BRNO UNIVERSITY OF TECHNOLOGY

VYSOKE UCENIi TECHNICKE V BRNE

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMACNICH TECHNOLOGII

DEPARTMENT OF COMPUTER SYSTEMS
USTAV POCITACOVYCH SYSTEMU

COMPARISON OF IPV6 PREFIX SET GENERATORS

SROVNANI GENERATORU IPV6 PREFIXOVYCH SAD

BACHELOR'’S THESIS
BAKALARSKA PRACE

AUTHOR DOMINIK VASEK
AUTOR PRACE
SUPERVISOR Ing. JIRi MATOUSEK

VEDOUCI PRACE

BRNO 2018

Zadéani bakalafské prace/20801/2017/xvasek06
Vysoké uceni technické v Brné - Fakulta informaénich technologii
Ustav pocitacovych systémd Akademicky rok 2017/2018
Zadani bakalarskeé prace

Reditel: Vas$ek Dominik

Obor: Informadni technologie

Téma: Srovnani generatord IPv6 prefixovych sad
Comparison of IPv6 Prefix Set Generators

Kategorie: PocitaCové sité

Pokyny:
1. Seznamte se se sitovym protokolem IPv6 a s dlvody pro generovéni sad prefixt IPv6 adres.
2. Nastudujte existujici generatory prefix IPv6 adres.
3. Navrhnéte vhodnou mnozinu kritérii vyuzitelnych k porovnani vlastnosti existujicich generatord.
4. Implementujte sadu skriptd slouZicich k porovnani existujicich generatord podle navrzenych
kritérii.
5. Provedte porovnani existujicich generator(a diskutujte dosazené vysledky.

Literatura:

* M. Lorenc: Generator IPv6 tabulek, bakalafska prace, Brno, FIT VUT v Brné&, 2013.

e K. Zheng and B. Liu, "V6Gene: A Scalable IPv6 Prefix Generator for Route Lookup Algorithm
Benchmark," in Proc. of the 20th International Conference on Advanced Information Networking
and Applications. IEEE Computer Society, 2006, pp. 147-152, ISBN 0-7695-2466-4-01.

* M. Wang, S. Deering, T. Hain, and L. Dunn, "Non-random Generator for IPv6 Tables," in Proc. of
the 12th Annual IEEE Symposium on High Performance Interconnects. IEEE Computer Society,
2004, pp. 35-40, ISBN 0-7803-8686-8.

Podrobné zavazné pokyny pro vypracovani bakalafské prace naleznete na adrese
http://www fit.vutbr.cz/info/szz/

Technickd zprava bakalafské prace musi obsahovat formulaci cile, charakteristiku sou¢asného stavu, teoretickd a odborna
vychodiska FeSenych problému a specifikaci etap (20 az 30% celkového rozsahu technické zpravy).

Student odevzda v jednom vytisku technickou zpravu a v elektronické podobé zdrojovy text technické zpravy, uplnou
programovou dokumentaci a zdrojové texty programt. Informace v elektronické podobé budou uloZeny na standardnim
neprepisovatelném pamétovém médiu (CD-R, DVD-R, apod.), které bude vioZeno do pisemné zpravy tak, aby nemohlo dojit k jeho
ztraté pfi bézné manipulaci.

Vedouci; Matousek Jifi, Ing., UPSY FIT VUT
Datum zadani: 1. listopadu 2017
Datum odevzdani: 16. kvétna 2018 VYSOKE UCENI TECHNICKE vV BRNE

 Fakulta informatnich technologif
Ustav potitacovych systémi a sitf
(6% 66 Brno. BoZetéchova 2

Al
[/

prof. Ing. Lukég Sekanina, Ph.D.
vedouci ustavu

Abstract

This bachelor’s thesis aims to compare the IPv6 generators. In the first part we introduce
protocol IPv6 and the allocation policies of registrars in order to better understand the
problem. Next, we introduce three existing prefix set generators, whose description is
available. In the second part of the thesis we propose and implement a series of tests for
the prefix set generators. Lastly, we test the generators and make a conclusion based on the
results. According to our results, we conclude that the prefix sets from the NonRandom and
IPv6Table generators have a large error in comparison with a target prefix set. However,
V6Gene, the implementation of which is not currently publicly available, might generate
prefix sets close to the reality based on its proposal.

