 + 70719.00609, N34 = N52 + 75963.70120, N33 = N52 — 5244.695115, N36 =
-0.6948424777 N32 — 68136.63699 — 0.6948424777 N57, N3§=N37 + 1.243024158 105, N39=N37 + 1.303765651 105, N60=N57 — 6074.149230, NoJ =
-0.6948424777 N57 — 1049080345 10° — 0.6948424777 N62, N63 =N62 + 17842932835 105, N64=N62 + 1.842993047 105, N65=N62 — 5869976191, No6 =
-0.6948424777 N62 — 1.428740588 10° — 0.6948424777 N67, N68 =2.326544937 10° + N67, N69=2.404768742 10° + N67, N70=N67 — 7822.380466, N71 =
- 1775788910 10° — 0.69484247771\’67}

FI1G. 4.57 EQUATION AS A FUNCTION OF PARTIAL .RELEACED FORCE.

After getting the equations as functions of partial released, normal forces were expressed
derivation individually according to the normal force N22 using the following command.

for i from 1 to 71 do dN22[i] == diff (N[i], N22) end do:
eval(dN22);

After expressing the derivatives, it was already possible to compile the deformation condition by
using the following command.

165 = sum( (%A-mzm],ﬁ i ..71) ~0:

As the same previous two steps were deformation conditions expressed for the rest of the partially

released normal forces, we obtained 10 more equations. All system was solved using the following
command.
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solve({f1, 12, 13, 14, 15, 16, 7, 18, 19, f10, 11, f12, f13, f14, f15, f16,

17, f18, 119, 120, 121, 22, 123, 124, 125, 26, 127, 128, 29, 130, 131,
132, 133, 134, 135, 136, 37, 138, 139, 140, f41, (42, 43, f44, f45, 146,
F47, 48, 49, 50, 51, £52, £33, 154, 155, 156, 57, 58, 59, 60, 61,
f62, 163, 164, 165, 66, 167, 68, 69, f70, 71, 72, f73, 74}, {Fya,
Fxa, Fyk, NO1, NO2, NO3, N04, NO5, N06, NO7, NO8, N09, N10,
N11, N12, N13, N14, N15, N16, N17, N18, N19, N20, N21, N22,
N23, N24, N25, N26, N27, N28, N29, N30, N31, N32, N33, N34,
N35, N36, N37, N38, N39, N40, N41, N42, N43, N44, N45, N46,
N47, N48, N49, N50, N51, N52, N53, N54, N55, N56, N57, N58,
N59, N60, N61, N62, N63, N64, N65, N66, N67, N68, N69, N70,
N71}) :

Fi1G. 4. 58 EQUATIONS AND NORMAL FORCES IN MAPLE SOFTWARE.

The output of this system of equations were the normal forces and reaction forces from
supports.

Fyq = 1957297190 * 10° [N]
Fe=0 [N]
» F, =1.957297190 = 10° [N]

After we got the normal forces, we could calculate the nominal stresses and deflections, So
the calculations are as follows.

= To calculate nominal stress, we just had to divide the normal force by cross-section.
Again because there are 71 bars which mean 71 nominal stresses, we used Maple
software. Let's take bar number 21 as an example, as we can see in fig. 4.59.

» [tisveryimportant to keep in mind that the negative value of Nominal Stress means
that the bar is under compression, and the positive value of Nominal Stress means
that the bar is under tension.

| N[21]
. B — = .
sigma_nom|21] S50

FiG.4.59 FINDING THE NOMINAL STRESS IN MAPLE SOFTWARE.

The most loaded bars of the whole system in terms of Normal Forces. More in Tap. 4.4.

= N5, N6, is symmetrical and has a value of 461056 N, the load is compressive, and they are
in the bottom part of the bridge.

= N15, N16, is also symmetrical and having a value of -467513 N, the load is tensile, and
they are in the top part of the bridge.

- Also, the most loaded bars in terms of Nominal Stress. More in Tap. 4.4.

= N5, N6, is symmetrical and has a value of 20.2930 MPa, and they are in the bottom part of
the bridge.

= N15, N16, is also symmetrical and having a value of -16.1211 MPa, and they are in the top
part of the bridge.
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So, the most loaded part of the bridge was in the middle then decreasing to the edges as per our
expectations. When it comes to the nominal stress, it also depends on the cross-section, so if we
change the cross-section, then the most loaded bars in terms of Nominal Stress definitely will
change. We chose the most loaded bars in terms of tensile and compressive load more in the tab.
4.4 the rest results of the bars can be found in attachment number 9.

TAB. 4.4 NORMAL FORCE AND NOMINAL STRESS IN BARS WITH BRIDGE SELF-WEIGHT.

Bar Normal Force [N] Nom[l:/laFI’aS]tress
N5 461056 20.2930
N6 461056 20.2930
N15 -467513 -16.1211
N16 -467513 -16.1211

» To calculate deflections, we used Castigliano’s theorem. As is evident from bridge
geometry, the most significant displacement (deflection) can be expected on the joints
farthest from the supports, according to that, we chose 10 forces along with the bridge
from node Al to node K1 to observe a gradual change in (deflection).

= Then we deferentially derived all the normal forces according to the 10 forced that had
been chosen, as we can see in fig. 4.59-2.

for i from 1 to 71 do dal[i] := diff (N[i], FgAl) end do:

F1G.4.59-2 DIFFERENTIAL DERIVE ACCORDING TO Al IN MAPLE SOFT WARE.

After the deferential derivative, we integrated it according to the formula below, and index P
changes from Al to K1.

up = Zf E* dF * dx;

= The formula in the software Maple will look like in fig. 4.60.
= The displacements of the individual joints in the vertical direction are given in the
Tab. 4.5.

Fi1G. 4.60 FINDING THE DISPLACEMENT IN MAPLE SOFTWARE.
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TAB. 4.5 DISPLACEMENT OF NODES.

Upper Displacement Bottom Displacement
Nodes [mm] Nodes [mm]
Al 0.0750 A 0
B1 2.9692 B 3.0290
C1 5.6497 C 5.6715
D1 7.6636 D 7.6734
El 8.9511 E 8.9442
F1 9.4012 F 9.3872
G1 8.9511 G 8.9442
H1 7.6636 H 7.6734
11 5.6497 I 5.6715
J1 2.9692 J 3.0290

K1 0.0750 K 0

The Deflection of the bridge reaches the highest value at the top of the Bridge, particularly at
joint F1, which equals 9.4012 mm, then gradually decreases until the edges, Also at the bottom
part of the Bridge, The Deflection reaches the highest value at joint F which equals 9.3872 mm,
then gradually decreases until the edges, but when it comes to joint A and K they equal to
zero because they are connected with the supports.

4.3.3 Checking the limit state of elasticity

Limit state of elasticity has been checked for the most stressed bars in the Bridge, so to check the
limit state of elasticity, we took the highest value of Nominal Stress, which was at joint N5 or N6
it doesn't matter because they are symmetry and it equals 20.2929 MPa, in case if the value was

negative we just take the absolute value of it, then we used the following formula.
K Re 219 _ 1034
K Gom 2029 T

4.4 Load acting on the Bridge from Train plus self-load of Bridge

This section will be the closest to the real-life situations because we took into consideration the
weight of the passing Train on the Bridge, of course, we did not neglect the weight of the Bridge
itself as well as the most Intensive situation occurs when a train passes on the bridge like
deformation and buckling, through the Bridge passes both passenger and freight transport it is
combined. The factor of safety according to the limit state of elasticity was checked using the same
method as in chapter 4.3.3.

4.4.1 Train specifications

The train that passes through the Bridge is Regio Nova CD class B2, in our case, we considered
that two wagons and two locomotives will pass through the Bridge at once to obtain the maximum
weight on the bridge, so every wagon and locomotive weights 18t which means in total we have
72t, the calculations are the same for wagons and locomotives.
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Because the wheels are the only contact with the Bridge, so our calculations were with the wheels,
of course, we did not neglect the weight of the whole construction of the wagon and locomotive.
In one locomotive or wagon, we have 8 wheels. Since we are dealing with the 2D problem, we
took symmetry into considerations, thanks to symmetry, we dealt with just 4 wheels for each
wagon and locomotive, in fig. 4.16, we can see the distribution of the forces and the whole length
of the wagon or locomotive.

P P P P

-l r - 4.65m ol 18Bm _|_15m _

11.25m

F1G. 4.61 TRAIN WEIGHT DISTRIBUTION.

= To calculate the magnitude of the force exerted by one wheel of the train on the deck,
we used the following formula.
F mr - g 18-103-9.81 220725 N
™ 2.4~ 24 B '

When the train passed over the bridge, 4 phases of passage were selected, in these phases were
analyzed the impact of the train on the bridge and changing of deflection and nominal stresses
along the whole bridge, the forces from the train was applied to the nodes, but there were cases
when the force was not acting directly on the node this situation was solved that the force was split
between the two nodes that the force was acting between them, for example, if the force is acting
in the middle of the bar between node A and node B then the force was split into half, so node A
takes half of the force and node B also takes the half, of course, all forces of the train had been add
to the resultant forces of the bridge self-weight.

