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Abstract 
In this Bachelor thesis, the main goal was applying Stress-strain analysis of the railway bridge in 

Zahrádky near Česká Lípa. The structure of the Bridge was simplified and modeled as a truss 

construction. The first section of this bachelor thesis was dedicated to searching and obtaining the 

input data and essential information from the technical documentation of the Bridge. Then truss 

models for the Bridge were created with various levels of simplification. Therefore we split the 

analytical section into two parts. The first one was dedicated to statically indeterminate structure 

the second one was dedicated to the statically determinate structure. Also, every part contains both, 

self-bridge load and a passing trainload. However, because these equations were quite long, we 

have used Maple software to help us with calculations. The limit state of buckling was also checked 

for both structures, but we chose just two variants the lightest, which is self-load, and the heavies, 

which is the fourth Phase of a passing train. After accomplishing the analytical section, it was 

essential to verify the results. Therefore, we used the finite element method using Ansys software 

in the numerical section to verify the analytical part. All calculations were done in 2D. The only 

exception is in the numerical section, where we added a 3D model to compare with the 2D model. 
  

 

Abstrakt 
Cílem této bakalářské práce je využití deformačně napěťové analýzy na Železniční most v 

Zahrádkách u České Lípy. Konstrukce mostu byla zjednodušena a vymodelována jako nosníková 

konstrukce. První část bakalářské práce byla věnována získávání vstupních dat a základních 

informacích z technické dokumentace mostu. V nosníkovém modelu bylo využito několik 

zjednodušení. První model považujeme za staticky neurčitý, zatímco druhý jako staticky určitou 

konstrukci. Každý model tedy obsahuje zátěž z důvodu vlastní váhy a zatížení způsobeno 

projíždějícím vlakem. Z důvodu objemnosti rovnic, využíváme k výpočtu software Maple.  

Zkontrolovali jsme i mezní stav vzpěru pro oba modely, avšak jsme uvažovali pouze zatížení 

vlastní váhou a zatížení způsobeno vlakem. Po získání analytických dat bylo důležité tyto výsledky 

ověřit. Toto bylo docíleno využitím metody konečných prvku za pomocí programu Ansys. Veškeré 

výpočty byly provedeny pro 2D modely. Jediná výjimka je numerická sekce, kde byl přidán 3D 

model za účelem porovnání s 2D modelem. 
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1 Introduction 

1.1 History of the Bridge 
It is a steel structure bridge which is located in Česká Lípa Zahrádkách. The first operation of the 

bridge started in 1898, and the bridge was constructed to connect between two hills as we can see  

in fig.1., where the figure on the left shows the bridge before reconstruction, and the figure on the 

right shows the bridge after reconstruction. 

      

Replacement and reconstruction for the whole bridge took place in 2013, as we can see the 

difference between fig. 1.1 and fig. 1.2. the bridge is used for railways only, where trains can only 

move in one direction at once. The bridge is divided into two parts, and the structure is made of 

steel bars and nodes of steel material which made it a strong structure. The bridge is located south 

of Česka Lípa more in fig.1.3, 1.4, 1.5.  

 

 

 

 

 

 

 

 

 

FIG. 1.4 LOCATION OF THE BRIDGE 

ON THE MAPS. [5] FIG. 1.3 LOCATION OF THE 

BRIDGE ON THE MAPS. [5] 

FIG. 1.1 LOCATION OF THE BRIDGE ON THE 

MAPS.[4] 

FIG. 1.2 LOCATION OF THE BRIDGE ON THE 

MAPS.[3] 
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In this thesis, we will analyze the deformation and stress of this bridge using two methods, 

analytical by using Maple software and numerical by using Ansys software. 

2 Objectives 
The first step we considered in this thesis was finding input data, which were taken from the 

Railway and transport administration. The second step was to make deformation and stress 

analysis, The loading applied on the bridge are statical, and they are two types of loadings, the first 

type is generated by the weight of the bridge itself, and the second type is generated by the weight 

of a passing train on the bridge, The analysis of both cases has been performed separately using 

two methods, analytical with Maple and numerical using finite element method with Ansys, at the 

end, both methods will be compared in each case to discriminate that there are no mistakes with 

the analytical approach. Moreover 

both cases will be compared to 

distinguish which case will have 

more minor deformation and fewer 

stresses. As we can see in fig. 2.1, 

we chose just one part of the bridge 

because they Are identical where 

each has its own supports, which 

means the results will be for sure 

the same in both parts, so when we 

mention the word bridge in the 

thesis, it means just the one part. 

 

 

 

FIG. 1.5 LOCATION OF THE BRIDGE ACCORDING TO THE CZECH REPUBLIC ON THE MAPS.[5] 

 

FIG. 2.1 CHOOSING ONE PART OF THE BRIDGE.[6] 
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3 Theory 
The theoretical part of this thesis is taken from resources [8] unless it is mentioned. 

3.1 Bar 
The bar is the simplest model of a real body which must fulfill assumption geometry, deformation, 

loads, supports, and stress states. And these assumptions will be labeled as Bar Assumption. 

 

3.1.1 Bar Assumptions 
The bar assumptions are geometry, deformation, loads, supports, and stress states:   
 

A) Geometrical assumption 

The geometrical definition of a bar is a centerline ϒ that is defined by a cross-section ѱ in each 

point of it as in fig. 3.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
▪ The centerline ϒ has a finite length, and it must be 

smooth. It cannot be 90 degrees curved more as shown 

in fig. 3.2. 

▪ The cross-section must be a continuous plane region.      

 

 

                                                                                                                                                                         

                 

 

 

FIG. 3.1 CENTERLINE AND BARS CROSSSECTION. 

[7] 

FIG. 3 1 

              FIG. 3.2 CENTERLINE AT A BENT BAR. 
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B) Deformational Assumption  

▪ During deformation, the centerline doesn't change its continuity and smoothness, as in 

fig.3.3. 

 

 

It doesn't matter which type of deformation 

acts on a bar. The important thing is that 

the cross-sections remain perpendicular to 

the centerline and planar. Moreover, the 

types of deformation affecting a bar are 

described below more in figures 3.4, 3.5, 

3.6, 3.7.  

 

a) Tension  

 

 

 

 

  

 

b) Flection 

 

 

 

 

 

 

c) Torsion 

 

 
  

 

 

 

 

FIG. 3.3 MAINTAINING THE SMOOTHNESS OF 

THE CENTERLINE. 

FIG. 3.4 TENTION IN A BAR. 

FIG. 3.5 FLECTION IN A BAR. 

FIG. 3.6 TORSION IN A BAR. 
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d) Shear 

 

 

 

 

 

 
C) Loadings Assumption 

▪ Supports restrict displacement and rotation. 

▪ All external loading acts only on the centerline of the bar. 

▪ We model supports and loadings to make them act on the centerline. In that Place, 

according to the saint-venant's principle, there is a different state of stress act on the 

centerline, which leads to break bar assumptions more in fig. 3.8. 

 

 

 

 

 

 

 
D) Stress state Assumption 

Normal and shear stresses in the cross-section determine the state of stress, and thanks 

to symmetry, remaining stresses are equal to zero as in fig. 3.11. 

 

 

 

 

 

 

 

         

 

 

 

 

FIG. 3.7 SHEAR IN A BAR. 

FIG. 3.8 SIMPLIFICATION FROM A BAR INTO CENTERLINE. 

FIG. 3.10 BAR STATE OF STRESS 

DISPLAYED ON A UNIT CUBE. 

.  

 

FIG. 3.9 BAR STATE OF STRESS DISPLAYED ON A 

MOHR'S CIRCLE. 

FIG. 3.11 STRESS TENSOR FOR BAR IN 

TENSION. 
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3.2 Geometrical characteristic of a cross-section 
To calculate stress and deformation, we will have to use a formula that contains a quantity called 

geometrical characteristic of the cross-section, which characterizes cross-sections. These 

characteristics are divided into two groups dependent on the characteristics and independent of the 

choice of the coordinate system. 

 

3.2.1 Cross-section area  
As you can see in fig.3.12, the body does not depend on the coordinate 

system. Because of that, we will use the following formula. 

 

 

                       

 

 

                                                                                                                                                                                           

   

 

                                                                                                         

3.2.2 Linear static moment   
 By using these formulae, we can calculate the static moment, which depends on the coordinate 

system. 

 

 
 

 

 

 

 

 

 

 

 

▪ The following formula is to determine the center of gravity of a given body in the x and 

the y axis.                                                                                        

 

 

 

  

 

FIG. 3.12 CROSS-SECTIONAL 

AREA. 

FIG. 3.13 ARBITARY CROSS-SECTION 

AREA. 
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3.2.3 Quadratic moment of a cross-section ѱ 
The axial quadratic moment, this type of moment is always calculated to the coordinate axis as we 

can see in the following formula it is calculated to the y-axis. the unite we use here is  𝑚4. The 

quadratic moment is primarily used in bending cases which we don’t need in our analysis except 

in buckling limit state analysis. Therefore, we add the 𝐽𝑦 Into our theoretical part and the formula 

is as follows. 

                                                                                                      

 

3.2.4 Saint Venant’s principle 
In a real-life, we cannot determine the distribution of 

forces acting on the surface of a body, so to make this 

problem solvable, we simplify it into a model of a 

substituted force interaction acting on the exact same 

place causing the same effect and same stress. The 

model for sure is statically equivalent to the original 

problem more in fig. 3.15. 
 

 

 
▪ As you can see in fig. 3.14 is a comparison between the real problem and a substituted 

model the graph shows the relation between the stress sigma x and the deformation; as 

we can see, the is an insignificant difference which is not a problem for calculations. 

 

3.2.5 Saint venant’s principal Advantages. 
 

-  It enables us to use computational models 

of loads (volume and area forces) 

correctly.  

 

FIG. 3.15 LOAD DISTRIBUTION ACCORDING TO THE VENANT 

PRINCIPLE. 

 

FIG. 3.14 LOADING IN REALITY 

VS IN MODEL. 

FIG. 3.16 APPLICATION OF S.V. PRINCIPLE. 

[9] 
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- It enables us to introduce computational 

models of contact between bodies 

correctly.  

- It proves the incorrectness of some 

substitutes (commonly used in statics ) for 

stress analyses.  

   

 

3.3 System of bars 
The bar system is a computational model for lattice structures, where straight slender bodies are 

modeled by bars and they are connected in the reality by elements (rivets, welds ...), but in the 

computational models are replaced by so-called joints (pins), which realize rotational or spherical 

bonds. These adjustments are made to facilitate the analytical calculation. Prerequisites for using 

the bar system model. [10] 

 

 The system of bars is the most simple method used in modeling bridges, it consists of bars and 

joints, also called nodes. 

▪  The main idea of this method is that there is a bar connected to a node, the internal bo is 

modeled as rotary, thanks to that, we can neglect the bending moment, which means that 

the bars are loaded just by tension and compression. 

▪ To apply that the bars are loaded just by tension and compression, we have to consider 

the following facts. 

• The loading is applied just on the nodes nowhere else. 

• The system of bars ars at less connected to two nodes which leads to that the bars 

are not movable.  

• The bar has to be as we already defined it in chapter 3.1. 

▪ Before starting to design the structure, we must check the limits state of elasticity for bars 

that are loaded by compression. In some cases, buckling may occur, which leads to loss- 

of stability. 

3.3.1 Types of bars system  
▪ In order to solve a certain system, we have to know if the system is statically determinant 

or statically indeterminant, thank to that, we can determine how many we will have 

deformation conditions for the system.  

a) External Statically determinant 

It relates to the determination of external unknown contact forces released of the bar body from 

the usable conditions of static equilibrium, the external static equilibrium is given by the relation. 

𝑉𝑒𝑥𝑡 = 𝜇𝑒𝑥𝑡 
Where 𝑉𝑒𝑥𝑡  is the application of equilibrium condition, and 𝜇𝑒𝑥𝑡 Is the number of unknown 

parameters of external contact forces. The degree of external uncertainty is given by the formula. 

𝑆𝑒𝑥𝑡 = 𝜇𝑒𝑥𝑡 = 𝑉𝑒𝑥𝑡 

 

FIG. 3.17 COMPUTATIONAL MODELS. 
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b) Internal statically determinant 

It relates to the determination of axial forces in members, conditions of static equilibrium 

bar systems are linearly dependent on a system of static equilibrium conditions joints, in 

other words, for the system to be solvable, the number of unknown internal parameters 

must equal the number of equations, the condition of the internal static equilibrium is given 

by the following formula. 

3𝐾 − 6 = 𝑃  …….  For 3D systems of bars. 

2𝐾 − 3 = 𝑃 ……..  For 2D systems of bars. 

           Where K is the number of nodes and P is the number of bars.  

 

c) Statically indeterminant 

The system becomes statically indeterminant. When the number of unknowns 

exceeds the number of equations, so to solve this problem, we have to add boundary 

conditions, the relation to calculate the boundary conditions is as follows. 

 

3𝐾 = 𝑃 + 𝜇𝑒𝑥𝑡…… For 3D systems of bars. 

2𝐾 = 𝑃 + 𝜇𝑒𝑥𝑡…… For 2D systems of bars. 

3.4 Methods solving system of bars 
There are so many methods to solve a system of a bar, but the more useful are two Methods, 

method of nods and method of sections.  

3.4.1 Method of nods 
In order to apply this method, we have to draw a free body diagram for all nods in the system after 

that, we establish applicable static equilibrium conditions, then we will get a set of linear algebraic 

equations after that, we can put the equations into a matrix and use a software to solve it, this is 

the universal method.   

3.4.2 Method of sections 
In order to apply this method, we draw a free body diagram for certain nods that are statically 

determinate, this method concentrates on the easier type of problems because that this method is 

not viable, it is better to use the Method of nods.    

 

3.5 Tensil, compressive stress acting on a bar 

3.5.1 Abslute tenion and compression 
Simple tension/compression is a type of loading a straight prismatic bar if the following conditions 

are applied. 

 

a) Bar assumptions are satisfied. 

b) Cross-sections mutually draw away (near) and consequently deform isotropically 

(i.e., they change their magnitude but not the shape). 

c) Normal force N is the only non-zero component of the inner resultant, 

d) Deformations are not substantial from the viewpoint of the static equilibrium of an 

element. “. 
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 3.5.2 Geometrical relations 
The geometric relations are showing us the dependence 

between the displacement and the deformation if we 

assumed that we make a cut and which is further 

analyzed due to the load and the element is stretched, and 

at the same time, its cross-section decreases as shown in 

fig. 3.18 the right angels remain the same even after 

deformation, and therefore, the bevels are zero, the 

angular length is calculated by the equation ɛ𝑋 =
𝑑𝑈

𝑑𝑋
 , 

where du is displacement and ɛ𝑋 is the strain in the X-

direction. 
 

 

 
For tensile-compressive stress, it is possible to express the strain tensor as follows. 

𝑇ɛ = [

ɛ𝑥 0 0
0 ɛ𝑦 0

0 0 ɛ𝑧

] 

 

3.5.3 Tension 
Because the bevels are zero and the stress is uniaxial, there is only one non-zero stress tensor 

component at a non-zero loading force. The stress is constant across the cross-section. Therefore, 

all points have the same safety to the limit state of elasticity. Since the only non-zero component 

of the resulting internal effects is the normal force, the stress can be determined. 

𝜎 =
𝑁

𝑆
 

This relationship only applies to the central coordinate system. Therefore, all loads must act on 

the centerline axis. 

 

 

3.5.4 Determination of stress-energy and displacements  
When there is a load applied on a body, the body deforms, the applied forces do work. This 

energy can be translated to work, and it is stored in the deformed body as stress energy. 

𝑤 =
1

2
∫

𝑁2

𝑆 ∙ 𝐸
 𝑑𝑥

.

ϒ

 

The stress-energy per unit volume is the specific stress-energy. 

Λ =
𝑑𝑊

𝑑𝑉
=  

𝜎2

2 ∙ 𝐸
=  

1

2
 ∙ 𝐸 ∙ ɛ2 

The deflection on the part of a bar of length can be expressed as. 

𝑢𝑅 = ∫ ɛ 𝑑𝑥 = ∫
𝑁

𝐸 ∙ 𝑆
 𝑑𝑥

𝑥𝑅

0

𝑥𝑅

0

 

Where E is the cross-sectional stiffness, similarly, the displacement can be expressed using 

Castigliano's theorem. 