Abstrakt

Cilem této bakalarské prace je porovnani generatorit IPv6 prefixovych sad. V prvni ¢asti
prace je predstaven protokol IPv6 a politiky pridélovani IPv6 registratort, které tvori zak-
lad fesené problematiky. Nasledné jsou zminény tii existujici generatory prefixovych sad,
jejichz popis je k dispozici. V druhé cCasti je navrzena a implementovana série testll pro
porovnavani generatort prefixovych sad. V posledni ¢asti jsou provedeny testy prefixovych
sad na zdkladé diive definovanych kritérii. Na zakladé provedenych testii byl vyvozen zaveér,
ze prefixové sady vygenerované generatory IPv6Table a NonRandom, jejichz implementace
je verejné dostupna, vykazuji velkou chybu v porovnani s realitou. S ohledem na popis gen-
eratoru V6Gene lze oCekédvat, ze prefixové sady vygenerované timto generatorem by mély
dosahovat vyrazné mensi chyby v porovnani s realitou. Implementace tohoto generatoru
vSak neni verejné dostupnd, takze tato ocekavani nebylo mozné experimentalné ovérit.

Keywords

IPv6 prefix set generator, comparison, IPv6 address allocation policies

Klicova slova

generator IPv6 prefixovych sad, porovnani, politiky pridélovani IPv6 adres

Reference

VASEK, Dominik. Comparison of IPv6 Prefix Set Generators. Brno, 2018. Bachelor’s
thesis. Brno University of Technology, Faculty of Information Technology. Supervisor Ing.
Jiri Matousek

Rozsireny abstrakt

S blizicim se vycerpanim IPv4 adresového prostoru bylo potfeba vymyslet ndahradu, kterou
se stal protokol IPv6. Ten m4a v porovnani s protokolem IPv4 mnohem vétsi adresovy pros-
tor. Diky zkusenostem z protokolu IPv4 bylo v protokolu IPv6 mozno vylepsit i fadu jinych
nedostatkt, jako naptiklad zabezpeceni, prihlednost a predevsim velikost adresového pros-
toru. Kvili velikosti adresového prostoru se vSak objevil dalsi problém a tim je potieba
vyrazné efektivnéjsich smérovacich algoritmt v porovnani s protokolem IPv4. Vzhledem
k tomu, ze dosavadni IPv6 smérovaci tabulky nejsou prilis velké, neni mozné tyto nové
smérovaci algoritmy plné otestovat na redlnych prefixovych saddch. Namisto toho se vyuzi-
vaji generované prefixové sady, které vsak ne vzdy dostatecné presné odrazeji skutecnost.
Proto se tato bakalarska prace zabyva ndvrhem kritérii a implementaci nastroje pro porov-
navani generatort IPv6 prefixovych sad.

Druhé kapitola se zabyva samotnym protokolem IPv6. Jak jiz bylo zminéno, hlavnim
rozdilem protokolu IPv6 oproti protokolu IPv4 je jeho adresovy prostor, ktery obsahuje
2128 adres oproti 232 adres protokolu IPv4. Tim vznikaji nové problémy, jako napiiklad
délka zapisované IPv6 adresy. Existuji mechanismy pro zkraceni tohoto zapisu. Prikla-
dem muze byt vynechani nejlevéjsich nul v jednotlivych segmentech nebo zaména série
segmentli za dvé dvojtecky. Samotna adresa se pak skladd ze dvou ¢asti. Prvni césti je
prefix, ktery urcuje sit, do které adresa spada, a je pridélovan registratory. Druhd ¢ast pak
oznacuje konkrétni zatizeni v dané siti. Vzhledem k mnozstvi adres a potiebé pridélovat
adresy po celém svété byla jiz u protokolu IPv4 definoviana hierarchie registratori. Jed-
notlivi registratori spravuji a pridéluji rizné délky prefixi. Jejich hlavnim tkolem je zajis-
tit vyvazené pridélovani adresového prostoru zamezujici nutnost prepocitavani adresového
prostoru v budoucnu a zaroven Setfeni adresovym prostorem, aby nedoslo k jeho rychlému
vycerpani, jako v pripadé protokolu IPv4. V dnesni dobé jsou pridélovany predevsim prefixy
délky /32 a /48. V budoucnu vSsak muzeme ocekavat predevsim narist poctu prefixa délky
/64, coz povede k velké zméné v rozlozeni délek prefixii, na kterou je vhodné se pripravit
efektivnimi smérovacimi algoritmy.

