BRNO UNIVERSITY OF TECHNOLOGY

VYSOKE UCENI TECHNICKE V BRNE

NN

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF COMPUTER GRAPHICS
AND MULTIMEDIA

FAKULTA INFORMACNICH TECHNOLOGII
f"l USTAV POCITACOVE GRAFIKY A MULTIMEDII

PPTX TO HTML CONVERSION

PREVOD PPTX DO HTML

MASTER'’S THESIS
DIPLOMOVA PRACE

AUTHOR Bc. HYNEK VILIMEK
AUTOR PRACE

SUPERVISOR Prof. Ing. ADAM HEROUT, Ph.D.
VEDOUCI PRACE

BRNO 2016

Abstract

PowerPoint is an excellent tool for creating presentations and people are accustomed to
using it. Its only handicap is that it is not installed everywhere and it exists in numerous
versions. But there is an application that is installed almost everywhere and that application
is the web browser. This work aims to create the PowerPoint presentation viewer for the
web browser. With the internet as the environment, it may have a wide range of applications
from the content sharing point of view. The solution is a web application that allows to
upload the PowerPoint file and then the application displays the content of the file. The
application also offers functionality such as navigation between slides and full-screen mode.
The rendered slides in the web browser are very similar to the slides in PowerPoint. It does
not support advanced features, but it supports displaying text, pictures, video and audio.
Further, it supports basic styling options such as colours, margins, position and line height.

Abstrakt

Program PowerPoint je excelentni nastroj slouzici k vytvareni prezentaci a lidé jsou na
néj zvykli. Jeho nevyhodami jsou jeho absence na nékterych pocitacich a jeho existence v
mnoha verzich. Webovy prohlizec vsak tyto nevyhody nemé. Tato prace se snazi vyuzit
webové prohlizece jako programu, ktery umozni zobrazit PowerPointové prezentace. Diky
internetu mize mi tato prace siroké moznosti pouziti. Vysledkem prace je webova aplikace,
kterd umoznuje nahrat a spustit PowerPointovou prezentaci. Aplikace umoznuje prepinani
mezi snimky a prepinani prezentace do celoobrazového médu. Vysledné snimky jsou velice
podobné origindlnim snimkim a vytvorené feseni umoznuje zobrazit text, zvuk a video se
zékladnimi moznosti tprav.

Keywords

Presentation, Slide, PowerPoint, HTML, Client, Server, Conversion, Javascript, Cascading
stylesheets, Isomorphic application, NodeJS, ECMA2015, testing, Selenium

Klic¢ova slova

Prezentace, Snimek, PowerPoint, HTML, Klient, Server, Prevod, Javascript, Kaskadové
styly, Isomorfni aplikace, NodeJS, ECMA2015, testovani, Selenium

Reference

VILIMEK, Hynek. PPTX to HTML Conversion. Brno, 2016. Master’s thesis. Brno
University of Technology, Faculty of Information Technology. Supervisor Herout Adam.

PPTX to HTML Conversion

Declaration

I declare that I have worked on this thesis independently under the supervision of Prof.
Ing. Adam Herout, Ph.D. All sources used in the work have been acknowledged and fully
referenced in the bibliography.

Hynek Vilimek
May 19, 2016

Acknowledgements

I would like to thank my supervisor Prof. Ing. Adam Herout, Ph.D. for his help and my
family for their patient and support.

(© Hynek Vilimek, 2016.

This thesis was created as a school work at the Brno University of Technology, Faculty
of Information Technology. The thesis is protected by copyright law and its use without
author’s explicit consent is illegal, except for cases defined by law.

Contents

1 Introduction
2 How PowerPoint Works
2.1 Brief Information About the Beginnings
2.2 Current Possibilities and Functions
2.3 File Format of the Presentation
2.4 Essential Parts of Current File Format
3 Client side Technologies
3.1 Creating a User Interface
3.2 Concepts of Developing the Application
3.3 Overview of Used Libraries and Tools
4 Server side Technologies
4.1 Concepts of Developing the Application in Node.js
4.2 Representational State Transfer
4.3 Overview of Used Libraries and Tools
5 Application Design
5.1 General View of the Application Design
5.2 Client-side Part of the Application
5.3 Server-side Part of the Application
5.4 Building and Developing the Application,
5.5 Summary of the Application Design
6 Implementation and Evaluation
6.1 Implementation of the Client
6.2 Implementation of the Server
6.3 Evaluation of the Results
7 Conclusion
Bibliography
Appendices

List of Appendices

A Content of the CD

[N=TIEN IG; BTNGTN

15

19
25

28
28
33
34

37
37
39
42
48
50

53
53
54
55

65

66

69
70

71

Chapter 1

Introduction

My work allows people to view the PowerPoint presentation on any computer which has
a newer web browser version. This can fulfil the need of portability and flexibility, because
no one will be forced to check if PowerPoint is installed and in what version. The application
also gives the presentations the share-ability. Each presentation is possible can be addressed
by URL and the same is true for each slide.

The solution consists of three parts. The first part extracts the information from the
presentation file. This results in the part with a clearly specified input and output. The in-
put is the presentation file and the output is the internal representation of the presentation.
This can be easily evaluated by unit tests. The second part interprets the internal repre-
sentation of the presentation and displays it as the presentation mode in PowerPoint. This
part results in the application that takes the internal representation and visually interprets
it. It was evaluated by the comparison of the reference image generated by PowerPoint and
the image of the actual result. The third part is the part of the application that surrounds
the second part and adds features like a full-screen mode, navigation and asynchronous
data loading. This par was also evaluated by unit tests.

The existing solutions do not offer the same level of user experience as my application.
The first found solution is the web application called Zamzar. It offers a PowerPoint
to HTML conversion, but it generates a zip archive, which is delivered to the previously
filled email. The main difference is in the result of the conversion. It converts slides into
images and places text over them. It does not support video, audio and the method of
conversion is not suitable for display scaling. This service fulfils the function of partly
viewing the content of the presentation file, but clearly does not fulfil the function to view
it in the presentation mode. The second solution is from Microsoft itself and it is offered in
the package called Office 365. But it also renders slides into images and uses SVG technology
to set the correct position. The result of this application is better, but it still renders text
into image, which is not optimal solution. In addition, this is a paid solution. The third
solution is from Google and it is implemented as part of the Google Drive and Google
Slides. These applications are hardly usable, because they have for example problems with
fonts and margins. They clearly do not aim to the same use cases, but they aim to fulfil
the need of a simple viewer for the PowerPoint presentations and they also allow to create
new ones.

My solution is a web application and it consists of a server side part and a client side
part. The server side part is responsible for extracting the information from the uploaded
file and for their transformation to the internal representation. The client side part visually
displays this representation and offers some functionality of the presentation mode from

PowerPoint. It supports timed transitions, full-screen mode with content scaling, navigation
between slides and it partly supports animated transitions.

The achieved results are very clear because they can be very easily measured and tested.
The accuracy of displaying the slide is very high. The full-screen scaling is also working.
Each presentation and each slide has their own URL and that gives many options to trans-
form this application into a start-up. It can be for example the application that allows
to remotely control the presentation by smart-phone or the application that allows to dis-
tribute the content in the network. The client side application is so called single page
application and therefore it delivers convenient user experience, because there is no need
to reload the whole application during the navigation process.

Chapter 2

How PowerPoint Works

This chapter covers the key aspects of PowerPoint. The first section 2.1 briefly the begin-
nings of PowerPoint. It is followed by section 2.2 about the current version of PowerPoint
and its possibilities. The last two sections describe how the file format is designed. The
third section 2.3 describes the structure of the files and the fourth section 2.4 describes
selected parts in detail.

2.1 Brief Information About the Beginnings

The first version of PowerPoint — originally named Presenter, was created by a team around
Robert Gaskins in 1987. His idea was to build a tool that allows people to create presenta-
tions easily. The targeted platform was Macintosh and he was inspired by already existing
programmes on Macintosh such as MacDraw. Initial design counted with text, diagrams,
pictures, master slide, sorter, presentation, notes and handouts.

The correct displaying text was the centrepiece of the whole idea. The needed behaviour
was to have all options of word processors and also be able to freely position the text on
the slide. For that problem, the text box feature was developed. It was a rectangle shaped
object and it works like a word processor in a box. It had typefaces, sizes, styles, word
wrap, line and paragraph spacing, margins, tabs. Text can be structured in paragraphs or
bullet lists.

The next supported feature were diagrams. They were simple graphic shapes which
have no fill and colour. They also supported labelling self with the text. It was determined
to add additional information to diagrams. Pictures also belong to the key part of the first
version. The main reason was to support fully use cases, which could not be fulfilled by
PowerPoint itself, but by another program.

Master slide can be imagined like a template or theme for slides. It allows to set a
uniform style and to have one place where the style is defined. The title and slide sorters
work as overviews of presentations. Finally, slide show and notes were intended to support
the presentation [31].

All the ideas behind described parts can be still found in PowerPoint. It shows that the
initial design of PowerPoint was correct and that it fulfills the need of making presentations
right.

2.2 Current Possibilities and Functions

Even though there are almost 30 years between the first and the current version, the main
idea of PowerPoint is still timely. The need of creating presentations exists but the re-
quirements are bigger than before. Nowadays, presentation software should support video
files, audio files and offer visual effects, animations, transitions and templates. This section
describes how PowerPoint! handles these features.

2.2.1 Concepts of Creating the Presentation

Each presentation consists of slides. A slide can be imagined like a container for content.
The presentation does not limit the number of slides. A transition is a process when the
currently displayed slide should be hidden and the other slide should be displayed. Each
slide can have an unlimited number of objects. Object is the plain abstraction of specific
content like text, image, sound and video. It is also possible to insert tables, graphs,
diagrams, text in WordArt style and equations. Each slide is also linked with a theme that
sets the default visual values.

2.2.2 Text and Its Options of Customizations

The text is supported by the feature called text field. It is the rectangle-shaped object with
additional related options such as customising the text. Customizations could be applied
to the field or just on the text. It is possible to set basic text-related attributes like font
family, size, weight, style, colour, many kinds of underline like simple, double and dotted,
upper index, lower index and font kerning. There is also a possibility of generic styling
and section 2.2.6 describes them. Text can also be structured into lists. Each list contains
paragraphs and each paragraph has its own level. Levels can have different indentations,
bullets and numbering.

There are also numerous options how to set alignment and flow direction of words and
sentences. Text can be aligned horizontally to the left, centre and right and vertically to the
top, centre and bottom. The flow direction can be set to horizontal, vertical from bottom
to top, vertical from top to bottom or superimposed.

If standard ways of customization are not enough, then it is possible to use WordArt
effects. They can be applied to any text and they add a new effect group to the standard
ones called transformations. A transformation can, for example, change the line on which
the text is aligned by default, to a chosen shape like an ellipse, a circle or a wave.

Animations are also a part of text customization. Their standard options are described
in section 2.2.7. But text has also some specific options. It is possible to animate each
letter, each word or the whole text independently. If animated object contains more than
one paragraph of text, it is possible to animate them as a single object or all paragraphs
in parallel or differentiated by level of paragraphs. Paragraph animations can be started in
reversed order or automatically after a custom interval.

2.2.3 Images and Their Options of Customizations

Images are inserted as rectangle-shaped objects and as objects, they support all generic
customization options described in section 2.2.6. Moreover, there are also additional cus-
tomizations like image cropping, changing colour saturation, colour shade, the level of

I Microsoft Office 365 ProPlus v15.0.4779.1002

acutance, brightness, contrast and graphic filters. Besides such styling, an image can be
animated too. The options of animations are described in section 2.2.7.

2.2.4 Audio Content and Its Options of Customizations

Audio content can be recorded inside PowerPoint or included from an external file. When
it is inserted, the audio image appears on the slide. The image customization is described
in section 2.2.3. Moreover, the audio track itself can be customized as well. It is possible
to change its volume and cut the track. An important part of using audio content is also
deciding when or how the track will be played. Its start can be set to a specific time or
user interaction can start it.

2.2.5 Video Content and Its Options of Customizations

Video content can be included from an external file or from a web source. When the video
is inserted, its representing image appears in the slide. In most cases it is the first snapshot
of the video, but it can be changed to a different image. This image can be changed or
customised as it is described in section 2.2.3.

Besides the standard customization options, there are also video-specific options. These
options differ in the source from which the video is loaded. If the video is loaded from a
web source, then the video can not be modified. It is played the same way as in a web
browser. If the video is loaded from an external source, it is packed with the presentation
and it is possible to modify it. The customization of the preview image persists and it is
applied during the playback. Besides, it is possible to cut, set gradual fade in or fade out
of the sound and set when and how the track will start. The video is played in the shape
specified by the preview image. If the video file is from an external source, it can be played
in full-screen mode.

2.2.6 Generic Styling Options

These styling options can be applied to every object. These include setting position, dimen-
sions, shape, rotation, filling, border, shadow, reflection, glow, soft border and surround
effect. Most of them have several options how to specify the styling. Because there are
numerous options how to combine the styles, PowerPoint offers style presets. They help
a user to set the desired combination. FEach object can also change its geometry from the
default. It means that the shape is still rectangular, but the selected geometry crops the
content.

2.2.7 Animating of Objects

Animations can be applied to any object. They can be even combined and start off at
the exact time or start on the click interaction. It allows playing animations in parallel or
serially. They can also have different duration, set a colour after the animation ends and
play a sound during it. Each animation has individual settings that are specific to what it
performs.

2.2.8 Slide Transitions

Transition is a process of changing the currently displayed slide for another one. The
changing can be instant or animated. The transition can be triggered by a user interaction

or after a time interval. The animation during the transition can be customised similarly
as object animations described in section 2.2.7. Transition can be applied to all slides or
explicitly to one slide.