FIG. 3.18 DEFORMATION OF AN 

ELEMENTARY ELEMENT BY 

SIMPLE TENSION. 
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𝑤𝑅 =
𝜕𝑊

𝜕𝐹
=  ∫

𝑁

𝐸 𝑆
 ∙

𝜕𝑁

𝜕𝐹
 𝑑𝑥

𝑥𝑅

0

 

 

3.6 Castigliano's theorem 
„ Castigliano’s theorem is the most important theorem of the linear theory of elasticity from the 

viewpoint of practical application because it enables us to calculate deformation characteristics of 

any linear elastic body, provided that we are able to formulate a relation for its strain energy. The 

whole system of bodies must be included in the strain energy if the deformations of the neighboring 

bodies (or of the frame) are not negligible in comparison with the deformations of the investigated 

body. “. 

 

, A negative sign of the displacement (or turning angle) means that the orientation of this 

displacement (angle) is opposite to the orientation of the corresponding force (a couple of forces). 

Castigliano’s theorem is independent of sign conventions because a positive work always means 

that the displacement is oriented according to the orientation of the acting force.“. 

 

Castigliano's theorem is a powerful tool to solve static indeterminate structures (truss system) 

because, in this type of problem, we always end with inequality between the number of equations 

and unknown parameters, so in this system that many equations miss as many, the system is 

statically indeterminate. By using the Castigliano theorem, it is possible to compile deformation 

conditions that complete the missing equations. Deformation conditions compile at the point of 

displacement or rotation, which means at the supports. We release as many supports to make the 

system statically determinate, and by assembling the deformation, conditions mean partial 

releasing. Castigliano’s theorem can also be used to determine the displacements or rotations in a 

place no force or moment acts on by considering an additional force or moment that has zero 

magnitudes. 

3.7 Limit states 
Generally, this is a state when a body is under load stops fulfill its function; in other words, when 

a functionally permissible deformation of failure changes into functionally impermissible, so it's 

all about how the body is loaded according to that limit states can be divided into two groups. [2] 

 

a) Limit state associated with deformation. 

▪ Limit state of deformation. 
▪ Limit state of elasticity. 
▪ Limit state of buckling. 
▪ Limit state of fracture. 

 

b) Limit states associated with the violation. 

▪ Limit state of crack initiation. 

▪ Limit state of fracture. 

▪ Fragile. 

▪ Malleable. 

▪ Fatigue. 

▪ Creep. 
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3.7.1 Limit state of deformation 
„ All parts deform under any load, i.e., they change their shape, dimensions, tolerances between 

them (clearance or interference). If these changes do not disturb the function of the equipment, as 

defined in specifications and technical standards valid for the equipment (concerning the accuracy 

of production, mobility of the components, etc.), we call them admissible deformations. “. 

 

3.7.2 Limit state of elasticity  
The limit state of elasticity is the state in which the first microplastic deformation begins to occur, 

and it is measurable. We can describe this limit state using a stress value which is called the yield 

strength, therefore up to this limit state, the material behaves elastically after unloading the material 

returns to its original condition, but if the ultimate yield strength has been exceeded, the material 

will be permanently deformed. The yield strength can be obtained from the tensile test. The output 

of this test will be a tensile diagram. This diagram is showing the relationship between stress and 

strain the force can be converted to stress using the original cross-section of the tested specimen. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

So, to indicate if a specimen is safe or not, we have to calculate the factor of safety according to 

the limit state of elasticity, and it is as the following formula. 

𝐾𝑘 =
σ𝑘

σ𝑚𝑎𝑥
 

Where 𝐾𝑘… factor of safety. 

σ𝑘… yield stress. 

σ𝑚𝑎𝑥… maximum stress calculated of the specimen. 

So, if the factor of safety is greater than one, the specimen did not exceed the limit state, and it is 

safe. Still, if the safety factor is smaller than one, it means that the sample exceeded the limit 

state, and plastic deformation for sure will occur. 

 

 

 

 

FIG. 3.19 ELASTIC AND PLASTIC DEFORMATION.[12] 
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3.7.4 Limit state of buckling 
, Limit state of buckling is such a state among the operational states of the body when 

the equilibrium shape of the body becomes unstable, and 

a stepwise shape change to another stable geometrical 

configuration can occur.’’ 

so the bar has to be under a compressive force which 

means a negative magnitude of a normal force to occur 

buckling. In addition to compression, there is a sudden 

deflection in the bar that leads to a change from 

compressive stress into bending stress. So this limit state 

is sensitive because a situation can happen where we can 

continue in compressive loading, and we get a sudden 

loss of stability (buckling). Between these two states is a 

critical point called a Bifurcation point, more in fig. 3.20. 

 

as we can see in fig. 3.21 the critical 

force 𝐹𝑘𝑟 Is the interface between the 

pressure and bending and the critical 

force is defined at this point which 

indicates the loss of stability and is 

given by the following relationship. 

𝐹𝑘𝑟 =
𝛼2 ∙ 𝐸 ∙ 𝐽2

𝑙2
 

Where parameter α depends on the 

type of support of the bar more in fig. 

3.22, E is Young's modulus of 

elasticity, 𝐽2 is the minimum 

quadratic moment, and 𝑙 is the length 

of the bar. 

 

 

 

 

 

           Fig. 26 Buckling curve. 

FIG. 3.20 BIFURCATION POINT IN 

BUCKLING.[11] 

FIG. 3 22 VALUES OF COEFFICIENTS Α DEPOSITS. 

           FIG. 3 21 VALUES OF COEFFICIENTS Α DEPOSITS. 



 

23 

 

For an ideal bar under an ideal load, we can check the factor of safety by the following formula. 

𝐾𝑉 =
𝐹𝑘𝑟

𝐹
 

Therefore, if the force that compresses the bar greater than the critical force, the bar is bent, and if 

the force is smaller than the critical force, the bar is stable the deflection did not occur, it can also 

be that the force equals the critical force and this is the critical point which is called the Bifurcation 

point. 

What we dealt with was an ideal bar with ideal assumptions, but in real-life application, it can be 

different since the limit state of elasticity can occur before the buckling stability limit state, 

therefore to deal with this situation, the quantity slenderness and critical slenderness of bar are 

introduced, however easily if the magnitude of bar’s slenderness is greater than the magnitude of 

critical slenderness, it means that the limit state of buckling has been exceeded, but if the situation 

was the opposite it means that the limit state of elasticity will occur before the limit state of 

buckling. To calculate the slenderness and the critical slenderness of a bar, the following formula 

can be used. 

 

▪ The slenderness of a bar. 

λ =  
𝑙

√𝐽
𝑆

 

▪ The critical slenderness of a bar. 

λ𝐾𝑟 =  𝛼 ∙ √
𝐸

𝑅𝑒
 

 

▪ To calculate the Normal stress at the buckling limit state. 

𝜎𝐾𝑟 =
𝐹𝑘𝑟

𝑆
=

𝛼2 ∙ 𝐸 ∙ 𝐽

𝑆 ∙ 𝑙2
=

𝛼2 ∙ 𝐸

λ
 

 

▪ The dependence of the stress at which the limit 

state of loss of buckling stability on slenderness 

occurs is called the Euler hyperbola fig. 3.23. 

❖   So, to conclude, the limit states are assessed as 

  follows. 

▪ If  λ  <  λ𝐾𝑟 , then the limit state of elasticity 

occurs first, therefore, to check the safety, we 

have to use this formula   𝐾𝑘 =
𝜎𝑘

𝜎𝑚𝑎𝑥
 . 

▪ If  λ  >  λ𝐾𝑟 , then the buckling stability limit 

state occurs first, therefore, to check the safety, 

we have to use this formula  𝐾𝑉 =
𝐹𝑘𝑟

𝐹
. FIG. 3 23 DEPENDENCE OF 

COMPRESSIVE  STRESS 𝝈𝑲𝒓. ON THE 

SLENDERNESS Λ FOR A TOUGH 

MATERIAL. 
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4 Analytical calculations  

4.1 Statically indeterminate assignment 
The bridge we are analyzing, Contains 71 bars and 32 nodes, and they are affected by simple 

tension and compression because it is a truss system, The bridge is made of steel and individual 

bars connected by nodes, the total length of the part is 4140×10  which means it’ll be 41400 mm 

long, with a width of 3000 mm, and a height of 4000 mm, This part of the bridge is supported by 

two supports, on the left pin support which allows just rotation on Z-axis (perpendicular) and the 

right is supported by roller support which means that the part of the bridge can move horizontally 

and rotate around the Z-axis (perpendicular). 

 

 

4.1.1 The main descriptions of the bridge  
The bridge was simplified from the real-

life bridge more in fig. 4.1 and described 

as simple as possible As it is shown in fig. 

4.2, to make it accessible in calculations 

and orientations, using an alphabet system 

and numbering. 

 

 

 

 

 

 

 

4.1.2 The main dimensions  
The main dimensions describe the full length of the part of the bridge, which is 41400 mm, the 

height, which is 4000 mm, the length of one block, which is 4140 mm, the length of inner bars 

which is 5757 mm, and the angle between the bars which is 44.01 ͦ.   

 

 

 

 

FIG. 4.1 BRIDGE IN THE REAL-LIFE. 

[6] 

Fig. 4.2 Bridg’s dimensions. 
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4.1.3 Numbering the bars  
This part of the bridge contains 71 bars separated by nodes, so they were numbered from 1 to 71, 

starting from the bottom left, then the top part, then the middle part, as in fig. 4.3. 

 

 

4.1.4 The names of nods  
This part of the bridge contains 32 nodes, so they were named alphabetically, starting from bottom 

left by letter A to the bottom right by letter K, the upper part of the bridge was copied from the 

bottom, but with adding one like this (A1) and so on, the nodes which are in the middle of the 

bridge were named starting by L ending with V, skipping the letter U, as in fig. 4.4. 

 

4.1.5 Cross-sections  
For the construction of the bridge, 19 different types of cross-sections were used, and they are as 

follows.    

 

 

FIG. 4.3 NUMBERING THE BARS. 

FIG. 4.4 NAMING THE NODES. 

 

FIG. 4.5 CROSS-SECTION O1, O2. [1] FIG. 4.6 CROSS-SECTION O3.[1] 

 



 

26 

 

      

 

 

 

 

 

 

 

 

                  

FIG. 4.8 CROSS-SECTION O4, O5. 

[1] 

FIG. 4.7 CROSS-SECTION U1, U2. 

[1] 

FIG. 4. 9 CROSS-SECTION U3-U5. 

[1] 

 

FIG. 4. 10 CROSS-SECTION D1. 

[1] 
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FIG. 4. 12 40 CROSS-SECTION D2. 

[1] 
FIG. 4. 11 CROSS-SECTION D3. 

[1] 

FIG. 4.14 CROSS-SECTION D5.     

[1] 

 

FIG. 4. 13 CROSS-SECTION D4. 

[1] 
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FIG. 4. 15 CROSS-SECTION T1.  

[1] 

FIG. 4. 16 CROSS-SECTION T2, T3. 

[1] 

FIG. 4. 17 CROSS-SECTION T4, T5.      

[1] 

 

FIG. 4. 18 CROSS-SECTION SO. [1] FIG. 4. 19 CROSS-SECTION S. [1] 
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4.1.5 Coloring the bridge for better orientation of cross-sections 
We decided to add color effects to the bridge for more illustration and to make it easier to find 

wanted cross-sections. There are in total 15 different colors that can be found in the tab. 4.1.  

                           
TAB. 4.1 COLOR AND NUMBERS OF CROSS-SECTIONS 

   

 

 

 

 

 

Cross-sections 

Name   
Number of bar Cross-section 

area in 𝑚𝑚2 

colors 

corresponding 

to bar  

O1,O2 11,12,19,20 22000    

O3 13,18 26000    

O4,O5 14,15,16,17 29000    

U1,U2 1,2,9,10 211200    

U3,U4,U5 3,4,5,6,7,8 22720    

D1 23,24,67,70 16320    

D2 28,29,62,65 11200    

D3 33,34,57,60 11840    

D4 38,39,52,55 10240    

D5 43,44,47,50 7200    

T1 22,25,68,69 8200    

T2,T3 27,30,32,35,63,64,58,59 7200    

T4,T5 37,40,42,45,53,54,48,49 6200    

S 26,31,36,41,46,51,56,61,66 9600    

SO 21,71 18400    

FIG. 4. 20 FINDING THE POSITION OF CROSS-SECTION BY 

COLORS. 
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4.2 Static analysis 
We make static analysis of any truss system to distinguish if the system is statically internally or 

externally determinate or indeterminate. Basically, by doing the analysis, we can find out how 

many equations we have and how many unknown parameters we have, so if the number of 

equations is the same as the number of unknown parameters, so the system is statically 

determinate, otherwise, if the number of equations doesn’t equal the number of unknown 

parameters then the system is statically indeterminate, so for our case, it will be explained better 

in the next step.  

 

4.2.1 External static analysis  
Well, we have to consider our system of the truss (bridge) as one whole rigid body then apply a 

free body diagram which means just draw the reaction forces from the supports, in our case we 

have in the bottom left pin support and in the bottom right roller support. We are free to choose 

the direction of the forces. We can check if the direction of the force was chosen right if the 

magnitude was positive if not so it should be in the opposite direction. The designation of the 

forces was done to be similar as in Maple software to avoid confusion otherwise, the big letters 

should also be an index of the force,  and they are as in fig. 4.21. 

 

 

 

 

▪ So as we can observe from fig. 4.21 we have three unknown forces NP = {FxA,FyA,FyK} 

▪ In our case, we have the 2D system, so we have three static equilibrium equations from 

the formula below we can get. 

                                                                  Sex =  μex – νex 

μex = 3 

νex = 3 

sex = 0 

 

▪ As we can observe from the formula, we got  sex = 0, which means that our bridge is 

an external static determinant.   

FIG. 4.21 RELACED SUPPORTS. 
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4.2.2 Internal static analysis  
When it comes to internal static analysis it is a bit different from external static analysis case, as 

we know that we are solving our bridge based on a truss theory which means that we have to 

consider our system of the truss (Bridge) as so many bars connected with others with nodes. 

▪ In the system, we have 71 bars and 32 nodes, using the following formula we get. 

▪ P = 71 

▪ K = 32  

▪ P = ( 2×k −3 )  =>  71 = ( 2 × 32 – 3 ) 

▪ 71 ≠ 61  

▪ For the system to be statically determinate, both sides of equality have to be the same. 

▪ The system is, therefore, 10 × internally statically indeterminate, therefore 𝑆𝑖𝑛 = 0. 

 

• This means that our system is statically indeterminant basically, we have 10 more 

unknowns, as we know from our knowledge from algebra, to solve a system of equations, 

the number of the equation has to be the same as the number of unknown parameters.  

• So, to decipher this problem, we have to use Castigliano's theorem to find out these ten 

unknown parameters to make both sides equal. 

 

4.3 Bridge's self-weight load 
In this case, we took into consideration self-weight loading because it plays a massive role in the 

calculations of bridge’s deformation, normal forces, and nominal stresses, the loading must be 

applied only to the nodes, to make this happen, all bars had been split into half their length after 

the split prosses each node in the structure take half of the bar then multiply it by gravitational 

acceleration and the density, well by doing that we got the weight of the bridge certainly, we also 

added the weight of the bridge deck, the following example of the calculation of the forces acting 

on the nodes had been included for better orientation and explanation, and it is as follows. 

▪ Let us take as an example node (A) to avoid mistakes in the equation because it is quite 

long, the masses of the bars had been calculated individually the calculation was as 

follows. 

▪ 𝑚 =  Ꝭ × V    =>   𝑚 = Ꝭ ×  X × S,       where  Ꝭ = 7850 [k𝑔 ⁄ 𝑚3] …density 

                                                                             X = length of the bar [m] 

                                                                             S = cross-section of the bar [𝑚𝑚2] 

                                                                       g = 9.81 [𝑚 𝑠2⁄ ]…gravitational acceleration.   