4.4.2 Phase 1

In this phase, the train passes the first quarter of the bridge and reaches to node D, the forces
generated from the train weight are not acting on any of the nodes, so they were recalculated to act
on the nodes more in fig. 4.62. we can see the forces acting on the nodes after the recalculation.

_— —= | —= =

FgT |FgT _ Fgf . FgT
FoAl |, FgB1 1 FoCt 3 FgD1 FgEl s FgF1 FgG1 FgH1 18 an 19 Fng th
Fol 1 Fol g0 Fop FgS FgV
Fyf\ ﬁ’
FXA FgA Fgé) g FgE FgH FoK

Fi1G. 4.62 PHASE 1 FORCE DISTRIBUTION.
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The forces acting on the nodes remain the same as in the tab. 4.2 in chapter 4.3, except those acting
on the following nodes (Al, B1, C1, D1), to those nodes were added forces created by the self-
weight bridge and the forces created from the weight of the passing train. The rest of the results of
displacement, normal forces, and nominal stresses can be found in attachment number 10.

TAB. 4.6 DISPLACEMENT IN NODES, GRAVITATIONAL FORCES, AND REACTION FORCES.

Node TP Node TP RS A Gravitational Forces [N]
[mm] [mm]

uAl 0.1085 uA 0 FgAl 22868
uB1 3.6678 uB 3.7270 FgB1 46564
uC1 6.8832 uC 6.8845 FgC1 46066
uD1 9.1611 ubD 9.1584 FgD1 27736
uEl 10.5193 ukE 10.5077 Reaction Force [N]
uFl 10.9014 uF 10.8853 Fya 270753
uG1l 10.2728 uG 10.2668 Fyk 208969
uH1 8.7285 uH 8.7411

ull 6.3981 ul 6.4228

ujl 3.3506 ul 3.4154

uk1 0.0800 uk 0

TAB. 4.7 NORMAL FORCES AND NOMINAL STRESSES IN THE BARS, TRAIN PHASE 1.

Bar Norma Force [N] Nom[l&aFI’aS]tress Factor of safety
N5 535514 23.5702 8.9
N6 522576 23.0007 9.1
N15 -543786 -18.7513 11.2
N16 -529320 -18.2524 11.5

4.4.3 Phase 2

In this phase, the train passes 7 nodes, and it reaches to node G1, the forces generated from the
train weight are not acting on any of the nodes also, so they were recalculated to act on the nodes
in fig. 4.63, we can see the forces acting on the nodes after the recalculation.

ng"I' | FaT | FaT | FgT | FgT \ Fg‘I: ‘ Fg'I:
FoAl ,, |FoBl , FgC1 13 yFeD1 " FgE1 5 ngl FgG1 ,:gH1 an ngl o VoKt
— = = _— —_— J——
Fgl Fgo FgP Fa0 ng
Fyf"-‘; m
FxA - > —= S —_— .
FgA FgB FgC FgD FgE FgF FgG FgH FgK

Fi1G. 4.63 PHASE 2 FORCE DISTRIBUTION.
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The forces acting on the nodes also remain the same as in the tab. 4.2 in chapter 4.3 except those
acting on the following nodes (A1, B1, C1, D1, E1, F1, G1), those nodes were added forces created
by the self-weight bridge, and the forces created from the weight of the passing train. The rest of

the displacement results, normal forces, and nominal stresses can be found in attachment N. 11.

TAB. 4.8 DISPLACEMENT IN NODES, GRAVITATIONAL FORCES, AND REACTION FORCES.

Node TP Node TP RS A Gravitational Forces [N]
[mm] [mm]
uAl 0.1481 uA 0 FgAl 22868
uB1 4.9584 uB 4.7822 FgB1 27197
uC1 9.4238 uC 8.9174 FeC1 46066
uD1 12.7345 ubD 11.9846 FgD1 40119
uEl 14.7917 uE 13.8566 FgEl 47226
uFl 15.4433 uF 14.3693 FgF1 46774
uG1l 14.5614 uG 13.4696 FgG1 27860
uH1 12.2972 uH 11.3747 Reaction Force [N]
ull 8.9444 ul 8.2964 Fya 319298
ujl 4.6556 ul 4.3843 Fyk 248687
uk1 0.1020 uk 0

TAB. 4.9 NORMAL FORCES AND NOMINAL STRESSES IN THE BARS, TRAIN PHASE 2.

4.4.4 Phase 3

Bar Norma Force [N] Nom[l&aFI’aS]tress Factor of safety
N5 726891 31.9934 6.5
N6 702060 30.9005 6.7
N15 -733297 -25.2861 8.3
N16 -706998 -24.3792 8.6

In this phase, the train passes 8 nodes it reaches to node H1, the forces generated from the train
weight are not acting on any of the nodes also, so they were recalculated to act on the nodes in fig.
4.65, we can see the forces acting on the nodes after the recalculation.

_—

—_— = /=

e

. FgT , FgT | FaT | FaT |FaT | FaT | FaT ‘ FgT
- = > = = = | . .
FgAl 11 FgB1 12 FgC1 13 FgD1 14 FgEl FgF1 FgGi FgH1 Fg]1 19 Fng
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FgA FgB FgC FgD FoE FgF FgG FaH

Fi1G. 4.64 PHASE 3 FORCE DISTRIBUTION.
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The forces acting on the nodes remain the same as in the tab. 4.2 in chap. 4.3, except those acting
on the following nodes (Al, B1, C1, D1, E1, F1, G1, H1), those nodes were added forces created
by the self-weight bridge and the forces created from the weight of the passing train. The rest of
the displacement results, normal forces, and nominal stresses can be found in attachment N. 12.

TAB. 4.10 DISPLACEMENT IN NODES, GRAVITATIONAL FORCES, AND REACTION FORCES.

Node TP Node TP RS A Gravitational Forces [N]
[mm] [mm]
uAl 0.1481 uA 0 FgAl 22868
uB1 4.9584 uB 5.0464 FgB1 27198
uC1 9.4238 uC 9.4396 FgC1 46067
uD1 12.7345 ubD 12.7286 FgD1 40119
uEl 14.7917 uE 14.7634 FgEl 47226
uFl 15.4433 uF 15.3984 FgF1 46774
uG1l 14.5614 uG 14.5331 FgG1 27860
uH1 12.2972 uH 12.3128 FgH1 27737
ull 8.9444 ul 8.9827 Reaction Force [N]
ujl 4.6556 ul 4.7423 Fya 344539
uk1 0.1020 uk 0 Fyk 267578

TAB.4.11 NORMAL FORCES AND NOMINAL STRESSES IN THE BARS, TRAIN PHASE 3.

Bar Norma Force [N] Nom[l&aFI’aS]tress Factor of safety
N5 771976 33.9779 6.1
N6 760686 33.4809 6.2
N15 -779072 -26.8646 7.8
N16 -765848 -26.4086 7.9

4.4.5 Phase 4
In this phase, the train passes 11 nodes it reaches to node K1, the forces generated from the train
weight are not acting on any of the nodes also, so they were recalculated to act on the nodes in fig.
4.65, we can see the forces acting on the nodes after the recalculation.
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F1G. 4.65 PHASE 4 FORCE DISTRIBUTION.
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The forces acting on the nodes remain the same as in the tab. 4.2 in chapter 4.3, except those acting
on the following nodes (Al, B1, C1, D1, E1, F1, G1, H1, I1, J1, K1), those nodes were added
forces created by the self-weight bridge and the forces created from the weight of the passing train.
The rest of the displacement results, normal forces, and nominal stresses can be found in
attachment N. 13.

TAB.4.12 DISPLACEMENT IN NODES, GRAVITATIONAL FORCES.

Node D'S%ﬁiﬁ;n ent Node D'S%ﬁiﬁ;n ent Gravitational Forces [N]
UAl 0.1530 UA 0 FgAl 42234
uBl 5.3397 uB 5.4326 FgB1 39580
ucCl 10.1722 uC 10.1908 FgC 1 46067
ubD1 13.7993 ubD 13.7962 FgD1 47103
uEl 16.1132 uE 16.0859 FgE1 40243
uFl 16.9434 uF 16.8964 FgFl 46774
uGl1 16.1295 uG 16.0965 FgG1l 47226
uH1 13.7946 uH 13.7979 FgH1 40119
ull 10.1779 ul 10.1956 Fgll 46067
ujJl 5.3542 uJ 5.4402 FgJl 46564
uK1l 0.1355 uk 0 FgK1 22868

TAB. 4.13 REACTION FORCES.

Reaction Force [N]

Fya

357778

Fyk

342602

TAB. 4.14 NORMAL FORCES AND NOMINAL STRESSES IN THE BARS TRAIN PHASE 4.