2.2.9 Slide Themes

The theme can be imagined as default visual styles for each object on the slide. It defines
2 fonts with all formatting options, 12 colours and formatting scheme, which defines back-
ground fill styles, effect styles, fill styles and line styles. Themes are useful because they
allow keeping uniformity of the slides.

2.3 File Format of the Presentation

This section describes the file format of the presentation because the presentation file con-
sists of many files. Each file represents only a part of the presentation and each slide is
a composition of several files. The first subsection 2.3.1 introduces used file formats and
briefly explains the differences. The second subsection 2.3.2 describes the structure of the
presentation file. The third subsection describes how the relations between the files works
and the last subsection 2.3.4 describes how the files are composed to represent the complete
slide.

2.3.1 Introduction to Used File Formats

PowerPoint used two different versions of file format during its existence. The first version
is the binary archive that was internally developed by Microsoft. The second version imple-
ments the ECMA-376 standard and therefore is observable by anyone. Microsoft currently
prefers this version and it is recommended to use this format before the first one. This fact
means that the only version described in this section is the second one.

This file format is named Office Open XML and is also used by other productivity
software. It includes spreadsheets, charts and word processing documents. It is a collection
of XML files zipped into one archive. The file extension of a presentation archive is .pptz.
Office Open XML was developed by Microsoft and was standardised to become ECMA-376.
The standard covers a huge variety of documents but this thesis only deals with archives
containing presentations and only with those parts that are essential for displaying their
content [1].

2.3.2 File Structure of the Archive

Significant parts of archive structure are shown in Figure 2.1. All visual content is located in
the folder named ppt. This folder contains other folders named rels, media, slideMasters,
slideLayouts, slides, theme and file named presentation.zml, which is the entry point of the
whole presentation. Another content is linked directly to this file or indirectly through files
linked directly.

Folder _ rels contains files that defines relationships between files. Each file from this
folder is related to some file that is in the same directory as the folder itself. If the content
file does not explicitly defines the name of the relation file, the relation file name has
to be same as the content file name. This folder is also located in other folders such as
slideMasters, slideLayouts, slides and theme and has same importance as in ppt folder. The
folder named media holds all files that were included in the presentation from an external

/
LE /ppt

Hl/_rels
H | /media

] /slideMasters

L[j / _rels

H 1 /slideLayouts

Lﬁ /_rels

Hl/slides

Lﬁ /_rels

H] /theme

L[j /_rels

U lpresentation.xml

Figure 2.1: The structure of the presentation archive

source: images, audio and video. Folders named slideMasters, slideLayouts, slides and
theme contain files that define the entire visual appearance of the presentation. Section
2.3.4 describes the files inside these folders [1].

2.3.3 Relationships Inside the Archive

The previous section 2.3.2 describes the structure and shows that the presentation consists
of many files which are linked between each other. This required a robust mechanism to
preserve order inside the archive. Because the number of identification strings may be very
high, each file that has relationships has own set of relationship identification strings. The
usage of them is performed by XML attributes defined in the Relationship namespace —
Table 2.1. If the file that contains these relationships does not override the name of the
referenced file, the referenced file is equally named. It is located in the folder named _ rels,
which has to be in the same directory as the content file is.

These referenced XML files use the Relationship definition namespace — Table 2.1. It
determines root node named Relationships and its child nodes named Relationship. Each
of its child nodes has to have 3 attributes named Id, Type and Target. Attribute Id refers
to identification strings, attribute Tiype refers to XML schema of target file and attribute
Target contains relative path to target file. This path is relative to the file with relationships
and may refer to almost all files in the archive. The rules that specify what references are
allowed in relationship file are specific to related file [1].

2.3.4 Composition of the Files that Represent the Slide

The composition begins at the entry point mentioned in section 2.3.2. It is the XML file
with the Presentation namespace. — Table 2.1. Its root node is named presentation and
contains among others an element with name sld/dLst. Its child nodes are named sld/d
and they represent slides of the presentation. Fach of these nodes has an attribute named
id from Relationship namespace that is shown in Table 2.1 and it refers to the file that
contains data of the slide.

Except that this file contains slide specific content, it has also corresponding relationship
file and some of its elements may have attributes that specify the relationship. These
attributes are from the Relationship namespace that is shown in Table 2.1. The file is the
XML file and the majority of its elements are from the Presentation namespace — Table 2.1.
The only required relationship of this file is the relationship to the layout file.

Layout file defines default positioning and appearance of objects on the slide. The
number of layout files is not limited and therefore, each slide file can be related to the
different layout file. Like others, it is the XML file and the majority of its elements are
from the Presentation namespace — Table 2.1. The only required relationship of this file is
the relationship to the master slide file.

Master slide file is the base template. It defines objects as placeholders and sets their
default appearance like layout file. Thus, it is the XML file and the majority of its elements
are from Presentation namespace — Table 2.1. The only required relationship of this file is
the relationship to the theme file.

Theme file defines default visual styles like the colour palette, basic fonts and formatting
scheme. It is the XML file and the majority of its elements are from the Drawing namespace
— Table 2.1. Even the theme file may have defined relationships, but only in a limited way.
It may have only relationships to image files.

As the paragraphs above describe, numerous files define the visual appearance of slides.
The styles have to be composed into the final state and it has to be specified by the exact
mechanism. Its position in structure decides the priority of the style — the closer ones have
higher priority than the farther ones.

2.4 Essential Parts of Current File Format

This section describes important parts of ECMA-376 standard for presentations. Mentioned
node names and node types aim to help with orientation in ECMA-376 standard. Element
definitions in this section contain only parts, which are necessary for visualising. Their
exact definition can be found in [1], Annex A. Table 2.1 shows main namespaces that are
used.

Name URL

Relationship | http://schemas.openxmlformats.org/officeDocument /2006 /relationships
Relationship
definition

http://schemas.openxmlformats.org/package /2006 /relationships

Presentation | http://schemas.openxmlformats.org/presentationml/2006 /main
Drawing http://schemas.openxmlformats.org/drawingml /2006 /main

Table 2.1: Common namespaces from the OOXML format

2.4.1 Theme Container Element

Theme root node name is theme and it is from the Drawing namespace. Table 2.1 shows
this namespace. Its type is CT"_OfficeStyleSheet and contains definitions of font, colours
and formats. The element structure is shown in Table 2.2.

Name Occurrence Type Node name
Colour scheme 1 CT ColorScheme clrScheme
Font scheme 1 CT FontScheme fontScheme
Format scheme 1 CT_StyleMatrix fmtScheme

Table 2.2: Structure of the theme element

As it is understandable from names, colour scheme defines colour palette numbering
12 colours and font scheme contains definitions of the major and minor font. Format
scheme contains the list of complex styling definitions. These definitions are described in
section 2.2.6. These definitions can be referenced by any shape element.

2.4.2 Presentation Slide Container Element

Presentation slide root node is named sld and it is from the Presentation namespace. Ta-
ble 2.1 shows this namespace. Its type is C'T"_Slide and Table 2.3 shows its structure.

Name Occurrence Type Node name
Common slide data 1 CT_ CommonSlideData cSld
Slide transition 0-1 CT SlideTransition transition
Slide timing 0-1 CT_SlideTiming timing

Table 2.3: Structure of the sld element

Common slide data element is described in section 2.4.5, Slide transition element in
section 2.4.11 and Slide timing element in section 2.4.12.

2.4.3 Slide Layout Container Element

Slide layout root node is named sldLayout and it is from the Presentation namespace.
Table 2.1 shows this namespace. Its type is CT_SlideLayout and Table 2.4 shows its
structure.

Name Occurrence Type Node name
Common slide data 1 CT_CommonSlideData cSld
Slide transition 0-1 CT SlideTransition transition
Slide timing 0-1 CT_ SlideTiming timing
Header and footer 0-1 CT HeaderFooter hf

Table 2.4: Structure of the sldLayout element
Description of Common slide data element is shown in section 2.4.5, Slide transition

element in section 2.4.11, Slide timing element in section 2.4.12 and Header and footer
element in section 2.4.13.

10

2.4.4 Slide Master Container Element

Slide master root node is named sldMaster and it is from the Presentation namespace.
Table 2.1 shows this namespace. Its type is C'T"_SlideMaster and its structure is shown in
Table 2.5.

Name Occurrence Type Node name
Common slide data 1 CT CommonSlideData cSld
Colour map 1 CT_ ColorMapping clrMap
Slide transition 0-1 CT SlideTransition transition
Slide timing 0-1 CT_SlideTiming timing
Header and footer 0-1 CT HeaderFooter hf
Text styles 0-1 CT_ SlideMasterTextStyles txStyles

Table 2.5: Structure of the sldMaster element

Description of Common slide data element is located in section 2.4.5. Colour map node
defines the mapping between colours from theme and colour names used in the slide, slide
layout and slide master. Slide transition element is described in section 2.4.11, slide timing
element in section 2.4.12; header and footer in section 2.4.13 and text styles in section 2.4.9.

2.4.5 Common Slide Data Element

Common slide data is the main element that contains slide content. This element is named
cSld and its type is C'T"_CommonSlideData. Its structure is shown in Table 2.6.

Name Occurrence Type Node name
Background 0-1 CT__ Background bg
Shape tree 1 CT_GroupShape spTree

Table 2.6: Structure of ¢SIld element

The background element defines slide background appearance. It may contain styling
options. These options are described in section 2.2.6. Shape tree element is the container
element for all visual objects. The important parts of its structure are displayed in Table 2.7.

Name Occurrence Type Node name
Non visual group .

shape properties 1 CT__ GroupShapeNonVisual nvGrpSpPr
Group shape .

properties 1 CT_GroupShapeProperties grpSpPr
Shape O-unlimited CT__Shape sp
Group shape 0-unlimited CT_ GroupShape grpSp
Graphic frame 0-unlimited CT_ GraphicalObjectFrame graphicFrame
Connection shape 0-unlimited CT__Connector cxnSp
Content part 0-unlimited CT_Rel contentPart
Picture O-unlimited CT_Picture pic

Table 2.7: Structure of spTree element

11

The non visual group shape properties element specifies identification properties, shape
properties and application properties. It means for example definition of a unique identifi-
cation number, visibility, name and text description of the group. Group shape properties
element defines the position, dimensions, filling and effects that are applied to the whole
group. Available customizations are mentioned in section 2.2.6. Detailed description of the
shape element is located in section 2.4.6. The graphic frame element is used for embedding
external objects. It includes for example equations and tables. The element shall option-
ally have an image, which is used instead of loading actual object data. The connection
shape element is intended to connect two shapes. The element specifies the start point, end
point and no other points in between. It follows that the desired path might be different
depending on the specific needs of the application and therefore it is entirely up to the
presentation viewer. The content part element specifies a reference to XML content in a
format different from ECMA-376. This can be used for formats such as SVG and MathML
and it allows to extend the format. The picture element is used for inserting images, audio
and video. Its description is located in section 2.4.10

2.4.6 Shape Element

The shape element is one of the key content holding elements. Its node is named sp and
the main parts of its structure are shown in Table 2.8.

Name Occurrence Type Node name
Non visual shape properties 1 CT__ShapeNonVisual nvSpPr
Shape properties 1 CT__ShapeProperties spPr
Shape styles 0-1 CT_ ShapeStyle style
Text body 0-1 CT__TextBody txBody

Table 2.8: Structure of sp element

The non visual shape properties element defines identification properties, shape prop-
erties and application properties. It means for example identification number, visibility,
name and text description of the object. Shape properties element specifies the position,
dimension, filling and effects that are specific to the shape. Available customizations are
mentioned in section 2.2.6. Shape styles element contains definitions of used font colour,
fill colour, line colour and effect colour. It can be directly defined in the element or it can
contain a reference to the format scheme in related theme element. The text body element
is dedicated to holding text with styles and custom formatting. Its description is located
in section 2.4.7.

2.4.7 Text Body Element

Text body element is the child node of the shape element and contains text values of the
shape and their formatting options. Table 2.9 shows its overview.

Text body properties element defines text anchoring, side insets, rotation and text
overflow behaviour. It also specifies how the text should fit into the bounding box. If the
text, for example, does not fit in and it should, then line space reduction and font scaling is
specified to suit this requirement. Text list styles element specifies how the text lists should
be visualized and section 2.4.9 describes these options. The description of text paragraph
element is located in section 2.4.8.

12

Name Occurrence Type Node name
Text body properties 1 CT_ TextBodyProperties bodyPr
Text list styles 0-1 CT_TextListStyle IstStyle
Text paragraph 1-unlimited CT_ TextParagraph p

Table 2.9: Structure of {zBody element

2.4.8 Text paragraph element

The text paragraph structure is shown in Table 2.10.

Name Occurrence Type Node name
Paragraph properties 0-1 CT__TextParagraphProperties pPr
Regular text run 0-unlimited CT_ RegularTextRun r

Text line break O-unlimited CT TextLineBreak br

Text field O-unlimited CT TextField fid

Table 2.10: Structure of p element

The paragraph properties element specifies line spacing, sides spacing, alignment, in-
dentation and level, to which it belongs. It also contains the specification of visualising
the bullet of the list. Paragraph may also contain default properties for regular text run
element. Regular text run element represents a part of the text within the text body. It
is the lowest level of text separation within the text body. Regular text run may have
run properties. If it has no properties, then the default run properties are applied. Its
properties specify font specific attributes like size, weight, styles and kerning. The whole
text is inside the child element named ¢. Text line break element represents newline and
it may contain only run properties. Finally, text field element works very similarly to the
regular text run. Besides it may have paragraph properties too, which override paragraph
properties from the paragraph element.

2.4.9 Text List Styles

The text list styles element is a collection of many paragraph properties elements. The
specification of the paragraph properties element is in section 2.4.8. There is one default
paragraph properties element and many paragraph properties elements for each level of the
list. All these elements are optional.