Ve treti kapitole jsou popsany tii existujici generdtory prefixovych sad, jejichz popis
je volné dostupny. Prvnim z nich je generator V6Gene, ktery se zaméiuje na generovani
prefixovych sad na principu prefixového stromu. Celkové generovani prefixi probihd ve
dvou fazich: pridélovani novych prefixii do prefixového stromu nasledované ndhodnym roz-
generovanim jiz existujicich prefixi. Druhym generatorem je NonRandom generator, ktery
pro zménu vyuziva existujicich IPv4 prefixovych sad, jejichz prefixy jsou zdvojnasobeny
v délce, aby reflektovaly rozlozeni IPv6 délek prefixti. Poslednim popisovanym generatorem
je IPv6Table generator, ktery si z existujici IPv6 prefixové sady spocitd pravdépodob-
nostni rozlozeni jednotlivych délek a distribuce bitl, na zakladé kterych zacne generovat
pozadovanou prefixovou sadu.

Ctvrta kapitola se zaméfuje na navrh kritérii pro porovnavani prefixovych sad. Navrzeny
jsou skupiny testti. Prvni skupinou jsou testy zabyvajici se zakladnimi vlastnostmi pre-
fixovych sad, a sice rozlozeni délek prefixii a rozlozeni hodnot biti. Druhou skupinou jsou
testy nad prefixovym stromem, konkrétné zanoreni prefixii do sebe, vétveni prefixového
stromu a vyvazeni prefixového stromu. Posledni skupinou jsou testy zabyvajici se efek-
tivitou samotného generatoru. Tato skupina sleduje mnozstvi duplicit v generované sadé,
ale také celkové hardwarové naroky generatoru.

Pata kapitola se zabyva implementaci nastroje vyuzivajictho kritéria specifikovand v pre-
deslé kapitole. Je navrzen zptisob testovani zalozeny na vyuziti historickych prefixovych sad,
na zakladé kterych probihd generovani prefixovych sad, jez jsou priblizné stejné velké jako

aktudlni prefixové sady. Pro porovnani vysledkii je navrzeno vyuzivat tzv. RMSE, ktery
porovnava prumeérnou chybu mezi generovanymi a cilovymi prefixovymi sadami.

Posledni kapitola se zabyva samotnym porovnanim generatort prefixovych sad, jejichz
implementace je vefejné dostupna. Na zakladé testl a navrhu generatora bylo zjisténo,
ze ani jeden ze dvou testovanych generatoria nebere v potaz politiky pridélovani adres, ale
pouze rozgenerovava danou sadu. To znamend, Ze podle velikosti ¢asového tseku mezi
prefixovymi sadami se bude chyba lisit. Posledni generator V6Gene, ktery nebylo mozné
otestovat, jelikoz jeho implementace neni momentalné verejné dostupnd, by na zakladé
navrhu a pozorovani ostatnich generatori mél teoreticky z velké miry generovat prefixové
sady podobné sadam v budoucnu.

Comparison of IPv6 Prefix Set Generators

Declaration

Hereby I declare that this bachelor’s thesis was prepared as an original author’s work under
the supervision of Ing. Jifi Matousek. All the relevant information sources, which were
used during the preparation of this thesis, are properly cited and included in the list of
references.

Dominik Vasek
May 16, 2018

Acknowledgements
I would like to thank my supervisor Ing. Jifi Matousek for his time, guidance and valuable
input on the thesis.