Bar Norma Force [N] Nom[lp/laFl)aS]tress Factor of safety
N5 833496 36.6856 5.72
N6 835144 36.7581 571
N15 -840879 -28.9958 7.24
N16 -842122 -29.0387 7.23
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4.4.6 Conclusion of the four phases

As we can see in Figures (4.62, 4.63, 4.64, 4.65) that the locomotives and wagons pass gradually
on the top of the bridge from the beginning, which is the left part of the bridge, to the end, which
is the right part of the bridge so for the calculations, we had to split the process of passing it into
four phases to analyze the different positions of the train weight on the bridge however according
to that we predicted that the Normal forces, Nominal stresses, and displacement would increase
gradually in each Phase which should be correct because in every phase we are increasing the
weight on the bridge by adding into the nodes recalculated forces created by wagons and
locomotives weight.

The most loaded phase should be the fourth because, in the fourth phase, we have two locomotives,
one wagon, and a half wagon, on the bridge, which makes it the heavier phase for more in fig.
4.65, according to our expectation, the fourth phase will be the most dangerous one when it comes
to the buckling limit state due to the high values of compression forces.

As we can see in all phases, the common things are that the most loaded bar when it comes to
nominal stress and normal force in tension is bar N5 except in phase four is bar N6, and the most
loaded bar in compression is bar N15 again except in phase four it is bar N16, and the highest
numbers of nominal stress, normal force, and deflection we can find in the fourth phase.

All phases are similar in the most deflected node, which is node F1 then node F with a tiny
difference, in phase 2 and phase 3 the deflection in node F is totally the same the reason behind
that is that phase 2 and phase 3 did not get significant changes in loads, so the difference was
mainly in the bottom part of the bridge.

We could also notice in tables (4.6, 4.8, 4.10, 4.12) that there is a zero deflection in all phases at
node A and K, and it should be zero because at node A we have pin support mounted to it, and at
node K, we have roller support also mounted to it.

The safety against the limit state of elasticity was calculated for each phase to make sure that the
construction is safe after increasing a heavy load in every phase, so we took the highest absolute
value of nominal stress into our calculations, so we got the factor of safety in phase 1 K= 8.9 and
decreasing to K;= 5.7 in phase 4, which means that the load gets heavier most likely although the
factor of safety is low it’s still in the safe zone that the bridge wouldn’t collapse or exceed the limit
state of elasticity.
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4.5 Statically Determinate assignment

In this section, we made a simpler model of the bridge because one of the goals of the bachelor
thesis is to change the degree of static indeterminacy so that we changed it to a statically
determinate task, which means that 20 bars and 10 nodes from the middle part of the bridge have
been removed because we changed the topology. It was evident that our static indeterminant bridge
is 10 times statically indeterminate and it was more than enough to reduce it just by 10 bars and
keep the nodes to achieve the static determinacy but in our more straightforward model we reduced
the bars by 20 times the reason why we did this significant change is that we wanted the bridge to
look like in a real-life construction , not an imaginary bridge, however, after reducing the bars we
had to take out the nodes in the middle of the bridge as well the removed nodes were ( L, M, N,
O, P, Q,R, S, T, V), Finally, after the reduction process, we ended with a static determinate
structure having 41 bars and 11 nodes are effected by simple tension and compression, the
dimensions of the whole bridge remain the same does not change the total length is 4140x10
which means 41400 mm, and the height is 4000 mm, the supports also stay the same which means
two supports on the left pin support which allows just rotation on Z-axis (perpendicular) and the
right is supported by roller support means that the part of the bridge can move horizontally and
rotate around the Z-axis (perpendicular).

4.5.1 The main descriptions of the bridge
The bridge was described as simple as possible to make it easy in calculations and orientations,
using an alphabet system and numbering, it is as follows.

4.5.2 The main dimensions

The main dimensions describe the full length of the part of the bridge, which is 41400 mm, the
height, which is 4000 mm, the length of one block, which is 4140 mm, the length of inner bars
which is 5757mm, and the angle between the bars which is 44.01 .

4.5.6 The naming of nods and numbering of bars

This part of the bridge contains 41 bars separated by nodes, so they were numbered from 1 to 41,
starting from the bottom left to the top of the bridge. This part of the bridge contains 11 nodes, so
they were named alphabetically, starting from bottom left by letter A to the bottom right by letter
K, the upper part of the bridge was copied from the bottom but with adding 1 like this (Al).

Al Bi C1 Di Ei F1 G1 Hi I1 J1 K1
11 12 13 14 15 16 17
21 23 25 27 29 31 33
22 24 26 28 30 32 34
f'.\
-
A B C D E F G

F1G. 4.66 NUMBERING THE BARS AND NAMING THE NODES.
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4.5.7 Cross-sections
For the construction of the bridge were used 10 different types of cross-sections. They are the same
as in the statically indeterminate structure. They can be found in chapter 4.1.5.

TAB. 4. 15 COLOR AND NUMBERS OF CROSS-SECTIONS.

Cross-sections Number of bar Cross-section area colours
Name in mm? corresponding
to bar
01,02 11,12,19,20 22000
03 13,18 26000
04,05 14,15,16,17 29000
ul,uU2 1,2,9,10 211200
u3,u4,U5 3,4,5,6,7,8 22720
T1 22,40 8200
T2,T3 24,26,36,38 7200
T4,T5 28,30,32,34 6200
S 23,25,27,29,31,33,35,37,39 9600
SO 21,41 18400 .

Fi1G. 4.67 FINDING THE POSITION OF CROSS-SECTION BY COLORS.

4.6 Static analysis

We make static analysis of any truss system to distinguish if the system is statically internally or
externally determined or not determined, basically, by doing the analysis, we can find out how
many equations we have and how many unknowns parameters we have, so if the number of
equations is the same as the number of unknowns parameters, so the system is statically
determined, otherwise if the number of equations not equal to the number of unknown parameters
then the system is statically undetermined, so for our case will be explained better in the next step.
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4.6.1 External static analysis

Well, we have to consider our system of the truss (bridge) as on whole rigid body then released
the supports which means just draw the reaction forces for supports, in our case we have in the
bottom left pin support and in the bottom right roller support, and we are free to choose the
direction of the forces however they are same as in chapter 4.2.1 fig. 4.21, in this easier model,
nothing has been changed according to the supports they are the same as in the real-life model.

= So, as we can observe from fig. 4.21 in chapter 4.2.1, we have three unknown forces we
gained them from releasing the supports NP = {FxA, FyA, FyK}

= |n our case, we have the 2D system, so we have three static equilibrium equations from
the formula below we can get.

Sex = Mex = Vex

Hex = 3
Vex = 3
Sex = 0

= As we can observe from the formula, we got S.x = 0, which means that our bridge is
an external static determinant.

4.6.2 Internal static analysis
When it comes to internal static analysis is a bit different from external static analysis case, as we
know that we are solving our bridge based on a truss theory which means that we have to
consider our system of the truss (Bridge) as so many bars connected with others with nodes.

= In the system, we have 41 bars and 22 nodes, using the following formula we get.

= P=41.... Where P is number of bars

= K =22.... Where K is number of Nodes

» P=(2xk—-3)=>41=(2x%x22-3)

» 41=41

= For the system to be statically determinate, both sides of equality have to be the same.

= As we can see from the formula that both sides are equals which means we have got 41

equations and 41 unknowns, this is the definition of a static determinate structure.

4.7 Bridge's self-weight load

In this chapter, we calculated the forces created from the bridge’s weight, the steps of calculation
and the used equations are the same as in the static indeterminate task, detailed information were
mentioned in chapter 4.3, the only changes are in the results the cannot be same according to our
changes in the structure of the bridge.
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FI1G. 4.68 GRAVITATIONAL FORCES FROM BRIDGE’S SELF-WEIGHT.

TAB. 4.16 GRAVITATIONAL LOADING ACTING ON NODES.

Gravitational Forces [N]
FgA 9097 FgAl 10485
FgB 12222 FgB1 11197
FgC 12226 FgC1 11835
FgD 12319 FgD1 12729
FgE 11949 FgEl 13207
FgF 13324 FgFl 11833
FgG 11949 FgG1l 13207
FgH 12319 FgH1 12729
Fgl 12226 Fgll 11835
FgJ 12222 FgJl 11197
FgK 9097 FgK1 10485

4.7.1 Free body diagram.
It has been drawn a free body diagram for all construction, which means that each node is released,
then we got a static equilibrium equation per each node in the X and the Y direction, and the
moment is zero. The releasing process will be the same as in chapter 4.3.2, and only it will be in a
different configuration; the nodes will be fewer. The released nodes and their equations can be

found in attachment N. 58.
4.7.2 Solving the system of equations

After applying the free body diagram, we got static equilibrium equations where their number was
44 equation, from our internal static analysis in chapter 4.6.2, we found that the number of
unknown parameters equals to the number of the equations thanks to that, we did not have to do
any special modifications if the Maple software unlike in statically indeterminate task chapter 4.1.

solve({f1, 12, 13, f4, 15, 16, 17, /S, 19, 110, f11, f12, f13, fl4, f15, {16,

17, F18, 719, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131,
132, 133, 34, 135, 136, 37, 138, 139, 140, f41, 42, f43, f44}, {Fya,
Fxa, Fyk, NO1, N02, N03, N04, NO5, N06, N07, NO8, N09, N10,
N11, N12, N13, N14, N15, N16, N17, N18, N19, N20, N21, N22,
N23, N24, N25, N26, N27, N28, N29, N30, N31, N32, N33, N34,
N35, N36, N37, N38, N39, N40, N41})

Fi1G. 4.69 EQUATIONS AND NORMAL FORCES IN MAPLE SOFTWARE.
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The solving process was done by a software called Maple, so at the beginning, after ordering the
equation from eq. 1 to eq. 44 we used command solve({equations},{unknown parameters}),
basically what this command did was finding the values of the normal forces and reactions forces,
the reaction forces from supports.
F,q = 1.298496887 - 10° [N]
Feqa =0 [N]
* Fy, =1.298496887 - 105 [N]

We can see that the reaction forces in this task have a smaller magnitude than the reaction forces
in a static determinate task because the load on the bars is less since we decreased the bars in the
construction by 20.

