
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
DEPARTMENT OF COMPUTER SYSTEMS
ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ

COMPARISON OF IPV6 PREFIX SET GENERATORS
SROVNÁNÍ GENERÁTORŮ IPV6 PREFIXOVÝCH SAD

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE
AUTHOR DOMINIK VAŠEK
AUTOR PRÁCE
SUPERVISOR Ing. JIŘÍMATOUŠEK
VEDOUCÍ PRÁCE

BRNO 2018

Abstract
This bachelor’s thesis aims to compare the IPv6 generators. In the first part we introduce
protocol IPv6 and the allocation policies of registrars in order to better understand the
problem. Next, we introduce three existing prefix set generators, whose description is
available. In the second part of the thesis we propose and implement a series of tests for
the prefix set generators. Lastly, we test the generators and make a conclusion based on the
results. According to our results, we conclude that the prefix sets from the NonRandom and
IPv6Table generators have a large error in comparison with a target prefix set. However,
V6Gene, the implementation of which is not currently publicly available, might generate
prefix sets close to the reality based on its proposal.

Abstrakt
Cílem této bakalářské práce je porovnání generátorů IPv6 prefixových sad. V první části
práce je představen protokol IPv6 a politiky přidělování IPv6 registrátorů, které tvoří zák-
lad řešené problematiky. Následně jsou zmíněny tři existující generátory prefixových sad,
jejichž popis je k dispozici. V druhé části je navržena a implementována série testů pro
porovnávání generátorů prefixových sad. V poslední části jsou provedeny testy prefixových
sad na základě dříve definovaných kritérií. Na základě provedených testů byl vyvozen závěr,
že prefixové sady vygenerované generátory IPv6Table a NonRandom, jejichž implementace
je veřejně dostupná, vykazují velkou chybu v porovnání s realitou. S ohledem na popis gen-
erátoru V6Gene lze očekávat, že prefixové sady vygenerované tímto generátorem by měly
dosahovat výrazně menší chyby v porovnání s realitou. Implementace tohoto generátoru
však není veřejně dostupná, takže tato očekávání nebylo možné experimentálně ověřit.

Keywords
IPv6 prefix set generator, comparison, IPv6 address allocation policies

Klíčová slova
generátor IPv6 prefixových sad, porovnání, politiky přidělování IPv6 adres

Reference
VAŠEK, Dominik. Comparison of IPv6 Prefix Set Generators. Brno, 2018. Bachelor’s
thesis. Brno University of Technology, Faculty of Information Technology. Supervisor Ing.
Jiří Matoušek

Rozšířený abstrakt
S blížícím se vyčerpáním IPv4 adresového prostoru bylo potřeba vymyslet náhradu, kterou
se stal protokol IPv6. Ten má v porovnání s protokolem IPv4 mnohem větší adresový pros-
tor. Díky zkušenostem z protokolu IPv4 bylo v protokolu IPv6 možno vylepšit i řadu jiných
nedostatků, jako například zabezpečení, průhlednost a především velikost adresového pros-
toru. Kvůli velikosti adresového prostoru se však objevil další problém a tím je potřeba
výrazně efektivnějších směrovacích algoritmů v porovnání s protokolem IPv4. Vzhledem
k tomu, že dosavadní IPv6 směrovací tabulky nejsou příliš velké, není možné tyto nové
směrovací algoritmy plně otestovat na reálných prefixových sadách. Namísto toho se využí-
vají generované prefixové sady, které však ne vždy dostatečně přesně odrážejí skutečnost.
Proto se tato bakalářská práce zabývá návrhem kritérií a implementací nástroje pro porov-
návání generátorů IPv6 prefixových sad.

Druhá kapitola se zabývá samotným protokolem IPv6. Jak již bylo zmíněno, hlavním
rozdílem protokolu IPv6 oproti protokolu IPv4 je jeho adresový prostor, který obsahuje
2128 adres oproti 232 adres protokolu IPv4. Tím vznikají nové problémy, jako například
délka zapisované IPv6 adresy. Existují mechanismy pro zkrácení tohoto zápisu. Příkla-
dem může být vynechání nejlevějších nul v jednotlivých segmentech nebo záměna série
segmentů za dvě dvojtečky. Samotná adresa se pak skládá ze dvou částí. První částí je
prefix, který určuje síť, do které adresa spadá, a je přidělován registrátory. Druhá část pak
označuje konkrétní zařízení v dané síti. Vzhledem k množství adres a potřebě přidělovat
adresy po celém světě byla již u protokolu IPv4 definována hierarchie registrátorů. Jed-
notliví registrátoři spravují a přidělují různé délky prefixů. Jejich hlavním úkolem je zajis-
tit vyvážené přidělování adresového prostoru zamezující nutnost přepočítávání adresového
prostoru v budoucnu a zároveň šetření adresovým prostorem, aby nedošlo k jeho rychlému
vyčerpání, jako v případě protokolu IPv4. V dnešní době jsou přidělovány především prefixy
délky /32 a /48. V budoucnu však můžeme očekávat především nárůst počtu prefixů délky
/64, což povede k velké změně v rozložení délek prefixů, na kterou je vhodné se připravit
efektivními směrovacími algoritmy.

Ve třetí kapitole jsou popsány tři existující generátory prefixových sad, jejichž popis
je volně dostupný. Prvním z nich je generátor V6Gene, který se zaměřuje na generování
prefixových sad na principu prefixového stromu. Celkově generování prefixů probíhá ve
dvou fázích: přidělování nových prefixů do prefixového stromu následované náhodným roz-
generováním již existujících prefixů. Druhým generátorem je NonRandom generátor, který
pro změnu využívá existujících IPv4 prefixových sad, jejichž prefixy jsou zdvojnásobeny
v délce, aby reflektovaly rozložení IPv6 délek prefixů. Posledním popisovaným generátorem
je IPv6Table generátor, který si z existující IPv6 prefixové sady spočítá pravděpodob-
nostní rozložení jednotlivých délek a distribuce bitů, na základě kterých začne generovat
požadovanou prefixovou sadu.

Čtvrtá kapitola se zaměřuje na návrh kritérií pro porovnávání prefixových sad. Navrženy
jsou skupiny testů. První skupinou jsou testy zabývající se základními vlastnostmi pre-
fixových sad, a sice rozložení délek prefixů a rozložení hodnot bitů. Druhou skupinou jsou
testy nad prefixovým stromem, konkrétně zanoření prefixů do sebe, větvení prefixového
stromu a vyvážení prefixového stromu. Poslední skupinou jsou testy zabývající se efek-
tivitou samotného generátoru. Tato skupina sleduje množství duplicit v generované sadě,
ale také celkové hardwarové nároky generátoru.

Pátá kapitola se zabývá implementací nástroje využívajícího kritéria specifikovaná v pře-
dešlé kapitole. Je navržen způsob testování založený na využití historických prefixových sad,
na základě kterých probíhá generování prefixových sad, jež jsou přibližně stejně velké jako

aktuální prefixové sady. Pro porovnání výsledků je navrženo využívat tzv. RMSE, který
porovnává průměrnou chybu mezi generovanými a cílovými prefixovými sadami.

Poslední kapitola se zabývá samotným porovnáním generátorů prefixových sad, jejichž
implementace je veřejně dostupná. Na základě testů a návrhu generátorů bylo zjištěno,
že ani jeden ze dvou testovaných generátorů nebere v potaz politiky přidělování adres, ale
pouze rozgenerovává danou sadu. To znamená, že podle velikosti časového úseku mezi
prefixovými sadami se bude chyba lišit. Poslední generátor V6Gene, který nebylo možné
otestovat, jelikož jeho implementace není momentálně veřejně dostupná, by na základě
návrhu a pozorování ostatních generátorů měl teoreticky z velké míry generovat prefixové
sady podobné sadám v budoucnu.