 

                                𝐹𝑔 =  
1

2
 × 𝑔 = (𝑚1 + 𝑚21 + 𝑚23 + 𝑚𝑠𝑜 + 𝑚𝑇𝑟𝐿 + 𝑚𝐿𝑧1𝑟)   

▪ As we can observe, the index of the letter m indicates the numbering of the bar and the 

parameter  𝑚𝑠𝑜   𝑚𝑇𝑟𝐿   𝑚𝐿𝑧1𝑟 are the parameter of the bridge’s deck. 
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Gravitational Forces [N] 

FgA 12715 FgA1 10485 FgL 10870 

FgB 14705 FgB1 14815 FgM 8157 

FgC 14850 FgC1 14317 FgN 8441 

FgD 14589 FgD1 15353 FgO 7288 

FgE 13545 FgE1 15477 FgP 5940 

FgF 13324 FgF1 15025 FgQ 5940 

FgG 13545 FgG1 15477 FgR 7288 

FgH 14589 FgH1 15353 FgS 8441 

FgI 14850 FgI1 14317 FgT 8157 

FgJ 14705 FgJ1 14815 FgV 10870 

FgK 12715 FgK1 10485     

 

4.3.1 Free body diagram 
We had also done a free body diagram for the construction, which means that each node is released, 

then we got a static equilibrium equation per each node, as in fig.4.23. 

 

 

 

TAB. 4.2 GRAVITATIONAL LOADING ACTING ON NODES. 

FIG. 4.22 GRAVITATIONAL FORCE FROM BRIDGE’S SELF-WEIGHT. 

 

FIG. 4.23 FREE BODY DIAGRAM. 
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After releasing the nodes, we got 64 static equilibrium equations, ∑ 𝐹𝑥 = 0 and  ∑ 𝐹𝑦 = 0, for each 

node, we got an equation for X and Y, the equation for the moment can not be applied because it 

equals zero. 

4.3.2 Static equilibrium equations 
TAB. 4.3 RELEASED NODES. 

Figures Released Node Equations 

FIG. 4. 24 

RELEASED NODE 

A 
 

  

𝑓1 ∶=  𝑁01 + 𝑁23 ∗ 𝑐𝑜𝑠(𝛼) − 𝐹𝑥𝑎 =  0 

𝑓2 ∶=  𝑁21 + 𝑁23 ∗ 𝑠𝑖𝑛(𝛼) − 𝐹𝑔𝐴 + 𝐹𝑦𝑎 =  0 

  

 

 

 

 

 

FIG. 4. 25 

RELEASED NODE 

B 

  

𝑓3 ∶=  𝑁02 − 𝑁01 + 𝑁28 ∗ cos(𝛼) − 𝑁25 ∗ cos(𝛼)
=  0 

𝑓4 ∶=  𝑁26 + 𝑁28 ∗ 𝑠𝑖𝑛(𝛼) + 𝑁25 ∗ 𝑠𝑖𝑛(𝛼) − 𝐹𝑔𝐵 
=  0 

 

 

 

 

 

 

 

FIG. 4. 26 

RELEASED NODE 

C 
 

  

𝑓5 ∶=  𝑁03 − 𝑁02 + 𝑁33 ∗ 𝑐𝑜𝑠(𝛼) − 𝑁30 ∗ 𝑐𝑜𝑠(𝛼)  
=  0 

𝑓6 ∶=  𝑁31 + 𝑁33 ∗ 𝑠𝑖𝑛(𝛼) + 𝑁30 ∗ 𝑠𝑖𝑛(𝛼) − 𝐹𝑔𝐶 
=  0  

 

 

 

 

 
 

FIG. 4. 27 

RELEASED NODE 

D 
 

  

𝑓7 ∶=  𝑁04 − 𝑁03 + 𝑁38 ∗ 𝑐𝑜𝑠(𝛼) − 𝑁35 ∗ 𝑐𝑜𝑠(𝛼)  
=  0 

𝑓8 ∶=  𝑁36 + 𝑁38 ∗ 𝑠𝑖𝑛(𝛼) + 𝑁35 ∗ 𝑠𝑖𝑛(𝛼) − 𝐹𝑔𝐷 
=  0  

 

 

 

 

 
 

FIG. 4. 28 

RELEASED NODE 

E 
 

  

𝑓9 ∶=  𝑁05 − 𝑁04 + 𝑁43 ∗ 𝑐𝑜𝑠(𝛼) − 𝑁40 ∗ 𝑐𝑜𝑠(𝛼)  
=  0 

 𝑓10 ∶=  𝑁41 + 𝑁43 ∗ 𝑠𝑖𝑛(𝛼) + 𝑁40 ∗ 𝑠𝑖𝑛(𝛼) − 𝐹𝑔𝐸 
=  0  

 

 

 

 

 
 

FIG. 4. 29 

RELEASED NODE 

F 
 

  

𝑓11 ∶=  𝑁06 − 𝑁05 + 𝑁48 ∗ 𝑐𝑜𝑠(𝛼) − 𝑁45 ∗ 𝑐𝑜𝑠(𝛼)  
=  0 

𝑓12 ∶=  𝑁46 + 𝑁48 ∗ 𝑠𝑖𝑛(𝛼) + 𝑁45 ∗ 𝑠𝑖𝑛(𝛼) − 𝐹𝑔𝐹 
=  0  

 

 

 

 

 

 



 

34 

 

FIG. 4.30 

RELEASED NODE 

G 
 

  

𝑓13 ∶=  𝑁07 − 𝑁06 + 𝑁53 ∗ 𝑐𝑜𝑠(𝛼) − 𝑁50 ∗ 𝑐𝑜𝑠(𝛼)  
=  0 

𝑓14 ∶=  𝑁51 + 𝑁53 ∗ 𝑠𝑖𝑛(𝛼) + 𝑁50 ∗ 𝑠𝑖𝑛(𝛼) − 𝐹𝑔𝐺 
=  0  

 

 

 

 

 

FIG. 4.31 

RELEASED NODE 

H 
 

  

𝑓15 ∶=  𝑁08 − 𝑁07 + 𝑁58 ∗ 𝑐𝑜𝑠(𝛼) − 𝑁55 ∗ 𝑐𝑜𝑠(𝛼)  
=  0 

𝑓16 ∶=  𝑁56 + 𝑁58 ∗ 𝑠𝑖𝑛(𝛼) + 𝑁55 ∗ 𝑠𝑖𝑛(𝛼) − 𝐹𝑔𝐻 
=  0 

 

 

 

 

 

 

FIG. 4.32 

RELEASED NODE 

I 
 

  

𝑓17 ∶=  𝑁09 − 𝑁08 + 𝑁63 ∗ 𝑐𝑜𝑠(𝛼) − 𝑁60 ∗ 𝑐𝑜𝑠(𝛼)  
=  0 

𝑓18 ∶=  𝑁61 + 𝑁63 ∗ 𝑠𝑖𝑛(𝛼) + 𝑁60 ∗ 𝑠𝑖𝑛(𝛼) − 𝐹𝑔𝐼 
=  0  

 

 

 

 

 

 

FIG. 4.33 

RELEASED NODE 

J 
 

  

𝑓19 ∶=  𝑁10 − 𝑁09 + 𝑁68 ∗ 𝑐𝑜𝑠(𝛼) − 𝑁65 ∗ 𝑐𝑜𝑠(𝛼)  
=  0 

𝑓20 ∶=  𝑁66 + 𝑁68 ∗ 𝑠𝑖𝑛(𝛼) + 𝑁65 ∗ 𝑠𝑖𝑛(𝛼) − 𝐹𝑔𝐽 
=  0  

 

 

 

 

 

 

 FIG. 4.34 

RELEASED NODE 

K 
 

  

𝑓21 ∶=  −𝑁10 − 𝑁70 ∗ 𝑐𝑜𝑠(𝛼)  =  0 

𝑓22 ∶=  𝑁71 + 𝑁70 ∗ 𝑠𝑖𝑛(𝛼) − 𝐹𝑔𝐾 + 𝐹𝑦𝑘 =  0 

 

 

 

 

 

 

FIG. 4.35 

RELEASED NODE 

L 
 

  

𝑓23 ∶=  𝑁24 ∗ 𝑐𝑜𝑠(𝛼) + 𝑁25 ∗ 𝑐𝑜𝑠(𝛼) − 𝑁22 ∗ 𝑐𝑜𝑠(𝛼)
− 𝑁23 ∗ 𝑐𝑜𝑠(𝛼) = 0 

𝑓24 ∶=  𝑁24 ∗ 𝑠𝑖𝑛(𝛼) + 𝑁22 ∗ 𝑠𝑖𝑛(𝛼) − 𝑁23 ∗ 𝑠𝑖𝑛(𝛼)
− 𝑁25 ∗ 𝑠𝑖𝑛(𝛼) − 𝐹𝑔𝐿 =  0  
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FIG. 4.36 

RELEASED NODE 

M 
 

  

𝑓25 ∶=  𝑁29 ∗ 𝑐𝑜𝑠(𝛼) + 𝑁30 ∗ 𝑐𝑜𝑠(𝛼) − 𝑁27 ∗ 𝑐𝑜𝑠(𝛼)
− 𝑁28 ∗ 𝑐𝑜𝑠(𝛼)  =  0 

𝑓26 ∶=  𝑁29 ∗ 𝑠𝑖𝑛(𝛼) + 𝑁27 ∗ 𝑠𝑖𝑛(𝛼) − 𝑁28 ∗ 𝑠𝑖𝑛(𝛼)
− 𝑁30 ∗ 𝑠𝑖𝑛(𝛼) − 𝐹𝑔𝑀 =  0  

 

 

 

 

 

FIG. 4.37 

RELEASED NODE 

N 
 

  

𝑓27 ∶=  𝑁34 ∗ 𝑐𝑜𝑠(𝛼) + 𝑁35 ∗ 𝑐𝑜𝑠(𝛼) − 𝑁32 ∗ 𝑐𝑜𝑠(𝛼)
− 𝑁33 ∗ 𝑐𝑜𝑠(𝛼)  =  0 

𝑓28 ∶=  𝑁34 ∗ 𝑠𝑖𝑛(𝛼) + 𝑁32 ∗ 𝑠𝑖𝑛(𝛼) − 𝑁33 ∗ 𝑠𝑖𝑛(𝛼)
− 𝑁35 ∗ 𝑠𝑖𝑛(𝛼) − 𝐹𝑔𝑁 =  0  

 

 

 

 

 

 

FIG. 4.38 

RELEASED NODE 

O 
 

  

𝑓29 ∶=  𝑁39 ∗ 𝑐𝑜𝑠(𝛼) + 𝑁40 ∗ 𝑐𝑜𝑠(𝛼) − 𝑁37 ∗ 𝑐𝑜𝑠(𝛼)
− 𝑁38 ∗ 𝑐𝑜𝑠(𝛼)  =  0 

𝑓30 ∶=  𝑁39 ∗ 𝑠𝑖𝑛(𝛼) + 𝑁37 ∗ 𝑠𝑖𝑛(𝛼) − 𝑁38 ∗ 𝑠𝑖𝑛(𝛼)
− 𝑁40 ∗ 𝑠𝑖𝑛(𝛼) − 𝐹𝑔𝑂 =  0  

 

 

 

 

 

 

FIG. 4.39 

RELEASED NODE 

P 
 

  

𝑓31 ∶=  𝑁44 ∗ 𝑐𝑜𝑠(𝛼) + 𝑁45 ∗ 𝑐𝑜𝑠(𝛼) − 𝑁42 ∗ 𝑐𝑜𝑠(𝛼)
− 𝑁43 ∗ 𝑐𝑜𝑠(𝛼)  =  0 

𝑓32 ∶=  𝑁44 ∗ 𝑠𝑖𝑛(𝛼) + 𝑁42 ∗ 𝑠𝑖𝑛(𝛼) − 𝑁43 ∗ 𝑠𝑖𝑛(𝛼)
− 𝑁45 ∗ 𝑠𝑖𝑛(𝛼) − 𝐹𝑔𝑃 =  0  

 

 

 

 

 

 

FIG. 4.40 

RELEASED NODE 

Q 
 

  

𝑓33 ∶=  𝑁49 ∗ 𝑐𝑜𝑠(𝛼) + 𝑁50 ∗ 𝑐𝑜𝑠(𝛼) − 𝑁47 ∗ 𝑐𝑜𝑠(𝛼)
− 𝑁48 ∗ 𝑐𝑜𝑠(𝛼)  =  0 

𝑓34 ∶=  𝑁49 ∗ 𝑠𝑖𝑛(𝛼) + 𝑁47 ∗ 𝑠𝑖𝑛(𝛼) − 𝑁48 ∗ 𝑠𝑖𝑛(𝛼)
− 𝑁50 ∗ 𝑠𝑖𝑛(𝛼) − 𝐹𝑔𝑄 =  0  

 

 

 

 

 

 

FIG. 4.41 

RELEASED NODE 

R 
 

  

𝑓35 ∶=  𝑁54 ∗ 𝑐𝑜𝑠(𝛼) + 𝑁55 ∗ 𝑐𝑜𝑠(𝛼) − 𝑁52 ∗ 𝑐𝑜𝑠(𝛼)
− 𝑁53 ∗ 𝑐𝑜𝑠(𝛼)  =  0 

𝑓36 ∶=  𝑁54 ∗ 𝑠𝑖𝑛(𝛼) + 𝑁52 ∗ 𝑠𝑖𝑛(𝛼) − 𝑁53 ∗ 𝑠𝑖𝑛(𝛼)
− 𝑁55 ∗ 𝑠𝑖𝑛(𝛼) − 𝐹𝑔𝑅 =  0  
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FIG. 4.42 

RELEASED NODE 

S 
 

  

𝑓37 ∶=  𝑁59 ∗ 𝑐𝑜𝑠(𝛼) + 𝑁60 ∗ 𝑐𝑜𝑠(𝛼) − 𝑁57 ∗ 𝑐𝑜𝑠(𝛼)
− 𝑁58 ∗ 𝑐𝑜𝑠(𝛼)  =  0 

𝑓38 ∶=  𝑁59 ∗ 𝑠𝑖𝑛(𝛼) + 𝑁57 ∗ 𝑠𝑖𝑛(𝛼) − 𝑁58 ∗ 𝑠𝑖𝑛(𝛼)
− 𝑁60 ∗ 𝑠𝑖𝑛(𝛼) − 𝐹𝑔𝑆 =  0  

 

 

 

 

 

FIG. 4.43 

RELEASED NODE 

T 
 

  

𝑓39 ∶=  𝑁64 ∗ 𝑐𝑜𝑠(𝛼) + 𝑁65 ∗ 𝑐𝑜𝑠(𝛼) − 𝑁62 ∗ 𝑐𝑜𝑠(𝛼)
− 𝑁63 ∗ 𝑐𝑜𝑠(𝛼)  =  0 

𝑓40 ∶=  𝑁64 ∗ 𝑠𝑖𝑛(𝛼) + 𝑁62 ∗ 𝑠𝑖𝑛(𝛼) − 𝑁63 ∗ 𝑠𝑖𝑛(𝛼)
− 𝑁65 ∗ 𝑠𝑖𝑛(𝛼) − 𝐹𝑔𝑇 =  0  

 

 

 

 

 

 

FIG. 4.44 

RELEASED NODE 

V 
 

  

𝑓41 ∶=  𝑁69 ∗ 𝑐𝑜𝑠(𝛼) + 𝑁70 ∗ 𝑐𝑜𝑠(𝛼) − 𝑁67 ∗ 𝑐𝑜𝑠(𝛼)
− 𝑁68 ∗ 𝑐𝑜𝑠(𝛼)  =  0 

𝑓42 ∶=  𝑁69 ∗ 𝑠𝑖𝑛(𝛼) + 𝑁67 ∗ 𝑠𝑖𝑛(𝛼) − 𝑁68 ∗ 𝑠𝑖𝑛(𝛼)
− 𝑁70 ∗ 𝑠𝑖𝑛(𝛼) − 𝐹𝑔𝑉 =  0  

 

 

 

 

 

 

FIG. 4.45 

RELEASED NODE 

A1 
 

  

𝑓43 ∶=  𝑁11 + 𝑁22 ∗ 𝑐𝑜𝑠(𝛼)  =  0 
𝑓44 ∶=  −𝑁21 − 𝑁22 ∗ 𝑠𝑖𝑛(𝛼) − 𝐹𝑔𝐴1 =  0  

 