Contents

Introduction

Protocol IPv6

2.1 Groundsfor IPv6
2.2 IPv6address e
2.3 Prefixes
2.4 Protocol properties e
2.4.1 Transparency o e e e e
2.4.2 Security
2.5 IPv6 address allocation,
2.5.1 Registrar hierarchy Lo
2.5.2 Address allocation principles
2.5.3 Endpoint address allocation
2.6 Reasons for IPv6 prefix set generation,

Existing IPv6 prefix set generators

3.1 V6Gene
3.2 Non-random Generator
3.3 IPv6 Table Generator e

Proposal of usable properties

4.1 Basic properties of prefix sets L
4.1.1 Prefix length distribution
4.1.2 Bit value distribution oL

4.2 Propertiesof trie L
421 Prefixmnesting
4.2.2 Branching of trie Lo
4.2.3 Skewoftrie

4.3 Properties of prefix generators L.
4.3.1 Duplicates L
4.3.2 Hardware requirements

Implementation of prefix set comparison

5.1 Proposed way
5.1.1 Optimal testing L
5.1.2 Operation of script L L
5.1.3 Imterpreting results oL

5.2 Implementation L

w

O© © IO O O OO U R

11

12
13

14
14
14
14
15
15
16
17
17
17
18

5.2.1 Running script L Lo
5.2.2 Solving the prefix set comparison

6 Comparison of existing generators
6.1 Comparison with real prefixset
6.1.1 Basic properties of prefix sets
6.1.2 Propertiesof trie
6.1.3 Properties of prefix generators
6.2 SUmMmMAry e e

7 Conclusion

Bibliography

24
24
24
26
29
30

32

33

Chapter 1

Introduction

Due to the upcoming vision of exhaustion of the IPv4 address space, it was decided that it is
necessary to find a replacement for this protocol at the beginning of the 1990s. The solution
was protocol IPv6 [7], which has much larger address space in comparison with IPv4 (2128
compared to 232). In the upcoming years, there were many new definitions of the protocol
[18][7], which made it easier to adopt. However, mostly due to the need of software and
hardware support of IPv6, there were other attempts to find a solution. The first solution
was humbler allocation policies and the second, most essential, was NAT (Network Address
Translation) which accounted to the massive delay of the full IPv6 deployment. [12]

Routing in the vast address space of IPv6 requires significantly more effective routing
algorithms than those used in the IPv4 networks. Moreover, the new protocol has also
larger hardware requirements. However, validation and testing of hardware and software
for this protocol is not completely possible because current IPv6 routing tables do not
contain enough addresses to fully test every aspect of routing algorithms in a large scale.
This problem can be however fixed by generating a prefix set that is large enough for the
testing of hardware devices and routing algorithms.

This bachelor’s thesis is dedicated to the comparison of individual prefix set generators
to real-life samples. The goal is to compare each generator with real prefix sets and identify
their advantages in comparison to other generators.

Chapter 2 presents protocol IPv6, reasons for its deployment and the hierarchy of ad-
dress allocation registrars. In Chapter 3 we describe three prefix set generators which
description is available. Chapter 4 introduces possible testing criteria divided into three
section. The first section proposes basic prefix set properties: prefix length distribution and
bit value distribution; the second section proposes trie properties: prefix nesting, branching
of trie and skew of trie. Finally, the third section proposes performance comparison of
generators. In the first section of Chapter 5 we proposed the means of testing using criteria
described in Chapter 4 and described the workflow of a tool for comparing IPv6 prefix set
generators. In second section of Chapter 5 we have described the implementation of the
tool. In the first section of Chapter 6, different generators are compared to each other and
existing prefix sets using the criteria first introduced in Chapter 4. In the second section of
Chapter 6 we summarize the results we have found in the first section. Chapter 7 contains
the conclusion of this bachelor’s thesis.