Comparison of IPv6 Prefix Set Generators

Declaration
Hereby I declare that this bachelor’s thesis was prepared as an original author’s work under
the supervision of Ing. Jiří Matoušek. All the relevant information sources, which were
used during the preparation of this thesis, are properly cited and included in the list of
references.

. .
Dominik Vašek

May 16, 2018

Acknowledgements
I would like to thank my supervisor Ing. Jiří Matoušek for his time, guidance and valuable
input on the thesis.

Contents

1 Introduction 3

2 Protocol IPv6 4
2.1 Grounds for IPv6 . 4
2.2 IPv6 address . 4
2.3 Prefixes . 5
2.4 Protocol properties . 5

2.4.1 Transparency . 5
2.4.2 Security . 6

2.5 IPv6 address allocation . 6
2.5.1 Registrar hierarchy . 6
2.5.2 Address allocation principles . 7
2.5.3 Endpoint address allocation . 9

2.6 Reasons for IPv6 prefix set generation . 9

3 Existing IPv6 prefix set generators 11
3.1 V6Gene . 11
3.2 Non-random Generator . 12
3.3 IPv6 Table Generator . 13

4 Proposal of usable properties 14
4.1 Basic properties of prefix sets . 14

4.1.1 Prefix length distribution . 14
4.1.2 Bit value distribution . 14

4.2 Properties of trie . 15
4.2.1 Prefix nesting . 15
4.2.2 Branching of trie . 16
4.2.3 Skew of trie . 17

4.3 Properties of prefix generators . 17
4.3.1 Duplicates . 17
4.3.2 Hardware requirements . 18

5 Implementation of prefix set comparison 19
5.1 Proposed way . 19

5.1.1 Optimal testing . 19
5.1.2 Operation of script . 19
5.1.3 Interpreting results . 20

5.2 Implementation . 20

1

5.2.1 Running script . 21
5.2.2 Solving the prefix set comparison . 22

6 Comparison of existing generators 24
6.1 Comparison with real prefix set . 24

6.1.1 Basic properties of prefix sets . 24
6.1.2 Properties of trie . 26
6.1.3 Properties of prefix generators . 29

6.2 Summary . 30

7 Conclusion 32

Bibliography 33

2

Chapter 1

Introduction

Due to the upcoming vision of exhaustion of the IPv4 address space, it was decided that it is
necessary to find a replacement for this protocol at the beginning of the 1990s. The solution
was protocol IPv6 [7], which has much larger address space in comparison with IPv4 (2128
compared to 232). In the upcoming years, there were many new definitions of the protocol
[18][7], which made it easier to adopt. However, mostly due to the need of software and
hardware support of IPv6, there were other attempts to find a solution. The first solution
was humbler allocation policies and the second, most essential, was NAT (Network Address
Translation) which accounted to the massive delay of the full IPv6 deployment. [12]

Routing in the vast address space of IPv6 requires significantly more effective routing
algorithms than those used in the IPv4 networks. Moreover, the new protocol has also
larger hardware requirements. However, validation and testing of hardware and software
for this protocol is not completely possible because current IPv6 routing tables do not
contain enough addresses to fully test every aspect of routing algorithms in a large scale.
This problem can be however fixed by generating a prefix set that is large enough for the
testing of hardware devices and routing algorithms.

This bachelor’s thesis is dedicated to the comparison of individual prefix set generators
to real-life samples. The goal is to compare each generator with real prefix sets and identify
their advantages in comparison to other generators.

Chapter 2 presents protocol IPv6, reasons for its deployment and the hierarchy of ad-
dress allocation registrars. In Chapter 3 we describe three prefix set generators which
description is available. Chapter 4 introduces possible testing criteria divided into three
section. The first section proposes basic prefix set properties: prefix length distribution and
bit value distribution; the second section proposes trie properties: prefix nesting, branching
of trie and skew of trie. Finally, the third section proposes performance comparison of
generators. In the first section of Chapter 5 we proposed the means of testing using criteria
described in Chapter 4 and described the workflow of a tool for comparing IPv6 prefix set
generators. In second section of Chapter 5 we have described the implementation of the
tool. In the first section of Chapter 6, different generators are compared to each other and
existing prefix sets using the criteria first introduced in Chapter 4. In the second section of
Chapter 6 we summarize the results we have found in the first section. Chapter 7 contains
the conclusion of this bachelor’s thesis.

3

Chapter 2

Protocol IPv6

Protocol IPv6 is a communication protocol whose objective is to create unique identification
within the Internet network. Protocol IPv6 is supposed to completely replace current
protocol IPv4, which primarily suffers from small address space. [9]

2.1 Grounds for IPv6
The predecessor of protocol IPv6 is protocol IPv4. The IPv4 protocol has an address
space of 232 addresses. However, this address space also contains reserved blocks. At
the beginning of address space allocation, its capacity was not much taken into account.
This led to quick address space exhaustion in the first decade of IPv4 usage. Due to this
reason, it was necessary to redefine an allocation policy. It was finally decided to abandon
classful routing, which divided addresses into classes A, B, and C for unicast addresses.
These classes differ from one another in the length of an address mask (8, 16, and 24 bits).
This led to the introduction of classless routing, which allowed different prefix lengths.
Classless routing thus enabled allocation of the amount of addresses actually necessary for
different objects, instead of large chunks of the address space. Even though this solution
dramatically reduced the demand on the address space, the solution was still insufficient due
to the increasing number of new devices connected. This led to the need for a new protocol.
The new protocol was introduced in 1998 as protocol IPv6, which allows to address up to
2128 devices.

2.2 IPv6 address
In protocol IPv6, an address is represented by 128 bits. The address is noted in hexadecimal
and divided into eight segments. Each segment consists of four hexadecimal numbers, which
represent two octets. If we consider the length of IPv6 addresses, it is vital for us to shorten
the address as much as possible. There are several possible ways of shortening the address.
The first one is reducing the amount of leftmost zeros of each segment. For example, address

2001:0db8:0000:0100:0000:0000:2378:ca42

can be shortened like this

2001:db8:0:100:0:0:2378:ca42

4

An address in this format can be shortened even further. One or multiple segments con-
sisting of zeros can be replaced by two colons “::”, reducing the length of written address.
This can be however done only once per address, because it has to be possible to correctly
restore the original address for routing. The address can be thus minimized like this

2001:db8:0:100::2378:ca42

The minimization is usually done between the most octets composed of zeros or, if there
are two same blocks of zeros, from left.

2.3 Prefixes
An IPv6 address consists of two parts. The first part determines a network and the second
part determines a host inside the network. This division is determined by a network prefix,
which is written at the end of the address, after a slash. If we consider the address

2001:0db8:1280:1::0001/64

we can say that 2001:0db8:1280:1::/64 is a network identifier and the whole address
represents a particular host inside the network. Another interesting fact is that this prefix
can be a part of another network, thus prefix. This means that from a parent network
2001:0db8:1280::/48 there can be up to 216−1 subnetworks coexisting with our network.

Currently, we distinguish several reserved prefixes [18][7]:

∙ Unicast – 2000::/3 – currently the only prefix reserved for unicast

∙ Multicast – ff00::/8

∙ Link-local – fe80::/10

∙ ULA – fc00::/8 – unique local addresses, a prefix is augmented by 40 random bits
for the prefix length of /48, which minimizes the probability of conflict when joining
networks

∙ Loopback – ::1/128

∙ Not specified – ::/128

2.4 Protocol properties
Protocol IPv6 has many different properties in comparison to protocol IPv4. Some of these
properties give the new protocol advantages, which are described below.