 

 

 

 

 

FIG. 4.46 

RELEASED NODE 

B1 
 

  

𝑓45 ∶=  𝑁12 − 𝑁11 + 𝑁27 ∗ 𝑐𝑜𝑠(𝛼) − 𝑁24 ∗ 𝑐𝑜𝑠(𝛼)  =  0 

𝑓46 ∶=  −𝑁26 − 𝑁27 ∗ 𝑠𝑖𝑛(𝛼) − 𝑁24 ∗ 𝑠𝑖𝑛(𝛼) − 𝐹𝑔𝐵1 
=  0  

 

 

 

 

 

 

FIG. 4.47 

RELEASED NODE 

C1 
 

  

𝑓47 ∶=  𝑁13 − 𝑁12 + 𝑁32 ∗ 𝑐𝑜𝑠(𝛼) − 𝑁29 ∗ 𝑐𝑜𝑠(𝛼)  =  0 
𝑓48 ∶=  −𝑁31 − 𝑁29 ∗ 𝑠𝑖𝑛(𝛼) − 𝑁32 ∗ 𝑠𝑖𝑛(𝛼) − 𝐹𝑔𝐶1 

=  0  
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FIG. 4.48  

RELEASED NODE 

D1 
 

  

𝑓49 ∶=  𝑁14 − 𝑁13 + 𝑁37 ∗ 𝑐𝑜𝑠(𝛼) − 𝑁34 ∗ 𝑐𝑜𝑠(𝛼)  
=  0 

𝑓50 ∶=  −𝑁36 − 𝑁34 ∗ 𝑠𝑖𝑛(𝛼) − 𝑁37 ∗ 𝑠𝑖𝑛(𝛼) − 𝐹𝑔𝐷1 
=  0  

 

 

 

 

 

FIG. 4.49  

RELEASED NODE 

E1 
 

  

𝑓51 ∶=  𝑁15 − 𝑁14 + 𝑁42 ∗ 𝑐𝑜𝑠(𝛼) − 𝑁39 ∗ 𝑐𝑜𝑠(𝛼)  
=  0 

𝑓52 ∶=  −𝑁41 − 𝑁39 ∗ 𝑠𝑖𝑛(𝛼) − 𝑁42 ∗ 𝑠𝑖𝑛(𝛼) − 𝐹𝑔𝐸1 
=  0  

 

 

 

 

 

 

 FIG. 4.50  

RELEASED NODE 

F1 
 

  

𝑓53 ∶=  𝑁16 − 𝑁15 + 𝑁47 ∗ 𝑐𝑜𝑠(𝛼) − 𝑁44 ∗ 𝑐𝑜𝑠(𝛼)  
=  0 

𝑓54 ∶=  −𝑁46 − 𝑁44 ∗ 𝑠𝑖𝑛(𝛼) − 𝑁47 ∗ 𝑠𝑖𝑛(𝛼) − 𝐹𝑔𝐹1 
=  0  

 

 

 

 

 

 

FIG. 4.51  

RELEASED NODE 

G1 
 

  

𝑓55 ∶=  𝑁17 − 𝑁16 + 𝑁52 ∗ 𝑐𝑜𝑠(𝛼) − 𝑁49 ∗ 𝑐𝑜𝑠(𝛼)  
=  0 

𝑓56 ∶=  −𝑁51 − 𝑁49 ∗ 𝑠𝑖𝑛(𝛼) − 𝑁52 ∗ 𝑠𝑖𝑛(𝛼) − 𝐹𝑔𝐺1 
=  0 

 

 

 

 

 

 

FIG. 4.52   

RELEASED NODE 

H1 
 

  

𝑓57 ∶=  𝑁18 − 𝑁17 + 𝑁57 ∗ 𝑐𝑜𝑠(𝛼) − 𝑁54 ∗ 𝑐𝑜𝑠(𝛼)  
=  0 

𝑓58 ∶=  −𝑁56 − 𝑁54 ∗ 𝑠𝑖𝑛(𝛼) − 𝑁57 ∗ 𝑠𝑖𝑛(𝛼) − 𝐹𝑔𝐻1 
=  0  

 

 

 

 

 

 

 FIG. 4.53  

RELEASED NODE 

I1 
 

  

𝑓59 ∶=  𝑁19 − 𝑁18 + 𝑁62 ∗ 𝑐𝑜𝑠(𝛼) − 𝑁59 ∗ 𝑐𝑜𝑠(𝛼)  
=  0 

𝑓60 ∶=  −𝑁61 − 𝑁59 ∗ 𝑠𝑖𝑛(𝛼) − 𝑁62 ∗ 𝑠𝑖𝑛(𝛼) − 𝐹𝑔𝐼1 
=  0  
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FIG. 4.54  

RELEASED NODE 

J1 
 

  

𝑓61 ∶=  𝑁20 − 𝑁19 + 𝑁67 ∗ 𝑐𝑜𝑠(𝛼) − 𝑁64 ∗ 𝑐𝑜𝑠(𝛼)  
=  0 

𝑓62 ∶=  −𝑁66 − 𝑁64 ∗ 𝑠𝑖𝑛(𝛼) − 𝑁67 ∗ 𝑠𝑖𝑛(𝛼) − 𝐹𝑔𝐽1 
=  0  

 

 

 

 

 

FIG. 4.55  

RELEASED NODE 

K1 
 

  

f63 := -N20-N69*cos(𝛼) = 0 
f64 := -N71-N69*sin(𝛼)-FgK1 = 0  

 

 

 

 

 

 

 
 

4.3.2 Solving the system of equations 
After applying the free body diagram, we got static equilibrium equations where their number was 

64 equation since we got in our internal static analysis in chapter 4.2.2 ten times statically 

indeterminate, so to solve this system, we had to use Castigliano’s theorem to get 10 more 

equations. 

▪ We made a partial free body diagram more in fig.4.56, we randomly chose 10 bars to 

apply the partial free body diagram on them, and the bars are ( N22, N27, N32, N37, N42, 

N47, N52, N57, N62, N67 ). 

▪ Castigliano’s theorem will be as follows.  

                                                              ∑ ∫
𝑁𝑖

𝐸∗𝑆𝑖
∗

𝑑𝑁𝑖

𝑑𝑁𝑗
∗ 𝑑𝑥𝑖 = 0

𝐿𝑖

0
71
𝑖=1  

Where : 

N… is the normal force 

E… is Young's modulus of elasticity in tension 

S… is a Cross-section area of the bar 

Nj…the index j changes according to the index of normal forces, which had been partially 

released. 

 
FIG. 4. 56 PARTIAL FREE BODY 

DIAGRAM. 
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The solving process was done by a software called Maple, so at the beginning, after ordering the 

equation from eq. 1 to eq. 64 we used command solve({equations},{unknown parameters}), 

basically what this command did was making equations as a function of the partial released normal 

force (N22, N27, N32, etc.) more in the chapter 4.3.2, fig. 4.57 is the solved equation to clarify 

more, the yellow underlines are the 10 normal forces we gained from the partial free body diagram, 

that we made the equations as a function of them. 

 

 

After getting the equations as functions of partial released, normal forces were expressed 

derivation individually according to the normal force N22 using the following command. 

  

  

 

After expressing the derivatives, it was already possible to compile the deformation condition by 

using the following command. 

 

  

 

 

As the same previous two steps were deformation conditions expressed for the rest of the partially 

released normal forces, we obtained 10 more equations. All system was solved using the following 

command. 

 

FIG. 4.57 EQUATION AS A FUNCTION OF PARTIAL .RELEACED FORCE. 

 

. 
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The output of this system of equations were the normal forces and reaction forces from 
supports. 

▪ 𝐹𝑦𝑎 = 1.957297190 ∗ 105 [N] 

▪ 𝐹𝑥𝑎 = 0  [N] 

▪ 𝐹𝑦𝑘 = 1.957297190 ∗ 105 [N] 

After we got the normal forces, we could calculate the nominal stresses and deflections, So 
the calculations are as follows.   

▪ To calculate nominal stress, we just had to divide the normal force by cross-section. 

Again because there are 71 bars which mean 71 nominal stresses, we used Maple 

software. Let's take bar number 21 as an example, as we can see in fig. 4.59. 

▪ It is very important to keep in mind that the negative value of Nominal Stress means 

that the bar is under compression, and the positive value of Nominal Stress means 

that the bar is under tension. 

 

 
 
 
 

The most loaded bars of the whole system in terms of Normal Forces. More in Tap. 4.4.  

▪ N5, N6, is symmetrical and has a value of  461056 N, the load is compressive, and they are 

in the bottom part of the bridge. 

▪ N15, N16, is also symmetrical and having a value of  -467513 N, the load is tensile, and 

they are in the top part of the bridge. 

- Also, the most loaded bars in terms of Nominal Stress. More in Tap. 4.4. 

▪ N5, N6, is symmetrical and has a value of  20.2930 MPa, and they are in the bottom part of 

the bridge. 

▪ N15, N16, is also symmetrical and having a value of -16.1211 MPa, and they are in the top 

part of the bridge. 

FIG. 4. 58 EQUATIONS AND NORMAL FORCES IN MAPLE SOFTWARE. 

FIG. 4. 59  FINDING THE NOMINAL STRESS IN MAPLE SOFTWARE. 
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So, the most loaded part of the bridge was in the middle then decreasing to the edges as per our 

expectations. When it comes to the nominal stress, it also depends on the cross-section, so if we 

change the cross-section, then the most loaded bars in terms of Nominal Stress definitely will 

change. We chose the most loaded bars in terms of tensile and compressive load more in the tab. 

4.4 the rest results of the bars can be found in attachment number 9. 

 

TAB. 4.4 NORMAL FORCE AND NOMINAL STRESS IN BARS WITH BRIDGE SELF-WEIGHT. 

 

 
 
 
 
 
 
 
 

▪ To calculate deflections, we used Castigliano’s theorem. As is evident from bridge 

geometry, the most significant displacement (deflection) can be expected on the joints 

farthest from the supports, according to that, we chose 10 forces along with the bridge 

from node A1 to node K1 to observe a gradual change in (deflection). 

▪ Then we deferentially derived all the normal forces according to the 10 forced that had 

been chosen, as we can see in fig. 4.59-2. 

 

 

 

 
 
After the deferential derivative, we integrated it according to the formula below, and index P 

changes from A1 to K1. 
 

𝑢𝑝 = ∑ ∫
𝑁𝑖

𝐸 ∗ 𝑆𝑖
∗

𝑑𝑁𝑖

𝑑𝐹𝑝
∗ 𝑑𝑥𝑖

𝐿𝑖

0

71

𝑖=1

 

 
▪  The formula in the software Maple will look like in fig. 4.60. 

▪  The displacements of the individual joints in the vertical direction are given in the  

 Tab. 4.5. 

 
 

 

 

 

Bar Normal Force [N] 
Nominal Stress 

[MPa] 

N5 461056 20.2930 

N6 461056 20.2930 

N15 -467513 -16.1211 

N16 -467513 -16.1211 

FIG.4.59-2 DIFFERENTIAL DERIVE ACCORDING TO A1 IN MAPLE SOFT WARE. 

FIG. 4.60 FINDING THE DISPLACEMENT IN MAPLE SOFTWARE. 
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TAB. 4. 5 DISPLACEMENT OF NODES. 

Upper 
Nodes 

Displacement 
[mm] 

Bottom 
Nodes 

Displacement 
[mm] 

A1 0.0750 A 0 

B1 2.9692 B 3.0290 

C1 5.6497 C 5.6715 

D1 7.6636 D 7.6734 

E1 8.9511 E 8.9442 

F1 9.4012 F 9.3872 

G1 8.9511 G 8.9442 

H1 7.6636 H 7.6734 

I1 5.6497 I 5.6715 

J1 2.9692 J 3.0290 

K1 0.0750 K 0 

 
The Deflection of the bridge reaches the highest value at the top of the Bridge, particularly at 
joint F1, which equals 9.4012 mm, then gradually decreases until the edges,  Also at the bottom 
part of the Bridge, The Deflection reaches the highest value at joint F which equals 9.3872 mm, 
then gradually decreases until the edges, but when it comes to joint A and K they equal to 
zero because they are connected with the supports. 
 

4.3.3 Checking the limit state of elasticity 
Limit state of elasticity has been checked for the most stressed bars in the Bridge, so to check the 

limit state of elasticity, we took the highest value of Nominal Stress, which was at joint N5 or N6  

it doesn't matter because they are symmetry and it equals 20.2929 MPa, in case if the value was 

negative we just take the absolute value of it, then we used the following formula. 

𝐾𝐾 =
𝑅𝑒

𝜎𝑛𝑜𝑚
=

210

20.29
= 10.34 

 

4.4 Load acting on the Bridge from Train plus self-load of Bridge 
This section will be the closest to the real-life situations because we took into consideration the 

weight of the passing Train on the Bridge, of course, we did not neglect the weight of the Bridge 

itself as well as the most Intensive situation occurs when a train passes on the bridge like 

deformation and buckling, through the Bridge passes both passenger and freight transport it is 

combined. The factor of safety according to the limit state of elasticity was checked using the same 

method as in chapter 4.3.3. 

 

 

4.4.1 Train specifications 
The train that passes through the Bridge is Regio Nova ČD class B2, in our case, we considered 

that two wagons and two locomotives will pass through the Bridge at once to obtain the maximum 

weight on the bridge, so every wagon and locomotive weights 18t which means in total we have 

72t, the calculations are the same for wagons and locomotives.  
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Because the wheels are the only contact with the Bridge, so our calculations were with the wheels, 

of course, we did not neglect the weight of the whole construction of the wagon and locomotive. 

In one locomotive or wagon, we have 8 wheels. Since we are dealing with the 2D problem, we 

took symmetry into considerations, thanks to symmetry, we dealt with just 4 wheels for each 

wagon and locomotive, in fig. 4.16, we can see the distribution of the forces and the whole length 

of the wagon or locomotive.  

 

 

 

 

 

 

 

 

 

 

▪ To calculate the magnitude of the force exerted by one wheel of the train on the deck, 

we used the following formula. 

𝐹𝑇 =
𝑚𝑇  ∙  𝑔

2 ∙  4
=  

18 ∙ 103 ∙ 9.81

2 ∙ 4
= 22072.5 𝑁 

When the train passed over the bridge, 4 phases of passage were selected, in these phases were 

analyzed the impact of the train on the bridge and changing of deflection and nominal stresses 

along the whole bridge, the forces from the train was applied to the nodes, but there were cases 

when the force was not acting directly on the node this situation was solved that the force was split 

between the two nodes that the force was acting between them, for example, if the force is acting 

in the middle of the bar between node A and node B then the force was split into half, so node A 

takes half of the force and node B also takes the half, of course, all forces of the train had been add 

to the resultant forces of the bridge self-weight.  

 

4.4.2 Phase 1 
In this phase, the train passes the first quarter of the bridge and reaches to node D, the forces 

generated from the train weight are not acting on any of the nodes, so they were recalculated to act 

on the nodes more in fig. 4.62. we can see the forces acting on the nodes after the recalculation. 

 

 

FIG. 4.61 TRAIN WEIGHT DISTRIBUTION. 

FIG. 4.62 PHASE 1 FORCE DISTRIBUTION. 
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The forces acting on the nodes remain the same as in the tab. 4.2 in chapter 4.3, except those acting 

on the following nodes (A1, B1, C1, D1), to those nodes were added forces created by the self-

weight bridge and the forces created from the weight of the passing train. The rest of the results of 

displacement, normal forces, and nominal stresses can be found in attachment number 10. 

 

TAB. 4.6 DISPLACEMENT IN NODES, GRAVITATIONAL FORCES, AND REACTION FORCES. 

Node 
Displacement 

[mm] 
Node 

Displacement 
[mm] 

Gravitational Forces [N] 

uA1 0.1085 uA 0 FgA1 22868 

uB1 3.6678 uB 3.7270 FgB1 46564 

uC1 6.8832 uC 6.8845 FgC 1 46066 

uD1 9.1611 uD 9.1584 FgD1 27736 

uE1 10.5193 uE 10.5077 Reaction Force [N] 

uF1 10.9014 uF 10.8853 Fya     270753 

uG1 10.2728 uG 10.2668 Fyk  208969 

uH1 8.7285 uH 8.7411     

uI1 6.3981 uI 6.4228     

uJ1 3.3506 uJ 3.4154     

uK1 0.0800 uK 0     

 

TAB. 4.7 NORMAL FORCES AND NOMINAL STRESSES IN THE BARS, TRAIN PHASE 1. 