2.4.10 Multimedia Element

This element represents any form of multimedia data such as image, video and audio. Its
type is C'T"_Picture and its structure is shown in Table 2.11.

Name Occurrence Type Node name
Non visual picture properties 1 CT__PictureNonVisual nvPicPr
Picture fill 1 CT_ BlipFillProperties blipFill
Shape properties 1 CT__ShapeProperties spPr
Shape style 0-1 CT__ShapeStyle style

Table 2.11: Structure of pic element

13

The non visual picture properties element specifies identification properties, picture
properties and application properties. It is, for example, the identification number, visibil-
ity, name and text description of the object. The picture fill element is the primary element
for visual appearance. It contains a reference to the image and image customizations.
These customizations are described in section 2.2.3. Shape properties element defines basic
attributes of the shape and section 2.2.6 describes them. The shape style element is used
to hold the reference to the style definition from the format scheme. The format scheme is
described in section 2.4.1.

2.4.11 Slide Transition

This element specifies the kind of transition that should be applied. The element contains
the specification of the transition like the speed of the execution and the specification of
what triggers the execution. The transition can be triggered by user interaction or after a
specified time.

2.4.12 Slide Timing

This element specifies all information for controlling animations and timed events within
the slide. It includes primary definitions of animations. The important aspect of it is the
timeline. It moderates the amount of time from the beginning to the end. The timeline is
composed of time nodes that have various types. These types define how time nodes are
running. It can be in parallel, sequentially or exclusively. Exclusively running time node
means that there can not be another time node that runs too. The next important part
of time nodes are conditional properties. They specify conditions that have to be met to
continue with animation.

2.4.13 Header and Footer

This element specifies the content of header and footer. Header and footer are special
placeholders that should be consistent across all slides. It includes information such as
date, time and slide number. The content itself is auto generated and therefore, these
features can be only enabled or disabled.

14

Chapter 3

Client side Technologies

The current chapter is dedicated to the development the application from the perspective
of the client. It consists of three sections. The first section is dedicated to building of the
user interface. The second section describes how the client environment works and how to
develop robust client application. The last section describes libraries which were used.

3.1 Creating a User Interface

User interface of web applications is primarily built using the HTML markup language and
Cascading Style Sheets (CSS). This section describes possibilities of this approach from the
essential points of view. This section reviews only some attributes of the visualising and
presupposes a basic knowledge of the HTTML markup language and CSS. This section is
mainly based on the sources [27], [28] and [9].

3.1.1 Sizing of an Element

CSS offers several units to specify the length. There are two categories of length units
named absolute and relative and the special unit called pixel (px). Pixel unit is the relative
unit to the viewing device. For low-resolution devices, 1 pixel is 1 device pixel. For high-
resolution devices, 1 pixel is more device pixels. Table 3.1 shows an overview of the absolute
length units. The usage of these units results in the same sizing for every device, but only
if the output device has a high enough resolution. Table 3.2 shows overview of the relative
length units. These units scale with the device and therefore it is recommended to use them
in the majority of use cases.

Unit Description
cm centimetres
mm millimetres

in | inches (lin = 96px = 2.54cm)
pt points (1pt = 1/72 of 1in)

Table 3.1: Overview of the common absolute length units

The sizing of every element consists of margin, border, padding and the actual content.
Because all HTML elements can be considered as boxes, the model that specifies these
properties is called Box Model. Figure 3.1 illustrates this model. The content part is the

15

Unit Description

em Relative to the font size of the element
rem | Relative to the font size of the root element

Table 3.2: Overview of the common relative length units

MARGIN
BORDER
r--—--=---=--=--=-=-=-="=m™"m"
| PADDING I
r—— - - — — — /1
I I
I | | I
| CONTENT |
I I
I I
I] I
I I
T T re—— . |

Figure 3.1: Overview of the CSS box model. The size of the element consists of the size of
the content, padding, border and margin.

box, where the text, images or other content appear. Padding clears the area around the
content and it is transparent. Border wraps around the content and padding. The last part
is margin and it is another area that wraps around and it is also transparent. This model
is important to set properly sizes of an element. CSS has a property called box-sizing that
allows to set how the width and height properties are computed. The default behaviour
is that the width and height properties include only the content. The second possible
behaviour is that the width and height properties include content, padding and border.
The difference between the margin property and the padding property is that the margin
property can collapse. It means that when two elements have margins that overlapped, the
actual distance between them is the minimal possible and not its sum.

3.1.2 Positioning of an Element

CSS offers numerous properties that define the positioning. The first important property is
called display. This property affects the way how the element will be displayed. Table 3.3
shows the overview of the most used values of this property.

An inline element does not start on a new line and its content defines its width. A

16

Value Description

inline Displays an element as an inline element
block Displays an element as and block element
inline-block | Displays an element as an inline-level block container
flex Displays an element as an block-level flex container
inline-flex Displays an element as an inline-level flex container
none The element will not be displayed

Table 3.3: Overview of the display property

block element always starts on a new line. It will take up the full available width if the
width is not explicitly specified. A block element can not be inside an inline element. An
inline-level block container is an inline element that may have specified a custom width.
The described behaviour is shown in Figure 3.2.

A block-level flex container is a new feature from CSS3. The difference between the fiex
and inline-flex value is that they set different display behaviour of the container. If the
property value is flex, the container is a block element. If the property value is inline-flex,
the container is an inline element. Both of them enable a flex context for all its direct
children. The wrapping element is called flex container and the children elements are called
items. The flex context includes a whole set of properties and some of them are meant to be
set in the container and some of them are meant to be set in the children. The flex context,
for example, allows to align items vertically and horizontally, set the direction how the
items are positioned, the order of the items and more. Vertical and horizontal alignment is
very useful as it allows to align an item to the left, right, top, bottom and middle. The flex
context disables the standard positioning properties and therefore they can not be used.
The last mentioned value is called none and it hides the element completely.

Value Description

static Elements render in order, as they are in the document
relative The element is positioned relative to its normal position

fixed The element is positioned relative to the browser window
absolute | The element is positioned relative to its first positioned parent element

Table 3.4: Overview of the position property

The second property is called position. Table 3.4 shows an overview of its common
values. The first possible value is static and it is the default value. The element with this
property and value is positioned according to the normal flow of the page. The second value
is relative. It allows displaying the element relative to its normal position. The positioning
is set by properties top, right, bottom and left. Other content does not fill the gap between
the normal position and the actual position. The next possible value is fized. This value
allows setting the position relatively to the browser window. It means that it always stays
in the same place even if the page is scrolled. The positioning is set by properties top,
right, bottom and left and the element does not leave a gap between the normal position
and the actual position. The last possible value is absolute. An element with this property
and value is positioned relatively to the nearest positioned parent. If an absolute positioned
element has no positioned parent, it uses the document body and moves along with page
scrolling.

17

THE FIRST
ELEMENT
THE FIRST ELEMENT THE SECOND ELEMENT THE THIRD ELEMENT
THE SECOND
ELEMENT
THE FIRST THE SECOND THE THIRD
ELEMENT ELEMENT ELEMENT
THE THIRD
ELEMENT

Figure 3.2: How the display property affects the positioning. Section A illustrates three
block elements. Section B shows three inline elements. Section C shows three inline-block
elements.

18

Value Description

none The element is not floated
left The element floats to the left
right | The element floats to the right

Table 3.5: Overview of the float property

Value Description
none Allow floating elements on both sides

left Floating is not allowed on the left side

right | Floating is not allowed on the right side
both Floating is not allowed on both sides

Table 3.6: Overview of the clear property

The last described properties are called fioat and clear. Tables 3.5 and 3.6 show
overviews of their values. These properties are complementary and allow or forbid floating
of the elements to the left or the right.

3.1.3 Typography in the Web Browser

The basic typographic terms are shown in Figure 3.3. The typeface is the letters, numbers
and symbols that make up a design of type. Typefaces are usually designed together and
they are intended to be used together. Therefore, they group into families. The two main
groups of the typefaces are called serif and sans serif. Serifs are small decorative strokes
that are added to the end of letter’s main strokes. Serif typefaces have letters with serifs
and sans serif typefaces do not have letters with serifs. The next term is font weight.
It is the relative darkness of the characters in the various typefaces within a font family.
The horizontal space between individual characters in a line of text is called kerning. The
majority of the characters in a typeface rest on an imaginary line called baseline. Similarly,
there is also an imaginary line on the top of the characters and majority of them sits between
these two lines. The height from the baseline to this line is called cap height. The parts of
the letters that are below the baseline are called descenders. The parts of the letters that
are above the cap height are called ascenders. The height of the lower-case letters excluding
the ascenders and the descenders is called x-height. The size of the type is the distance
from the top of the highest ascender to the bottom of the lowest descender. The last term
is called line height. It is the height between two lines of the text [29].

CSS allows setting many of these properties. It is possible to set font, font-size, font-
weight, font-style, kerning and line-height. The correct use depends on the selected font
in the web browser. If the web browser does not have the current font, the most similar
and available font is automatically selected. It is also essential for the font weight and font
styles because these properties specify the type of the font. If the selected font does not
support specified font weight or font style, their usage do not have the effect.

3.2 Concepts of Developing the Application

It is convenient when development of an application stands on some concepts. It is im-
portant to understand these concepts to embrace the possibilities of their usage fully. The

19

typeface

lascender

x-height

font size

descender

Figure 3.3: Basic fonts terms

first concept is about the environment of the web browser development and section 3.2.1
describes this concept. The second section 3.2.2 describes the application architecture be-
cause it affects the entire application. The last section 3.2.3 describes used procedures of
the developing.

3.2.1 How Web Browser Works

Web browser allows accessing web pages. The standard web page consists of HTML markup,
CSS code, JavaScript code and additional content files such as pictures, video, audio and
fonts. When the web browser receives the web page, it starts with parsing, rendering and
executing the codes. The browser has a JavaScript engine that interprets the JavaScript
code, handles the memory and optimises its performance. The code in the page is exe-
cuted immediately after its parsing and before parsing the following elements. It can cause
problems if the code is somehow interacting with the elements below. Also, the browser
waits until the execution is completed. The browser offers a programming interface for
HTML, XML and SVG documents called Document Object Model (DOM). This model
represents the document and the JavaScript code may change its state. The DOM model
specifies numerous events and it is possible to register a JavaScript function that will be run
when an event occurs. This approach is convenient because JavaScript engine implements
a concurrency model based on the event loop. Figure 3.4 shows this concept.

The first part of the concept is the stack. The stack contains frames. One frame
represents one function call. When a function is called, the new frame is created and
pushed on the top of the first one. When a function returns, its frame is popped out.
The second part of the concept is the heap. The heap is a structure where objects are
allocated. It is a part of the memory. The third part is the message queue. It is the list
of messages that will be processed. Each message is associated with a function. When the
stack is empty, a message is taken out of the queue and processed. The processing consists
of calling the associated function and therefore it fills the stack with frames. The stack is
empty after the message processing ends. The event loop represents the mechanism where
the queue waits synchronously for a message when the queue is empty. When the queue is
not empty, the first message is taken out and the engine starts with its processing. Each
message is processed completely before any other message. If a message takes too much
time to process, it will lead to unresponsive behaviour of the application. When an event
occurs and there is an event listener attached to it, the web browser adds a message into
the event loop [21].

20

Figure 3.4: How the JavaScript engine works in the web browser. It consists of the stack,
heap and queue. The stack holds the current state of the function calls. The heap serves
to save the objects. The queue contains messages. The message determines what have to
be executed. When the queue is empty, the engine waits until a message is added [21].

21

ACTION (VIEW

ACTION) DISPATCHER) STORE

Figure 3.5: Scheme of Flux architecture [4]

3.2.2 The Actual Application Architecture

The actual application architecture is based on the Flux architecture. Flux architecture
consists of the dispatcher, the stores and the views and it is shown in Figure 3.5. It is based
on the idea of unidirectional data flow. When an interaction appears with a view, the view
propagates an action through the central dispatcher to the stores that hold the data of the
application and business logic. The change is subsequently propagated to the connected
views and they update themselves. The reason for this approach is to have better control
of the updates of the application state [4].

The actual application architecture is a little different because it uses Redux library
— section 3.3.1, which evolves from the Flux architecture. Figure 3.6 shows the Redux
implementation of the Flux architecture.

Redux implementation has only one Store object, where the application state is stored.
Store is an object that allows manipulation with the state. The state is read-only and
the only way of mutating the state is to emit an action. An action is a simple object that
describes what happened. The state mutating is performed by reducers, functions that take
the previous state and action and return the next state. Reducers have to be subscribed
to Store to process dispatched actions. The way of processing a synchronous action is
shown in Figure 3.6. It all starts with an interaction. This can be a user interaction such
as a mouse click or it can even be a timed interaction. In the callback function which is
hooked to the interaction, an action is created by the action creator function. After that,
the dispatcher function dispatches the action. The store automatically passes the action
to the reducers. All this results in a new application state and it may lead to redrawing
of connected components. While the component is connecting to the Store object, it may
specify which part of the application state affects the component. This procedure is not
applicable to an asynchronous action. This can be supported by an additional library
called Redux thunk — section 3.3.1. This library allows action creators to return not only
an action object but also a function. The whole asynchronous process can be built from
three synchronous actions inside this function. The first action describes the action that

22

USER
INTERACTION

APPLICATION
P o e s En EE B e BN BN BN BN BN BN BN BN B B Ew
| |
I ACTION DISPATCH I
I CREATOR ACTION I
| |
| |
| |
| |

CHANGE APPLICATION STATE REDUCER
| |
| |
| |
| |
I CONNECTED RENDER CONNECTED COMPONENTS APPLICATION I
COMPONENTS STATE

| |
| |
h o= o= o= B B B BN BN BN BN BN BN BN Bm Bm B Em mm mm mm o

Figure 3.6: Redux implementation of the Flux architecture. An interaction function calls
the action creator method and dispatches the returned action. The action is passed to the
reducer that performs the changes in the application state. These changes are delivered to
the connected components and they reacts to the current application state.