2.4.1 Transparency

Due to a massive size of IPv6 address space, it is possible to route directly towards endpoint
devices without the need for Network Address Translation (NAT). The protocol also has
standardized network flow control via Quality of Service (QoS), as the protocol was already
developed with the concept of packet body encryption in mind. [12]

5

2.4.2 Security

The protocol has a built-in IPSec encryption and integrity check. Along with these, it is
also possible to use protocol Secure Neighbor Discovery (SEND), which serves to secure the
discovery of neighbor stations, upkeep of the information about accessibility and destination
paths. Therefore, mainly thanks to these advantages, protocol IPv6 is not prone to falsifies.
[1][12]

2.5 IPv6 address allocation
Currently, IPv6 address allocation consists of two parts. The first is based on prefix al-
location, which is controlled by registrars. The second part consists of the allocation of
endpoint addresses, which is usually done using auto configuration. To get an endpoint
address, it is however necessary to get the prefix of the network first.

2.5.1 Registrar hierarchy

Currently, there are five levels of registrars. By a registrar we mean an organization or insti-
tution, which focuses on address space allocation. The root registrar is organization IANA,
which releases address space blocks for individual Regional Internet Registries (RIRs).
These regional registrars then allocate parts of their address space to National Internet
Registries (NIRs) or Local Internet Registries (LIRs). NIRs are mostly common in Asia
and can also contain any number of LIRs. LIR and NIRs can further allocate address space
to Internet Service Providers (ISPs) or directly to Endpoint Users (EUs). The hierarchy is
illustrated in Figure 2.1.

IANA

AfriNIC ARIN APNIC LACNIC RIPE NCC

NIR

LIRLIR

EU

ISP

EUEUEUEU EU

ISPISP

Figure 2.1: Hierarchy of registrars [3].

6

2.5.2 Address allocation principles

As stated above, there is a whole hierarchy of registrars involved in address space allocation,
whose main purpose is to allocate address space in a reasonable manner. This is mainly to
limit the speed of address space exhaustion. This subsection contains the description and
policies of all registrars.

Internet Assigned Numbers Authority (IANA)
IANA is an organization which coordinates address space allocation. It usually allocates
the address space to a specific RIR. The principles of new address space allocation are [11]:

∙ One address block, which is assigned to a RIR, has the prefix length of /12.

∙ A RIR should get enough addresses that will last at least for 18 months.

∙ Each new RIR gets automatically one address block.

∙ A RIR can request a new address block if at least 50 percent of its current address
block is allocated.

∙ A RIR can request a new address block if it does not have enough addresses for the
upcoming 9 months.

The calculation of address space N, which is necessary for a RIR to operate without the
necessity of further address space allocation is

𝑁 = 𝐴 * 𝑃

where 𝐴 represents the average number of allocated addresses per month in the past
6 months and 𝑃 represents the length of a period in months for which the address space of
the RIR must endure without further reservation.

Regional Internet Registry (RIR)
RIRs are registrars which represent a large area, such as whole continents (Figure 2.2).
Currently, there are five RIRs. Each of them might have different allocation policies.

∙ AFRINIC – African Network Information Center

∙ APNIC – Asia-Pacific Network Information Centre

∙ ARIN – American Registry for Internet Numbers

∙ LACNIC – Latin America and Caribbean Network Information Centre

∙ RIPE NCC – Réseaux IP Européens Network Coordination Centre

7

Figure 2.2: Map of Regional Internet Registries [10].

As an example, we can consider the conditions of RIPE NCC [17], which also includes the
Czech Republic.

∙ The smallest allocable block is /32.

∙ To get the first allocation block, it is necessary for an organization to be a LIR or
present an allocation plan for the upcoming two years.

∙ For further address space allocation of /32 or larger, it is necessary for a registrar to
meet Host-Density Ration [6] 0,94 or larger, where

𝐻𝐷 −𝑅𝑎𝑡𝑖𝑜 =
𝑙𝑜𝑔(total allocations)

𝑙𝑜𝑔(maximum of possible allocations)

National Internet Registry (NIR)
NIRs usually maintain an address space for individual countries. However, they are cur-
rently used only in Asia. In case of APNIC, they work under the RIR and perform activities
for individual countries on behalf of the RIR. [2]

Local Internet Registry (LIR)
LIRs usually allocate an address space to EUs or ISPs. A LIR is usually a concrete ISP,
which allocates the address space to its EUs as required. Address blocks should be at least
of length /48. In some cases, it is however possible to allocate even smaller address block.
Nevertheless, it is not common, as it is simpler to allocate a larger address block than
recalculate the address space in case of later requirements. [16]

8

2.5.3 Endpoint address allocation

In protocol IPv6, automatic device configuration is an important feature, which can config-
ure an IP address without user intervention. Today, we recognize two approaches to setting
an IP address. The first one is stateful auto configuration, which is based on DHCP, and
the second one is stateless auto configuration, which uses a new approach that does not
need to communicate with other devices.

Stateful auto configuration
Stateful auto configuration uses DHCPv6, thus it can require user intervention in some
cases. A DHCPv6 server stores the list of devices and status information in order to figure
out the availability of each address. The DHCPv6 server sends an IP address, Gateway
address, prefix length, reservation period, and DNS servers.

DHCPv6 currently has three allocation modes:

∙ Dynamic – a client gets an IP address for a certain period, thus it has a specified time
of validity. However, the client can request IP address renovation at any time.

∙ Automatic – an IP address is allocated from a scope specified by an administrator.
This type of allocation does not include the reservation period and is permanent.

∙ Manual – a client specifies its IP address and informs the DHCPv6 server.

Stateless auto configuration
Stateless auto configuration (SLAAC) is a new way of IP address allocation that only
requires the /64 prefix of an address and the remaining 64 bits are filled using process
EUI-64 (Figure 2.3). This process uses the device’s MAC address, which is divided by two
octets filled by value FFFE. Finally, the seventh bit is set to one, stating that the IP address
comes from SLAAC. [5]

Figure 2.3: MAC address conversion to EUI-64 [15].

2.6 Reasons for IPv6 prefix set generation
Due to the size of an IPv6 address and the protocol’s address space, it is necessary to pay
much more attention to processing speed. It is also substantial to develop faster, more
efficient routing algorithms and new infrastructure. These reasons are obvious especially
when we use current routing algorithms in the IPv6 environment. While traversing through
such a large address space, the efficiency of the IPv4 routing algorithms is reduced. With
the increasing number of IPv6 addresses stored in routing tables, a necessity for more
effective routing algorithms will increase. [20]

9

This leads us to the fact that there are currently not enough allocated IPv6 addresses,
which would allow for testing the routing algorithms and infrastructure.

Currently, most allocated prefixes are of length /32 or /48. However, if we consider the
allocation policies of registrars, it is possible that the current state will not correspond to
the reality in the future. In the future, the majority of allocated prefixes will probably be
of the end length of /64.

Another problem is that only a small number of organizations publishes their routing
tables for research. Moreover, even those routing tables that are published might not
correspond to reality, since they might not be a sample large enough.

10

Chapter 3

Existing IPv6 prefix set generators

Even though there are not many IPv6 prefix set generators, we will mention at least those,
which description is available. This chapter describes how each generator works.

3.1 V6Gene
This generator [20] is based on the simulation of address block allocation. It generates new
prefixes from trie in order to simulate the allocation performed by all types of registrar. The
program works in three phases and the process flow of each phase is shown in Figure 3.1,
which is further described below. The flow diagram is divided into three sections. The red
section represents initiation, the green section represents generation and the blue section
represents outputting.

Load seed
prefix set

Validity
check

Set startup
configuration Generate SPT

Address allocation
simulation

Random
generation

Validity checkGeneration
satisfied?

Resulting
prefix set yes

no

Figure 3.1: Process flow of V6Gene

1. Initiation – In this phase the generator initializes all information based on an input
configuration and loads an input prefix set. Then it makes a validity check on the
input prefix set and removes duplicities. The validity check is done because of the
possibility of multiple prefix sets merged from different routing tables or different
paths to destination, which could lead to duplicities. Finally, it generates an initial
trie, also called Seed Prefix Trie (SPT).