Chapter 2

Protocol IPv6

Protocol IPv6 is a communication protocol whose objective is to create unique identification
within the Internet network. Protocol IPv6 is supposed to completely replace current
protocol IPv4, which primarily suffers from small address space. [9]

2.1 Grounds for IPv6

The predecessor of protocol IPv6 is protocol IPv4. The IPv4 protocol has an address
space of 232 addresses. However, this address space also contains reserved blocks. At
the beginning of address space allocation, its capacity was not much taken into account.
This led to quick address space exhaustion in the first decade of IPv4 usage. Due to this
reason, it was necessary to redefine an allocation policy. It was finally decided to abandon
classful routing, which divided addresses into classes A, B, and C for unicast addresses.
These classes differ from one another in the length of an address mask (8, 16, and 24 bits).
This led to the introduction of classless routing, which allowed different prefix lengths.
Classless routing thus enabled allocation of the amount of addresses actually necessary for
different objects, instead of large chunks of the address space. Even though this solution
dramatically reduced the demand on the address space, the solution was still insufficient due
to the increasing number of new devices connected. This led to the need for a new protocol.
The new protocol was introduced in 1998 as protocol IPv6, which allows to address up to
2128 devices.

2.2 1IPv6 address

In protocol IPv6, an address is represented by 128 bits. The address is noted in hexadecimal
and divided into eight segments. Each segment consists of four hexadecimal numbers, which
represent two octets. If we consider the length of IPv6 addresses, it is vital for us to shorten
the address as much as possible. There are several possible ways of shortening the address.
The first one is reducing the amount of leftmost zeros of each segment. For example, address

2001:0db8:0000:0100:0000:0000:2378:cad2
can be shortened like this

2001:db8:0:100:0:0:2378:ca4d?2

An address in this format can be shortened even further. One or multiple segments con-
sisting of zeros can be replaced by two colons “: :”, reducing the length of written address.
This can be however done only once per address, because it has to be possible to correctly
restore the original address for routing. The address can be thus minimized like this

2001:db8:0:100::2378:cad2

The minimization is usually done between the most octets composed of zeros or, if there
are two same blocks of zeros, from left.

2.3 Prefixes

An IPv6 address consists of two parts. The first part determines a network and the second
part determines a host inside the network. This division is determined by a network prefix,
which is written at the end of the address, after a slash. If we consider the address

2001:0db8:1280:1::0001/64

we can say that 2001:0db8:1280:1::/64 is a network identifier and the whole address
represents a particular host inside the network. Another interesting fact is that this prefix
can be a part of another network, thus prefix. This means that from a parent network
2001:0db8:1280: : /48 there can be up to 2'6 — 1 subnetworks coexisting with our network.

Currently, we distinguish several reserved prefixes [15][7]:
e Unicast — 2000: : /3 — currently the only prefix reserved for unicast
e Multicast — ££00::/8
e Link-local — £e80::/10

e ULA — £c00::/8 — unique local addresses, a prefix is augmented by 40 random bits
for the prefix length of /48, which minimizes the probability of conflict when joining
networks

e Loopback — ::1/128

e Not specified — ::/128

2.4 Protocol properties

Protocol IPv6 has many different properties in comparison to protocol IPv4. Some of these
properties give the new protocol advantages, which are described below.

2.4.1 Transparency

Due to a massive size of IPv6 address space, it is possible to route directly towards endpoint
devices without the need for Network Address Translation (NAT). The protocol also has
standardized network flow control via Quality of Service (QoS), as the protocol was already
developed with the concept of packet body encryption in mind. [12]

2.4.2 Security

The protocol has a built-in IPSec encryption and integrity check. Along with these, it is
also possible to use protocol Secure Neighbor Discovery (SEND), which serves to secure the
discovery of neighbor stations, upkeep of the information about accessibility and destination
paths. Therefore, mainly thanks to these advantages, protocol IPv6 is not prone to falsifies.

[1][12]

2.5 IPv6 address allocation

Currently, IPv6 address allocation consists of two parts. The first is based on prefix al-
location, which is controlled by registrars. The second part consists of the allocation of
endpoint addresses, which is usually done using auto configuration. To get an endpoint
address, it is however necessary to get the prefix of the network first.