23

starts the asynchronous action. The second one is fired when the asynchronous action is
successful and the third one is fired when the asynchronous action failed.

The difference of the Redux implementation is that the business logic is mainly in the
action creators and that the it has a single Store object. When the application grows, instead
of adding stores, the root reducer is split into smaller reducers independently operating
on the different parts of the state tree. The main advantage is that this structure allows
tracking every state mutation to the action that caused it. It relieves the developing process
because the state can be easily reproduced any time [3].

3.2.3 The Ways How to Write the Application Code

The view part of the application consists of the React components. A component works as
an independent unit and it is preferable to split the user interface into numerous compo-
nents. The user interface is built as the composition of these components. React compo-
nents are described in section 3.3.2.

The composition of the components follows several rules that improve re-usability and
lead to the more readable source code. Components should be as stateless as possible. The
state is stored in the Store component and there is no real reason to change it. When
the component has to interact with the state, it should be connected to the Store. The
connection should be as close as possible to the actual component and should always be
as specific as possible. When this rule is not followed, it may result in performance issues
because the connected components will be redrawn every time the specified part of the
state changes [3].

Presentational components Container components
) How things work (data
P H h look k 1
urpose ow things look (markup, styles) fetching, state updates)
Aware of redux No Yes
To read data Read data from props Subscribe to Redux state
To change data Invoke callbacks from props Dispatch Redux actions
Generated by React Redux
A i By h
re written y hand or written by hand

Table 3.7: Features overview of the presentational and container components [23]

The components should be split into presentational and container components. This
division is convenient for the cooperation with Redux library and also with other libraries
that handle the application state. A summary of their features is shown in Table 3.2.3. This
approach is good for the following reasons. Firstly, it offers better re-usability, because the
presentational components have no application logic. That allows having more container
components with different logic for one presentational component. It also offers a better
separation of concerns. It separates application logic from UI components, which is better
for testing the components [23].

The functionality can also be shared between the components. This principle is called
higher order components and it is based on composition of the components. It allows sharing
functionality that somehow interacts with life-cycle hooks across many components. It is a
function that takes one parameter, which is the inner component, and the result is a new

24

component, which implements new functionality and renders the inner component. This
approach allows to apply a higher-order principle to any component many times [22].

3.3 Overview of Used Libraries and Tools

This section describes the key libraries and their possibilities. These libraries can also
be run on the server, but they are primarily for the client. The way how to handle and
deploy these dependencies to the client describes section 4.1.3. The first section 3.3.1
describes the Redux library. This library is the key library for the application architecture
and it is described in section 3.2.2. The second section 3.3.2 describes the React library.
This library is the key library for the application’s user interface. The third section 3.3.3
describes the React-router library. This library handles the client application routeing.
The last section 3.3.4 describes the Velocity-react library. This library allows animations
of React components.

3.3.1 Redux — the Predictable State Container for JavaScript Application

Redux library is built on three fundamental principles. The first is that the state of the
whole application is stored in an object tree within a single Store. This is useful for universal
application because the state can be easily serialised and hydrated into the client. The
second principle is that the state is read-only. The only way to mutate the state is to emit
an action. An action is an object that describes what happened and optionally carries data.
All mutations are centralised and happen one by one in a strict order. Because actions are
plain objects, they can be easily logged and stored for debugging or testing purposes. The
last principle is that changes are made with pure functions. These functions are called
reducers and they take the previous state and an action and return the next state [3].

The standard Store object supports only synchronous data flow. Middlewares can en-
hance the process of dispatching actions. Middleware called Redux-thunk allows to dispatch
functions and middleware called Redux-promise allows to dispatch Promise objects. Section
4.1.4 describes them [3].

Redux library does not have any relation with React library, but there is other library
called React-redux that implements the connection between them. The recommended op-
tion is to render special React component called Provider once in the root component. It
makes the store available to all components in the application without passing it explicitly.
When the component has to interact with the application state, it can be connected by
the function called connect. This function accepts three optional parameters. The first
parameter is a function that maps state to the component’s props and returns the result.
It is then merged with other props and passed to the component. The second parameter
is a function that maps action creator functions into the component’s props and returns
the result. The third parameter is a function that maps the results of the two previous
functions and actual props to the component’s props [2].

3.3.2 React — the JavaScript Library for Building User Interfaces

React [25] is a library for creating user interfaces. The most common use case with user
interfaces is displaying data. React components can be imagined as functions that take
in state and props and render HTML markup. Each update can result in different HTML
markup and many DOM operations. Because DOM operations are slow, React internally

25

minimises the number of operations with DOM with a shadow mock DOM. It takes the old
one and the new one compares them and computes the minimal number of actual DOM
operations. These operations are performed to the real DOM. The shadow mock DOM is
used, because it is more lightweight than the actual DOM and therefore the comparison of
shadow mock DOMs is faster. Even though React is the client library, it allows rendering
the components on the server, too.

React component takes in two parameters affecting the output. The first parameter is
named props and it can be imagined as parameters of the component. There is no limitation
on what can be taken in. It can be a scalar value, a function, an object or even a React
component. The second parameter is called state. It allows the component to handle its
own state. The state is stored in the component. React components should be as stateless
as possible. When no other mechanism of handling the application state is used, it is
possible to use this parameter. The main difference between the props and the state is that
the props are read-only.

React component specification contains one key method called render. This method
has to return a single child element. It can be either a virtual representation of a native
DOM component or another composite component. This method should not modify the
component state and interact with the browser. Its output should be the same every time
the input parameters are the same. React component specification also contains methods
which are executed at specific points during its life-cycle. Their overview is shown in
Table 3.3.2.

Method name Life-cycle phase
component WillMount Mounting
componentDidMount Mounting

componentWillReceiveProps | Updating

shouldComponentUpdate Updating

componentWillUpdate Updating
componentDidUpdate Updating
component WillUnmount Unmounting

Table 3.8: React component’s life-cycle methods

There are three life-cycle phases. The first phase is called Mounting. This phase consists
of two methods. The first method is component WillMount. This method is invoked once
before the initial rendering occurs both on the client and the server. The second method
from this phase is componentDidMount. This method is invoked once only on the client
and immediately after the initial rendering occurs. At this point of the life-cycle, the
underlying DOM is accessible. The second phase is called Updating. This phase consists
of four methods. The first method is named component WillReceive Props and it is invoked
when a component is receiving new props. This method is not called for the initial render.
This method is useful to react to props transition before the render. The second method is
called shouldComponentUpdate. This method is invoked before the rendering but not before
the initial rendering. This method decides if the component should be rendered again. The
third method is named component WillUpdate. This method is invoked immediately before
the rendering and not for the initial rendering. This method is useful for preparation of
an update. The last last method is called componentDidUpdate. This method is called
immediately after the component’s updates are flushed to the DOM. This method is also

26

not called for the initial render. The last phase is called Unmounting. This phase contains
only one method called component WillUnmount. This method is called immediately before
a component is unmounted from the DOM. This method should perform cleanup operations
such as invalidating timers.

3.3.3 React-router — the Complete Routing Library for React

React-router library keeps the Ul synchronised with the URL. The key component from
this library is the Route component and it specifies which component has to be displayed
according to the URL. If the URL has some parameters, then these parameters are passed to
the component. The next component is named Router, it consists of the Route components
and it should be the root node of the application. Other parts of the library allow redirecting
the application programmatically to the different URL, creating links to URLs, handling a
web browser history and server-rendering [26].

3.3.4 Velocity-react — React components for Velocity.js

Velocity-react library allows animating components with the Velocity.js DOM animation
library. It contains two different components which wrap the animations. The first compo-
nent is named VelocityComponent. It wraps around the component that will be animated
and allows to specify the animation. The animation is not fired when the component is
mounting but it is possible to allow it by the parameter called runOnMount. The second
component is called VelocityTransitionGroup. This component wraps around the multiple
components and allows to specify the entering animation and the leaving animation. The
entering animation is fired on a child component that is being added. The leaving anima-
tion is fired on a child component that is being removed. The component’s animations can
also be disabled. It is useful for testing purposes [34].

27

Chapter 4

Server side Technologies

The following chapter describes the core knowledge from the perspective of the server. The
first section outlines the basics of Node.js development. It is important to know how the
server works so that one understands how to write the code for it. The second section
describes the architectural style behind the whole application. The last section describes
main libraries that were used to develop the application.

4.1 Concepts of Developing the Application in Node.js

Node.js is a JavaScript runtime built on V8 JavaScript engine. With new releases, it is
keeping up-to-date with this engine and it supports new features from the ECMAScript 2015
specification. Sections 4.1.1 and 4.1.2 describe the runtime in detail. The next important
tool after the runtime is called Npm. It is the package manager for JavaScript. Section 4.1.3
describes this tool. The last section 4.1.4 describes the way of writing the asynchronous
code and the approaches that may help to make it more readable and maintainable.

4.1.1 The Way the Node.js Runtime Works

Node.js is an asynchronous event-driven JavaScript runtime. It has a built-in event loop
and majority of the functions work with it. It allows the concurrency with a single thread
worker and without threads from the operating system. The asynchronous functions or
so-called non-blocking functions have to have a parameter that specifies a function that
is called after the operation is executed. For example, when the process reads a file, the
process does not wait until the file is read, but it continues with the execution. The process
only gives the instructions to the operating system to perform the reading operation. When
the reading operation is over, the operating system notifies the process with the result and
the process calls back the given function. That function is called the callback function.
When the Node.js process starts, it runs all the commands from the given script and after
the execution, it enters into the event loop. When there are no more callback functions, it
exits the event loop and exits the script [13] [15].

The core of the Node.js application is the event loop. When the Node.js application
starts, it initializes the event loop, processes the given script which may make asynchronous
calls, schedules timers or calls process.nextTick(), then begins processing the event loop.
Figure 4.1 shows the phases of the event loop process.

The first phase is called T7mers. This phase executes callback functions scheduled by
setTimeout() and setInterval() functions. These functions specify the interval after which

28

1/0
TIMERS) CALLBACKS) IDLE, PREPARE

INCOMING CONNECTIONS, DATA, etc.) POLL

\ 2

CLOSE
CALLBACKS (CHECK

Figure 4.1: The execution phases of the Node.js runtime. Each box represents a phase,
where the event loop is. Each phase has a FIFO queue of callback functions to execute.
When the event loop enters the given phase, it will perform any operations specific to that
phase. Then it executes callback functions from the phase’s queue until the queue has been
exhausted or the maximum of executed callback functions has been reached. After the
execution, the event loop will move to the next phase [14].

29

the passed callback function may be executed. It is important to differentiate that it does
not specify the exact time after the callback function is executed. If the event loop is
processing an event during the time, when the callback should be executed, the callback
is executed after the event is finished. The second phase is called /0 Callbacks and it
executes some callbacks for system operations. Its queue is for example used for reporting
TCP errors in some operating systems that wait to report the error. The third phase is for
internal usage and it is not important for understanding the event loop. The fourth phase
is called Poll and has two functions. The first one is that it executes the scripts of timers
with elapsed threshold. The second one is that it processes its event queue. When the event
loop starts with this phase and there are no timers scheduled, there are two options of the
sequel. If its queue is not empty, then the event loop will iterate through them and execute
them synchronously until the queue is empty or until the predefined limit of the executed
events is reached. If its queue is empty, there are two options of the sequel. If scripts have
been scheduled by set/mmediate(), the event pool will end this phase and continue to the
phase named Check. If scripts have not been scheduled by setImmediate(), the event loop
will wait for callback functions to be added to the queue then executes them immediately.
It can be for example a callback function with an incoming connection. When its queue is
empty, the event loop will check for the timers with timed out thresholds. If one or more
timers are ready, the event loop will enter Timers phase to execute these callbacks. The
next phase is called Check. This phase allows to a developer to execute a function right
after the Poll phase. Its queue can be filled by the set/mmediate() function calls. The last
remaining phase is called Close callbacks. If a socket or a handle is suddenly closed, the
appropriate event will be emitted in this phase. Otherwise, it will be emitted by the call of
the process.nextTick() function.

The function process.nextTick() is important from the point of view of the asynchronous
API. It allows executing a callback function after the current operation completes and
it is executed in the same phase. It allows putting the asynchronism into synchronous
operations. For example, when a port is passed to the server, the server starts to listening
on that port immediately. If there is the event that represents the start of the listening,
the event will be fired immediately. If the event will be emitted in the callback function
passed to process.nextTick() function, it starts to behave asynchronously [14].

4.1.2 Handling the Error State

Node.js supports numerous mechanisms for handling errors. The first mechanism is stan-
dard try / catch construct provided by the JavaScript language. This mechanism works
for the synchronous code but does not work for the asynchronous. The reason is that the
callback function is executed outside of the context of the try / catch construct. An error of
the asynchronous operation is passed as the first parameter in the callback function. There-
fore, the error handling has to be inside the callback. Even though it is common to handle
the error state in the callback itself, it is not convenient because it requires combining the
application logic with the error handling logic. The following mechanisms improve the first
one. The second mechanism is related with the Promise mentioned in section 4.1.4. It
allows specifying a callback function that is called when a Promise is rejected. It separates
the application logic from the error handling. On the other hand, it still does not allow to
use (ry / catch construct. The third mechanism is related to the async and await functions
mentioned in the same section. This approach allows usage of the try / catch construct.
Therefore, it should be optimal to use it [6] [20] [19].