11

2. Generating – This phase consists of two parallel processes. The first process simulates
address allocation from LIR. This is based on traversing the SPT. Whenever there
is a prefix list, the generator starts generating a specific number of prefixes, based
on prefix length distribution and prefix levels. All prefixes will start with the same
initial prefix. The second process is random generation. It simulates the allocation of
new, in the original prefix set not present, LIRs. This stage starts by generating the
LIR prefixes and then individual prefixes for each ISP. When this step is done, the
generator checks duplicities and IPv6 address integrity. This can lead to the deletion
of some addresses in which case the generator starts the generating cycle again until
the amount of generated prefixes matches specified numbers.

3. Outputting – This phase outputs the final prefix set in a valid format.

3.2 Non-random Generator
The Non-random Generator [19] expects similarities between the structure of IPv4 and IPv6
routing tables. For this reason, it tries to generate IPv6 prefix sets based on similarities
with existing IPv4 prefix sets. The key properties, according to this generator, are the
prefix length, the prefix value and the size of a routing table. The generator generates new
IPv6 prefixes in two steps, which are further described below. The first step, which reflects
prefix length distribution is highlighted in red. The second step, which reflects the prefix
value is highlighted in blue.

Load IPv4 prefix set

For each IPv4 prefix
allocate space twice

as large (for 8-bit
prefixes allocate 24-

bits)

Is this prefix
fourth in a row? Add or remove 1 bit

Start filling

Add AS numberOriginal IPv4
addressRandom generation

Resulting IPv6 prefix
set

Randomize bits
24, 25, 26

Load AS numbers

yes

no

Figure 3.2: Process flow of Non-Random Generator

1. Prefix length distribution – There is an assumption that IPv6 prefixes should be
twice as long as IPv4 prefixes. However, this will generate only even prefixes. In
real IPv4 prefix sets, it is observed that for each three even prefixes there is one odd.
The Non-random Generator achieves this by adding or removing one bit from every
fourth prefix. Due to the address space allocation policies, the generator also performs
recalculation of 8-bit IPv4 prefixes to 24-bit IPv6 prefixes.

12

2. The prefix value – The generator uses the number of Autonomous Systems (AS)
together with the IPv4 prefix because it is a suitable unique combination of 16-bit
number of AS together with the 32-bit IPv4 address. Finally, the generator fills the
remaining length of the prefix by random bits. Due to the structure of IPv4 prefix
sets, it is also ideal for appropriate bit distribution to generate bits between positions
24 and 26 randomly, which should increase address space efficiency.

3.3 IPv6 Table Generator
In contrast with the previous generator [13], this one focuses on generation based on real
IPv6 prefix sets, which the generator further expands. It notices that there are not many
similarities between the real-life allocation of IPv6 and IPv4 addresses. Instead, the gener-
ator uses static data based on real IPv6 prefix sets and generates the required number of
prefixes using probability. This means that the generated prefix set should correspond to
the original prefix set. The generation consists of two phases. The first phase aims at the
generation of new prefixes and the second phase aims at creating the resulting prefix set.
Figure 3.3 shows the process flow of this generator. The first phase is highlighted in red
and the second phase is highlighted in blue. The generator is further described below.

Store prefix

What prefix length to
generate

Resulting prefix set

Load static data for
prefix length

Duplicity checkGenerate prefix

exists?

generation
satisfied?

Start

yes

no

yes

no

Figure 3.3: Process flow of IPv6 Table Generator

1. The generator uses probability based on a pseudo-random number in interval [0; 100)
to determine the length of a generated prefix. Next, it decides what length to generate,
loads the static data, which correspond to the specified prefix length, and generates
the prefix based on pseudo-random numbers.

2. The second stage checks duplicities. If the prefix was not yet stored, the algorithm
stores the prefix and continues to the next one. If the prefix already exists, the
algorithm discards the prefix and restarts generation. Generation finishes when the
number of prefixes to be generated matches the amount of stored unique prefixes.

13

Chapter 4

Proposal of usable properties

The beginning of this chapter deals with IPv6 address and its properties, including tries.
The second part proposes additional tests specific for generators.

4.1 Basic properties of prefix sets
Prefix sets contain several similarities between each other. This is mostly due to the way
addresses are allocated (Chapter 2). Even though IPv6 addresses are noted in hexadecimal,
in computer world they are stored in binary. This means that we should try to understand
an address on the binary level and find similarities. The main similarities that we can notice
are in prefix length distribution and bit value distribution. [19] [13]

4.1.1 Prefix length distribution

IPv6 prefix sets consist of prefixes of various lengths. According to current address alloca-
tion principles mentioned in Chapter 2, we can expect mainly prefixes of lengths /32, /48
and /64 to be allocated. By using prefix generators, we are trying to get larger prefix sets
than those currently available. Therefore, we need to figure out a way of generating pre-
fixes that are as close to reality as possible. The prefix length distribution can be therefore
used as a simple comparison between generated prefixes and those we can expect in future.
Talking about the future, we should take into account that with an increasing number of
addresses the percentage representation of /32 addresses will be lower and will transfer to
/48 and later to /64 prefixes.

4.1.2 Bit value distribution

Each bit of IPv6 prefix can get one of two states. This is something we can study by
calculating the probabilities of ones and zeros at each bit. While looking at real prefix sets,
we can notice that the more sample bits of prefixes we get, the more balanced distribution of
zeros and ones we see. This is not currently true mainly for the first three bits because there
is only one 2000::/3 unicast address block released. Ignoring this fact, we can expect that
bits with most samples would approach balanced distribution while bits with less samples
would be extreme in terms of distribution.

14

4.2 Properties of trie
A prefix tree, also known as trie, is the basic data structure for storing a prefix set used
in the majority of routing tables. Trie is a binary tree meaning that there are at most two
children leading from one node. [20] [14]

In trie, prefixes are represented by a path to a node, which is different from binary tree,
where the data are stored inside of nodes. This means that trie cannot self-balance itself
without losing a stored value.

*

0

0

0

0

0 01

1

1

1

P1

P3 P2

P4P5P6P7

Prefixes:

P1: 1*
P2: 10*
P3: 01*
P4: 110*
P5: 100*
P6: 001*
P7: 000*

Figure 4.1: Example of a trie

Figure 4.1 shows the structure of trie. There are seven prefixes stored inside of the
trie, which are noted in the table. The root node itself does not represent any value and
is located at level 0. To simplify the description of storing values into trie we shall assume
that right edge represents binary one and the left edge represents binary zero.

In order to store prefix P1, we have to go from the root on the right edge to store leaf
P1. To store P2 we will go the same path as for P1 and continue on the left edge creating
a new leaf and making P1 a branch node. This way we can create trie shown in Figure 4.1.

Prefix lookup in a trie works similarly. Let us take an example prefix 2001::1, which
is also currently the only unicast address range released. Translated to binary it starts as
0010*. A search algorithm starts at the root node and descends on the left edge. From this
position, it continues once again via the left edge and finally by the right edge. Since this
is the best match we can get for said address, the search algorithm stops.

There are several properties of tries that can be observed. As we can see, there are
some nested prefixes. Trie, as stated above, cannot be balanced and there are different
probabilities of branching at different levels.

4.2.1 Prefix nesting

One of the properties of prefixes is nesting. We can observe this when allocating prefixes
from regional registry’s /32 prefix to local registry’s /48 prefix. LIR’s prefix is therefore
nested into RIR’s prefix. Prefix nesting thus occurs when several prefixes are stored on the
same path of trie. [4]

15

In Figure 4.1 we can see several nested prefixes: 1*, 10*, 100*, and 110*. In other
words, prefix 1* contains other prefixes and generalizes them, hence we say this prefix is
shorter and matches to more addresses than any other prefix nested inside it.

For testing purposes, we will take into consideration only nesting values of leaf nodes.
The path to prefix 100* in the example, which is a leaf node, has prefix nesting of 3, while
prefix 110* has nesting of 2.