After we got the normal forces, we could calculate the nominal stresses and deflections, So the
calculations are as follows.

= To calculate nominal stress, we just had to divide the normal force by cross-section, again
because 41 bars mean 41 nominal stresses, we used Maple software. Let's take bar number
21 as an example, as we can see in fig. 4.70

= |t is essential to keep in mind that the negative value of Nominal Stress means that the
bar is under compression, and the positive value of Nominal Stress means that the bar is
under tension.

N[21]
Y

F1G. 4.70 FINDING THE NOMINAL STRESS IN MAPLE SOFTWARE.

sigma_nom|[21] =

The most loaded bars of the whole system in terms of Normal Forces are
= N5, N6, is symmetrical and has a value of 308050 N, and they are in the bottom part of
the bridge.

= N15, N16, is also symmetrical and having a value of -321069 N, and they are in the top
part of the bridge.

Also, the most loaded bars in terms of Nominal Stress
= N22, N40, is symmetrical and has a value of 19.3527 MPa, and they are in the bottom part
of the bridge.

So, the most loaded part of the bridge in terms of normal stress was in the middle then
decreasing to the edges as per our expectations, when it comes to the nominal stress, it highly
depends on the cross-section, that’s the reason why bars N22, N40 are the most loaded, and bars
N1, and N10 has zero values because they do not transmit any force. The rest results of the bars
can be found in attachment N. 36.
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TAB.4.17 NORMAL FORCES AND NOMINAL STRESSES IN THE BARS BRIDGE SELF-WEIGHT.

Bar Norma Nominal Bar Norma Force Nominal
Force [N] Stress [MPa] [N] Stress [MPa]

N5 308050 13.5586 N22 158692 19.3527

N6 308050 13.5586 N40 158692 19.3527

N15 -321070 -11.0714 N1 0 0

N16 -321070 -11.0714 N10 0 0

= To calculate deflections, we used Castigliano’s theorem. As is evident from bridge
geometry, the most significant displacement (deflection) can be expected. On the joints
farthest from the supports, according to that, we chose 10 forces along with the bridge
from node Al to node K1 to observe a gradual change in (deflection).

= Then we deferentially derived all the normal forces according to the 10 forced that had
been chosen, as you can see in fig. 4.71.

for ifrom 1 to41 do dal[i] := diff (N|i], FgAl) end do:

F1G. 4.71 DIFFERENTIAL DERIVE ACCORDING TO Al IN MAPLE SOFT

After the deferential derivative, we integrated according to formula bellow

i
uR_Zf E *S, dFP

= The formula in the software Maple will look like in fig. 4.72.
= The displacements of the individual joints in the vertical direction are given in the tab.

4.18. o Sum((%'[ﬁ[]j]-dal[j]),jzl.Alj;

F1G.4.72 FINDING THE DISPLACEMENT IN MAPLE SOFT WARE.

* dx;

TAB. 4.18 DISPLACEMENT OF NODES.

Node Displacement Node Displacement
[mm] [mm]
UAl 0.1250 UA 0
uBl 2.8435 uB 2.6490
uCl 5.2209 uC 5.0728
ubD1 6.9882 ubD 6.8880
uEl 8.1042 uE 8.0530
uFl 8.4688 uF 8.4453
uGl 8.1042 uG 8.0530
uH1 6.9882 uH 6.8880
ull 5.2209 ul 5.0728
uJl 2.8435 uJ 2.6490
uK1l 0.1250 ukK 0
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The Deflection of the bridge reaches the highest value at the top of the Bridge, particularly at joint
F1, which equals 8.4688 mm, then gradually decreases until the edges, also at the bottom part of
the Bridge, The Deflection reaches the highest value at joint F which equals 8.4453 mm, then
gradually decreases until the edges, but when it comes to joint A and K they equal to zero because
they are connected with the supports. After all, there cannot be allowed any displacement.

4.7.3 Checking the limit state of elasticity

The limit state of elasticity has been checked for the most stressed bars in the Bridge, so to check
the limit state of elasticity, we took the highest value of Nominal Stress, which was at joint N5 or
N6 doesn't matter because they are symmetry. It equals 19.3527 MPa, in case if the value was

negative, we just take the absolute value of it, then we used the following formula.

Ke=—e =219 085

K Gpom 1935

4.8 Load acting on the Bridge from Train plus self-load of Bridge
This section will be the closest to the real-life situations because we took into consideration the
weight of the passing Train on the Bridge, of course, we did not neglect the weight of the Bridge
itself as well as the most dangerous situation occurs when a Train passes on the Bridge like
Deformation and Buckling, through the Bridge passes both passenger and freight transport it is
combined.

4.8.1 Train specifications

The train that passes through the Bridge is the same as in a statically indeterminate case Regio
Nova CD class B2, the consideration still the same, which is that two wagons and two locomotives
will pass through the Bridge at once to obtain the maximum weight on the bridge. Hence, every
wagon and locomotive weights still the same 18 t, which gives us a total of 72 t, the calculations
are the same for wagons and locomotives.

Because the wheels are the only contact with the Bridge, so our calculations were with the wheels.
Of course, we did not neglect the weight of the whole construction of the wagon and locomotive.
In one locomotive or wagon, we have 8 wheels since we are dealing with the 2D problem as well
we took the symmetry of the bridge into considerations, thanks to symmetry, we dealt with just
four wheels for each wagon and locomotive in fig. 4.61 chapter 4.4.1, we can see the distribution
of the forces and the whole length of wagon or locomotive.

= For the calculation of the force exerted by one wheel of the train on the bridge rails, the
same formula as in the static indeterminate task was applied more in chapter 4.4.1.

When the train passed over the bridge, 4 phases of passage were selected, in these phases were
analyzed the impact of the train on the bridge and changing of deflection and nominal Stresses
along the whole Bridge, the forces from the train was applied to the nodes, but there were cases
when the force was not acting directly on the node this situation was solved that the force was split
between the two nodes that the force was acting between them, for example, if the force is acting
in the middle the bar between node A and node B then the force was split into half, so node A
takes half of the force and node B also takes the half, of course, all forces of the train had been add
to the resultant forces of the bridge self-weight. According to the limit state of elasticity, the factor
of safety was checked using the absolute value of the higher magnitude Nominal stress.
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4.8.2 Phase 1

In this phase, the train passes the first quarter of the bridge and reaches to the node D, the forces
generated from the train weight are not acting on any of the nodes so they were recalculated to act

on the nodes more in fig.4.73, we can see the forces acting on the nodes after the recalculation.

|FeT  |FeT | FgT | FeT
FgAl FgB1 FgCl Fgb1
—>
FyA
FxAI FgA FgB FgC FgD FgE FgF FaG FgH Fgl Fgl

Fi1G. 4.73 PHASE 1 FORCE DISTRIBUTION.

The forces acting on the nodes remain the same as in the tab. 4.16, except those acting on the
following nodes (A1, B1, C1, D1), to those nodes were added forces created by the self-weight
bridge and the forces created from the weight of the passing train. The rest results of normal forces
and nominal stresses can be found in attachment N. 37.

TAB. 4. 19 DISPLACEMENT IN NODES, GRAVITATIONAL FORCES, AND REACTION FORCES.

Displacement Displacement

Node [mm] Node [mm] Gravitational Forces [N]
uAl 0.2026 uA 0 FgAl 22868
uB1 4.0397 uB 3.7208 FgB1 42946
uC1 7.1596 uC 6.9502 FgC1 43584
uD1 9.1792 ub 9.0808 FgD1 25111.92298
uEl 10.2473 uE 10.2224 Reaction Force [N]
uFl 10.4584 uF 10.4349 Fya 204873
uG1 9.8439 uG 9.7665 Fyk 143089
uH1 8.3639 uH 8.2375

ull 6.1804 ul 6.0061

ujl 3.3368 ul 3.1160

uk1 0.1387 uk 0

TAB. 4. 20 NORMAL FORCES AND NOMINAL STRESSES IN THE BARS TRAIN PHASE 1.