Bar Norma Force [N] 
Nominal Stress 

[MPa] 
Factor of safety 

N5 535514 23.5702 8.9 

N6 522576 23.0007 9.1 

N15 -543786 -18.7513 11.2 

N16 -529320 -18.2524 11.5 

 

4.4.3 Phase 2 
In this phase, the train passes 7 nodes, and it reaches to node G1, the forces generated from the 

train weight are not acting on any of the nodes also, so they were recalculated to act on the nodes 

in fig. 4.63, we can see the forces acting on the nodes after the recalculation. 

 FIG. 4.63 PHASE 2 FORCE DISTRIBUTION. 
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The forces acting on the nodes also remain the same as in the tab. 4.2 in chapter 4.3 except those 

acting on the following nodes (A1, B1, C1, D1, E1, F1, G1), those nodes were added forces created 

by the self-weight bridge, and the forces created from the weight of the passing train. The rest of 

the displacement results, normal forces, and nominal stresses can be found in attachment N. 11. 

 

TAB. 4.8 DISPLACEMENT IN NODES, GRAVITATIONAL FORCES, AND REACTION FORCES. 

Node 
Displacement 

[mm] 
Node 

Displacement 
[mm] 

Gravitational Forces [N] 

uA1 0.1481 uA 0  FgA1 22868 

uB1 4.9584 uB 4.7822 FgB1 27197 

uC1 9.4238 uC 8.9174 FgC 1 46066 

uD1 12.7345 uD 11.9846 FgD1 40119 

uE1 14.7917 uE 13.8566 FgE1 47226 

uF1 15.4433 uF 14.3693 FgF1 46774 

uG1 14.5614 uG 13.4696 FgG1 27860 

uH1 12.2972 uH 11.3747 Reaction Force [N] 

uI1 8.9444 uI 8.2964 Fya     319298 

uJ1 4.6556 uJ 4.3843 Fyk  248687 

uK1 0.1020 uK 0     

 

TAB. 4. 9 NORMAL FORCES AND NOMINAL STRESSES IN THE BARS, TRAIN PHASE 2. 

Bar Norma Force [N] 
Nominal Stress 

[MPa] 
Factor of safety 

N5 726891 31.9934 6.5 

N6 702060 30.9005 6.7 

N15 -733297 -25.2861 8.3 

N16 -706998 -24.3792 8.6 

 

4.4.4 Phase 3 
In this phase, the train passes 8 nodes it reaches to node H1, the forces generated from the train 

weight are not acting on any of the nodes also, so they were recalculated to act on the nodes in fig. 

4.65, we can see the forces acting on the nodes after the recalculation. 

 

 
FIG. 4.64 PHASE 3 FORCE DISTRIBUTION. 
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The forces acting on the nodes remain the same as in the tab. 4.2 in chap. 4.3, except those acting 

on the following nodes (A1, B1, C1, D1, E1, F1, G1, H1), those nodes were added forces created 

by the self-weight bridge and the forces created from the weight of the passing train. The rest of 

the displacement results, normal forces, and nominal stresses can be found in attachment N. 12. 

 

TAB. 4.10 DISPLACEMENT IN NODES, GRAVITATIONAL FORCES, AND REACTION FORCES. 

Node 
Displacement 

[mm] 
Node 

Displacement 
[mm] 

Gravitational Forces [N] 

uA1 0.1481 uA 0 FgA1 22868 

uB1 4.9584 uB 5.0464 FgB1 27198 

uC1 9.4238 uC 9.4396 FgC 1 46067 

uD1 12.7345 uD 12.7286 FgD1 40119 

uE1 14.7917 uE 14.7634 FgE1 47226 

uF1 15.4433 uF 15.3984 FgF1 46774 

uG1 14.5614 uG 14.5331 FgG1 27860 

uH1 12.2972 uH 12.3128 FgH1 27737 

uI1 8.9444 uI 8.9827 Reaction Force [N] 

uJ1 4.6556 uJ 4.7423 Fya     344539 

uK1 0.1020 uK 0 Fyk  267578 

 

TAB. 4. 11 NORMAL FORCES AND NOMINAL STRESSES IN THE BARS, TRAIN PHASE 3. 

Bar Norma Force [N] 
Nominal Stress 

[MPa] 
Factor of safety 

N5 771976 33.9779 6.1 

N6 760686 33.4809 6.2 

N15 -779072 -26.8646 7.8 

N16 -765848 -26.4086 7.9 

 

4.4.5 Phase 4 
In this phase, the train passes 11 nodes it reaches to node K1, the forces generated from the train 

weight are not acting on any of the nodes also, so they were recalculated to act on the nodes in fig. 

4.65, we can see the forces acting on the nodes after the recalculation. 

 

 FIG. 4.65 PHASE 4 FORCE DISTRIBUTION. 
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The forces acting on the nodes remain the same as in the tab. 4.2 in chapter 4.3, except those acting 

on the following nodes (A1, B1, C1, D1, E1, F1, G1, H1, I1, J1, K1), those nodes were added 

forces created by the self-weight bridge and the forces created from the weight of the passing train. 

The rest of the displacement results, normal forces, and nominal stresses can be found in 

attachment N. 13. 

 

TAB. 4.12 DISPLACEMENT IN NODES, GRAVITATIONAL FORCES. 

Node 
Displacement 

[mm] 
Node 

Displacement 

[mm] 
Gravitational Forces [N] 

uA1 0.1530 uA 0 FgA1 42234 

uB1 5.3397 uB 5.4326 FgB1 39580 

uC1 10.1722 uC 10.1908 FgC 1 46067 

uD1 13.7993 uD 13.7962 FgD1 47103 

uE1 16.1132 uE 16.0859 FgE1 40243 

uF1 16.9434 uF 16.8964 FgF1 46774 

uG1 16.1295 uG 16.0965 FgG1 47226 

uH1 13.7946 uH 13.7979 FgH1 40119 

uI1 10.1779 uI 10.1956 FgI1 46067 

uJ1 5.3542 uJ 5.4402 FgJ1 46564 

uK1 0.1355 uK 0 FgK1 22868 

 

 

TAB. 4.13 REACTION FORCES. 

Reaction Force [N] 

Fya     357778 

Fyk  342602 

 

 

TAB. 4.14 NORMAL FORCES AND NOMINAL STRESSES IN THE BARS TRAIN PHASE 4. 

Bar Norma Force [N] 
Nominal Stress 

[MPa] 
Factor of safety 

N5 833496 36.6856 5.72 

N6 835144 36.7581 5.71 

N15 -840879 -28.9958 7.24 

N16 -842122 -29.0387 7.23 
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4.4.6 Conclusion of the four phases 
As we can see in Figures (4.62, 4.63, 4.64, 4.65) that the locomotives and wagons pass gradually 

on the top of the bridge from the beginning, which is the left part of the bridge, to the end, which 

is the right part of the bridge so for the calculations, we had to split the process of passing it into 

four phases to analyze the different positions of the train weight on the bridge however according 

to that we predicted that the Normal forces, Nominal stresses, and displacement would increase 

gradually in each Phase which should be correct because in every phase we are increasing the 

weight on the bridge by adding into the nodes recalculated forces created by wagons and 

locomotives weight.  

The most loaded phase should be the fourth because, in the fourth phase, we have two locomotives, 

one wagon, and a half wagon, on the bridge, which makes it the heavier phase for more in fig. 

4.65, according to our expectation, the fourth phase will be the most dangerous one when it comes 

to the buckling limit state due to the high values of compression forces. 

 

 

As we can see in all phases, the common things are that the most loaded bar when it comes to 

nominal stress and normal force in tension is bar N5 except in phase four is bar N6, and the most 

loaded bar in compression is bar N15 again except in phase four it is bar N16, and the highest 

numbers of nominal stress, normal force, and deflection we can find in the fourth phase.  

All phases are similar in the most deflected node, which is node F1 then node F with a tiny 

difference, in phase 2 and phase 3 the deflection in node F is totally the same the reason behind 

that is that phase 2 and phase 3 did not get significant changes in loads, so the difference was 

mainly in the bottom part of the bridge. 

We could also notice in tables (4.6, 4.8, 4.10, 4.12) that there is a zero deflection in all phases at 

node A and K, and it should be zero because at node A we have pin support mounted to it, and at 

node K, we have roller support also mounted to it. 

The safety against the limit state of elasticity was calculated for each phase to make sure that the 

construction is safe after increasing a heavy load in every phase, so we took the highest absolute 

value of nominal stress into our calculations, so we got the factor of safety in phase 1 𝐾𝑘= 8.9 and 

decreasing to 𝐾𝑘= 5.7 in phase 4, which means that the load gets heavier most likely although the 

factor of safety is low it’s still in the safe zone that the bridge wouldn’t collapse or exceed the limit 

state of elasticity. 
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4.5 Statically Determinate assignment 
In this section, we made a simpler model of the bridge because one of the goals of the bachelor 

thesis is to change the degree of static indeterminacy so that we changed it to a statically 

determinate task, which means that 20 bars and 10 nodes from the middle part of the bridge have 

been removed because we changed the topology. It was evident that our static indeterminant bridge 

is 10 times statically indeterminate and it was more than enough to reduce it just by 10 bars and 

keep the nodes to achieve the static determinacy but in our more straightforward model we reduced 

the bars by 20 times the reason why we did this significant change is that we wanted the bridge to 

look like in a real-life construction , not an imaginary bridge, however, after reducing the bars we 

had to take out the nodes in the middle of the bridge as well the removed nodes were ( L, M, N, 

O, P, Q, R, S, T, V ), Finally, after the reduction process, we ended with a static determinate 

structure having 41 bars and 11 nodes are effected by simple tension and compression, the 

dimensions of the whole bridge remain the same does not change the total length is 4140×10  

which means 41400 mm, and the height is 4000 mm, the supports also stay the same which means 

two supports on the left pin support which allows just rotation on Z-axis (perpendicular) and the 

right is supported by roller support means that the part of the bridge can move horizontally and 

rotate around the Z-axis (perpendicular). 

 

4.5.1 The main descriptions of the bridge 
The bridge was described as simple as possible to make it easy in calculations and orientations, 

using an alphabet system and numbering, it is as follows. 

 

 

4.5.2 The main dimensions 
The main dimensions describe the full length of the part of the bridge, which is 41400 mm, the 

height, which is 4000 mm, the length of one block, which is 4140 mm, the length of inner bars 

which is 5757mm, and the angle between the bars which is 44.01 ͦ.   

 

 

4.5.6 The naming of nods and numbering of bars 
This part of the bridge contains 41 bars separated by nodes, so they were numbered from 1 to 41, 

starting from the bottom left to the top of the bridge. This part of the bridge contains 11 nodes, so 

they were named alphabetically, starting from bottom left by letter A to the bottom right by letter 

K, the upper part of the bridge was copied from the bottom but with adding 1 like this (A1). 

 
FIG. 4.66 NUMBERING THE BARS AND NAMING THE NODES. 
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4.5.7 Cross-sections  
For the construction of the bridge were used 10 different types of cross-sections. They are the same 

as in the statically indeterminate structure. They can be found in chapter 4.1.5. 

 
TAB. 4. 15 COLOR AND NUMBERS OF CROSS-SECTIONS. 

 

 

 

 

 

4.6 Static analysis 
We make static analysis of any truss system to distinguish if the system is statically internally or 

externally determined or not determined, basically, by doing the analysis, we can find out how 

many equations we have and how many unknowns parameters we have, so if the number of 

equations is the same as the number of unknowns parameters, so the system is statically 

determined, otherwise if the number of equations not equal to the number of unknown parameters 

then the system is statically undetermined, so for our case will be explained better in the next step.  

 

Cross-sections 

Name 

Number of bar Cross-section area 

in 𝑚𝑚2 

colours 

corresponding 

to bar  

O1,O2 11,12,19,20 22000   

O3 13,18 26000   

O4,O5 14,15,16,17 29000   

U1,U2 1,2,9,10 211200   

U3,U4,U5 3,4,5,6,7,8 22720   

T1 22,40 8200   

T2,T3 24,26,36,38 7200   

T4,T5 28,30,32,34 6200   

S 23,25,27,29,31,33,35,37,39 9600   

SO 21,41 18400   

FIG. 4.67 FINDING THE POSITION OF CROSS-SECTION BY COLORS. 
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4.6.1 External static analysis 
Well, we have to consider our system of the truss (bridge) as on whole rigid body then released 

the supports which means just draw the reaction forces for supports, in our case we have in the 

bottom left pin support and in the bottom right roller support, and we are free to choose the 

direction of the forces however they are same as in chapter 4.2.1 fig. 4.21, in this easier model, 

nothing has been changed according to the supports they are the same as in the real-life model. 

 

▪ So, as we can observe from fig. 4.21 in chapter 4.2.1, we have three unknown forces we 

gained them from releasing the supports NP = {FxA, FyA, FyK} 

▪ In our case, we have the 2D system, so we have three static equilibrium equations from 

the formula below we can get. 

                                                                  Sex =  μex – νex 

μex = 3 

νex = 3 

sex = 0 

 

▪ As we can observe from the formula, we got  sex = 0, which means that our bridge is 

an external static determinant.  

 

 

4.6.2 Internal static analysis 
When it comes to internal static analysis is a bit different from external static analysis case, as we 

know that we are solving our bridge based on a truss theory which means that we have to 

consider our system of the truss (Bridge) as so many bars connected with others with nodes. 

▪ In the system, we have 41 bars and 22 nodes, using the following formula we get. 

▪ P = 41…. Where P is number of bars 

▪ K = 22…. Where K is number of Nodes 

▪ P = (2×k −3) =>  41 = (2 × 22 – 3) 

▪ 41 = 41  

▪ For the system to be statically determinate, both sides of equality have to be the same. 

▪ As we can see from the formula that both sides are equals which means we have got 41 

equations and 41 unknowns, this is the definition of a static determinate structure.   

 

4.7 Bridge's self-weight load 
In this chapter, we calculated the forces created from the bridge’s weight, the steps of calculation 

and the used equations are the same as in the static indeterminate task, detailed information were 

mentioned in chapter 4.3, the only changes are in the results the cannot be same according to our 

changes in the structure of the bridge. 
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Gravitational Forces [N] 

FgA 9097 FgA1 10485 

FgB 12222 FgB1 11197 

FgC 12226 FgC1 11835 

FgD 12319 FgD1 12729 

FgE 11949 FgE1 13207 

FgF 13324 FgF1 11833 

FgG 11949 FgG1 13207 

FgH 12319 FgH1 12729 

FgI 12226 FgI1 11835 

FgJ 12222 FgJ1 11197 

FgK 9097 FgK1 10485 

 

4.7.1 Free body diagram. 
It has been drawn a free body diagram for all construction, which means that each node is released, 

then we got a static equilibrium equation per each node in the X and the Y direction, and the 

moment is zero. The releasing process will be the same as in chapter 4.3.2, and only it will be in a 

different configuration; the nodes will be fewer. The released nodes and their equations can be 

found in attachment N. 58. 

4.7.2 Solving the system of equations 
After applying the free body diagram, we got static equilibrium equations where their number was 

44 equation, from our internal static analysis in chapter 4.6.2, we found that the number of 

unknown parameters equals to the number of the equations thanks to that, we did not have to do 

any special modifications if the Maple software unlike in statically indeterminate task chapter 4.1.  

 

 

 

 

 

 

 

 

 

FIG. 4.68 GRAVITATIONAL FORCES FROM BRIDGE’S SELF-WEIGHT. 

TAB. 4.16 GRAVITATIONAL LOADING ACTING ON NODES. 