4.2.2 Branching of trie

Branching occurs when a trie node has more than one child. Trie is usually not balanced,
thus branching of trie is not guaranteed. We can however talk about branching probability
at different levels.

100%

100%

33%

Figure 4.2: Probability of branching

To get an idea about structure of said trie, we need to know how often it can branch
and more precisely at what levels the branching occurs most. This is something we cannot
notice while talking about probability of bit positions described above.

In the example in Figure 4.2 the red nodes represent non-branching nodes and the
green ones represent branching nodes. We can see that the closer to the root the more we
can expect branching. This is something that differs among prefix sets and can affect the
performance of search algorithms.

To calculate branching probability, we take into consideration only nodes with at least
one successor. For example, at level two in Figure 4.2 there are three non-leaf nodes and one
leaf. Since we are calculating branching probability for 2-children nodes, we use Equation
4.1

𝑏𝑟𝑎𝑛𝑐ℎ𝑖𝑛𝑔 =
2-children nodes
all non-leaf nodes * 100 (4.1)

Hence, the example at level two would have branching probability of 33% for 2-children
nodes.

16

4.2.3 Skew of trie

It is desired to have balanced trees for optimal searching in binary trees. While a classic
binary tree can balance itself, in trie a path represents a prefix, thus cannot be rebalanced.
However, in a trie we can calculate the weight of each subtree to calculate the skew of
branching nodes. [14]

0,25

0,5

0

0,25

0,5 0,5

0

Figure 4.3: Calculated skew for nodes and levels

We can only calculate skew for branching nodes and generalize the skew by level. To
calculate the skew of the root node in Figure 4.3, we can use Equation 4.2

𝑠𝑘𝑒𝑤 = 1− weight of lighter subtree
weight of heavier subtree (4.2)

In this equation lighter subtree represents the subtree with less prefix nodes in contrast
with a heavier subtree, which contains more prefix nodes. The result would be:

𝑠𝑘𝑒𝑤 = 1− 3

4
= 0, 25

For skew at selected level we then sum all skews and divide it by the number of branching
nodes.

4.3 Properties of prefix generators
While other properties focus mainly on IPv6 representation, there are also another aspects
of generating prefixes. Mainly the number of duplicates in generated samples, as there are
no duplicates in forwarding tables. The second aspect are hardware requirements required
by the generator for prefix set generation.

4.3.1 Duplicates

Although raw data from routing tables contain duplicates, when we consider forwarding
tables where only the best paths are stored, there are no duplicates. Prefix sets that we

17

want to be generated therefore do not need duplicates and we might consider them as
redundant data. It should also be faster to proceed with tests if we remove all unnecessary
data.

4.3.2 Hardware requirements

Sometimes we might want to generate data in timely manner due to computer time. Other
times we are generating large sets of data without much RAM. For these reasons, it is
also important to know other aspects of said generators than only the generated data. We
propose to gather RAM consumption, disk R/W operations and CPU time as a simple way
to determine the positives and negatives of each generator hardware requirements. These
data can also be later compared between different generators or runs to gather an average.

18

Chapter 5

Implementation of prefix set
comparison

This chapter consists of two subchapters. The first one is proposed way, which proposes
the ways of comparison of IPv6 prefix sets and the structure of our script for comparison.
The second subchapter consists of the implementation of the script and the possible ways
of run.

5.1 Proposed way
This subchapter aims at the comparison of generators in contrast with reality.

5.1.1 Optimal testing

As described earlier, generators should follow registrar policies. This means that we can
expect similarities to some extent between generated sets and reality. Even though this is
true, reality might be slightly different in comparison to registrar policies, but still close.
This could be for example due to a local anomaly. However, even in this case we should
still aim to get a sample as close to our observed reality as possible.

To test this, we cannot predict the future. Instead, we can use prefix sets from the
past and generate new prefix sets which we can compare with current prefix sets. However,
for this we need data from routing tables that go far enough in the past, because we need
samples from the same routing table to compare such samples. Using this technique, we
can study the difference between current original set and its generated version from the
past.

5.1.2 Operation of script

The script can be divided into three sections of operation shown in Figure 5.1.
The first section is highlighted in red and focuses on gathering statistic data about prefix

sets, which either already exist or should be generated by a generator. If we want to first
generate a new prefix set via this script, it will start by capturing the hardware resources
taken by the generator. After that we have to decide, which group of tests we want to test
our prefix set on and decide whether or not we also want graphs for each test.

The second section consists of operations over existing results. In this case, the script
does not need to recalculate each stat from the original prefix set. Instead, it uses already

19

calculated results, which are stored. These data can be used later for further manipulation,
such as graphs. We can also use these data to calculate RMSE between samples or merge
multiple samples in order to increase comparison accuracy. In case of RMSE, we can also
print graphs.

Finally, the last section consists of erasing all data gathered in order to start a new
series of tests.

Existing prefix set

RMSE

Merging results

Clean

Start Existing results

Prefix set generation

Finish

Generate graphs

What prefix stats to
gather (trie/basic)

What tests to
include (trie/basic)

Gather generation
stats

Figure 5.1: Script flow chart

5.1.3 Interpreting results

If we consider the size of routing tables, it is obvious that we do not need to work with exact
numbers for each bit. Instead, we need to know the percentage representation throughout
the sample set. This way we can also compare smaller sets with larger ones. This works
for basic results of sets; however, if we want to compare such samples between each other
or in comparison to the original prefix set, it is better to use Root Mean Square Error
(RMSE). The RMSE is shown in Equation 5.1, where 𝑦 represents the original prefix set
and 𝑦𝑡 represents the generated prefix set for 𝑛 samples.

RMSE shows us the average difference between the generated set and the original.
In other words, it measures the error between these sets. We can even merge multiple
generated sets and compare these to the original sample, which better corresponds to the
generator. [8]

𝑅𝑀𝑆𝐸 =

√︃∑︀𝑛
𝑡=1 (𝑦 − 𝑦𝑡)

2

𝑛
(5.1)

5.2 Implementation
Each test, except for prefix length distribution, requires translating an IPv6 address into
binary. This means that we should first translate our addresses into binary for simpler use.

There were several approached problems during implementation. The first was to find
an effective way of working with a large number of IPv6 prefixes. The original idea was to

20

create separate scripts for each test described in Chapter 4 but mainly due to the need to
use the same data in each script, we decided to create one larger script, which partly divides
the tests and reduces overall time and allocations. Therefore, we have divided two basic
tests into separate functions, while the trie tests are calculated simultaneously. Another
problem occurred when we exported prefix sets from routing tables as there were many
duplicates. Followed by the need to translate each IPv6 prefix from hexadecimal to binary
for every script. It was decided to first translate all prefixes into binary and then remove
duplicities to remove any duplicates hidden in different IPv6 representation and store them
back into hexadecimal for better readability.

Based on Chapter 2 where we explain prefix allocation from registrars, it was expected
that only prefixes of length 64 and shorter would get into routing tables. While looking at
real prefix sets, we can however see this is not true. Based on the total number of prefixes
in a set, there can be up to several hundred prefixes longer than 64. These prefixes might
not be significant for a set of one million prefixes. However, it is still a property that might
be missing in generators that are strictly based on allocation policies of generators. Due
to this reason, we have decided to calculate the tests to length of 128. However, in graphs
these will not be taken into account.

As noted earlier, the first idea was to create several independent scripts that would
perform tests on generated prefix sets. At first, prefix length distribution and probability
of zero were written this way. However, it was soon obvious that creating a series of
independent tests would take a lot of unnecessary resources. Since the first two basic tests
are not much time consuming, they were included into a larger script.

Tests on trie were another challenge. Since we could not use a simple binary tree,
because in tries a path represents a value, we had to create our own tree that would allow
us to fill it the way we needed. In this scenario, it was soon noticeable that we have
decided to go the right way of trying to generalize the trie tests as much as possible because
otherwise it would take up to four times longer to get all the information for each test.
Eventually, it was necessary to pass the trie twice in order to retrieve all trie information
about the prefix set. It was necessary to go at least once from the root to leaf nodes and
then recursively level by level from bottom of trie to the root.