Bar Norma Nominal Bar Norma Force Nominal
Force [N] Stress [MPa] [N] Stress [MPa]

N5 390268 17.1773 N1 0 0

N6 362862 15.9710 N10 0 0

N14 -390268 -13.4575 N22 248844 30.3469

N15 -389584 -13.4339 N23 -160685 -16.7380
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4.8.3 Phase 2

In this phase, the train passes 7 nodes, and it reaches node G1. The forces generated from the train
weight are not acting on any of the nodes also, so they were recalculated to act on the nodes more

in fig. 4.74, we can see the forces acting on the nodes after the recalculation.

| FgT | FaT | FgT | FaT |, FgT | FaT & FaT
FgA1 FgB1 FoCl Fob1 FgF1 5F¥1
—>
FyA \\
FxA v Fgh FgB FgC FgD FoE FoF FoC FoH Fol Fal

F1G. 4.74 PHASE 2 FORCE DISTRIBUTION.

The forces acting on the nodes remain the same as in the tab. 4.16, except for those acting on the
following nodes (Al, B1, C1, D1, E1, F1, G1), those nodes were added forces created by the self-
weight bridge and the forces created from the weight of the passing train. The rest results of normal
forces and nominal stresses can be found in the attachment. N. 38.

TAB. 4. 21 DISPLACEMENT IN NODES, GRAVITATIONAL FORCES, AND REACTION FORCES.

Displacement Displacement

Node [mm] Node [mm] Gravitational Forces [N]
uAl 0.2529 uA 0 FgAl 22868
uB1 5.4529 uB 5.0378 FgB1 42946
uC1 9.8874 uC 9.5817 FeC1 43584
ubD1 13.0382 ub 12.8434 FgD1 37494
uEl 14.9074 uk 14.8108 FgEl 44956
uF1 15.3189 uF 15.2324 FgF1 43582
uG1 14.2168 uG 14.0605 FgG1 25590
uH1 11.8566 uH 11.6514 Reaction Force [N]
ull 8.6358 ul 8.3827 Fya 253418
ujl 4.6048 ul 4.3052 Fyk 182807
uk1 0.1798 uk 0

TAB. 4. 22 NORMAL FORCES AND NOMINAL STRESSES IN THE BARS, TRAIN PHASE 2.

Bar Norma Nominal Bar Norma Force Nominal
Force [N] Stress [MPa] [N] Stress [MPa]

N5 578428 25.4589 N1 0 0

N6 527297 23.2085 N10 0 0

N15 -582311 -20.0797 N22 318709 38.8669

N16 -582311 -20.0797 N23 -209229 -21.7947

57

FgK1




4.8.4 Phase 3

In this phase, the train passes 8 nodes, and it reaches node H1, the forces generated from the train
weight are not acting on any of the nodes also, so they were recalculated to act on the nodes in fig.
4.75, we can see the forces acting on the nodes after the recalculation.

— — = = — — — —
| FaT | FaT |, FaT J FaT | FgT | FaT | FaT | FgT
FoAl FgB1 FoCl FgD1 FoFl %FgF'l FgG1 FoK1
—= —
FyA FyK
FxA$ FgA FgB FgC FgD FgE FgF FgG FgH Fgl FgJ FgK

F1G. 4.75 PHASE 3 FORCE DISTRIBUTION.

The forces acting on the nodes remain the same as in the tab. 4.16, except for those acting on the
following nodes (A1, B1, C1, D1, E1, F1, G1, H1), those nodes were added forces created by the
self-weight bridge, and the forces created from the weight of the passing train. The rest results of

normal forces and nominal stresses can be found in attachment N. 39.

TAB. 4. 23 DISPLACEMENT IN NODES, GRAVITATIONAL FORCES, AND REACTION FORCES.

Displacement Displacement

Node [mm] Node [mm] Gravitational Forces [N]
uAl 0.2790 uA 0 FgAl 42234
uB1 5.7720 uB 5.3452 FgB1 35963
uC1 10.5625 uC 10.2313 FgC1 43584
uD1 14.0339 ubD 13.8136 FgD1 44478
uEl 16.1072 uE 15.9989 FgEl 37973
uF1 16.7130 uF 16.6265 FgF1 43582
uG1 15.7319 uG 15.5628 FgG1 44957
uH1 13.1978 uH 12.9551 FgH1 25112
ull 9.5904 ul 9.2997 Reaction Force [N]
ujl 5.1013 ul 4.7643 Fya 278659
uk1 0.1994 uk 0 Fyk 201698

TAB. 4. 24 NORMAL FORCES AND NOMINAL STRESSES IN THE BARS, TRAIN PHASE 3.

Bar Norma Nominal Bar Norma Force Nominal
Force [N] Stress [MPa] [N] Stress [MPa]

N5 617204 27.1656 N1 0 0

N6 592689 26.0867 N10 0 0

N15 -634396 -21.8757 N22 327163 39.8979

N16 -634396 -21.8757 N23 -215104 -22.4067

58



4.8.5 Phase 4

In this phase, the train passes 11 nodes, and it reaches node K1, the forces generated from the train
weight are not acting on any of the nodes also, so they were recalculated to act on the nodes in fig.
4.76, we can see the forces acting on the nodes after the recalculation. The rest results of normal
forces and nominal stresses can be found in attachment N. 40.

| FgT |, FaT | FgT |, FaT | FaT |, FaT | FgT |, FgT S FaT . FgT | FaT
FgAl FgB1 FgCl FgD1 FgE1 5Fglfl FgG1 FgH1 Foll Fgil FgK1

. .
FyA FyK
FXAI FgA FgB FgC FgD FgE FgF FgG FgH Fgl ?95 TFQK

F1G. 4.76 PHASE 4 FORCE DISTRIBUTION.

The forces acting on the nodes remain the same as in the tab. 4.16, except those acting on the

following nodes (A1, B1, C1, D1, E1, F1, G1, H1, I1, J1, K1), those nodes were added forces

created by the self-weight bridge and the forces created from the weight of the passing train.
TAB. 4. 25 DISPLACEMENT IN NODES, GRAVITATIONAL FORCES.

Displacement Displacement
Node [mm] Node [mm] Gravitational Forces [N]
uAl 0.2927 uA 0 FgAl 42234
uB1 6.2652 uB 5.8121 FgB1 35962
uC1 11.5219 uC 11.1645 FgC1 43584
ubD1 15.4096 uD 15.1631 FgD1 44478
uEl 17.8469 uE 17.7123 FgE1l 37972
uF1 18.7025 uF 18.6161 FgF1 43582
uG1 17.8749 uG 17.7321 FgG1 44956
uH1 15.3888 uH 15.1478 FgH1 37494
ull 11.5290 ul 11.1770 Fgll 43584
ull 6.29744 ul 5.8360 Fgll 42946
uk1 0.27704 uk 0 Fgk1 22868
TAB. 4. 26 REACTION FORCES.
Reaction Force [N]
Fya 291898
Fyk 276722
TAB. 4. 27 NORMAL FORCES AND NOMINAL STRESSES IN THE BARS, TRAIN PHASE 4
Bar Norma Nominal Bar Norma Force Nominal
Force [N] Stress [MPa] [N] Stress [MPa]

N5 672016 29.5781 N1 0 0

N6 674907 29.7054 N10 0 0

N15 -702910 -24.2383 N22 346217 42.2216

N16 -702910 -24.2383 N24 276870 38.4541

59



4.9 Conclusion of the four phases

As we can see in Figures (4.73, 4.74, 4.75, 4.76) that the locomotives and wagons pass gradually
on the top of the bridge from the beginning, which is the left part of the bridge, to the end, which
is the right part of the bridge so for the calculations, we had split the process of passing it into four
phases to analyze the different position of the train weight on the bridge however according to that
we predicted that the Normal forces, Nominal stresses, and displacement would increase gradually
in each Phase which should be correct because in every phase we are increasing the weight on the
bridge by adding into the nodes recalculated forces created by wagons and locomotives weight.

The most loaded phase should be the fourth because, in the fourth phase, we have two locomotives,
one wagon, and a half wagon, on the bridge, which makes it the heavier phase for more in fig.
4.76, according to our expectation, the fourth bridge will be the most dangerous one when it comes
to the buckling limit state due to the high values of compression forces.

% Phasel
In this phase from tables 4.19, and 4.20 we got.
»= The most nominal stress in tension applied at bar number N22 of value 30.3469 MPa,
and the maximum stress in compression applied at bar N23 of value a -16.738 MPa,
the maximum absolute Nominal stress is the same at bar N22 of value at 30.346 MPa.

= The maximum tension force is applied at the bar number N5 of value at 390268 N, and
the maximum compression force is applied at the bar number N14 of value at -390268 N,
the maximum absolute force is the same at bar N5 and N14 of value at 390268 N.

= The maximum deflection applied is at node F1 in the middle-upper part of the bridge at
a value of 10.4584 mm and node F in the middle-bottom part of the bridge at a value of
10.4349 mm.