30

4.1.3 Handling of External Dependencies

The solid handling of external dependencies is the key aspect of the development. Sharing
of the code heavily helps with reusing the code and with distributing changes to several
projects. The Npm tool fulfills this aspect of developing for JavaScript libraries.

Each project can specify its dependencies. These dependencies are listed in the file
named package.json. Each dependency is specified by the unique name and by the version
specification. The version can by specified with wild-cards that add the flexibility in select-
ing the version. The installed dependencies are saved in the folder named node modules in
the same directory as the file named package.json is. Libraries can also be installed globally.
These libraries are accessible to all projects. The disadvantage is that their usage partly
hides that the project depends on them [8].

The important part of handling external dependencies is resolving them. It works as
follows. When the script requires a module, it requires it under the module identifier. If
the identifier matches with a native module name, it requires the native module. If the
identifier starts with '/’ 7./ or /’, it loads the file on the path specified by the identifier.
Otherwise, Node.js tries to load it with the following mechanism. Node.js starts at the
parent directory of the current file, adds /node modules and attempts to load the module
from that location. If it is not found there, it moves to the parent directory until the root
of the file system is reached.

The module identifier can match with the file name or the folder name. If it matches
with the file name, it will import the file. If it matches with the folder name, the process will
get more complicated. If the folder contains the package.json file and this file specifies the
entry file of the module, it will load this file. If the package.json file does not exist, Node.js
will try to load the default files called index.js or index.node inside the directory [11].

4.1.4 Methods of Writing Asynchronous Code

The biggest disadvantage of asynchronism is that it changes how the code is written. Each
function that somehow depends on the result of the previous asynchronous function has
to be called in the callback function passed to the asynchronous function. The problem
appears when there are more asynchronous operations with a dependency to the previous
one. It can easily lead to unmanageable code, which is also difficult to read. This state of
code is called Pyramid of Doom.

But the newer versions of JavaScript offer methods that allow writing more manageable
and readable asynchronous code. The first mechanism is called Promise. It is an object
that represents a proxy for a value that is not known when the Promise object is created.
It requires one parameter in the constructor. This parameter has to be a function that
implements the operation. It takes two parameters. The first one is a callback function
that is called after the operation is successfully completed and it probably receives the
result of the operation in the parameters. The second one is a callback function that is
called when the operation failed.

Figure 4.2 shows how the Promise mechanism works. A Promise object can be pending,
fulfilled or rejected. When it is created, it starts as pending. If the operation succeeds,
then it will become fulfilled. If the operation fails, it will become rejected. The Promise
mechanism is useful because it allows composition. It is provided by methods then and
catch. These methods accept callback functions as parameters, which are called after the
Promise object is fulfilled or rejected. As these methods return a Promise object, they can
be chained.

31

ASYNC
ACTIONS

settled

.then(onFulfillment)

pending return pending
fulfill

PROMISE PROMISE

reject

return
.then(onRejection)
.catch(onRejection)

\ 4

ERROR .then()
HANDLING .catch()

Figure 4.2: How the Promise mechanism works. At the beginning, the Promise object
is in the pending state. The Promise object is fulfilled when the underlying operation is
successful or rejected when it is unsuccessful [19].

32

Method name | Description

resolve(value) Returns fulfilled Promise object with the value
reject (reason) Returns rejected Promise object with the reason
race(iterable) Returns Promise object from iterable
all(iterable) Returns computed Promise object

Table 4.1: Methods specified by the Promise API

The API also offers other methods to support writing asynchronous code. Table 4.1
shows the list of them. The first and the second method return a fulfilled or rejected
Promise object with the value passed as a parameter. The third method is called race and
it returns one Promise object from a given collection. The returned promise can be fulfilled
or rejected and it is the Promise object that was evaluated faster. The fourth method is
called all. If all the Promise objects in a given collection are resolved, then it will return
fulfilled Promise object with an array of resolved values from the fulfilled Promise objects.
If one of the Promise objects in a given collection is rejected, then it will return rejected
Promise object with the reason from the rejected Promise object [19].

The second mechanism that improves the coding experience is called Generators [12].
Generators allow representing lazy sequences. It adds the ability to pause the function
execution and get the value of a specified command inside the function. The keyword yield
fulfills this purpose. The generators do not give a way of representing the result of an
asynchronous operation. It can be solved by Promise mechanism. The implementation
is based on the function that wraps the generator function. This function is repeatedly
getting the yielded values, trying to resolve them and returns the result [5]. It gets even
easier with the ES7 standard and with the new keywords async and await. The keyword
async marks the function as asynchronous and allows to use the keyword await inside its
body. The keyword awail has to be used before the asynchronous command. These built-in
keywords allow writing asynchronous code similarly to synchronous with advantages such
as non-blocking operations [6].

4.2 Representational State Transfer

Representational state transfer (REST) is an architectural style that is heavily used by
web applications. Many constraints have to be applied to an application to follow this
architectural style. The first constraint is to follow the client and server model. It means
that the server is not concerned with the user interface or the user state and that allows them
to be simpler and scalable. It also means that the client is not concerned with data storage.
It allows to develop the server and the client separately, but only if the interface between
them remains. This is a second constraint as that it has to have a uniform interface.
It means that each resource has to be identified by the request. The URL and request
headers are for example convenient to use in the web environment. It also means that the
representation returned by the server is not in any way bounded with the actual format. The
format of returned representation also has to be negotiable. It also means that the returned
representation with meta-data also has to contain enough information to manipulate with
the resource. Finally it means that the messages sent between the client and the server
have to be self-descriptive. It can be for example in the web environment attained with the
URL parameters and request headers. The third constraint is that it has to be stateless.

33

The communication between the client and the server must not be affected by any context.
Each request from the client has to have all the information necessary to service the request.
The client holds any other states such as session state. The next constraint is the ability
to cache. It means that the responses have to explicitly or implicitly define themselves
as cacheable or not. It improves performance and scalability of the application. The last
constraint is that the REST application is a layered system. The client cannot recognize
if it communicates with the end server or with an intermediary server. It also improves
scalability [30].

4.3 Overview of Used Libraries and Tools

This section describes the tools and libraries that were used to develop the application. Each
section describes the library and eventually it also represents some other complementary
libraries that are primarily used together.

4.3.1 Express — the Web Application Framework

Express is a minimalist web framework for Node.js applications. The main advantage is its
minimalism and its ability to be easily composed with other libraries. It allows mounting
a handler function to an arbitrary request. It can be for example mounted to a specific
URL or HTTP method. This handler receives two objects. The first one is representing a
request with received data and the second one is a response object. The essential part of
the framework is the middleware concept. Middleware is a function that is invoked by the
Express routing layer before the final request handler. This function can also be mounted
as the final handler. The only difference is that it exploits the third parameter passed
to the handlers. This parameter is a function and its call means the end of the current
handler execution. The middleware also can change the request and response object. The
handlers can be mounted hierarchically which adds more flexibility to the request processing.
The order of the middleware executions respects the order of addition. The first added
middleware is executed as the first. Middlewares, for example, handle parsing the request
body, cookies, session, cross-site request forgery protection, logging and so on. The biggest
advantage of this approach is that it is very easy to insert an application logic into the
process of handling the request [17].

4.3.2 Mocha — the Flexible JavaScript Test Framework

Mocha is a test framework that allows testing of synchronous and asynchronous code. The
structure of the tests allows flexible nested test composition with all the hooks. Hook is a
function that is called before or after the test. It also offers dynamically generated tests or
so-called parameterized tests. It means that the test just specifies a collection of the input
data and the expected data, then the test iterates over that collection and for each item calls
a test. Even though this is achievable by the majority of test frameworks, Mocha achieves it
with no special syntax. It improves the readability of the tests. Moreover, it offers standard
functionality of a test framework such as reporting the results, tests time-outs and it works
with any assertion library that throws an error [18].

34

4.3.3 Gulp — the Task Manager

Gulp is the task manager that helps with developing applications. It allows specifying
tasks that for example process files or run different programs. The commands can be
easily chainable which results in better re-usability. There can also be specified dependency
between the commands. The file called gulpfile.js holds the specification of tasks. They are
written in JavaScript and therefore it is easy to use different libraries and it is easy to use
concurrency [16].

4.3.4 Webpack — the Flexible Module Bundler

Webpack is a tool that handles all the bundling of the source code for the client. When
the client application uses only a few libraries, it is easy to deal with these dependencies by
hand. The problem starts when the number of the libraries raises and the dependencies get
complicated. Common problems are for example conflicts in the global variable namespace
and wrong order of loading. The application structure starts to be fragile and error-prone
because the coupling between the libraries is not obvious and therefore one minor change
can result in many errors. With the rising number of used libraries, the size of the code
that must be transferred to the client grows. Therefore, Webpack allows creating bundles.
A bundle is many libraries grouped together. These bundles can be specific for a part of
the web application and therefore it can decrease the size of transferred data. The code
that is common for all bundles can be automatically extracted into a separate bundle and
therefore no unnecessary source code is transferred more than once.

Webpack does not only support JavaScript code bundling, but it allows to bundle style-
sheets, images, web-fonts and also allows to compile other languages that are compilable
into JavaScript. This functionality is provided by the loaders. The use of them can be
explicitly stated in the require command or it can be specified in the configuration. The
second option is recommended because it allows for applying the loader to numerous require
commands. The configuration consists of a regular expression and the name of the loader.
If the regular expression is matched with the full file name of the currently processed file,
the loader will be applied.

Webpack also allows to extend its functionality and it is achieved by plug-ins. These
plug-ins interact with the process of bundling and help to get the optimal result. They can,
for example, solve the issues with not completely compatible libraries, optimize the output
and support the developing process.

Due to the importance of debugging, Webpack and some additional libraries offer sup-
port for the debugging process. Webpack itself supports so-called watch mode. When it
starts in this mode, it watches the changes in the source files and if a change occurs, it
builds a new version. The second and more advanced tool is called Webpack Dev Server. It
is a small Node.js Express server (section 4.3.1) and it serves bundles. Furthermore, it has a
little runtime that is connected to the client through the sockets. The server emits informa-
tion about the compilation state to the client and the client reacts to them. Webpack Dev
Server also allows refreshing the web page automatically after the bundling process [10].

4.3.5 Nodemon — Monitor for any Changes

Nodemon library is used for the development only and Node.js based applications. It
simply watches the files in the directory where the tool starts. If any files change, it will
automatically restart the Node.js application. The advantage of this library is that it does

35

not require any modification of the application itself. It only wraps the application and
watches for changes. It can look like this library is primitive, but its usage prevents errors
and simplifies the developing process [7].

4.3.6 Webdriver.IO — Selenium tests for Node.js

Webdriver.IO library allows controlling the web application. The orders that can be ex-
ecuted cover a wide range of commands from navigation to URL, reading the web page,
filling data to the user actions such as swipe, click and others. The library itself works as a
client to the selenium server. The library also contains the test runner. This runner helps
with integrating the library into existing tests. It supports all the popular test frameworks
including Mocha. A config file configures the runner and specifies everything important
to start tests. For example, it specifies paths of the test files, the address of the selenium
server, parallelism of the testing process, used browsers, configuration of the plugins and
much more [24].

36

Chapter 5

Application Design

This chapter describes how the application is designed and which ideas are behind this
process. The first section 5.1 is dedicated to the application design as a whole and it
describes which parts of the application are on the client and which parts of the application
are on the server. The second section 5.2 is dedicated directly to the client side part of
the application and describes used procedures in detail. The third section 5.3 similarly
describes the server-side part of the application. The fourth section 5.4 is dedicated to the
building and developing process because it is important to keep the integrity of the source
code to have continual development process. The last section 5.5 recaps the application
design and mentions known drawbacks. The application design is based on the older version
of the Este project [33].

5.1 General View of the Application Design

There are several ideas behind the application design. The first one is that the client has
to be as minimal as possible. It is advantageous for many reasons. The main ones are that
it reduces the requirements for the processing power on the client and exposes only the
necessary parts of the application on the client. The second one is to have a user-friendly
web interface. It means that there has to be an option to address the presentation by
its name and also slides by some number. It is convenient because it allows to share the
presentations through the internet and it extends the usability of the application to more
use cases. The last one is that the web client has to be a single page application [32]. The
reason is to have the best possible user experience from the application.

The application design aims to fulfill the process behind the use case of running the
PowerPoint presentation in a web browser. This process is shown in Figure 5.1. It consists
of uploading the presentation file to the server, converting the presentation file into the
internal representation, sending this representation to the client side application, visualising
this representation and reacting to the user actions such as moving between slides and
viewing the presentation in the full-screen mode.

5.1.1 Splitting the Application between the Client and the Server

The functionality is split between the client and the server as follows. The server side
of the application is responsible for extracting the information from the uploaded file. It
includes numerous reading and parsing files and transforming their content. The output

37

PPTX FILE UPLOAD

¢ >)

PPTX

PROCESSING

INTERPRETING VIEW

</>

ooo

Figure 5.1: The process behind the usage of the application. The input is the presentation
file in the OOXML format. This file is uploaded to the server, then the server transforms
the presentation into the internal representation, this representation is sent to the client
and the client visualises that representation.

38

of this process is the representation that describes visual appearance of the presentation.
This process is described in detail in section 5.3.

The client side of the application is mainly responsible for displaying this representation.
Furthermore, it is also responsible for basic client-side functionality such as reacting to the
user actions, handling the application state and firing the additional requests to the server.
This part of the application is described in section 5.2.

5.1.2 'Web Application Interface

The web interface (section 4.2) can be divided into two parts. The first part is RESTful,
handles API calls and returns raw data. This part is completely separated from the second
one, which is convenient for testing purposes and for implementing other clients. The
interface itself is simple. It allows addressing a single slide, the whole presentation directly
and it allows to address a media content of the presentation such as images, video and
audio. The second part handles the web application calls and it also allows to address
directly single slide or the whole presentation. This part is described in section 5.2.2.