2.5.1 Registrar hierarchy

Currently, there are five levels of registrars. By a registrar we mean an organization or insti-
tution, which focuses on address space allocation. The root registrar is organization IANA,
which releases address space blocks for individual Regional Internet Registries (RIRs).
These regional registrars then allocate parts of their address space to National Internet
Registries (NIRs) or Local Internet Registries (LIRs). NIRs are mostly common in Asia
and can also contain any number of LIRs. LIR and NIRs can further allocate address space
to Internet Service Providers (ISPs) or directly to Endpoint Users (EUs). The hierarchy is
illustrated in Figure 2.1.

IANA
.
v v v v ¥
AfriNIC ARIN APNIC LACNIC | |RIPE NCC

NIR
. N
v v
LIR LIR
v v Y
ISP ISP ISP
v y v v v v
EU EU EU EU EU EU

Figure 2.1: Hierarchy of registrars [3].

2.5.2 Address allocation principles

As stated above, there is a whole hierarchy of registrars involved in address space allocation,
whose main purpose is to allocate address space in a reasonable manner. This is mainly to
limit the speed of address space exhaustion. This subsection contains the description and
policies of all registrars.

Internet Assigned Numbers Authority (IANA)
TANA is an organization which coordinates address space allocation. It usually allocates
the address space to a specific RIR. The principles of new address space allocation are [11]:

e One address block, which is assigned to a RIR, has the prefix length of /12.
e A RIR should get enough addresses that will last at least for 18 months.
e Each new RIR gets automatically one address block.

e A RIR can request a new address block if at least 50 percent of its current address
block is allocated.

e A RIR can request a new address block if it does not have enough addresses for the
upcoming 9 months.

The calculation of address space N, which is necessary for a RIR to operate without the
necessity of further address space allocation is

N=AxP

where A represents the average number of allocated addresses per month in the past
6 months and P represents the length of a period in months for which the address space of
the RIR must endure without further reservation.

Regional Internet Registry (RIR)
RIRs are registrars which represent a large area, such as whole continents (Figure 2.2).
Currently, there are five RIRs. Each of them might have different allocation policies.

e AFRINIC - African Network Information Center

e APNIC — Asia-Pacific Network Information Centre

e ARIN — American Registry for Internet Numbers

e LACNIC — Latin America and Caribbean Network Information Centre

RIPE NCC — Réseaux IP Européens Network Coordination Centre

LACNIC

Figure 2.2: Map of Regional Internet Registries [10].
As an example, we can consider the conditions of RIPE NCC [17], which also includes the
Czech Republic.
e The smallest allocable block is /32.

e To get the first allocation block, it is necessary for an organization to be a LIR or
present an allocation plan for the upcoming two years.

e For further address space allocation of /32 or larger, it is necessary for a registrar to
meet Host-Density Ration [6] 0,94 or larger, where

I allocati
HD — Ratio = log(total allocations)

log(maximum of possible allocations)

National Internet Registry (NIR)

NIRs usually maintain an address space for individual countries. However, they are cur-
rently used only in Asia. In case of APNIC, they work under the RIR and perform activities
for individual countries on behalf of the RIR. [2]

Local Internet Registry (LIR)

LIRs usually allocate an address space to EUs or ISPs. A LIR is usually a concrete ISP,
which allocates the address space to its EUs as required. Address blocks should be at least
of length /48. In some cases, it is however possible to allocate even smaller address block.
Nevertheless, it is not common, as it is simpler to allocate a larger address block than
recalculate the address space in case of later requirements. [16]

2.5.3 Endpoint address allocation

In protocol IPv6, automatic device configuration is an important feature, which can config-
ure an IP address without user intervention. Today, we recognize two approaches to setting
an IP address. The first one is stateful auto configuration, which is based on DHCP, and
the second one is stateless auto configuration, which uses a new approach that does not
need to communicate with other devices.

Stateful auto configuration
Stateful auto configuration uses DHCPv6, thus it can require user intervention in some
cases. A DHCPv6 server stores the list of devices and status information in order to figure
out the availability of each address. The DHCPv6 server sends an IP address, Gateway
address, prefix length, reservation period, and DNS servers.