FIG. 4.69 EQUATIONS AND NORMAL FORCES IN MAPLE SOFTWARE. 
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The solving process was done by a software called Maple, so at the beginning, after ordering the 

equation from eq. 1 to eq. 44 we used command solve({equations},{unknown parameters}), 

basically what this command did was finding the values of the normal forces and reactions forces, 

the reaction forces from supports. 
▪ 𝐹𝑦𝑎 = 1.298496887 ∙ 105 [N] 

▪ 𝐹𝑥𝑎 = 0  [N] 

▪ 𝐹𝑦𝑘 = 1.298496887 ∙ 105 [N] 

We can see that the reaction forces in this task have a smaller magnitude than the reaction forces 

in a static determinate task because the load on the bars is less since we decreased the bars in the 

construction by 20. 

After we got the normal forces, we could calculate the nominal stresses and deflections, So the 

calculations are as follows.  

 

▪ To calculate nominal stress, we just had to divide the normal force by cross-section, again 

because 41 bars mean 41 nominal stresses, we used Maple software. Let's take bar number 

21 as an example, as we can see in fig. 4.70 

▪ It is essential to keep in mind that the negative value of Nominal Stress means that the 

bar is under compression, and the positive value of Nominal Stress means that the bar is 

under tension. 

 

 

 
 
 

 
The most loaded bars of the whole system in terms of Normal Forces are  

▪ N5, N6, is symmetrical and has a value of  308050 N, and they are in the bottom part of 

the bridge. 
 

▪ N15, N16, is also symmetrical and having a value of  -321069 N, and they are in the top 

part of the bridge. 

 

Also, the most loaded bars in terms of Nominal Stress 

▪ N22, N40, is symmetrical and has a value of  19.3527 MPa, and they are in the bottom part 

of the bridge. 

 

So, the most loaded part of the bridge in terms of normal stress was in the middle then 

decreasing to the edges as per our expectations, when it comes to the nominal stress, it highly 

depends on the cross-section, that’s the reason why bars N22, N40 are the most loaded, and bars 

N1, and N10 has zero values because they do not transmit any force. The rest results of the bars 

can be found in attachment N. 36. 

 

FIG. 4.70 FINDING THE NOMINAL STRESS IN MAPLE SOFTWARE. 
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TAB. 4.17 NORMAL FORCES AND NOMINAL STRESSES IN THE BARS BRIDGE SELF-WEIGHT. 

Bar 
Norma 

Force [N] 

Nominal 

Stress [MPa] 
Bar 

Norma Force 

[N] 

Nominal 

Stress [MPa] 

N5 308050 13.5586 N22 158692 19.3527 

N6 308050 13.5586 N40 158692 19.3527 

N15 -321070 -11.0714 N1 0 0 

N16 -321070 -11.0714 N10 0 0 

 

▪ To calculate deflections, we used Castigliano’s theorem. As is evident from bridge 

geometry, the most significant displacement (deflection) can be expected. On the joints 

farthest from the supports, according to that, we chose 10 forces along with the bridge 

from node A1 to node K1 to observe a gradual change in (deflection). 

▪ Then we deferentially derived all the normal forces according to the 10 forced that had 

been chosen, as you can see in fig. 4.71. 

 

 

 

 

 

      After the deferential derivative, we integrated according to formula bellow 

𝑢𝑅 = ∑ ∫
𝑁𝑖

𝐸 ∗ 𝑆𝑖
∗

𝑑𝑁𝑖

𝑑𝐹𝑃
∗ 𝑑𝑥𝑖

𝐿𝑖

0

41

𝑖=1

 

▪ The formula in the software Maple will look like in fig. 4.72. 

▪  The displacements of the individual joints in the vertical direction are given in the tab. 

4.18. 

 

 

 

 TAB. 4.18 DISPLACEMENT OF NODES. 

Node 
Displacement 

[mm] 
Node 

Displacement 

[mm] 

uA1 0.1250 uA 0 

uB1 2.8435 uB 2.6490 

uC1 5.2209 uC 5.0728 

uD1 6.9882 uD 6.8880 

uE1 8.1042 uE 8.0530 

uF1 8.4688 uF 8.4453 

uG1 8.1042 uG 8.0530 

uH1 6.9882 uH 6.8880 

uI1 5.2209 uI 5.0728 

uJ1 2.8435 uJ 2.6490 

uK1 0.1250 uK 0 

FIG. 4.71 DIFFERENTIAL DERIVE ACCORDING TO A1 IN MAPLE SOFT 

WARE. 

FIG. 4.72 FINDING THE DISPLACEMENT IN MAPLE SOFT WARE. 
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The Deflection of the bridge reaches the highest value at the top of the Bridge, particularly at joint 

F1, which equals 8.4688 mm, then gradually decreases until the edges, also at the bottom part of 

the Bridge, The Deflection reaches the highest value at joint F which equals 8.4453 mm, then 

gradually decreases until the edges, but when it comes to joint A and K they equal to zero because 

they are connected with the supports. After all, there cannot be allowed any displacement. 

 

4.7.3 Checking the limit state of elasticity 
The limit state of elasticity has been checked for the most stressed bars in the Bridge, so to check 

the limit state of elasticity, we took the highest value of Nominal Stress, which was at joint N5 or 

N6 doesn't matter because they are symmetry. It equals 19.3527 MPa, in case if the value was 

negative, we just take the absolute value of it, then we used the following formula. 

𝐾𝐾 =
𝑅𝑒

𝜎𝑛𝑜𝑚
=

210

19.35
= 10.85 

4.8 Load acting on the Bridge from Train plus self-load of Bridge 
This section will be the closest to the real-life situations because we took into consideration the 

weight of the passing Train on the Bridge, of course, we did not neglect the weight of the Bridge 

itself as well as the most dangerous situation occurs when a Train passes on the Bridge like 

Deformation and Buckling, through the Bridge passes both passenger and freight transport it is 

combined. 

 

4.8.1 Train specifications 
The train that passes through the Bridge is the same as in a statically indeterminate case Regio 

Nova ČD class B2, the consideration still the same, which is that two wagons and two locomotives 

will pass through the Bridge at once to obtain the maximum weight on the bridge. Hence, every 

wagon and locomotive weights still the same 18 t, which gives us a total of 72 t, the calculations 

are the same for wagons and locomotives. 

Because the wheels are the only contact with the Bridge, so our calculations were with the wheels. 

Of course, we did not neglect the weight of the whole construction of the wagon and locomotive. 

In one locomotive or wagon, we have 8 wheels since we are dealing with the 2D problem as well 

we took the symmetry of the bridge into considerations, thanks to symmetry, we dealt with just 

four wheels for each wagon and locomotive in fig. 4.61 chapter 4.4.1, we can see the distribution 

of the forces and the whole length of wagon or locomotive. 

 

▪ For the calculation of the force exerted by one wheel of the train on the bridge rails, the 

same formula as in the static indeterminate task was applied more in chapter 4.4.1. 

When the train passed over the bridge, 4 phases of passage were selected, in these phases were 

analyzed the impact of the train on the bridge and changing of deflection and nominal Stresses 

along the whole Bridge, the forces from the train was applied to the nodes, but there were cases 

when the force was not acting directly on the node this situation was solved that the force was split 

between the two nodes that the force was acting between them, for example, if the force is acting 

in the middle the bar between node A and node B then the force was split into half, so node A 

takes half of the force and node B also takes the half, of course, all forces of the train had been add 

to the resultant forces of the bridge self-weight. According to the limit state of elasticity, the factor 

of safety was checked using the absolute value of the higher magnitude Nominal stress. 
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4.8.2 Phase 1 
In this phase, the train passes the first quarter of the bridge and reaches to the node D, the forces 

generated from the train weight are not acting on any of the nodes so they were recalculated to act 

on the nodes more in fig.4.73, we can see the forces acting on the nodes after the recalculation. 

 

 

 

The forces acting on the nodes remain the same as in the tab. 4.16, except those acting on the 

following nodes (A1, B1, C1, D1), to those nodes were added forces created by the self-weight 

bridge and the forces created from the weight of the passing train. The rest results of normal forces 

and nominal stresses can be found in attachment N. 37. 

 

TAB. 4. 19 DISPLACEMENT IN NODES, GRAVITATIONAL FORCES, AND REACTION FORCES. 

Node 
Displacement 

[mm] Node 
Displacement 

[mm] Gravitational Forces [N] 

uA1 0.2026 uA 0 FgA1 22868 

uB1 4.0397 uB 3.7208 FgB1 42946 

uC1 7.1596 uC 6.9502 FgC 1 43584 

uD1 9.1792 uD 9.0808 FgD1 25111.92298 

uE1 10.2473 uE 10.2224 Reaction Force [N] 

uF1 10.4584 uF 10.4349 Fya     204873 

uG1 9.8439 uG 9.7665 Fyk  143089 

uH1 8.3639 uH 8.2375     

uI1 6.1804 uI 6.0061     

uJ1 3.3368 uJ 3.1160     

uK1 0.1387 uK 0     

 

TAB. 4. 20 NORMAL FORCES AND NOMINAL STRESSES IN THE BARS TRAIN PHASE 1. 

Bar 
Norma 

Force [N] 

Nominal 

Stress [MPa] 
Bar 

Norma Force 

[N] 

Nominal 

Stress [MPa] 

N5 390268 17.1773 N1 0 0 

N6 362862 15.9710 N10 0 0 

N14 -390268 -13.4575 N22 248844 30.3469 

N15 -389584 -13.4339 N23 -160685 -16.7380 

FIG. 4.73 PHASE 1 FORCE DISTRIBUTION. 
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4.8.3 Phase 2 
In this phase, the train passes 7 nodes, and it reaches node G1. The forces generated from the train 

weight are not acting on any of the nodes also, so they were recalculated to act on the nodes more 

in fig. 4.74, we can see the forces acting on the nodes after the recalculation.  

 

 

The forces acting on the nodes remain the same as in the tab. 4.16,  except for those acting on the 

following nodes (A1, B1, C1, D1, E1, F1, G1), those nodes were added forces created by the self-

weight bridge and the forces created from the weight of the passing train. The rest results of normal 

forces and nominal stresses can be found in the attachment. N. 38. 

 

TAB. 4. 21 DISPLACEMENT IN NODES, GRAVITATIONAL FORCES, AND REACTION FORCES. 

Node 
Displacement 

[mm] Node 
Displacement 

[mm] Gravitational Forces [N] 

uA1 0.2529 uA 0  FgA1 22868 

uB1 5.4529 uB 5.0378 FgB1 42946 

uC1 9.8874 uC 9.5817 FgC 1 43584 

uD1 13.0382 uD 12.8434 FgD1 37494 

uE1 14.9074 uE 14.8108 FgE1 44956 

uF1 15.3189 uF 15.2324 FgF1 43582 

uG1 14.2168 uG 14.0605 FgG1 25590 

uH1 11.8566 uH 11.6514 Reaction Force [N] 

uI1 8.6358 uI 8.3827 Fya     253418 

uJ1 4.6048 uJ 4.3052 Fyk  182807 

uK1 0.1798 uK 0     

 

TAB. 4. 22 NORMAL FORCES AND NOMINAL STRESSES IN THE BARS, TRAIN PHASE 2. 

Bar 
Norma 

Force [N] 

Nominal 

Stress [MPa] 
Bar 

Norma Force 

[N] 

Nominal 

Stress [MPa] 

N5 578428 25.4589 N1 0 0 

N6 527297 23.2085 N10 0 0 

N15 -582311 -20.0797 N22 318709 38.8669 

N16 -582311 -20.0797 N23 -209229 -21.7947 

 

FIG. 4.74 PHASE 2 FORCE DISTRIBUTION. 
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4.8.4 Phase 3 
In this phase, the train passes 8 nodes, and it reaches node H1, the forces generated from the train 

weight are not acting on any of the nodes also, so they were recalculated to act on the nodes in fig. 

4.75, we can see the forces acting on the nodes after the recalculation. 

 

 

The forces acting on the nodes remain the same as in the tab. 4.16, except for those acting on the 

following nodes (A1, B1, C1, D1, E1, F1, G1, H1), those nodes were added forces created by the 

self-weight bridge, and the forces created from the weight of the passing train. The rest results of 

normal forces and nominal stresses can be found in attachment N. 39. 

 

TAB. 4. 23 DISPLACEMENT IN NODES, GRAVITATIONAL FORCES, AND REACTION FORCES. 

Node 
Displacement 

[mm] Node 
Displacement 

[mm] Gravitational Forces [N] 

uA1 0.2790 uA 0 FgA1 42234 

uB1 5.7720 uB 5.3452 FgB1 35963 

uC1 10.5625 uC 10.2313 FgC1 43584 

uD1 14.0339 uD 13.8136 FgD1 44478 

uE1 16.1072 uE 15.9989 FgE1 37973 

uF1 16.7130 uF 16.6265 FgF1 43582 

uG1 15.7319 uG 15.5628 FgG1 44957 

uH1 13.1978 uH 12.9551 FgH1 25112 

uI1 9.5904 uI 9.2997 Reaction Force [N] 

uJ1 5.1013 uJ 4.7643 Fya     278659 

uK1 0.1994 uK 0 Fyk  201698 

 

TAB. 4. 24 NORMAL FORCES AND NOMINAL STRESSES IN THE BARS, TRAIN PHASE 3. 

Bar 
Norma 

Force [N] 

Nominal 

Stress [MPa] 
Bar 

Norma Force 

[N] 

Nominal 

Stress [MPa] 

N5 617204 27.1656 N1 0 0 

N6 592689 26.0867 N10 0 0 

N15 -634396 -21.8757 N22 327163 39.8979 

N16 -634396 -21.8757 N23 -215104 -22.4067 

FIG. 4.75 PHASE 3 FORCE DISTRIBUTION. 
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4.8.5 Phase 4 
In this phase, the train passes 11 nodes, and it reaches node K1, the forces generated from the train 

weight are not acting on any of the nodes also, so they were recalculated to act on the nodes in fig. 

4.76, we can see the forces acting on the nodes after the recalculation. The rest results of normal 

forces and nominal stresses can be found in attachment N. 40. 

 

The forces acting on the nodes remain the same as in the tab. 4.16, except those acting on the 

following nodes (A1, B1, C1, D1, E1, F1, G1, H1, I1, J1, K1), those nodes were added forces 

created by the self-weight bridge and the forces created from the weight of the passing train. 

TAB. 4. 25 DISPLACEMENT IN NODES, GRAVITATIONAL FORCES. 

Node 
Displacement 

[mm] Node 
Displacement 

[mm] Gravitational Forces [N] 

uA1 0.2927 uA 0 FgA1 42234 

uB1 6.2652 uB 5.8121 FgB1 35962 

uC1 11.5219 uC 11.1645 FgC 1 43584 

uD1 15.4096 uD 15.1631 FgD1 44478 

uE1 17.8469 uE 17.7123 FgE1 37972 

uF1 18.7025 uF 18.6161 FgF1 43582 

uG1 17.8749 uG 17.7321 FgG1 44956 

uH1 15.3888 uH 15.1478 FgH1 37494 

uI1 11.5290 uI 11.1770 FgI1 43584 

uJ1 6.29744 uJ 5.8360 FgJ1 42946 

uK1 0.27704 uK 0 FgK1 22868 

TAB. 4. 26 REACTION FORCES. 

Reaction Force [N] 

Fya 291898 

Fyk 276722 

TAB. 4. 27 NORMAL FORCES AND NOMINAL STRESSES IN THE BARS, TRAIN PHASE 4 

Bar 
Norma 

Force [N] 

Nominal 

Stress [MPa] 
Bar 

Norma Force 

[N] 

Nominal 

Stress [MPa] 

N5 672016 29.5781 N1 0 0 

N6 674907 29.7054 N10 0 0 

N15 -702910 -24.2383 N22 346217 42.2216 

N16 -702910 -24.2383 N24 276870 38.4541 

FIG. 4.76 PHASE 4 FORCE DISTRIBUTION. 
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4.9 Conclusion of the four phases 
As we can see in Figures (4.73, 4.74, 4.75, 4.76) that the locomotives and wagons pass gradually 

on the top of the bridge from the beginning, which is the left part of the bridge, to the end, which 

is the right part of the bridge so for the calculations, we had split the process of passing it into four 

phases to analyze the different position of the train weight on the bridge however according to that 

we predicted that the Normal forces, Nominal stresses, and displacement would increase gradually 

in each Phase which should be correct because in every phase we are increasing the weight on the 

bridge by adding into the nodes recalculated forces created by wagons and locomotives weight.  