5.1.3 User Interface of the Client

The possibilities of creating a user interface for the web clients are large. The first and
primarily used option is using HTML markup language with CSS. This is the standard way
of creating a user interface and it is also the preferable way. The reason is that it is stable,
it has support in the majority of web browsers and with the coming of the HTML5 standard
it also supports advanced tasks. Its disadvantage is that the level of customization is still
not as high as it is with the following approaches. A user interface can also be completely
built with the features from the HTML5 standard called Canvas and SVG. This method
gives a higher level of customization, but the downside is that it is not as easy to use as the
first one. The third option is to use a third party web browser plug-in. This may look like
an ideal solution because it takes the advantages from previous approaches. The problem
is that it completely breaks the key benefits of the web environment such as the application
on demand, high usability and easy accessibility by the URL. These considerations lead to
the combination of the first and the second approach. Standard HTML markup with CSS
can completely handle the simpler visualisations and the advanced visualisations can be
handled by the SVG and Canvas technologies.

5.2 Client-side Part of the Application

This section is dedicated to the design of the client side part of the application. The first
subsection 5.2.1 is dedicated to handling the application state. The second subsection 5.2.2
describes the navigation process. The last subsection 5.2.3 describes designed components
and how they fit together.

5.2.1 Handling the Application State and Changes in It

This subsection presupposes the knowledge of the React library (section 3.3.2), Flux archi-
tecture (section 3.2.2) and the Redux library (section 3.3.1). This subsection describes how
the state container is designed and which redux actions are designed.

The list of the designed fields is shown in Table 5.1. The primary data field of the state
container is named slideshow and contains data representing the presentation. Its structure

39

Field name Type Description

slideshow object the internal representation itself
fullScreen boolean | the state of the full-screen mode
slideLoading boolean | the state when the application is requesting a new slide

movingForward boolean | the state when the transition forwards is executing

movingBackward | boolean | the state when the transition backwards is executing

Table 5.1: Designed data fields in the state container. Values in these fields sets how the
user interface looks.

is described in section 5.3.1. The other fields in the state container represent temporally
application states, which may occur. The field named fullScreen is representing the state
of the full-screen mode. It may be only turned off or on. This field is necessary because the
application has to be rendered again when the full-screen mode is changed. The next field
is named slideLoading and represents the state when the application requested the server
for the data and the application is waiting for them. The last fields are named movingFor-
ward and movingBackward and represent the state, when the application is performing the
transition forwards or backwards between the slides.

Action name Type Description

Start slideshow Synchronous Fired when the presentation starts
Change full-screen Synchronous Change the full-screen mode

Fetch slide Asynchronous | Request for the slide data

Fetch slideshow Asynchronous | Request for the whole slideshow data

The action is fired when the transition for-

Start transition forward | Complex
ward starts

Start transition back- The is action fired when the transition back-

C 1
ward omplex ward starts

The is action fired when the transition is fin-

End t iti Synch .
nd transition ynchronous ished

Table 5.2: List of the designed actions

The overview of the designed actions is shown in Table 5.2. The first action is Start
slideshow and it is fired after successfully uploading the presentation when the user wants
to start with the presentation. The second action is Change full-screen action and it sets
the fullScreen field in the state container to its inverted value. The next actions are Fetch
slide action and the Fetch slideshow action. Both of them are asynchronous and therefore
both consist of three synchronous actions. The starting action sets the flag slideLoading
in the state container, the success action sets the requested data and cancels the flag
and the error action just cancels the flag. The Feich slide action fetches the internal
representation of one slide from the presentation and the Fetch slideshow action fetches the
internal representation of the whole presentation. When the Fetch slide action is dispatched
and the state container already contains the presentation data, the received data are merged
into the current state. This allows to continually update the internal representation in the
client. The next important actions are bounded with the slide transitions and are named
Start transition forward and Start transition backward. They check the existence of the next
or the previous slide in the state container, fetch the slide data when the state container
does not contain it and start the transition between the slides. The last action is called

40

End transition and it is fired when the transition is finished. The reason for this level of
transition process granularity is to have better control of the transition process. The End
transition action is dispatched either immediately after the transition is finished or after
the animation of the transition is finished.

The state container has to have the initial application state. Because of the server-
rendering functionality, the initial application state is computed during the first request on
the server. Even though it is the relevant solution to leave the computing of the initial
state also on the client, it is not desired, because it would mean doubling the number of
API requests. The initial state of the application is computed on the server and then it is
serialised into the global variable named INITIAL STATE . The way of computing
the initial state in the server side of the application is described in section 5.3.2.

5.2.2 Navigating the User through the Application

This subsection presupposes the knowledge of the React library (section 3.3.2) and React-
router library (section 3.3.3). The application distinguishes several pages and it is possible
to address them by the URL. List of the pages is shown in Table 5.3.

Page name The URL Postfix Description

The entry page of the
Entry page / application

The page that in back-
Loader page /slideshow/<name> ground loads the pre-

sentation data

The page that displays
Slideshow page /slideshow/<name> /slide/<number> the slides of the presen-
tation

Table 5.3: List of the pages in the application

There are three pages that are important to view the presentation. The first page is
called Entry page and it contains only one form, which allows uploading the presentation
file to the server. The second page is called Loader page. When this page is visited, the
application starts loading the presentation. The presentation is specified by the parameter
in the URL called name. When the loading is finished, it offers the option to start the
presentation. The last page is called Slideshow page. It displays one slide of the presen-
tation, supports navigation in the presentation and it allows to switch the presentation to
the full-screen mode. The presentation is specified by the parameter called name and the
slide by the parameter called number. Both parameters are specified in the URL.

The React-router library is used in the entry point of the application. It follows that
library handles every navigation action and therefore the components itself have to handle
the data fetching. It depends on the current state of the state container and the current
action. The server requesting can be performed in the action creators with the use of
middleware called Redux-thunk. This also brings all the asynchronism into the navigation
process. This form of requesting the server is used in the actions, which are performed
after the initial request. The examples of that kind of the actions are Start transition
forward and Start transition backward. The server requesting can also be performed in
the components themselves if the application takes the advantage of the life-cycle of the
ReactJS components. This approach is suitable for the components and the actions that

41

are closely related. The example of that kind of the action is the Fetch slideshow action
and the Loader page component. In this use case, the component pre-loads the presentation
before the user can continue to the presentation itself. The component’s life-cycle offers
two methods to use — component WillMount and componentDidMount. The action can be
performed in both methods, but the usage of the componentWillMount will result in the
unnecessary API request during the server rendering. The reason and the description of
the server rendering functionality is described in section 5.3.2.

5.2.3 Components Displaying the Presentation

This subsection presupposes the knowledge of React library (section 3.3.2), Redux library
(section 3.3.1) and React-router library (section 3.3.3).

An overview of the components is shown in Figure 5.2. The root component is named
Slideshow page. Tt is a simple component, which holds the other components together and it
receives the current presentation name parameter and the current slide number parameter.
The last responsibility of this component is that it specifies the data, which are used for
server rendering. Every action that should be fired during the server rendering has to be
assign to the component’s field called fetchActions. The details about this part of the
application design are described in section 5.3.2.

The following component is the Slideshow controller. Due to its simplicity, it does not
follow the presentational and container components principle and it reacts to the application
state changes and it also defines visual appearance. It contains one button, which switches
the full-screen mode of the presentation.

The next component is called Interactive slideshow view. This component is the con-
tainer component for the Slideshow view component with the full-screen and the navigation
functionality. The Slideshow view component is the presentational component and it is re-
sponsible only for displaying the presentation. The implementation of the full-screen and
the navigation functionality follows the higher-order components principle and these com-
ponents are also the presentational components. This separates the application logic from
the displaying logic and on top of that, it also helps re-usability.

The Slide view component overview is shown in Figure 5.3. It consists of many Shape
view components and many Media view components. The Shape view component represents
a positioned rectangular object. It may display shape related styles such as background
colour. The Shape view component may contain the Tezt view component. This component
displays text with all the margins and indentations between text runs and paragraphs. The
Media view component is very similar to the Shape view component. It is also a positioned
rectangular object. The difference is that it displays media files such as images, video and
audio. The video and audio files are not delivered with the internal representation, but
they are delivered on demand from the player.

5.3 Server-side Part of the Application

The primary responsibility of the server side of the application is the conversion between the
presentation file and the internal representation. The first section 5.3.1 is dedicated to the
internal representation and mainly to its structure. The second section 5.3.2 is dedicated
to linking and serving the application to the client.

42

SLIDE VIEW / TRANSITION

INTERACTIVE SLIDESHOW VIEW

SLIDESHOW CONTROLLER

PAGES

Figure 5.2: Overview of the components composition. The root component is called Page.
It consists of Slideshow controller component and Interactive slideshow view component.
Interactive slideshow view component consists of the Slide view component or the Transi-
tion component. Its content depends on the state of the application. If the application is
performing the transition between slides, then the Transition component is inside the In-
teractive slideshow view. In other cases, the Slide view component is inside the Interactive
slideshow view component.

43

SHAPE VIEW

SHAPE VIEW

MEDIA VIEW

SHAPE VIEW

SLIDE VIEW

Figure 5.3: The components composition inside the Slide view component. In this case
the slide data consist of three shapes and one media element. Therefore, the Slide view
component also consists of three Shape view components and one Media view component.

44

5.3.1 Internal Representation of the Presentation

This subsection presupposes the knowledge of the OOXML format (section 2.3 and sec-
tion 2.4) and the knowledge of the visualizing in the web environment (section 3.1). The
structure of this representation is shown in Table 5.4.

Field name Type | Description

primaryld string | Name of the presentation
totalSlidesCount | integer | Total number of slides

width integer | Original width of the presentation
height integer | Original height of the presentation
slides array Slides specification

Table 5.4: Structure of the internal representation of the presentation

The fields named width and height hold the original measures of the presentation. The
most important field is slides. This field contains a collection of the objects where each
object is representing one slide. This field can contain fewer objects than the presentation
has. The order of these objects is important because it sets the order of the slides.

The structure of the object representing one slide is shown in Table 5.5. The number
of objects in the shapes field and media field corresponds with the number of shapes on the
slide and with the number of multimedia objects such as images, video and audio in the
slide. Objects from both fields have similar structure and the only reason of the separation is
that it follows the OOXML format. The order of these objects in the collection is important
because it sets the z-order. The objects on the lower index have the higher z-order than
the objects on the higher index.

Field name Type | Description

backgroundColor | string | Hexadecimal interpretation of the background colour.

minorFont object | Specifies default font for the text shapes excluding titles.

A collection of objects. Each object represents one visual

h bject

SHapes ObIee object in the slide.

media object A collection‘of ol?jects. Each object represents a picture,
video or audio object.

transition object | Specification of how the transition should be visualized.

Table 5.5: Structure of one object from the slides field

The structure of the object from the shapes field is shown in Table 5.6. The value in
the field named id is a unique identification number and it can be used for referencing the
shape within an animation. The uniqueness is guaranteed in the context of one slide. Next
field is named {ype and its value corresponds with the type field from the OOXML format.
The field called properties contains visual attributes of the whole shape. It includes the
definition of position, measures, filling and shape geometry. The last field is named tzBody
and it contains the entire definition of text related content. The structure of the tzBody
field is shown in Table 5.7.

The field called properties contains visual attributes such as insets and vertical text
alignment. The field named paragraphs contains the collection of objects representing one
paragraph. The structure of the object from the paragraphs field is shown in Table 5.8.

45

Field name | Type | Description

id integer | Identification number of the shape

type string | Type of the shape

properties object | Collection of the properties specific to the shape
txBody object | Object that specifies text content of the shape

Table 5.6: Structure of the object from the shapes field

Field name | Type | Description
properties object | Visual attributes
paragraphs object | A collection of objects. Each object represents one paragraph.

Table 5.7: The structure of the object from the tzBody field

Field name | Type | Description
properties object | Visual attributes

runs array | Collection of objects representing one text run

Table 5.8: The structure of one object from the paragraphs field

The field named properties contains the visual attributes such as text indentation,
paddings and horizontal alignment. The second field called runs contains the collection
of objects representing one text run. The structure of the object from the runs field is
shown in Table 5.9.

Field name | Type | Description
style object | Visual attributes
text string | Text content

Table 5.9: The structure of one object from the runs field

The first field is named style and it contains the visual attributes such as font family,
font size and colour of the text. The second field is named text and it contains the text
itself.

The second field that holds the content in the slide object is named media. It is the col-
lection of the objects representing multi-media content. Its structure is shown in Table 5.10
and it is similar to the structure of the objects representing shapes.

Field name | Type | Description

id integer | Identification number of the shape

properties object | Collection of the properties specific to the media object
picture object | The picture specification

video object | The video specification

audio object | The audio specification

Table 5.10: Structure of one object from the media field
The first field is named 7d and it is a unique identification number. Its uniqueness is

guaranteed in the context of one slide. The second field is named properties and it contains
the visual attributes of the media object. It includes the definition of the position, measures,

46

filling and object geometry. The next field is named picture and it contains a specification
of the picture. The picture is included in the object for all three types of the media. The
picture, video and audio have very similar structure which shown in Table 5.11.

Field name Type | Description

url string | URL where the media content is reachable
name string | Name of the object

source (image only) | string | The image data itself

Table 5.11: Structure of the object in the picture, video and audio fields

The first field is named w7l and it contains the URL, where the content itself is reachable.
The second important field is called source and it contains the data of the picture. It
allows receiving pictures with an internal representation. However, this approach has some
drawbacks. The biggest one is that it forces to save the binary data in text format. It can
be achieved only by converting the data with methods such as Base64 but that results in
increasing the size.