5.2.1 Running script

The final script has several ways of operation. In order to further understand each switch,
we can refer to Figure 5.2, which shows switches described in this section in the flow diagram
of the script. There are two ways of initializing a prefix set; either by giving the script an
already existing prefix set by the –input=”sample” switch, or by starting a generator by
the script using the –gen=”run sample generator” switch to first generate a new prefix
set. In order to gather hardware requirements information about prefix set generation, it
is necessary to include the –r switch. In order to start tests on a specified prefix set, it is
necessary to specify which prefix set properties should be tested. For basic tests containing
the probability of zero, prefix length distribution, and the number of duplicates in a sample
use the -b switch and for tests on trie add switch -t. To specify the name of a said test, it
is possible to add a name using switch –name=”sample”.

21

Existing prefix set

RMSE

Merging results

Clean

Start Existing results

Prefix set generation

Finish

Generate graphs

What prefix stats to
gather (trie/basic)

What tests to
include (trie/basic)

Gather generation stats

--input

--gen

--rmse

-m

-clean

-b, -t

-b, -t

-g, -e, -png

-r

Figure 5.2: Switches in the script

It is currently not possible to make the script run a generator multiple times. Instead,
to get average samples, it is necessary to start the generator manually multiple times either
independently or via the script. It is then possible to merge multiple tests by specifying
their IDs using the -m=”id,id” switch. Such a sample can be now used in RMSE.

To calculate root mean square error, it is necessary to have two finished test sam-
ples, which were first calculated for the same test ranges (either basic/trie or both). It is
then possible to calculate RMSE using switch –rmse=”source_id, generated_id”, where
source_id represents the original prefix set and generated_id represents either one prefix
set or a series of prefix sets that were first merged using the -m switch. After that it is
necessary to specify whether to calculate basic or trie tests using -b and -t switches.

We can generate graphs right after finishing tests on a prefix set. To do this, we
need to specify one of these switches -g, -g=”id,id” for classic graphs, where the first
switch takes the last two tests and the second one takes either one or two specified tests.
Another possible switches are -e, -e=”id,id”. These generate graphs for tests with already
calculated RMSE. Finally, by default graphs are generated in the .eps format. It is also
possible to generate graphs in the .png format by specifying switch –png.

5.2.2 Solving the prefix set comparison

The script starts by checking used switches, whether or not they are compatible with each
other. After that it sets run ID, which will be later used to store the results and as a
reference in case of use in graphs.

As noted earlier, there are two ways of initializing a prefix set, either by the –input
or –gen switch. If we decide to use the –gen switch, then the script starts the generator
specified in the command line and stores information about its run so it can later be used
for comparison between different generators. After that, the script captures the output of
the generator, which will be used as a generated prefix set.

The provided prefix set is then translated from IPv6 notation to binary and cut by the
prefix length. After this transformation, it is now easy to get the number of duplicates
and remove them as no prefix is hidden behind different IPv6 addresses with the same

22

prefix length. Such prefix set can now be processed faster for each test since there are no
duplicates anymore.

As stated above, the probability of zero and prefix length distribution are calculated
separately. These tests start with an already filtered prefix set from the previous step and
create output files containing statistics about said properties. Trie tests are similar. At
first, the filtered prefix set is loaded into a binary tree-like structure. With filled trie, all
information for skew, branching and nesting are now calculated through two passes via the
trie. The first from the root node to bottom and the second vice versa. Finally, all results
are stored similarly as in the basic tests.

Root mean square error requires a reference sample and a sample to which we want to
compare. First of all, it needs to know which tests to compare. This is set by the -b and
-t switches. Then it compares the original sample with one or multiple samples based on
the state of the ID. The ID can represent multiple samples if they were first merged by the
-m switch. If the original sample contained less prefixes, it is possible to vary more at lower
bits. These will be temporarily filled with zeros for comparison and taken into account only
if they occur in the generated sample.

Currently, graphs are done via gnuplot. By default, it is possible to print one sample
in a graph or compare two samples with each other. If we need to compare more than two
samples in one graph, it is necessary to alter a gnuplot script.

23

Chapter 6

Comparison of existing generators

Even though in Chapter 3 we were describing three generators, currently there are only
two of them available. In this chapter, we will compare all these generators against a real
prefix set using the current-past window described in Chapter 5. The structure of Section
6.1 corresponds to the one of Chapter 4. Section 6.2 summarizes this chapter.

6.1 Comparison with real prefix set
In this section, we will compare the prefix set generation of both generators based on a
prefix set from year 2013 consisting of approximately 13 thousand unique values against a
prefix set from year 2018 consisting of almost 50 thousand unique values. With this, we aim
to show how accurate these generators are at predicting the course of address allocation.

In order to have comparable prefix sets, we aim to generate prefix sets with approxi-
mately 50 thousand prefixes. However, this is not possible for the nonRandom generator,
which generates as many prefixes as the input IPv4 prefix set consists of. To compensate
this flaw, we run a sampling script over the IPv4 prefix set, which randomly selects 50
thousand prefixes that are then used. This is done multiple times in order to maximize the
accuracy.

Each graph shown in this section is in the “RMSE format“. This means that the
vertical axis represents the Root Mean Square Error calculated from multiple runs of these
generators for different bits and trie levels shown on the horizontal axis.

6.1.1 Basic properties of prefix sets

This section evaluates the two key properties that both generators use while generating
their output prefix sets. These properties were described in detail in Chapter 4.

Prefix length distribution

As we can see in Figure 6.1, both generators have similar results with respect to prefix length
distribution. However, the error for both generators is based on different data composition.

The NonRandom generator starts from an IPv4 prefix set and doubles the size of every
prefix as described in Chapter 2. The address space of protocol IPv4 is already close to
exhaustion, which means that the prefix length distribution is skewed towards longer pre-
fixes. This is what we see in Figure 6.1, where the error for prefix length /32 is caused by
more existing prefixes longer than prefix /32 (i.e., longer than prefix /16 in the original

24

0

0.05

0.1

0.15

0.2

0.25

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64

R
M

S
E

Trie depth

IPv6TableGen 2013
NonRandomGen 2013

Figure 6.1: Comparison of generated prefix sets on prefix length distribution using RMSE

IPv4 prefix set) in comparison to the target prefix set. In Figure 6.2 we can see the prefix
length distribution of an IPv6 prefix set generated by the NonRandom generator. Consid-
ering prefix length doubling by the NonRandom generator, the prefix length distribution
corresponds to that of an IPv4 prefix set. This means there are almost no prefixes longer
than /48 in the generated IPv6 prefix set and the number of prefixes of length /32 is min-
imal. According to current allocation policies, this could reflect the near future because of
a shift from /32 prefixes to /48 prefixes (see the prefix set from year 2013, represented by
the output of the IPv6Table generator, and the original prefix set from year 2018 in Figure
6.2). However, the generator does not count with border prefix lengths of registrar ranges
described in Chapter 2 such as RIR range between prefix /32 and /48, which results in
larger error for near prefix lengths.

The IPv6Table generator uses an IPv6 prefix set and generates the output prefix set
using the same prefix length distribution. As we can see in Figure 6.1, the error for prefix
length /32 is almost the same as for the NonRandom generator. However, in Figure 6.2 we
can in fact see that the error has different origin. This means that with larger prefix sets
the error would most likely increase.

In Figure 6.2 we can notice a difference between the prefix set generated by the IPv6Table
generator according to the prefix set from year 2013 and the original prefix set from year
2018, which corresponds to the current allocation policies. There is a noticeable shift from
the prefix length of /32 to prefixes between length /32 and /48 that we can describe as
the first stage of IPv6 adaptation. In the end, this stage should end similarly as the prefix
set generated by the NonRandom generator. Eventually, in the second stage the length of
the majority of prefixes will shift to /64. We can already notice the beginning of this stage
in the original prefix set from year 2018.