= Checking the factor of safety according to the limit state of elasticity using the absolute
value of the Nominal stress.
R, 210
Onom  30.34

Ky = = 6.92

% Phase2
In this phase from tables 4.21, and 4.22 we got.
= The most nominal stress in tension applied at bar number N22 of value 38.8669 MPa, and
the maximum stress in compression applied at bar N23 of value at -21.79478723 MPa,
the maximum absolute Nominal stress is the same at bar N22 of value at 38.8669 MPa.

» The maximum tension force is applied at the bar number N5 of value at 578428 N, and the

maximum compression force is applied at the bar number N15 and N16 of value at -582311
N, the maximum absolute force is the same at bar N15 and N16 of value at 582311 N.
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= The maximum deflection applied is at node F1 in the middle-upper part of the bridge at
a value of 15.3189 mm and node F in the middle-bottom part of the bridge at a value of
15.2324 mm.

= Checking the factor of safety according to the limit state of elasticity using the absolute
value of the Nominal stress.
R, 210

K = = =540
K Gom  38.86

% Phase3
In this phase from tables 4.23, and 4.24 we got
=  The most nominal stress in tension applied at bar number N22 of value 39.8979 MPa,

and the maximum stress in compression applied at bar N23 of value at -22.4067 MPa,
the maximum absolute Nominal stress is the same at bar N22 of value at 39.8979 MPa.

»= The maximum tension force is applied at the bar number N5 of value at 617204 N, and
the maximum compression force is applied at the bar number N15 of value at -634396 N,
the maximum absolute force is the same at bar N15 and N16 of value at 634396 N.

= The maximum deflection applied is at node F1 in the middle-upper part of the bridge at
a value of 16.7130 mm] and node F in the middle-bottom part of the bridge at a value of
16.6265 mm.

= Checking the factor of safety according to the limit state of elasticity using the absolute
value of the Nominal stress.
R, 210
Opnom 39.89

KK:

+» Phase4
In this phase from tables 4.25, 4.26, and 4.27, we got.
» The most nominal stress in tension applied at bar number N22 of value 42.2216 MPa, and
the maximum stress in compression applied at bar N16 of value at -24.2383 MPa, the
maximum absolute Nominal stress is the same at bar N22 of value at 42.2216 MPa.

» The maximum tension force is applied at the bar number N6 of value at 674907 N, and the
maximum compression force is applied at the bar number N15 and N16 of value at -702910
N, the maximum absolute force is the same at bar N15 and N16 of value at 702910 N.

= The maximum deflection applied is at node F1 in the middle-upper part of the bridge at a
value of 18.7025 mm and node F in the middle-bottom part of the bridge at a value of
18.6161 mm.
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= Checking the factor of safety according to limit state of elasticity using the absolute value
of the Nominal stress

As we can see in all phases, the common things are that the most loaded bar when it comes to
nominal stress and normal force, in tension is bar N5 and the most loaded bar in compression is
bar N15 again except in phase four is bar N16, and the highest numbers of nominal stress, normal
force, and deflection we can find in the fourth phase.

All phases are similar in the most deflected node, which is node F1, after it tightly node F with a
very small difference.

We could also notice that there is a zero deflection in all phases at node A and K, and it should be
zero because at node A we have pin support mounted to it, and at node K, we have roller support
also mounted to it.

The safety against the limit state of elasticity was calculated for each phase to make sure that the
construction is safe after increasing a heavy load in every phase, so we took the highest absolute
value of nominal stress into our calculations so we got the factor of safety in phase 1 K;,;=6.92 and
decreasing to K; = 4.97 in phase 4, which means that the loads get heavier most likely, the
construction will fail against the elasticity limit state and collapse.

4.10 Checking the buckling stability limit state of the bridge.

One of the most dangerous situations that can occur when a bar is under high compressive loading
is occurring a buckling, and if the bar is under high compression, it can lead to buckling. Therefore,
the limit state of buckling can only be achieved under a high-stress pressure so that the deformation
of the bar changes from compression to bending.

In order for the buckling limit state to occur before the limit state of elasticity, it must meet the
condition that the slenderness of the checked bar is higher than the critical slenderness.
According to the type of placement of individual bars in our bridge structure, the coefficient o was
chosen for placement between two rotational supports, therefore a = 7. So, the slenderness is

therefore determined as follows.
210 103
=99.34

So, to check the limit state of buckllng we compared the result of critical slenderness with the
slenderness of the individual bars which were determined for bars loaded with compression
according to the following relationship.

4.10.1 Self-weight load
Because the variant self-load has the fewest loads when it compares to the others, so we decided
to move it into attachments holding number 1.
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4.10.2 Load acting on the Bridge from Train plus self-load of Bridge

In this chapter, we will check the limit state of buckling for both structures (statically determinate
and statically indeterminate) under the bridge’s self-weight. We will also consider the weight of
passing locomotives and wagons. The critical force must apply the determination of safety that
decides if a bar is safe against buckling limit state since the highest slenderness of the bars is at
the value of 84.79 more in tab. 1, in attachment 1, and both structures have the same properties,
and it is enough to determine only one critical force. However, we calculated it using the following

formula.
2
a“-E ']min
Fy, = —z = 2766943 [N]

a) Safety for a static indeterminate structure
Form tab. 1, in attachment 1, bars (36,41,46,51) has the highest value of slenderness, and the bar
number (46) has the most elevated normal force under compression at -23662 N in-phase(4), the
negative sign means that the bar is under compression; however, we took the absolute value, and
to find the factor of safety, we divided the critical force by the normal force acting on the bar as
follows.

F
Kv=%=117

Thus, the safety of the train-load structure dropped to almost a third of the original value, which
was calculated for a statically indeterminate structure, where the system was loaded only by its
own weight. Nevertheless, security is high enough.

b) Safety for a static determinate structure
Form tab.1, bars (23,25,27,29,31,33,35,37,39) has the highest value of slenderness and the bar
number (23) has the highest nominal stress under compression at -283839 N in-phase (4). to find
the factor of safety, we divided the critical force by the normal force as follows.

F
K, = Iffr =97
If we compare the resulting safety with the safety that came out under the load only by the self-
weight of the bridge, we observe a deterioration again. Here, too, it is assumed that with greater
stress on the bridge structure, the buckling failure will occur earlier than the elasticity failure.

5 Numerical Calculations using finite element method

In this section, we used the finite element method to solve or structures. The software that has been
used was Ansys workbench, it is necessary to mention that the solution is only approximate and is
always a slight tolerance of error, but Usually, the accuracy of the solution is sufficient for our
analyzing application. In our steps of the solution, it is possible to use a bar or link-type element
bar bodies. However, a Link element transmits only axial loads, and only displacement parameters
can be calculated with it, but in Bar element can be used for other calculations also such as torsion,
bending, shear. This section shows the results obtained using the simulation software ANSYS,
which will serve as a check of the accuracy of analytical calculations.
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5.1 Statically indeterminate structure 2D

We created a model in software Ansys that has the exact geometrical dimensions of the bridge as
in chapter 4.1.2, fig. 4.2, and the cross-sections are the same also as in chapter 4.1.5, fingers (4.6-
4.18). In this chapter, the 2D comparison will be applied for the self-weight bridge and a passing
train in phase 4 plus the bridge's self-weight. However, in this thesis will be written just the
statically indeterminate case, and the statically determinate case will be attached in attachment
holding number 8.

5.1.1 Self-weight bridge analyzing displacement and normal forces
In this section, we built a model with self-bridge’s loading effect, and it led to the displacement
and created normal forces.

ANSYS

2020 R2
ACADEMIC

-9.4012 Min 0 Se+03 1e+04 (mm)
[ E— s ——
2.5e+03 7.5e+03

FiG. 5.1 DEFLECTION OF THE BRIDGE IN Y AXIS [MM]. SELF-WEIGHT.

As we can see in fig. 5.1 the minimum displacements are in the edges with red color that is because
the nodes are close to the supports, but as we can see, the displacement is gradually increasing to
the middle, where gets the highest values in blue color. However, the maximum displacement is
in node F, which is reasonable because node F is the furthest node from the supports, and it is
under tension force.

Fig. 5.2 graphically shows the effect of nominal stresses on individual bars of the bridge structure.
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FI1G. 5.2 AXIAL FORCES ACTION ON THE BARS IN [N]. SELF-WEIGHT.

As we can see in fig. 5.2, we got the maximum values at the middle bottom of the bridge with red
color and the minimum values at the middle top of the bridge with blue color, well the sign does
not matter. It indicates if the bar is under compressive or tension force, which means that we got
the highest compression forces at the top of the bridge and the highest tension at the bottom of the
bridge.
5.1.2 Comparison between Numerical and Analytical results
In tab. 5.1, we had compared the numerical and the analytical results to check the accuracy of the
analytical calculation. We compared displacements in the nodes and normal forces in the bars.
However, because the number of bars is 71 and the number of nodes is 32, we decided to choose
just 10 of each for our comparison. as we can see, the results coincide with great accuracy. The
rest of the results can be found in the attachment holding numbers 19, and 20.