5.3.2 Link between the Server and the Client

This subsection presupposes the knowledge of the Node.js server (section 4.1), the Ex-
press framework (section 4.3.1), the React library (section 3.3.2) and the React-router
(section 3.3.3).

The initial server request has to deliver all parts of the application. It primarily means
handling the content of the HEAD tag, serving the client application source code and the
initial HTML markup. This part of the application is also written as a React component,
but this component is rendered to static markup. A part of this markup is used as the
mount point of the client application loads up. The markup from the server should be
identical to the markup after the client application is initialized.

The client application is wired as the express middleware. It matches all GET requests
and it is wired after the more specific middlewares. The generation of the markup is handled
by a React component, which is rendered by the server. The processing of the request is
passed to the Router component from the React-router library, which resolves which root
component should be rendered. This root component can specify additional actions by
property called fetchActions. These actions are fired during the server-rendering and the
application has to wait explicitly for them, because these actions are mostly asynchronous.
After all these actions are finished, the application state is serialized into the global variable
called INITIAL STATE . The client application loads this variable as its initial state
during its bootstrapping. Therefore, the initial application state in the client application
corresponds to the state after all these actions are completed. The content of the HEAD
tag is handled by a library called React-helmet.

This whole process makes the application usable even without JavaScript enabled. The
HTML markup in the response contains the same HTML tags as the markup after the
client application is bootstrapped. It also makes faster the process of the bootstrapping,
because the client application does not have to create all HTML tags.

47

5.4 Building and Developing the Application

The simplicity, flexibility, usability of the building process and the developing process are
essential for the continual development. Splitting the code into modules and handling
external dependencies is an important fragment of advanced web development. It is also
very convenient to use some tools that improve the developing experience and limit the
errors. The first subsection 5.4.1 is dedicated to the building process and it describes
its configuration. The second subsection 5.4.2 is dedicated to the developing tools and it
describes their usage. The last subsection 5.4.3 is focused on the testing process and how
to test the visual appearance of the web application.

5.4.1 Build Tools and Their Usage

The main problem with a structured application is how to resolve dependencies between the
files and how to deliver these files to the client. This problem is solved by a library called
Webpack (section 4.3.4). The process of the building and the way of the configuration is
shown in Figure 5.4.

The configuration itself is a JSON object. This object specifies only one entry point
and this entry point is named main.js. This file contains references to other files, such as
libraries, components and application logic. These files can also contain other references.
They could be in numerous file formats and therefore, there has to be a way how to specify
methods of processing. This need fulfills Loaders. The current building process uses babel-
loader, file-loader, styl-loader and css-loader. The result of the building process is two
files. The first one contains the application code and the second one contains the styles
specification. The building process as a side effect also emits referenced files such as images
and fonts.

5.4.2 Developing Tools and Their Usage

The developing process contains many actions that are repeatable. It is useful to describe
these actions in the code. The library, which was chosen for this purpose, is called Gulp
(section 4.3.3). In the language of Gulp, these actions are called tasks and therefore Gulp
is a Task Manager. The list of the application tasks is shown in Table 5.12.

Task name Description

clean Remove all files created by build process

build Build the application

server Run the server application

server-hot Run the hot reload server (development mode only)
server-nodemon | Run the server application with Nodemon (development mode only)
default Alias for the task named server

server-node Standardly run the server

test Run all the tests

test:converter Run the tests of the converter part

test:e2e Run end to end tests

Table 5.12: List of the application tasks.

The most important tasks from this list are the default task and all the test tasks. The

48

STYL FILES

IMAGE FILES

Ly

ENTRY POINT
MAIN.JS

AN A

BUILD APP.JS

JS FILES

\ 4

€

BUILDING PROCESS

REACT
COMPONENTS

>

BUILD APP.CSS

Figure 5.4: The process of building the application. The application consists of one or
more entry points.
JavaScript files, image files and stylesheets. The output of the process is one JavaScript
file, one stylesheet file and files which were used in the JavaScript files or stylesheet files.
The JavaScript file is modularized and therefore the global namespace only contains the
variables which have been explicitly specified.

49

Each entry point can specify numerous dependencies such as other

default task consists of many subtasks and the result is the running application. It firstly
cleans the previous version, builds the current version and then runs the server. It runs the
server either in development or production mode. The development mode adds some useful
functionality such as automatic application restart due to source code change. These tools
are described in sections 4.3.5 and 4.3.4. Optional argument -p can force the production
mode. The test tasks run the tests and report the results. The reason to have numerous test
tasks is to group them by their focus and to have better performance. The test:converter
task runs the tests that check the validity of the transformation from the presentation file
to the internal representation. The test:e2e task runs the tests that compare the results
of the client application with the reference images. This task allows to run tests for all
presentations, for one presentation and also only for one slide from a given presentation.
The process behind is described in detail in the section 5.4.3 and its implementation in
section 6.2.2.

The next tool that is used is named Nodemon and it is described in section 4.3.5. It
allows restarting the server automatically if a change occurs. It assures that the running
code is always up to date. The usage of this tool is simple as it only requires to correctly
parametrized the command to prevent unintentional restarting. For example, it is conve-
nient to ignore the directory with tests. The task server-nodemon runs the application with
this tool.

The last tool allows to reload the client application code automatically and therefore
it also assures that the running code of the client application is always up to date. It is
more than one tool, but the key ones are Webpack and Webpack Dev Server. These tools
are described in section 4.3.4. It allows watching changes in the client application code
and then building the new application. The task server-hot runs the application with this
functionality.

5.4.3 Acceptance Testing of the Presentation

The testing of the application is the key aspect that helps to recognize attained results. The
automated testing is even better because it allows to check the application repeatedly after
some changes, evaluate the results of tests and automatically determine if the modification
is an improvement or a deterioration. The essential part of the application is visualising
the slide and therefore it is the first part that should be tested. That is achieved with
Webdriver.IO library (section 4.3.6). The scheme of how it works is shown in Figure 5.5.

The running test is sending orders to the Selenium server, which fulfills them through
the web browser. The orders allow requesting a screenshot of some part of the client
application. These screenshots can be compared in order to determine, how much they are
identical. Because the testing part of the application is the critical one and should be easy
to extend, it is convenient to support the simplest way of writing them as possible. For
that reason, the tests follow the convention over configuration principle. The specifics of
this implementation are described in section 6.2.2.

5.5 Summary of the Application Design

The application design does not aim to support all features of the PowerPoint fully. It
wants to fulfill the standard features and it covers a majority of the features used in basic
presentations. Because of that point of view, the application design does not count with

50

TEST

— (5. 4, 9 éié):g

SELENIUM RUNNING
SERVER APLICATION

\ 4

ooo

>

BROWSER

Figure 5.5: The way of running the test. The test is calling the Webdriver.IO API. This
API delegates these orders to the Selenium server. The Selenium server runs the previously
specified browser and runs the delegated orders such as navigating to the URL. The results
of the orders are returned to the test and it evaluates them.

51

animating objects and with any special visual effects. Furthermore, the design of the
animated slide transitions is more proof of concept than a regular solution.

52

Chapter 6

Implementation and Evaluation

This chapter describes some implementation details of the client (section 6.1) and the server
(section 6.2). The last section 6.3 shows and comments attained results.

6.1 Implementation of the Client

The application has to be as small as possible because it is downloaded during the initial
request and long download time may deter potential users. The current size is shown in
Table 6.1. The Webpack library (section 4.3.4) optimises the size of the production version.
The built source code is also compressed before serving it to the client and therefore the
actual application size is minimal. On the other side, the size of the development version
is big. The reason is that it contains a lot of libraries for development only and that it is
not optimised. As it can be seen from Table 6.1, the size of the application does not stand
out of the standard sizes.

Content size | Actual size
Development mode 11.1 MB 11.1 MB
Production mode 1.1 MB 336 kB

Table 6.1: The sizes of the client application. The content size is the size after the build
process. The actual size is the size of the application that is delivered to the client.

6.1.1 The Difference in the Spacing Specification

Visualisation of the slides contains the correct positioning of the content. The OOXML
format specifies only the paddings of elements. HTML markup offers two options how to
set spaces between the objects. The first option is to specify margins. The problem with
margins is that they are overlapping. The problem is shown in Figure 6.1. When two
elements are close enough and their margins overlap, the actual space between them is
defined by the larger one. The second option is to use paddings. The difference is that
they do not overlap. The actual space between two elements is the sum of their paddings.
The OOXML format does not follow the same paradigm and therefore there is no space for
margins usage.

53

/-

A+10px | S|
€— B +5px
A K 5 B
10px

Figure 6.1: Two HTML elements (A, B) with overlapping margins. The bigger margin
specifies the gap between them.

6.2 Implementation of the Server

The implementation of the server consists of many asynchronous operations. The process of
transforming the presentation file into the internal representation includes many readings
of files. The asynchronous code is handled by Promise objects and function generators
4.1.4. The part of the application that transforms the presentation is implemented as an
independent module. Table 6.2 shows its interface.

Name Type Description
convertAll function | Converts the whole presentation
convertSlide function | Converts single slide from the presentation

MediaDownloader | object Offers the access to the images, audio and video from the

presentation

Table 6.2: Interface of the module that converts the presentation into the internal repre-
sentation.

The interface consists of two functions and one service. The convertAll and convert-
Slide functions converts the presentation specified by the unique identifier assigned by the
application during the upload process. The MediaDownloader offers access to media files
from the presentation. Each media file is specified by a unique identifier of the presentation
and the name of the media file.

6.2.1 Transforming the Presentation to the Internal Representation

The transformation of the presentation can be visualised as two or three step process. The
first step of the transformation is parsing. The output of this phase is raw information about
the presentation. It does not operate with the relations between the files and therefore, its

54

structure corresponds to the structure in the presentation file. The second and the third
step are the phases of the transforming. The reason of splitting the transforming part is to
have the option to have multiple different outputs for different clients. The second phase
contains the transformations which are common for all clients. For example, this phase is
responsible for merging the style definitions into one. The third phase is specific to the
web client. Because there is no other client than the web client, this approach is more a
proposal than a final solution.

6.2.2 Acceptance Testing and its Implementation

The solid and easy to extend testing environment is important for continual development.
The problem is with tools when they do not offer all the desired functionality. The first
problem was with the desired interface of the development task (section 5.4.1) and with
the actual possibilities of the Webdriver.IO library (section 4.3.6). The desired interface of
the task is that it has to allow to run all the tests for all presentations, all the tests for
one presentation and only one test of one slide from the presentation. The problem is that
the configuration options of this library do not allow it. The paths of the tests can only be
specified in the main configuration file. The solution is generating the configuration file at
the beginning of the task and then starting the testing part. The other problem was with
the reference images. The usage of the library does not count with injecting the reference
images. It matches the reference image by the name, but it does not support interlaced
images and the error message does not help with solving this issue. The only solution is
not to use interlaced images. The configuration file also does not allow to specify different
folders for different tests and therefore, the preparation phase also consists of copying the
reference images to the correct paths. The next problem was with maximisation of the
chrome browser window. It is the problem of the Selenium server and the solution is to use
additional parameters when the chrome driver is starting.

The actual implementation follows the convention over configuration principle. This
works well with the test generating offered by the Mocha library (section 4.3.2). The test
suite is in the separate directory. This directory contains the data of the presentation, the
reference images, the history of the accuracy and the actual test. When the test starts, it
executes all the preparation tasks. It means copying the presentation files to the server and
injecting the reference images. If the conventions are met, these tasks work out of the box.
Then the test may only contain the specification of the perceptual threshold mismatch per
slide and the calling of the test method.

6.3 Evaluation of the Results

The results of the application can be divided into two groups. The first group represents
the static results. These results can be automatically and easily tested and evaluated. The
members of this group are for example presentations with a text, an image or an object
with a colour. The second group represents the dynamic results. These results can be only
partly automatically tested and the evaluation is more on the observer. The members of
this group are for example presentations with an audio or a video.

The following sections are referencing to the compilations of the images. The reference
images are generated by the PowerPoint itself and therefore it should be the most accurate
visualisation. The other images are automatically created as a side product of the testing
(section 5.4.3).

55

6.3.1 Text in the Presentation

The first test slide contains text that is positioned and aligned. Its comparison is shown
in Figure 6.2. The text is similarly displayed and the difference is minimal. The second
test slide contains the heading text and three paragraphs and its Figure 6.3 shows its
comparison. The text is also similarly displayed and the difference is minimal.

The third test slide contains the heading text and three paragraphs. Its comparison is
shown in Figure 6.4. These paragraphs are not displayed correctly as the space between
them is different than should be. The fourth test slide contains the heading text and one
paragraph with increased line height. Its comparison is shown in Figure 6.5. The text is
similarly displayed and the difference is minimal.

As the comparisons show, the difference in the text visualisation between the reference
image and the actual result exists. On the other hand, the text is in many cases positioned
and sized correctly. The visualising of the text has some space for improvement but the
achieved results are good.

6.3.2 Image in the Presentation

The first test slide contains one positioned image and its comparison is shown in Figure 6.6.
The image is correctly positioned and displayed as it is seen from the comparison. The sec-
ond test slide contains four positioned images and its comparison is shown in Figure 6.7. All
images are correctly positioned, but only three of them are displayed correctly. The bottom
right image is not identical. There is no reason from the perspective of the application why
this image has some differences. It is probably an external issue caused by the rendering of
the web browser.

As can be seen from the previous comparison, images are positioned and displayed well.
The only issues are not related to the application and are minimal. The achieved results
with the image visualisation can also be evaluated well.

6.3.3 Video and Audio in the Presentation

The first test slide contains one positioned video and its comparison is shown in Figure 6.8.
The images only display the preview image of the video and therefore its evaluation is very
similar to the evaluation from section 6.3.2. The only difference is that the actual image
contains a video player bar. The audio is similar to the video in the presentation. It displays
the preview image and there is an audio player bar. The streaming of the video and audio
is not easily tested but it works well and therefore the achieved results can be evaluated
well.