25

0

10

20

30

40

50

60

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64

D
is

tri
bu

tio
n

Trie depth

IPv6Original 2018
IPv6TableGen 2013

NonRandomGen 2013

Figure 6.2: Comparison of prefix length distribution of a real IPv6 prefix set and two IPv6
prefix sets that were generated according to prefix sets from year 2013

If we consider the current allocation policies and what we have observed in the previous
paragraph, the V6Gene generator should potentially best reflect the course of future IPv6
address allocations. Nevertheless, its implementation is currently not publicly available.

Bit value distribution

Figure 6.3 shows the bit value distribution at each bit. If we consider the bit value as
another important aspect for the NonRandom generator, we might assume its generation
process to be quite random at some bits. However, the problem is due to the probability
of zero of the original IPv4 prefix set and AS numbers, which are different when compared
to IPv6 prefix sets. On the other hand, the IPv6Table generator shows a mild error from
the original prefix set.

Prefix sets generated according to a prefix set from year 2018 almost copy those based on
the original prefix set from 2013. The prefix set from the IPv6Table generator has smaller
error while the prefix set from the NonRandom generator remains the same. However, in
case of larger prefix sets this error might change as the bit value distribution could converge
to fifty percent in the future, as described in Chapter 4.

6.1.2 Properties of trie

This section offers another view on the prefix set generation. This time, we will consider
the way data are organized in trie. Trie tests might better reflect the inherent structure of
data in larger samples where trie is large. These tests are further described in Chapter 4.

26

0

0.1

0.2

0.3

0.4

0.5

0.6

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64

R
M

S
E

Trie depth

IPv6TableGen 2013
NonRandomGen 2013

Figure 6.3: Comparison of generated prefix sets on bit value distribution using RMSE

Prefix nesting

According to Figure 6.4, both generators almost exactly correspond to the prefix nesting
of the target prefix set. This is partly due to the size of the prefix set. More nesting occurs
when there are many prefixes in the set.

Branching of trie

Figure 6.5 depicts branching on individual levels of trie. In this case, difference from the
original prefix set occurs mostly at the first levels of trie. While the NonRandom generator
has significantly larger branching at these levels, the original prefix set does not branch at
all at these levels. In case of the IPv6Table generator the prefix set sometimes branches
also in the root node. Considering the current allocation policies, which allocate only one
unicast prefix of length three, the V6Gene generator should not branch prematurely since
its main goal is to expand already existing prefixes in order to simulate allocation from
individual registrars.

Skew of trie

According to skew in Figure 6.6, both generators have similar results. Although the Non-
Random generator has slightly larger skew at the first bits, it is not significant. However,
skew might change in larger prefix sets where trie is more populated.

27

0

0.005

0.01

0.015

0.02

0.025

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

R
M

S
E

Prefix nesting

IPv6TableGen 2013
NonRandomGen 2013

Figure 6.4: Comparison of generated prefix sets on prefix nesting using RMSE

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64

R
M

S
E

Trie depth

IPv6TableGen 2013
NonRandomGen 2013

Figure 6.5: Comparison of generated prefix sets on branching using RMSE

28

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64

R
M

S
E

Trie depth

IPv6TableGen 2013
NonRandomGen 2013

Figure 6.6: Comparison of generated prefix sets on skew using RMSE

Prefix set Total number of duplicates
IPv6Table 2013 0
nonRandom 2013 4

Table 6.1: The number of duplicates

6.1.3 Properties of prefix generators

This section aims to evaluate the effectivity of the generators. These tests are described in
more details in Chapter 4.

Duplicates

Table 6.1 depicts the number of duplicates in generated prefix sets. It is also necessary to
remind that the NonRandom generator only expands the original IPv4 prefix set. For this
reason, the number of duplicates greatly depends on the original prefix set used for prefix
set generation. In our case we first remove the duplicates from the original IPv4 prefix
set. If the original prefix set comes from a routing table, the generator should first remove
duplicates in order to reduce the generation time.

Hardware requirements

In order to better illustrate hardware requirements, we have created the radar graph shown
in Figure 6.7, which compares both generators. In this graph, 100 % represents the gener-
ator, which has worse results per prefix for specified criteria. In this case, the IPv6Table

29

0 20 40 60 80 1000 20 40 60 80 100

Time

Memory

Disk

TableGen13
nonRandom2013

Figure 6.7: Hardware requirements

generator has larger memory and processor time requirements, while the NonRandom gen-
erator has larger disk requirements.

6.2 Summary
According to the basic tests, neither generator really takes into account the currently active
allocation policies. While the IPv6Table generator simply reflects the current status and will
not be accurate as the routing table grows, the NonRandom generator might be accurate for
a short period of time in the future. However, this means that we cannot use this generator
in order to generate prefix sets larger than already existing IPv4 prefix sets, which is one of
the main reasons of IPv6 adoption. On the other hand, the V6Gene generator is proposed
to work according to the allocation policies, thus better reflect the future prefix sets.

The trie properties tests have shown that skew and nesting mostly correspond to the
target prefix set in this case. Nesting corresponds due to the size of the prefix set and
allocation policies, which are almost the same for both IPv4 and IPv6. Skew has a small
error due to a balanced prefix layout throughout trie in comparison with the target prefix
set. Finally, branching varies greatly even in these small prefix sets. For the NonRandom
generator, this is possibly due to the layout of bits in AS numbers and IPv4 addresses. In
case of the IPv6Table generator, it could be the property of a used pseudo-random number
generator. Theoretically, this might mean that the used pseudo-random number generation
better corresponds to the reality of IPv6 prefix sets than generation based on existing IPv4
prefix sets. Nonetheless, since the V6Gene generator generates most of its prefixes from
already existing ones, it should have minimal RMSE at the first levels of trie in contrast
with both generators.

30

Based on the properties of prefix set generators, we can say that the IPv6Table generator
is more effective in terms of disk usage and does not generate any duplicities. On the other
hand, the NonRandom generator requires less processor time per prefix and less memory.

Neither of these two generators correspond with all series of tests without large error.
If we want to get a prefix set as close to reality as possible, we might want to implement
the V6Gene generator first in order to compare it with other generators. According to
the description of all three generators and the results of those two available, the V6Gene
generator should have the most accurate results.

31

Chapter 7

Conclusion

The main contribution of this bachelor’s thesis is a script, which implements a series of
tests for comparing IPv6 prefix set generators. In order to demonstrate the usability of this
script, we have utilized it for comparing the currently available generators.

In Chapter 2, we have described the IPv6 protocol including current allocation policies
for new prefixes and addresses in order to better understand the following chapters. In
Chapter 3, we have described three IPv6 prefix set generators and presented flow diagrams
describing each of them to better understand the generation of new prefixes.

In Chapter 4, we have proposed the set of testing criteria, which target the criteria
used by the generators for the generation of new prefixes as well as the effectivity of each
generator. These criteria are divided into three groups. The first one comprises basic prop-
erties, the second focuses on trie properties, and the final group consists of the performance
properties of the generators. In the first section of Chapter 5, we have proposed the way of
testing said generators and a script used for such testing. In the second section of Chapter
5, we have summarized the implementation of our script and described the way it operates.
Finally, in the last chapter we have successfully compared two available generators using
our script in order to determine which one of them is more accurate in terms of prefix
set generation. The conclusion based on our tests is that both tested generators contain
large error for some tests in comparison to real prefix set as described in the last section
of Chapter 6. As observed in Chapter 6, the NonRandom generator might generate almost
accurate results for a specific size of prefix set. However, based on our observation and
description of the V6Gene generator, it is the only generator out of those described in this
thesis that should generate a prefix set that is close to real prefix set.