TAB. 5.1 COMPARISON OF NORMAL FORCE AND DISPLACEMENT NUMERICAL AND

ANALYTICAL.
Analytical Numerical Analytical Numerical
Bars Norma Norma Accuracy Nodes Displacement | Displacement | Accuracy
Force [N] Force [N] % [mm] [mm] %
N3 359446.12 359450.00 UuAl 0.0750694 -0.075069
N4 429031.60 429030.00 uBl 2.96923898 -2.9696
N5 461056.00 461060.00 uCl 5.64977065 -5.6497
N6 461056.00 461060.00 ubD1 7.66365248 -7.6636
N7 429031.60 429030.00 uEl 8.95119433 -8.9511
N8 359446.12 359450.00 uF1 9.40127928 -9.4012
N15 -467513.30 | -467510.00 uGl 8.95119433 -8.9511
N16 -467513.30 | -467510.00 uH1 7.66365248 -7.6636
N21 -72517.04 -72517.00 ull 5.64977065 -5.6497
N46 -7089.44 -7089.70 uJl 2.96923898 -2.9696
N42 18964.24 18964.00 uK1 0.0750694 -0.075069




5.1.3 Train’s-weight phase 4 analyzing displacement and normal forces
In this model’s analyzing we decided to study the heavies or the most loaded phase of all 4 phases,

which is the fourth phase, so we applied the same analysis, which are displacement and normal
forces.

ANSYS

2020 R2
ACADEMIC
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Fig. 5.3 Deflection of the Bridge in Y axis [mm]. passing train.

As we can see in fig. 5.4, the maximum and minimum values have almost the same spot as in the
case when the bridge is just self-loaded more in chapter 5.1.1, and the only change was in the
magnitude of the displacements, which is the highest displacement value at node F in the middle
bottom of the bridge.

fig. 5.4 graphically shows the effect of nominal stresses on individual bars of the bridge structure

while the locomotives and wagons pass on the bridge that means the heavies loading on the bridge
is being applied.
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FIG. 5.4 AXIAL FORCES ACTION ON THE BARS IN [N] . PASSING TRAIN.
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As we can see in fig. 5.4, the maximum and minimum values have almost the same spot as in the
case when the bridge is just self-loaded more in chapter 5.1.1, and the only changes were in the
magnitude of the normal forces.

5.1.4 Comparison between Numerical and Analytical results
In tab. 5.2, we had compared the numerical and the analytical results to check the accuracy of the
analytical calculation. We compared displacements in the nodes and normal forces in the bars. As

we can see, the results coincide with great precision.

TAB.5. 2 COMPARISON NORMAL FORCE AND DISPLACEMENT NUMERICALLY AND
ANALYTICALLY.

Analytical | Numerical Analytical Numerical
Bars Norma Norma Accuracy Node Displacement | Displacement | Accuracy

Force [N] | Force [N] [%] [mm] [mm] [%]
N3 | 648756.76 | 648760.00 | 0.00050 | uAl | 0.15304301 -0.153040 0.0020
N4 | 773933.76 | 773930.00 | 0.00049 | uBl | 5.33972416 -5.339700 0.00045
N5 | 833496.63 | 833500.00 | 0.00040 | uCl | 10.1721678 | -10.172000 0.0016
N6 | 835144.95 | 835140.00 | 0.00059 | uD1 | 13.7993374 | -13.799000 0.0024
N7 | 775084.08 | 775080.00 | 0.00053 | uEl | 16.1132241 | -16.133000 0.12
N8 | 648049.47 | 648050.00 | 0.00008 | uF1l | 16.9433727 | -16.943000 0.0022
N15 | -840879.1 | -840880.00 | 0.00011 | uGl | 16.1295396 | -16.129000 0.0033
N16 -842122 | -842120.00 | 0.00024 | uH1 | 13.7945701 | -13.794000 0.0041
N21 | -147839.5 | -147840.00 | 0.00031 | ull | 10.1778725 | -10.178000 0.0013
N42 | 32035.655 | 32036.00 0.0011 uJl | 5.35424629 -5.354200 0.00086
N46 | -23662.01 | -23662.00 | 0.000040 | uK1 | 0.13545456 -0.135450 0.0034

5.2 Statically indeterminate structure 3D

Since the 2D structures were always the simplification of the real-life situation, we made a 3D
structure to match real-life construction. We created two parallel faces in the z-axis connected with
a deck which looks as in fig. 5.5. From the sides, they are connected with rods which look as in
fig. 5.9. The upper section is connected by straight bars, which look like fig. 5.6, with 3000 mm
width into z-axis, the cross-section remains the same as in 2D structure more in chapter 4.1.5, the
only differences are at the sided of the bridge, which has a cross-section TRr, TRI more in fig.5.11,
and at the bottom section of the bridge which is the deck has S1, S2, S3, S4, S5 cross-sections
more in fig. 5.7, 5.8, 5.10.
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5.2.1 Load acting on the Bridge from passing Train in phase 4 plus self-load of

Bridge analyzing displacement and normal forces

In this section, we analyzed the static indeterminate structure and chose the condition when the
train passes in the fourth phase, which is the heaviest condition. Bellow, we can see in fig. 5.12,
the deflection of the whole construction in the Y-axis and the normal forces in fig. 5.13. The results
are in the tab. 5.3.
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F1G. 5.12 DEFLECTION OF THE BRIDGE IN Y AXIS [MM] PASSING TRAIN.
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5.2.2 Comparison between 3D and 2D structure Numerically
The resulting normal forces and deflections are, therefore, similar in both variants. There is a big
difference between the bars that are near the bridge deck; that is because increasing the stiffness
when the model was changed caused a decrease in the normal forces of the bars at the bridge deck.

TAB. 5. 3 COMPARISON NORMAL FORCE, DISPLACEMENT NUMERICALLY 2D wiTH D3.

3D 2D 3D 2D
Norma Force | Norma Force Accuracy Displacement | Displacement | Accuracy
pars [N] [N] gl | "% | mm) [mm] %]
N3 607080 648760 6.42 uAl -0.14658 -0.15304 4.22
N4 738820 773930 4.54 uB1 -5.1888 -5.3397 2.83
N5 795600 833500 4.55 uC1 -9.896 -10.172 2.71
N6 797170 835140 4.55 uD1 -13.433 -13.799 2.65
N7 739920 775080 4.54 uEl -15.694 -16.133 2.72
N8 606410 648050 6.43 uFl -16.506 -16.943 2.58
N15 -839510 -840880 0.16 uGl -15.71 -16.129 2.60
N16 -840750 -842120 0.16 uH1 -13.429 -13.794 2.65
N21 -141600 -147840 4.22 ull -9.9016 -10.178 2.72
N42 30128 32036 5.96 uJl -5.2032 -5.3542 2.82
N46 -21008 -23662 11.22 uk1 -0.12963 -0.13545 4.30

5.2.3 Model modification
As we know, the 2D model is a simplification of the real-life model 3D, so of course, that the 3D
model will be stiffer than the 2D model because it has for more the deck which is connected to the
bottom section of the bridge, therefore we tried to make the results more accurate. However, one
of the solutions was by increasing the cross-section area of the 2D model at the bottom part of the
bridge; therefore, cross-section U1, U2 was increased from 21120 mm? to 23712 mm? and cross-
section U3, U4 was also increased from 22720 mm? to 23794 mm?. Thanks to these changes, we

can now see a better accuracy rate in the tab. 5.4.

TAB. 5.4 COMPARISON NORMAL FORCE, DISPLACEMENT NUMERICALLY IN 2D WITH 3D,
AFTER CHANGING CROSS-SECTION.

3D 2D 3D 2D
Norma Force | Norma Force Accuracy Displacement | Displacement | Accuracy
Bars Nodes
[N] [N] (%] [mm] [mm] [%]
N3 607080 649840 6.58 uAl -0.14658 -0.15189 3.50
N4 738820 775300 4.71 uB1 -5.1888 -5.1848 0.08
N5 795600 834810 4.70 uCl -9.896 -9.8995 0.04
N6 797170 836460 4.70 uD1 -13.433 -13.448 0.11
N7 739920 776450 4.70 uEl -15.694 -15.71 0.10
N8 606410 649130 6.58 uF1 -16.506 -16.523 0.10
N15 -839510 -839570 0.01 uGl -15.71 -15.726 0.10
N16 -840750 -840810 0.01 uH1 -13.429 -13.443 0.10
N21 -141600 -146720 3.49 ull -9.9016 -9.9048 0.03
N42 30128 30214 0.28 ujl -5.2032 -5.199 0.08
N46 -21008 -21128 0.57 uk1 -0.12963 -0.13429 3.47
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6 Conclusion

The main goal of this bachelor thesis was to apply Stress-Strain analysis of the railway bridge in
Zahradky near Ceska Lipa and apply different assumptions and simplifications.

The first section of this thesis was dedicated to searching and obtaining the input data and essential
information which were obtained from Railway administration, state organizations Regional
Headquarters Hradec Kralové through Ing. Pavel Novak. Thus, the theory was developed, which
was necessary to know for the solution of individual parts of the bachelor's thesis. Therefore, the
theory was taken from sources that contained information mainly in statics and Strength of
Material. Based on our knowledge from that fields, we were able to simplify the bridge's structure
into a two-dimensional model.