6.3.4 The Summary of the Evaluation

The achieved results can be clearly evaluated because the comparisons are automatically
evaluated and because each test also outputs the percentual mismatch value when it fails.
The average value of all the mismatches is around 5%. It must be pointed that this value
is affected by the actual tests and the value can be very different for different test suites.
Therefore, it is important to specify the test suites. They contain only text with standard
options such as font, alignment, size and colour. The image, audio and video tests also
contain only the image with no special effects. The only supported geometry of the shapes
is rectangular. The animations are not implemented and therefore no tests are testing this

56

Vita vas PowerPoint

Nadhemé prezentace navrhnete a predvedete
snadno a s jistotow.

Figure 6.2: Comparison of a slide with text. It contains three images. Image A shows the
reference image generated by the PowerPoint itself. Image B is the actual result from the
application. Image C is their comparison. Pink elements are the differences between them.

57

Hred od pegitkt budats M prste miaksispim
mativiim Ra drokethloy abraravky, kiere mirele
sRadna upravit; aby yyheveyaky vaismu syl ey
frativ wid mnedstvi bareviyeh vanant, kierd miiele
Hizné kewbinovat, aby ladily padla vaiahs viwsu.

MNové furikce, jako tfeba shaiovini obrancl resbo
kapétko pro hledéni shody barev, otvirajl valim
névrhiim nowé modnosti.

RozloZen, fotky a diagrany mildete pamaciivediiek
zaravnani a inteligentnich vedibel: bihem pa seundl
dekenals uspefadat.

|@

Sisal

le

58

Figure 6.3: Comparison of a slide with text. The explanation of the image is the the same
as in Figure 6.2.

Paragraphs

Lorem lpsurm dolor sit amet, consectetur adipiscing elit, sed do
eiusmod tempor incididunt ut labore et dolore magna aliqua.

Lorem ipsurn dolor sit amet, consectetur adipiscing elit, sed do

Paragraphs

Larem ipsum dolor sit amet, consectetur adipiscing elit, sed do
eiusmod tempor incididunt ut labore et dolore magna aliqua.

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do
elusmod tempor incldidunt ut labore et dolore magna aligua.

eiusmed tempor incididunt ut labore et delere magna aliqua.
Lorem ipsum dolor sit amet, cansectetur adipiscing elit, sed do

eiusmod tempor incididunt ut labore et dolore magna aliqua.
Lorem ipsurm dolor sit amet, consectetur adipiscing elit, sed do
eiusmod tempor incididunt ut labore et delore magna aliqua.

Paragraphs

LBFEm i ORI i Aty OSSR RSBt S8 9
eimﬁ&%&ﬁ@dﬁﬁuﬂtwmgﬁmﬁw@&mﬂa.o

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do

brsmdaEmpelansidrRinat epRisstaler ANOIECIRGE, Avgudo
eiusmod tempor incididunt ut labore et dolore magna aliqua.
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do

eiusmod tempor incididunt ut labore et dolore magna aliqua.
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do
eiusmod tempor incididunt ut labore et dolore magna aliqua.

Figure 6.4: The comparison of a slide with text. The explanation of the image is the same

as in Figure 6.2.

59

Line height Line height

Lorem ipsurn dolor sit amet, consectetur adipiscing elit, sed do Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do

elusmod termpor incididunt ut labore et dolore magna aliqua. Larem eiusmod tempor incididunt ut labore et dolore magna aliqua. Lorem

ipsum delor sit amet, consectetur adipiscing elit, sed do eiusmod ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod

tempoer Incididunt ut labare et dolore magna aliqua. tempor Incididunt ut labore et dolore magna aliqua.

Line height

Lorem ipsum dolor sitt amet;, comsettttur-atijpistiggeti ssecddo
eiusmeod temper ingididuntutilahoeeatdiNeermagnatiaua L beepin
ipstam dolor sit amet, consesiatir adlneahpseat sterroniyaad
termpor ingigislm st labse atalnlae masnaalipue-

Figure 6.5: The comparison of a slide with text. The explanation of the image is the same

as in Figure 6.2.

60

Spoluprace

Prazsmiac mEZaEs (2 Hizmdh pofitaén) ravovat —

SBUEIZRE 3 AT AR AR s S [| Komentafe v
koRverzoyaN 3 whizhval wiepiene mesnosl prace = w1l
§ KameRtH. - —

4 Eryitaf Malj .. pfed 3 minatami
Poudijme rizné varianty téhod
motivy, sy lidé paznall, b
minime témata

Sdilen prezentae! eRwmeiRindiHe! Rty RE:
publilum wewma PowerPoint wiiete pregentace CJ
snadno promitat de jejich protwzedd. Ko L Je o snaché - prosté Kliknite
slou#f funkee Online prezentace. . ;mmﬂnm T

avoilte mofnost Poudit u

= wybranjch snimki.
Spolupracovat s ostainimi mikéede nicnych mist _ Sdpaniaiin
soutasnd, at' uf poutivits PowerPolnt

nalnstalovany we smpatiiedi rthowet ooy
aplikaci PowerPoint Web App.

< Tom KMek Fled nikobka sckurdami

Figure 6.6: The comparison of a slide with image. The explanation of the image is the
same as in Figure 6.2.

61

Vytvofeni pls ho dojm Vytvoreni plsobivého dojmu

Yylepsene zobrazent prezentufichio Bl PovE Rdstrole, BURRSS
ieryeh s Rad prezentact LR kaRtak. N fukee i
allisraticks rorifent zobiasenl Shardif o Sras madiE,
fakde se nemusiie siarat o 16, jak 1 vl v Ul it e
saustiedi na ie, e kwmi ie.

i EavR STlE i B s B e Bk DB I A TRy
Presté jen iknele 2 Aseie e afssHie ke gie healphaaek.

Mawigatar shlvERm.— finiloe; ke v vebali o ariee <) g iR e o
. & phachiset od st Moy aniEahitopREknpius bt
" kil v i wiekicleey ¥ pieidid e

i

Figure 6.7: The comparison of a slide with images. The explanation of the image is the
same as in Figure 6.2.

62

TR e S To e STEe

s e R M v oo Oy o Cogre, b s Cr s ey v Wb

Bptome s =
4 > O [Dlobonwwi . ’ — . ! I - ;
18 Povaia Flowy 1O W, of Abiacn O ichacd S Sttt BT e B 00 D QiR O beve (T OGESN thaw T piiventer Crivewince. Dy B fioat: T 00 Dishige- 07 10000t = Cpara oty

ey

Py dec gy e

bemsssm=d

“Hllacke e fbinirice] s

Figure 6.8: The comparison of a slide with video. The explanation of the image is the same
as in Figure 6.2.

63

feature. The same applies to the animated transitions. They are currently implemented
but it is more a proof of concept than an actual solution. The application supports classic
and timed transition between the slides.

64

Chapter 7

Conclusion

This work shows the application that allows to view PowerPoint presentations in the web
browser. This allows to view and share the content of the presentation through the web
environment.

The precision of the conversion is the key aspect of this application. If the slides follow
basic rules and do not contain special effects, then the 5% difference between the original
slide and the actual slide is easily achievable. In addition, the application also contains
development tools to iteratively increase the level of precision.

This work shows how modern web applications are built. The web environment is very
dynamic and there are numerous tools to choose from and to use. This work shows one
approach how the tools can be used and combined together. The application can also be a
core of a start-up project, because the application extends the ability of editing the content
in the web environment.

Besides the application, the work introduces one approach to building modern web
applications. This can be used by web developers to get inspired and use some tools or
procedures in their project. The idea of displaying a PowerPoint presentation in the web
browser also deserves to be extended in some start-up project.

65

Bibliography

[13]

[14]

Ecma-376, 4th edition [online].
http://www.ecma-international.org/publications/files/ECMA-ST/ ECMA-376,
Fourth Edition, Part 1 - Fundamentals And Markup Language
Reference.zip, 2012 [cit. 2016-01-04].

React redux [online].
https://github.com/reactjs/react-redux/blob/master/docs/api.md,
2014-04-02 [cit. 2016-05-01].

Redux [online]. http://redux.js.org/index.html, 2014-04-25 [cit. 2016-04-30).

Flux [online]. https://facebook.github.io/flux/docs/overview.html, 2014
[cit. 2016-04-30].

Generators [online|. https://www.promisejs.org/generators/, 2015-09-24
[cit. 2016-04-28].

Async functions [online]. http://tc39.github.io/ecmascript-asyncawait/,
2016-01-26 [cit. 2016-04-26].

remy/nodemon [online|. https://github.com/remy/nodemon/, 2016-02-09
[cit. 2016-04-28].

npm documentation [online|. https://docs.npmjs.com/, 2016-02-10
[cit. 2016-04-27].

Web technology for developers [online].
https://developer.mozilla.org/en-US/docs/Web, 2016-03-03 [cit. 2016-04-30].

webpack [online]. https://webpack.github.io/docs/, 2016-03-12 [cit. 2016-04-28].

Modules [online]. https://nodejs.org/api/modules.html, 2016-03-13
[cit. 2016-04-27].

function® - javascript [online].
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/
Statements/function*, 2016-03-14 [cit. 2016-04-27].

About node.js [online]. https://nodejs.org/en/about/, 2016-03-19
[cit. 2016-04-26].

The node.js event loop, timers, and process.nexttick() [online].
https://github.com/nodejs/node/blob/master/doc/topics/
the-event-loop-timers-and-nexttick.md, 2016-03-19 [cit. 2016-04-26].

66

[15] Overview of blocking vs non-blocking [online].
https://github.com/nodejs/node/blob/master/doc/topics/
blocking-vs-non-blocking.md, 2016-03-19 [cit. 2016-04-26].

[16] gulp/docs [online]. https://github.com/gulpjs/gulp/tree/master/docs,
2016-04-08 [cit. 2016-04-24].

[17] Express - node.js web application framework [online|. http://expressjs.com,
2016-04-16 [cit. 2016-04-27].

[18] Mocha - the fun, flexible javascript test framework [online|. https://mochajs.org,
2016-04-16 [cit. 2016-04-27].

[19] Promise - javascript [online].
https://developer.mozilla.org/cs/docs/Web/JavaScript/Reference/
Global_Objects/Promise, 2016-04-20 [cit. 2016-04-26].

[20] Errors node.js manual & documentation [online].
https://nodejs.org/api/errors.html, 2016-04-20 [cit. 2016-04-27].

[21] Concurrency model and event loop [online].
https://developer.mozilla.org/en-US/docs/Web/JavaScript/EventLoop,
2016-04-29 [cit. 2016-04-30].

[22] Dan Abramov. Mixins are dead. long live composition. blogpost, 2015
[cit. 2016-04-10].
https://medium.com/@dan_abramov/mixins-are-dead-long-live-higher-order
-components-94a0d2f9e750.

[23] Dan Abramov. Presentational and container components [online]. blogpost, 2015
[cit. 2016-04-10].
https://medium.com/@dan_abramov/smart-and-dumb-components-7ca2f9a7c7do0.

[24] Christian Bromann. Developer guide. http://webdriver.io/guide.html, 2015
[cit. 2016-04-28].

[25] Facebook Inc. Getting started | react [online].
https://facebook.github.io/react/docs/getting-started.html, 2013
[cit. 2016-04-28].

[26] Michael Jackson. Introduction [online].
https://github.com/reactjs/react-router/blob/master/docs/Introduction.md,
2015 [cit. 2016-04-29].

[27] Matthew MacDonald. HTML5: The Missing Manual, 2nd Edition. O’Reilly Media,
2013.

[28] David Sawyer McFarland. CSS: The Missing Manual, 4th Edition. O’Reilly Media,
2015.

[29] Jason Pamental. Responsive Typography: Using Type Well on the Web. O’Reilly
Media, 2014.

[30] L. Richardson and S. Ruby. RESTful Web Services. O'Reilly Media, 2008.

67

[31] Robert Gaskins. Sweating Bullets. Vinland Book, 2012. ISBN 978-0-9851424-1-4.

[32] Jose Maria Arranz Santamaria. The single page interface manifesto [online].
http://itsnat.sourceforge.net/php/spim/spi_manifesto_en.php, 2015-09-21
[cit. 2016-03-15).

[33] Daniel Steigerwald. Este - dev stack and starter kit [online].
https://github.com/este/este, 2015 [cit. 2016-01-10].

[34] Twitter. Readme [online]. https://github.com/twitter-fabric/velocity-react,
2015, [cit. 2016-04-29].

68

Appendices

69

List of Appendices

A Content of the CD

70

71

Appendix A

Content of the CD

Content of the enclosed CD is shown in Table A.1.

Name Description

src-app/ All the source code of the application
sre-text/ All the source code of the thesis
readme.txt Basic description of the application

install.txt

Installation instructions

master-thesis.pdf

The thesis

poster/

Poster of the thesis

video/

Video about the thesis

Table A.1: Content of the enclosed CD.

71

	Introduction
	How PowerPoint Works
	Brief Information About the Beginnings
	Current Possibilities and Functions
	File Format of the Presentation
	Essential Parts of Current File Format

	Client side Technologies
	Creating a User Interface
	Concepts of Developing the Application
	Overview of Used Libraries and Tools

	Server side Technologies
	Concepts of Developing the Application in Node.js
	Representational State Transfer
	Overview of Used Libraries and Tools

	Application Design
	General View of the Application Design
	Client-side Part of the Application
	Server-side Part of the Application
	Building and Developing the Application
	Summary of the Application Design

	Implementation and Evaluation
	Implementation of the Client
	Implementation of the Server
	Evaluation of the Results

	Conclusion
	Bibliography
	Appendices
	List of Appendices

	Content of the CD