In the future, it could be useful to further expand the set of tests and experiment with
larger prefix sets in order to observe if the results gathered by these tests would be accurate
in the future. It is also useful to optimize the script in order to work more effectively.
Finally, if the V6Gene generator becomes available, it would be interesting to compare it
with the other two generators. In order to determine how accurate were our presumptions
described in Chapter 6.

32

Bibliography

[1] Arkko, J.; Ericsson, E.; Kempf, J.: SEcure Neighbor Discovery. Accessed: 2017-01-25.
Retrieved from: https://tools.ietf.org/html/rfc3971

[2] Asia-Pacific Network Information Centre: National Internet Registries. Accessed:
2016-12-25.
Retrieved from: https://www.apnic.net/about-APNIC/organization/apnics-
region/national-internet-registries

[3] Asia-Pacific Network Information Centre: Understanding address management
hierarchy. Accessed: 2017-02-01.
Retrieved from: https://www.apnic.net/manage-ip/manage-resources/address-
management-objectives/management-hierarchy

[4] Baccala, B.: Nested prefixes. Accessed: 2018-05-14.
Retrieved from: http://www.freesoft.org/CIE/Course/Subnet/9a.htm

[5] Das, K.: Stateless Auto Configuration. Accessed: 2017-01-23.
Retrieved from:
http://ipv6.com/articles/general/Stateless-Auto-Configuration.htm

[6] Durand, A.; Huitema, C.: The Host-Density Ratio for Address Assignment
Efficiency: An update on the H ratio. Request for Comments: 3194. November 2001.
Accessed: 2017-02-25.
Retrieved from: https://tools.ietf.org/html/rfc3194

[7] Hinden, R.; Deering, S.: IP Version 6 Addressing Architecture. Request for
Comments: 4291. February 2006. Accessed: 2017-02-25.
Retrieved from: https://tools.ietf.org/html/rfc4291

[8] Holmes, S.: RMS Error. Accessed: 2018-05-14.
Retrieved from:
http://statweb.stanford.edu/~susan/courses/s60/split/node60.html

[9] Huston, G.; Lord, A.; Smith, P.: IPv6 Address Prefix Reserved for Documentation.
Request for Comments: 3849. July 2004. Accessed: 2017-02-25.
Retrieved from: https://tools.ietf.org/html/rfc3849

[10] Internet Assigned Numbers Authority: Number Resources. Accessed: 2017-02-01.
Retrieved from: https://www.iana.org/numbers

[11] Internet Corporation for Assigned Names and Numbers: Internet Assigned Numbers
Authority (IANA) Policy For Allocation of IPv6 Blocks to Regional Internet

33

https://tools.ietf.org/html/rfc3971
https://www.apnic.net/about-APNIC/organization/apnics-region/national-internet-registries
https://www.apnic.net/about-APNIC/organization/apnics-region/national-internet-registries
https://www.apnic.net/manage-ip/manage-resources/address-management-objectives/management-hierarchy
https://www.apnic.net/manage-ip/manage-resources/address-management-objectives/management-hierarchy
http://www.freesoft.org/CIE/Course/Subnet/9a.htm
http://ipv6.com/articles/general/Stateless-Auto-Configuration.htm
https://tools.ietf.org/html/rfc3194
https://tools.ietf.org/html/rfc4291
http://statweb.stanford.edu/~susan/courses/s60/split/node60.html
https://tools.ietf.org/html/rfc3849
https://www.iana.org/numbers

Registries. February 2012. Accessed: 2016-12-25.
Retrieved from: https:
//www.icann.org/resources/pages/allocation-ipv6-rirs-2012-02-25-en

[12] IPv6 Now Pty Ltd: Reasons for IPv6. Accessed: 2017-01-25.
Retrieved from: http://ipv6now.com.au/primers/IPv6Reasons.php

[13] Lorenc, M.: Generator of IPv6 tables. Bachelor’s thesis. Brno University of
Technology, Faculty of Information Technology. 2013. Accessed: 2016-12-25.
Retrieved from: http://www.fit.vutbr.cz/study/DP/BP.php?id=15157

[14] Matoušek, J.; Antichi, G.; Lučanský, A.; et al.: ClassBench-ng: Recasting
ClassBench after a Decade of Network Evolution. In 2017 ACM/IEEE Symposium on
Architectures for Networking and Communications Systems (ANCS). May 2017.
ISBN 9781509063864. pp. 204–216. doi:10.1109/ANCS.2017.33.

[15] Mro: Ipv6 eui64. Accessed: 2018-05-14.
Retrieved from: https://en.wikipedia.org/wiki/File:Ipv6_eui64.svg

[16] Réseaux IP Européens Network Coordination Centre: What is a Local Internet
Registry (LIR)? Accessed: 2016-12-25.
Retrieved from: https:
//www.ripe.net/manage-ips-and-asns/resource-management/faq/independent-
resources/phase-three/what-is-a-local-internet-registry-lir

[17] Réseaux IP Européens Network Coordination Centre: IPv6 Address Allocation and
Assignment Policy. October 2015. Accessed: 2016-12-25.
Retrieved from: https://www.ripe.net/publications/docs/ripe-655

[18] de Velde, G. V.; Popoviciu, C.; Chown, T.; et al.: IPv6 Unicast Address Assignment
Considerations. Request for Comments: 5375. December 2008. Accessed: 2017-02-25.
Retrieved from: https://tools.ietf.org/html/rfc5375

[19] Wang, M.; Deering, S.; Hain, T.; et al.: Non-random generator for IPv6 tables. In
Proceedings. 12th Annual IEEE Symposium on High Performance Interconnects. Aug
2004. pp. 35–40. doi:10.1109/CONECT.2004.1375198.

[20] Zheng, K.; Liu, B.: V6Gene: a scalable IPv6 prefix generator for route lookup
algorithm benchmark. In 20th International Conference on Advanced Information
Networking and Applications - Volume 1 (AINA’06), vol. 1. April 2006. ISSN
1550-445X. pp. 1–6. doi:10.1109/AINA.2006.344.

34

https://www.icann.org/resources/pages/allocation-ipv6-rirs-2012-02-25-en
https://www.icann.org/resources/pages/allocation-ipv6-rirs-2012-02-25-en
http://ipv6now.com.au/primers/IPv6Reasons.php
http://www.fit.vutbr.cz/study/DP/BP.php?id=15157
https://en.wikipedia.org/wiki/File:Ipv6_eui64.svg
https://www.ripe.net/manage-ips-and-asns/resource-management/faq/independent-resources/phase-three/what-is-a-local-internet-registry-lir
https://www.ripe.net/manage-ips-and-asns/resource-management/faq/independent-resources/phase-three/what-is-a-local-internet-registry-lir
https://www.ripe.net/manage-ips-and-asns/resource-management/faq/independent-resources/phase-three/what-is-a-local-internet-registry-lir
https://www.ripe.net/publications/docs/ripe-655
https://tools.ietf.org/html/rfc5375

	Introduction
	Protocol IPv6
	Grounds for IPv6
	IPv6 address
	Prefixes
	Protocol properties
	Transparency
	Security

	IPv6 address allocation
	Registrar hierarchy
	Address allocation principles
	Endpoint address allocation

	Reasons for IPv6 prefix set generation

	Existing IPv6 prefix set generators
	V6Gene
	Non-random Generator
	IPv6 Table Generator

	Proposal of usable properties
	Basic properties of prefix sets
	Prefix length distribution
	Bit value distribution

	Properties of trie
	Prefix nesting
	Branching of trie
	Skew of trie

	Properties of prefix generators
	Duplicates
	Hardware requirements

	Implementation of prefix set comparison
	Proposed way
	Optimal testing
	Operation of script
	Interpreting results

	Implementation
	Running script
	Solving the prefix set comparison

	Comparison of existing generators
	Comparison with real prefix set
	Basic properties of prefix sets
	Properties of trie
	Properties of prefix generators

	Summary

	Conclusion
	Bibliography