The second section was the analytical calculation in two-dimension, which was assisted by the
Maple program. To perform an analytical analysis, we needed to create a virtual model of a bar
system, and since the bridge, in reality, has, in addition, a deck, Therefore, it was included in the
calculation, which should correspond and come as close as possible to the actual solution of the
real bridge. Moreover, the load factors such as wind load and the effect of dynamic forces when
the train passes over the bridge were neglected because it would exceed the goals of this bachelor
thesis, On the other hand, the load from the bridge itself and the load from a passing train set were
took into consideration in our analysis. However, the analytical calculation was divided into two
sections, the first one is a statically indeterminate structure, and the second one is a statically
determinate structure, furthermore in each section was considered the bridges self-weight and a
passing train as the loading’s factors.

In the statically indeterminate structure with S = 10, under a self-bridge’s load effect. The results
show that the maximum values of the normal forces can be found in the middle part of the bridge,
at the upper and the bottom horizontal bars, while the upper section is under compressive load, the
bottom section is under a tensile load, the outcome was large deflection in the middle of the bridge
specifically in node F1, and the value of the displacement of a given node in the vertical direction
is 9.4012 mm. The highest nominal stress acts in the bottom part of the bridge, specifically on the
bars N5, N6 it is a tensile load with a value of 20.29 MPa since it is the highest value it was used
to check the safety with respect to the limit state of elasticity. Therefore, the safety factor is 10.34.

Then we analyzed statically indeterminate structure under passing wagons, and locomotives load
effect. Since they pass gradually from the beginning of the bridge to the end, we had to split the
analysis to fits the reality. Therefore, the calculation was divided into four phases.

In the first phase, the train set passes on the first four nodes from node Al to node D1, and There
is a significant increase in nominal stresses in the bars and deflection in the nodes. The maximum
tensile stress acts on bar N5 at the value of 23.57 MPa, and maximum compressive stress acts on
bar N15 at the value of -18.75 MPa. The maximum deflection of node F1 increased 10.9013 mm.
however, the safety factor k; = 8.9 represents a sufficiently large reserve.
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In the second phase, the train set reaches node G1. Again, there is an increase in nominal stresses
in the bars and deflection in the nodes. The maximum tensile stress acts on bar N5 at the value of
31.99 MPa, and maximum compressive stress acts on bar N15 at the value of -25.28 MPa. The
maximum deflection of node F1 increased to 15.4432 mm. we can observe a decrease in the safety
factor where we got a value at k; = 6.5.

In the third phase, the train set reaches node H1, which mean it is only one node ahead, therefore
we did not observe a noticeable increase in nominal stresses and deflection. The maximum tensile
stress acts on bar N5 at the value of 33.97 MPa, and maximum compressive stress acts on bar N15
at the value of -26.86 MPa. The maximum deflection of node F1 remained totally the same value,
15.4432 mm. we can observe a slight decrease in the safety factor where we got a value at
kk = 61

In the fourth phase, the train set is on the whole bridge from node Al to node K1. There is a
significant increase in nominal stresses in the bars and deflection in the nodes when we compare
with the self-load only. The maximum tensile stress acts on bar N6 at the value of 36.75 MPa, and
maximum compressive stress acts on bar N16 at the value of -29.03 MPa. The maximum deflection
of node F1 increased to 16.943 mm. we can observe a decrease in the safety factor where we got
a value at k; = 5.7. we can also observe a significant increase in reaction forces in the supports
from Fya = 195729 N, Fyk = 195729 in self bridges load to Fya = 357778 N, Fyk = 342602 N
in the fourth phase of the passing train set.

In the statically determinate structure, we made changes to the construction to achieve the static
determinacy. Therefore, we reduced the number of bars by 20 and the number of nodes by 10.
Firstly, we considered the bridge’s self-load. When we analyzed the normal forces and the nominal
stresses, the highest values in terms of normal forces were as expected, they were the same as in
the static indeterminate structure, which means in the middle of the bridge. The upper horizontal
section is under compressive load, and the bottom section is under a tensile load. But the highest
nominal stress was at bar N22 at the value of 19.35 MPa since it is the highest value, it was used
to check the safety with respect to the limit state of elasticity. Therefore, the safety factor is 10.85.
We got the highest deflection in the vertical direction in node F1 at the value of 8.4688 mm.

Then we analyzed the statically determinate structure under passing wagons and locomotives load
effect. We applied the same process, which was used in the static indeterminate structure, which
means we had four phases of a passing train set.

In the first phase, the train set passes on the first four nodes from node Al to node D1, and There
is a significant increase in nominal stresses in the bars and deflection in the nodes. The maximum
tensile stress acts on bar N22 at the value of 30.34 MPa, and maximum compressive stress acts on
bar N23 at the value of -16.73 MPa. The maximum deflection of node F1 increased 10.4584 mm.
however, the safety factor is k; = 6.9.

In the second phase, the train set reaches node G1. Again, there is an increase in nominal stresses
in the bars and deflection in the nodes. The maximum tensile stress acts on bar N22 at the value
of 38.86 MPa, and maximum compressive stress acts on bar N23 at the value of -21.79 MPa. The
maximum deflection of node F1 increased to 15.3189 mm. we can observe a decrease in the safety.
factor where we got a value at k;, = 5.4.
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In the third phase, the train set reaches node H1, which mean it is only one node ahead, therefore
we did not observe a noticeable increase in nominal stresses and deflection. The maximum tensile
stress acts on bar N22 at the value of 39.89 MPa, and maximum compressive stress acts on bar
N23 at the value of -22.40 MPa. The maximum deflection of node F1 remained totally the same
value, 16.7130 mm. we can observe a slight decrease in the safety factor where we got a value at
kk = 52

In the fourth phase, the train set is on the whole bridge from node Al to node K1. There is a
significant increase in nominal stresses in the bars and deflection in the nodes when we compare
with the self-load only. The maximum tensile stress acts on bar N22 at the value of 42.22 MPa,
and maximum compressive stress acts on bar N39 at the value of -24.22 MPa. The maximum
deflection of node F1 increased to 18.7025 mm. we can observe a decrease in the safety factor
where we got a value at k;, = 4.9. we can also observe a significant increase in reaction forces in
the supports from Fya = 129849 N, Fyk = 129849 in self bridges load to Fya = 291898 N,
Fyk = 276722 N in the fourth phase of the passing train set.

Next, we checked the buckling stability limit state for a chosen models in both structures, statically
indeterminate and statically determinate. We decided to choose a self-bridge’s load because it is
the lightest model and the second one a model with a passing train set in the fourth phase. After
all, it is the heaviest model, and we could compare between them. For a statically indeterminate
structure, the safety is very high in the self-bridge’s load, and its value is 390. However, if the
train set is crossing the bridge, safety drops to almost a third of the value under self-weight, its
value becomes 117. but it is still higher than the safety to the limit state of elasticity. For statically
determinate structure, the safety is 28 in the self-bridge’s load, this safety decreases, even more,
when the trainset passes across the bridge to the value of 12.

All models that were used in the analytical analysis were modeled and analyzed numerically using
the finite element method with Ansys software helps. The output values of stress and strain were
consistent. The identical results confirm the correctness of the construction of the analytical,
computational model. Normal forces, nominal stresses, and deformation were compared. Our last
mission in this thesis was to create a three-dimensional model of the original structure, which is
statically indeterminate. This model was compared with the two-dimensional model, the results
were not with that high accuracy. The reason is that when we designed the 2D model, we included
the mass of the deck, but we could not include the rigidity of the deck, so we came with a solution
which was increasing the cross-section area of the bottom part of the bridge for more of increasing
steps in chapter 5.2.3, so after the change, we applied to the model the accuracy increased to a
Reasonable number.

In conclusion, from individual results, when it comes to maximum displacement, the statically
indeterminate structure has a slightly smaller value. And the factor of safety against the limit state
of elasticity the statically indeterminate has higher values, but the differences are not too
significant. And when it comes to buckling limit state, the statically indeterminate structure gets
very high values in comparison with the statically determinate structure for sure. Therefore, the
statically determinate construction is a more suitable construction for real-life use.
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List of used symbols

Symbol Unit Meaning
o [MPa] Normal Stress.
E [MPa] Young's modulus of elasticity in tension.
O [MPa] yield strength.
S [mm?] Cross Section of the bars.
Jy [mm*] Quadratic moment.
| [mm] Length.
u [mm] Deflection.
F [N] Force.
Fyr [N] Critical Force.
Fr [N] Force created from the Train.
W [J] Stress Energy.
A [Jm~3] Specific energy of stress.
h [kg/m3] Density.
g [m/s?] Gravitational acceleration.
m kg Mass.
A [-] The slenderness of the Bar.
k [-] The factor of Safety against elasticity limit state.
k. [-] The factor of safety against buckling limit state.
Y [-] Bar centerline, angular deformation.
] [-] Cross Section.
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