 

The most loaded phase should be the fourth because, in the fourth phase, we have two locomotives, 

one wagon, and a half wagon, on the bridge, which makes it the heavier phase for more in fig. 

4.76, according to our expectation, the fourth bridge will be the most dangerous one when it comes 

to the buckling limit state due to the high values of compression forces. 

 

 

❖ Phase1 
In this phase from tables 4.19, and 4.20 we got. 

▪ The most nominal stress in tension applied at bar number N22 of value 30.3469 MPa, 
and the maximum stress in compression applied at bar N23 of value a -16.738 MPa, 

the maximum absolute Nominal stress is the same at bar N22 of value at 30.346 MPa. 
 

▪ The maximum tension force is applied at the bar number N5 of value at 390268 N, and 

the maximum compression force is applied at the bar number N14 of value at -390268 N, 

the maximum absolute force is the same at bar N5 and N14 of value at 390268 N. 

 

▪ The maximum deflection applied is at node F1 in the middle-upper part of the bridge at 

a value of 10.4584 mm and node F in the middle-bottom part of the bridge at a value of 

10.4349 mm. 

 

▪ Checking the factor of safety according to the limit state of elasticity using the absolute 

value of the Nominal stress. 

𝐾𝐾 =
𝑅𝑒

𝜎𝑛𝑜𝑚
=

210

30.34
= 6.92 

 

❖ Phase2 
In this phase from tables 4.21, and 4.22 we got. 

▪ The most nominal stress in tension applied at bar number N22 of value 38.8669 MPa, and 
the maximum stress in compression applied at bar N23 of value at -21.79478723 MPa, 

the maximum absolute Nominal stress is the same at bar N22 of value at 38.8669 MPa. 
 

▪ The maximum tension force is applied at the bar number N5 of value at 578428 N, and the 

maximum compression force is applied at the bar number N15 and N16 of value at  -582311 

N, the maximum absolute force is the same at bar N15 and N16 of value at     582311 N. 
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▪ The maximum deflection applied is at node F1 in the middle-upper part of the bridge at 

a value of 15.3189 mm and node F in the middle-bottom part of the bridge at a value of 

15.2324 mm. 

 

▪ Checking the factor of safety according to the limit state of elasticity using the absolute 

value of the Nominal stress. 

𝐾𝐾 =
𝑅𝑒

𝜎𝑛𝑜𝑚
=

210

38.86
= 5.40 

❖ Phase3 
In this phase from tables 4.23, and 4.24 we got 

▪  The most nominal stress in tension applied at bar number N22 of value 39.8979 MPa, 

and the maximum stress in compression applied at bar N23 of value at -22.4067 MPa, 

the maximum absolute Nominal stress is the same at bar N22 of value at 39.8979 MPa. 

 

▪ The maximum tension force is applied at the bar number N5 of value at 617204 N, and 

the maximum compression force is applied at the bar number N15 of value at -634396 N, 

the maximum absolute force is the same at bar N15 and N16 of value at 634396 N. 
 

▪ The maximum deflection applied is at node F1 in the middle-upper part of the bridge at 

a value of 16.7130 mm] and node F in the middle-bottom part of the bridge at a value of 

16.6265 mm. 

 

▪ Checking the factor of safety according to the limit state of elasticity using the absolute 

value of the Nominal stress. 

𝐾𝐾 =
𝑅𝑒

𝜎𝑛𝑜𝑚
=

210

39.89
= 5.26 

❖ Phase4 
In this phase from tables 4.25, 4.26, and 4.27, we got. 

▪ The most nominal stress in tension applied at bar number N22 of value 42.2216 MPa, and 
the maximum stress in compression applied at bar N16 of value at -24.2383 MPa, the 

maximum absolute Nominal stress is the same at bar N22 of value at 42.2216 MPa. 
 

▪ The maximum tension force is applied at the bar number N6 of value at 674907 N, and the 

maximum compression force is applied at the bar number N15 and N16 of value at -702910 

N, the maximum absolute force is the same at bar N15 and N16 of value at 702910 N. 

 

▪ The maximum deflection applied is at node F1 in the middle-upper part of the bridge at a 

value of 18.7025 mm and node F in the middle-bottom part of the bridge at a value of 

18.6161 mm. 
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▪ Checking the factor of safety according to limit state of elasticity using the absolute value 

of the Nominal stress 

𝐾𝐾 =
𝑅𝑒

𝜎𝑛𝑜𝑚
=

210

42.22
= 4.97 

 

As we can see in all phases, the common things are that the most loaded bar when it comes to 

nominal stress and normal force, in tension is bar N5 and the most loaded bar in compression is 

bar N15 again except in phase four is bar N16, and the highest numbers of nominal stress, normal 

force, and deflection we can find in the fourth phase.  

All phases are similar in the most deflected node, which is node F1, after it tightly node F with a 

very small difference. 

We could also notice that there is a zero deflection in all phases at node A and K, and it should be 

zero because at node A we have pin support mounted to it, and at node K, we have roller support 

also mounted to it. 

The safety against the limit state of elasticity was calculated for each phase to make sure that the 

construction is safe after increasing a heavy load in every phase, so we took the highest absolute 

value of nominal stress into our calculations so we got the factor of safety in phase 1 𝐾𝑘= 6.92  and 

decreasing to 𝐾𝑘 = 4.97 in phase 4, which means that the loads get heavier most likely, the 

construction will fail against the elasticity limit state and collapse. 

 

4.10 Checking the buckling stability limit state of the bridge. 
One of the most dangerous situations that can occur when a bar is under high compressive loading 

is occurring a buckling, and if the bar is under high compression, it can lead to buckling. Therefore, 

the limit state of buckling can only be achieved under a high-stress pressure so that the deformation 

of the bar changes from compression to bending. 

In order for the buckling limit state to occur before the limit state of elasticity, it must meet the 

condition that the slenderness of the checked bar is higher than the critical slenderness. 

According to the type of placement of individual bars in our bridge structure, the coefficient α was 

chosen for placement between two rotational supports, therefore α = 𝜋. So, the slenderness is 

therefore determined as follows. 

𝜆𝐾𝑟 = 𝜋 ∙ √
𝐸

𝑅𝑒
  =  𝜋 ∙ √

210 ∙ 103

210
 = 99.34 

So, to check the limit state of buckling, we compared the result of critical slenderness with the 

slenderness of the individual bars which were determined for bars loaded with compression 

according to the following relationship. 

𝜆 =  
𝑙

√𝐽𝑚𝑖𝑛

𝑠

 

4.10.1 Self-weight load 
Because the variant self-load has the fewest loads when it compares to the others, so we decided 

to move it into attachments holding number 1. 
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4.10.2 Load acting on the Bridge from Train plus self-load of Bridge 
In this chapter, we will check the limit state of buckling for both structures (statically determinate 

and statically indeterminate) under the bridge’s self-weight. We will also consider the weight of 

passing locomotives and wagons. The critical force must apply the determination of safety that 

decides if a bar is safe against buckling limit state since the highest slenderness of the bars is at 

the value of 84.79 more in tab. 1, in attachment 1, and both structures have the same properties, 

and it is enough to determine only one critical force. However, we calculated it using the following 

formula.  

𝐹𝑘𝑟 =
𝛼2 ∙ 𝐸 ∙ 𝐽𝑚𝑖𝑛

𝑙2
= 2766943 [N] 

 

a) Safety for a static indeterminate structure 
Form tab. 1, in attachment 1, bars (36,41,46,51) has the highest value of slenderness, and the bar 

number (46) has the most elevated normal force under compression at -23662 N in-phase(4), the 

negative sign means that the bar is under compression; however, we took the absolute value, and 

to find the factor of safety, we divided the critical force by the normal force acting on the bar as 

follows. 

𝐾𝑣 =
𝐹𝑘𝑟

𝐹
= 117 

Thus, the safety of the train-load structure dropped to almost a third of the original value, which 

was calculated for a statically indeterminate structure, where the system was loaded only by its 

own weight. Nevertheless, security is high enough. 

 

b) Safety for a static determinate structure 
Form tab.1, bars (23,25,27,29,31,33,35,37,39) has the highest value of slenderness and the bar 

number (23) has the highest nominal stress under compression at -283839 N in-phase (4). to find 

the factor of safety, we divided the critical force by the normal force as follows. 

𝐾𝑣 =
𝐹𝑘𝑟

𝐹
= 9.7 

If we compare the resulting safety with the safety that came out under the load only by the self-

weight of the bridge, we observe a deterioration again. Here, too, it is assumed that with greater 

stress on the bridge structure, the buckling failure will occur earlier than the elasticity failure. 

 

 

5 Numerical Calculations using finite element method 
In this section, we used the finite element method to solve or structures. The software that has been 

used was Ansys workbench, it is necessary to mention that the solution is only approximate and is 

always a slight tolerance of error, but Usually, the accuracy of the solution is sufficient for our 

analyzing application. In our steps of the solution, it is possible to use a bar or link-type element 

bar bodies. However, a Link element transmits only axial loads, and only displacement parameters 

can be calculated with it, but in Bar element can be used for other calculations also such as torsion, 

bending, shear. This section shows the results obtained using the simulation software ANSYS, 

which will serve as a check of the accuracy of analytical calculations. 
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5.1 Statically indeterminate structure 2D 
We created a model in software Ansys that has the exact geometrical dimensions of the bridge as 

in chapter 4.1.2, fig. 4.2, and the cross-sections are the same also as in chapter 4.1.5, fingers (4.6-

4.18). In this chapter, the 2D comparison will be applied for the self-weight bridge and a passing 

train in phase 4 plus the bridge's self-weight. However, in this thesis will be written just the 

statically indeterminate case, and the statically determinate case will be attached in attachment 

holding number 8. 

 

5.1.1 Self-weight bridge analyzing displacement and normal forces 
In this section, we built a model with self-bridge’s loading effect, and it led to the displacement 

and created normal forces. 

 

 

 

As we can see in fig. 5.1 the minimum displacements are in the edges with red color that is because 

the nodes are close to the supports, but as we can see, the displacement is gradually increasing to 

the middle, where gets the highest values in blue color. However, the maximum displacement is 

in node F, which is reasonable because node F is the furthest node from the supports, and it is 

under tension force. 

Fig. 5.2 graphically shows the effect of nominal stresses on individual bars of the bridge structure. 

 

 

 

FIG. 5.1 DEFLECTION OF THE BRIDGE IN Y AXIS [MM]. SELF-WEIGHT. 
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As we can see in fig. 5.2, we got the maximum values at the middle bottom of the bridge with red 

color and the minimum values at the middle top of the bridge with blue color, well the sign does 

not matter. It indicates if the bar is under compressive or tension force, which means that we got 

the highest compression forces at the top of the bridge and the highest tension at the bottom of the 

bridge. 

5.1.2 Comparison between Numerical and Analytical results 
In tab. 5.1, we had compared the numerical and the analytical results to check the accuracy of the 

analytical calculation. We compared displacements in the nodes and normal forces in the bars. 

However, because the number of bars is 71 and the number of nodes is 32, we decided to choose 

just 10 of each for our comparison. as we can see, the results coincide with great accuracy. The 

rest of the results can be found in the attachment holding numbers 19, and 20. 

TAB. 5. 1 COMPARISON OF NORMAL FORCE AND DISPLACEMENT NUMERICAL AND 

ANALYTICAL. 

 Analytical Numerical    Analytical Numerical   

Bars 
Norma 

Force [N] 

Norma 

Force [N] 

Accuracy 

[%] 
Nodes 

Displacement 

[mm] 

Displacement 

[mm] 

Accuracy 

[%] 

N3 359446.12 359450.00 0.00108 uA1 0.0750694 -0.075069 0.00054 

N4 429031.60 429030.00 0.00037 uB1 2.96923898 -2.9696 0.012 

N5 461056.00 461060.00 0.00087 uC1 5.64977065 -5.6497 0.0013 

N6 461056.00 461060.00 0.00087 uD1 7.66365248 -7.6636 0.00068 

N7 429031.60 429030.00 0.00037 uE1 8.95119433 -8.9511 0.0011 

N8 359446.12 359450.00 0.00108 uF1 9.40127928 -9.4012 0.00084 

N15 -467513.30 -467510.00 0.00071 uG1 8.95119433 -8.9511 0.0011 

N16 -467513.30 -467510.00 0.00071 uH1 7.66365248 -7.6636 0.00068 

N21 -72517.04 -72517.00 0.00006 uI1 5.64977065 -5.6497 0.0013 

N46 -7089.44 -7089.70 0.00363 uJ1 2.96923898 -2.9696 0.012 

N42 18964.24 18964.00 0.00128 uK1 0.0750694 -0.075069 0.00054 

FIG. 5.2 AXIAL FORCES ACTION ON THE BARS IN  [N]. SELF-WEIGHT. 
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5.1.3 Train’s-weight phase 4 analyzing displacement and normal forces 
In this model’s analyzing we decided to study the heavies or the most loaded phase of all 4 phases, 

which is the fourth phase, so we applied the same analysis, which are displacement and normal 

forces. 

 

 

As we can see in fig. 5.4, the maximum and minimum values have almost the same spot as in the 

case when the bridge is just self-loaded more in chapter 5.1.1, and the only change was in the 

magnitude of the displacements, which is the highest displacement value at node F in the middle 

bottom of the bridge. 

fig. 5.4 graphically shows the effect of nominal stresses on individual bars of the bridge structure 

while the locomotives and wagons pass on the bridge that means the heavies loading on the bridge 

is being applied. 

Fig. 5.3 Deflection of the Bridge in Y axis [mm]. passing train. 

 

FIG. 5.4 AXIAL FORCES ACTION ON THE BARS IN  [N] . PASSING TRAIN. 
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As we can see in fig. 5.4, the maximum and minimum values have almost the same spot as in the 

case when the bridge is just self-loaded more in chapter 5.1.1, and the only changes were in the 

magnitude of the normal forces. 

 

5.1.4 Comparison between Numerical and Analytical results 
In tab. 5.2, we had compared the numerical and the analytical results to check the accuracy of the 

analytical calculation. We compared displacements in the nodes and normal forces in the bars. As 

we can see, the results coincide with great precision. 

 

TAB. 5. 2 COMPARISON NORMAL FORCE AND DISPLACEMENT NUMERICALLY AND 

ANALYTICALLY. 

 Analytical Numerical    Analytical Numerical   

Bars 
Norma 

Force [N] 

Norma 

Force [N] 

Accuracy 

[%] 
Node 

Displacement 

[mm] 

Displacement 

[mm] 

Accuracy 

[%] 

N3 648756.76 648760.00 0.00050 uA1 0.15304301 -0.153040 0.0020 

N4 773933.76 773930.00 0.00049 uB1 5.33972416 -5.339700 0.00045 

N5 833496.63 833500.00 0.00040 uC1 10.1721678 -10.172000 0.0016 

N6 835144.95 835140.00 0.00059 uD1 13.7993374 -13.799000 0.0024 

N7 775084.08 775080.00 0.00053 uE1 16.1132241 -16.133000 0.12 

N8 648049.47 648050.00 0.00008 uF1 16.9433727 -16.943000 0.0022 

N15 -840879.1 -840880.00 0.00011 uG1 16.1295396 -16.129000 0.0033 

N16 -842122 -842120.00 0.00024 uH1 13.7945701 -13.794000 0.0041 

N21 -147839.5 -147840.00 0.00031 uI1 10.1778725 -10.178000 0.0013 

N42 32035.655 32036.00 0.0011 uJ1 5.35424629 -5.354200 0.00086 

N46 -23662.01 -23662.00 0.000040 uK1 0.13545456 -0.135450 0.0034 

 

 

5.2 Statically indeterminate structure 3D 
Since the 2D structures were always the simplification of the real-life situation, we made a 3D 

structure to match real-life construction. We created two parallel faces in the z-axis connected with 

a deck which looks as in fig. 5.5. From the sides, they are connected with rods which look as in 

fig. 5.9. The upper section is connected by straight bars, which look like fig. 5.6, with 3000 mm 

width into z-axis, the cross-section remains the same as in 2D structure more in chapter 4.1.5, the 

only differences are at the sided of the bridge, which has a cross-section TRr, TRl more in fig.5.11, 

and at the bottom section of the bridge which is the deck has S1, S2, S3, S4, S5 cross-sections 

more in fig. 5.7, 5.8, 5.10. 
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FIG. 5. 5 DECK IN THE BOTTOM PART. 

FIG. 5.9 RODE 

CONNECTION FOR THE 

SIDES OF THE BRIDGE. 

FIG. 5.6 UPPER PART CONNECTION. 

FIG. 5. 8 CROSS-SECTION 

S4, S5. 
FIG. 5. 7 CROSS-SECTION  

S2, S3. 

FIG. 5. 11 CROSS-SECTION 

TRR, TRL. 

FIG. 5. 10 CROSS-

SECTION S1. 
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5.2.1 Load acting on the Bridge from passing Train in phase 4 plus self-load of 

Bridge analyzing displacement and normal forces 
In this section, we analyzed the static indeterminate structure and chose the condition when the 

train passes in the fourth phase, which is the heaviest condition. Bellow, we can see in fig. 5.12, 

the deflection of the whole construction in the Y-axis and the normal forces in fig. 5.13. The results 

are in the tab. 5.3. 

 

 
 

 

 

 

 

 

FIG. 5.12 DEFLECTION OF THE BRIDGE IN Y AXIS [MM] PASSING TRAIN. 

 

FIG. 5.13 AXIAL FORCES ACTION ON THE BARS IN  [N] . PASSING TRAIN. 
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5.2.2 Comparison between 3D and 2D structure Numerically 
The resulting normal forces and deflections are, therefore, similar in both variants. There is a big 

difference between the bars that are near the bridge deck; that is because increasing the stiffness 

when the model was changed caused a decrease in the normal forces of the bars at the bridge deck. 

TAB. 5. 3 COMPARISON NORMAL FORCE, DISPLACEMENT NUMERICALLY 2D WITH D3. 

  3D 2D     3D 2D   

Bars 
Norma Force 

[N] 
Norma Force 

[N] 
Accuracy 

[%] 
Nodes 

Displacement 
[mm] 

Displacement 
[mm] 

Accuracy 
[%] 

N3 607080 648760 6.42 uA1 -0.14658 -0.15304 4.22 

N4 738820 773930 4.54 uB1 -5.1888 -5.3397 2.83 

N5 795600 833500 4.55 uC1 -9.896 -10.172 2.71 

N6 797170 835140 4.55 uD1 -13.433 -13.799 2.65 

N7 739920 775080 4.54 uE1 -15.694 -16.133 2.72 

N8 606410 648050 6.43 uF1 -16.506 -16.943 2.58 

N15 -839510 -840880 0.16 uG1 -15.71 -16.129 2.60 

N16 -840750 -842120 0.16 uH1 -13.429 -13.794 2.65 

N21 -141600 -147840 4.22 uI1 -9.9016 -10.178 2.72 

N42 30128 32036 5.96 uJ1 -5.2032 -5.3542 2.82 

N46 -21008 -23662 11.22 uK1 -0.12963 -0.13545 4.30 

5.2.3 Model modification  
As we know, the 2D model is a simplification of the real-life model 3D, so of course, that the 3D 

model will be stiffer than the 2D model because it has for more the deck which is connected to the 

bottom section of the bridge, therefore we tried to make the results more accurate. However, one 

of the solutions was by increasing the cross-section area of the 2D model at the bottom part of the 

bridge; therefore, cross-section U1, U2 was increased from 21120 𝑚𝑚2 to 23712 𝑚𝑚2 and cross-

section U3, U4 was also increased from 22720 𝑚𝑚2 to 23794 𝑚𝑚2. Thanks to these changes, we 

can now see a better accuracy rate in the tab. 5.4. 

TAB. 5. 4 COMPARISON NORMAL FORCE, DISPLACEMENT NUMERICALLY IN 2D WITH 3D, 

AFTER CHANGING CROSS-SECTION. 

  3D 2D     3D 2D   

Bars 
Norma Force 

[N] 
Norma Force 

[N] 
Accuracy 

[%] 
Nodes 

Displacement 
[mm] 

Displacement 
[mm] 

Accuracy 
[%] 

N3 607080 649840 6.58 uA1 -0.14658 -0.15189 3.50 

N4 738820 775300 4.71 uB1 -5.1888 -5.1848 0.08 

N5 795600 834810 4.70 uC1 -9.896 -9.8995 0.04 

N6 797170 836460 4.70 uD1 -13.433 -13.448 0.11 

N7 739920 776450 4.70 uE1 -15.694 -15.71 0.10 

N8 606410 649130 6.58 uF1 -16.506 -16.523 0.10 

N15 -839510 -839570 0.01 uG1 -15.71 -15.726 0.10 

N16 -840750 -840810 0.01 uH1 -13.429 -13.443 0.10 

N21 -141600 -146720 3.49 uI1 -9.9016 -9.9048 0.03 

N42 30128 30214 0.28 uJ1 -5.2032 -5.199 0.08 

N46 -21008 -21128 0.57 uK1 -0.12963 -0.13429 3.47 
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6 Conclusion 
The main goal of this bachelor thesis was to apply Stress-Strain analysis of the railway bridge in 

Zahrádky near Česká Lípa and apply different assumptions and simplifications. 

 

The first section of this thesis was dedicated to searching and obtaining the input data and essential 

information which were obtained from Railway administration, state organizations Regional 

Headquarters Hradec Králové through Ing. Pavel Novák. Thus, the theory was developed, which 

was necessary to know for the solution of individual parts of the bachelor's thesis. Therefore, the 

theory was taken from sources that contained information mainly in statics and Strength of 

Material. Based on our knowledge from that fields, we were able to simplify the bridge's structure 

into a two-dimensional model. 

 

The second section was the analytical calculation in two-dimension, which was assisted by the 

Maple program. To perform an analytical analysis, we needed to create a virtual model of a bar 

system, and since the bridge, in reality, has, in addition, a deck, Therefore, it was included in the 

calculation, which should correspond and come as close as possible to the actual solution of the 

real bridge. Moreover, the load factors such as wind load and the effect of dynamic forces when 

the train passes over the bridge were neglected because it would exceed the goals of this bachelor 

thesis, On the other hand, the load from the bridge itself and the load from a passing train set were 

took into consideration in our analysis. However, the analytical calculation was divided into two 

sections, the first one is a statically indeterminate structure, and the second one is a statically 

determinate structure, furthermore in each section was considered the bridges self-weight and a 

passing train as the loading’s factors. 

 

In the statically indeterminate structure with S = 10, under a self-bridge’s load effect. The results 

show that the maximum values of the normal forces can be found in the middle part of the bridge, 

at the upper and the bottom horizontal bars, while the upper section is under compressive load, the 

bottom section is under a tensile load, the outcome was large deflection in the middle of the bridge 

specifically in node F1, and the value of the displacement of a given node in the vertical direction 

is 9.4012 mm. The highest nominal stress acts in the bottom part of the bridge, specifically on the 

bars N5, N6 it is a tensile load with a value of 20.29 MPa since it is the highest value it was used 

to check the safety with respect to the limit state of elasticity. Therefore, the safety factor is 10.34. 

 

Then we analyzed statically indeterminate structure under passing wagons, and locomotives load 

effect. Since they pass gradually from the beginning of the bridge to the end, we had to split the 

analysis to fits the reality. Therefore, the calculation was divided into four phases. 

 

In the first phase, the train set passes on the first four nodes from node A1 to node D1, and There 

is a significant increase in nominal stresses in the bars and deflection in the nodes. The maximum 

tensile stress acts on bar N5 at the value of 23.57 MPa, and maximum compressive stress acts on 

bar N15 at the value of -18.75 MPa. The maximum deflection of node F1 increased 10.9013 mm. 

however, the safety factor 𝑘𝑘 = 8.9 represents a sufficiently large reserve. 
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In the second phase, the train set reaches node G1. Again, there is an increase in nominal stresses 

in the bars and deflection in the nodes. The maximum tensile stress acts on bar N5 at the value of 

31.99 MPa, and maximum compressive stress acts on bar N15 at the value of -25.28 MPa. The 

maximum deflection of node F1 increased to 15.4432 mm. we can observe a decrease in the safety 

factor where we got a value at  𝑘𝑘 = 6.5. 

 

In the third phase, the train set reaches node H1, which mean it is only one node ahead, therefore 

we did not observe a noticeable increase in nominal stresses and deflection. The maximum tensile 

stress acts on bar N5 at the value of 33.97 MPa, and maximum compressive stress acts on bar N15 

at the value of -26.86 MPa. The maximum deflection of node F1 remained totally the same value, 

15.4432 mm. we can observe a slight decrease in the safety factor where we got a value at            

𝑘𝑘 = 6.1. 

 

In the fourth phase, the train set is on the whole bridge from node A1 to node K1. There is a 

significant increase in nominal stresses in the bars and deflection in the nodes when we compare 

with the self-load only. The maximum tensile stress acts on bar N6 at the value of 36.75 MPa, and 

maximum compressive stress acts on bar N16 at the value of -29.03 MPa. The maximum deflection 

of node F1 increased to 16.943 mm. we can observe a decrease in the safety factor where we got 

a value at  𝑘𝑘 = 5.7. we can also observe a significant increase in reaction forces in the supports 

from Fya = 195729 N, Fyk = 195729 in self bridges load to Fya = 357778 N, Fyk = 342602 N  

in the fourth phase of the passing train set. 

 

In the statically determinate structure, we made changes to the construction to achieve the static 

determinacy. Therefore, we reduced the number of bars by 20 and the number of nodes by 10. 

Firstly, we considered the bridge’s self-load. When we analyzed the normal forces and the nominal 

stresses, the highest values in terms of normal forces were as expected, they were the same as in 

the static indeterminate structure, which means in the middle of the bridge. The upper horizontal 

section is under compressive load, and the bottom section is under a tensile load. But the highest 

nominal stress was at bar N22 at the value of 19.35 MPa since it is the highest value, it was used 

to check the safety with respect to the limit state of elasticity. Therefore, the safety factor is 10.85. 

We got the highest deflection in the vertical direction in node F1 at the value of 8.4688 mm. 

Then we analyzed the statically determinate structure under passing wagons and locomotives load 

effect. We applied the same process, which was used in the static indeterminate structure, which 

means we had four phases of a passing train set. 

 

In the first phase, the train set passes on the first four nodes from node A1 to node D1, and There 

is a significant increase in nominal stresses in the bars and deflection in the nodes. The maximum 

tensile stress acts on bar N22 at the value of 30.34 MPa, and maximum compressive stress acts on 

bar N23 at the value of -16.73 MPa. The maximum deflection of node F1 increased 10.4584 mm. 

however, the safety factor is 𝑘𝑘 = 6.9. 

In the second phase, the train set reaches node G1. Again, there is an increase in nominal stresses 

in the bars and deflection in the nodes. The maximum tensile stress acts on bar N22 at the value 

of 38.86 MPa, and maximum compressive stress acts on bar N23 at the value of -21.79 MPa. The 

maximum deflection of node F1 increased to 15.3189 mm. we can observe a decrease in the safety. 

factor where we got a value at  𝑘𝑘 = 5.4.  
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In the third phase, the train set reaches node H1, which mean it is only one node ahead, therefore 

we did not observe a noticeable increase in nominal stresses and deflection. The maximum tensile 

stress acts on bar N22 at the value of 39.89 MPa, and maximum compressive stress acts on bar 

N23 at the value of -22.40 MPa. The maximum deflection of node F1 remained totally the same 

value, 16.7130 mm. we can observe a slight decrease in the safety factor where we got a value at            

𝑘𝑘 = 5.2. 

 

In the fourth phase, the train set is on the whole bridge from node A1 to node K1. There is a 

significant increase in nominal stresses in the bars and deflection in the nodes when we compare 

with the self-load only. The maximum tensile stress acts on bar N22 at the value of 42.22 MPa, 

and maximum compressive stress acts on bar N39 at the value of -24.22 MPa. The maximum 

deflection of node F1 increased to 18.7025 mm. we can observe a decrease in the safety factor 

where we got a value at  𝑘𝑘 = 4.9. we can also observe a significant increase in reaction forces in 

the supports from Fya = 129849 N, Fyk = 129849 in self bridges load to Fya = 291898 N,           

Fyk = 276722 N in the fourth phase of the passing train set. 

 

Next, we checked the buckling stability limit state for a chosen models in both structures, statically 

indeterminate and statically determinate. We decided to choose a self-bridge’s load because it is 

the lightest model and the second one a model with a passing train set in the fourth phase. After 

all, it is the heaviest model, and we could compare between them. For a statically indeterminate 

structure, the safety is very high in the self-bridge’s load, and its value is  390. However, if the 

train set is crossing the bridge, safety drops to almost a third of the value under self-weight, its 

value becomes 117. but it is still higher than the safety to the limit state of elasticity. For statically 

determinate structure, the safety is 28 in the self-bridge’s load, this safety decreases, even more, 

when the trainset passes across the bridge to the value of 12. 

 

All models that were used in the analytical analysis were modeled and analyzed numerically using 

the finite element method with Ansys software helps. The output values of stress and strain were 

consistent. The identical results confirm the correctness of the construction of the analytical, 

computational model. Normal forces, nominal stresses, and deformation were compared. Our last 

mission in this thesis was to create a three-dimensional model of the original structure, which is 

statically indeterminate. This model was compared with the two-dimensional model, the results 

were not with that high accuracy. The reason is that when we designed the 2D model, we included 

the mass of the deck, but we could not include the rigidity of the deck, so we came with a solution 

which was increasing the cross-section area of the bottom part of the bridge for more of increasing 

steps in chapter 5.2.3, so after the change, we applied to the model the accuracy increased to a 

Reasonable number. 

 

In conclusion, from individual results, when it comes to maximum displacement, the statically 

indeterminate structure has a slightly smaller value. And the factor of safety against the limit state 

of elasticity the statically indeterminate has higher values, but the differences are not too 

significant. And when it comes to buckling limit state, the statically indeterminate structure gets 

very high values in comparison with the statically determinate structure for sure. Therefore, the 

statically determinate construction is a more suitable construction for real-life use. 
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List of used symbols  
 

Symbol Unit Meaning 

σ [MPa] Normal Stress. 

E [MPa] Young's modulus of elasticity in tension. 

𝜎𝑘 [MPa] yield strength. 

S [𝑚𝑚2] Cross Section of the bars. 

𝐽𝑦 [𝑚𝑚4] Quadratic moment. 

l [mm] Length. 

u [mm] Deflection. 

F [N]  Force. 

𝐹𝐾𝑟 [N]  Critical Force. 

𝐹𝑇 [N]  Force created from the Train. 

W [J] Stress Energy. 

Λ [𝐽𝑚−3] Specific energy of stress. 

Ꝭ  [k𝑔 ⁄ 𝑚3]  Density. 

g [m⁄𝑠2] Gravitational acceleration. 

m kg Mass. 

λ  [-]  The slenderness of the Bar. 

k  [-] The factor of Safety against elasticity limit state. 

𝑘𝑣  [-] The factor of safety against buckling limit state. 

γ  [-] Bar centerline, angular deformation. 

ψ  [-] Cross Section. 
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Statically 
Determinate\urcita_soustava_Train_faze

_2_normal_forces_nominal_stresses 

Calculation of statically determinate variant in 
Maple software 

 

 

Attachment 
N.54 

Statically 
Determinate\urcita_soustava_Train_faze

_3_deformation 

Calculation of statically determinate variant in 
Maple software 

 

 

Attachment 
N.55 

Statically 
Determinate\urcita_soustava_Train_faze

_3_normal_forces_nominal_stresses 

Calculation of statically determinate variant in 
Maple software 

 

 

Attachment 
N.56 

Statically 
Determinate\urcita_soustava_Train_faze

_4_deformation 

Calculation of statically determinate variant in 
Maple software 

 

 

Attachment 
N.57 

Statically 
Determinate\urcita_soustava_Train_faze

_4_normal_forces_nominal_stresses 

Calculation of statically determinate variant in 
Maple software 

 

 
Attachment 

N.58 
S=0, released nodes 

Relaced nodes and equations of static 
determinate structure 

 

Attachment 
N.59 

S=0, 3D Calculations in Ansys Workbench, for 3D model  

Attachment 
N.60 

Train_Faze_4_ s=10, 3D Calculations in Ansys Workbench, for 3D model  

 