DHCPv6 currently has three allocation modes:

e Dynamic — a client gets an IP address for a certain period, thus it has a specified time
of validity. However, the client can request IP address renovation at any time.

e Automatic — an IP address is allocated from a scope specified by an administrator.
This type of allocation does not include the reservation period and is permanent.

e Manual — a client specifies its IP address and informs the DHCPv6 server.

Stateless auto configuration

Stateless auto configuration (SLAAC) is a new way of IP address allocation that only
requires the /64 prefix of an address and the remaining 64 bits are filled using process
EUI-64 (Figure 2.3). This process uses the device’s MAC address, which is divided by two
octets filled by value FFFE. Finally, the seventh bit is set to one, stating that the IP address
comes from SLAAC. [7]

00 1E 33 3B 5A 94

o 1 [> D > | | >

Figure 2.3: MAC address conversion to EUI-64 [15].

2.6 Reasons for IPv6 prefix set generation

Due to the size of an IPv6 address and the protocol’s address space, it is necessary to pay
much more attention to processing speed. It is also substantial to develop faster, more
efficient routing algorithms and new infrastructure. These reasons are obvious especially
when we use current routing algorithms in the IPv6 environment. While traversing through
such a large address space, the efficiency of the IPv4 routing algorithms is reduced. With
the increasing number of IPv6 addresses stored in routing tables, a necessity for more
effective routing algorithms will increase. [20)]

This leads us to the fact that there are currently not enough allocated IPv6 addresses,
which would allow for testing the routing algorithms and infrastructure.

Currently, most allocated prefixes are of length /32 or /48. However, if we consider the
allocation policies of registrars, it is possible that the current state will not correspond to
the reality in the future. In the future, the majority of allocated prefixes will probably be
of the end length of /64.

Another problem is that only a small number of organizations publishes their routing
tables for research. Moreover, even those routing tables that are published might not
correspond to reality, since they might not be a sample large enough.

10

Chapter 3

Existing IPv6 prefix set generators

Even though there are not many IPv6 prefix set generators, we will mention at least those,
which description is available. This chapter describes how each generator works.

3.1 V6Gene

This generator [20] is based on the simulation of address block allocation. It generates new
prefixes from trie in order to simulate the allocation performed by all types of registrar. The
program works in three phases and the process flow of each phase is shown in Figure 3.1,
which is further described below. The flow diagram is divided into three sections. The red
section represents initiation, the green section represents generation and the blue section
represents outputting.

1 1
1 1
i | Set startup Load seed Validity :
1 3 3 >

!'| configuration prefix set check Generate SPT '
1 1
Fes s s s === 1

I Y
Random Address allocation
generation simulation

Y

Generation
satisfied?

Resulting

prefix set Validity check

Figure 3.1: Process flow of V6Gene

1. Initiation — In this phase the generator initializes all information based on an input
configuration and loads an input prefix set. Then it makes a validity check on the
input prefix set and removes duplicities. The validity check is done because of the
possibility of multiple prefix sets merged from different routing tables or different
paths to destination, which could lead to duplicities. Finally, it generates an initial
trie, also called Seed Prefix Trie (SPT).

11

2. Generating — This phase consists of two parallel processes. The first process simulates
address allocation from LIR. This is based on traversing the SPT. Whenever there
is a prefix list, the generator starts generating a specific number of prefixes, based
on prefix length distribution and prefix levels. All prefixes will start with the same
initial prefix. The second process is random generation. It simulates the allocation of
new, in the original prefix set not present, LIRs. This stage starts by generating the
LIR prefixes and then individual prefixes for each ISP. When this step is done, the
generator checks duplicities and IPv6 address integrity. This can lead to the deletion
of some addresses in which case the generator starts the generating cycle again until
the amount of generated prefixes matches specified numbers.

3. Outputting — This phase outputs the final prefix set in a valid format.

3.2 Non-random Generator

The Non-random Generator [19] expects similarities between the structure of IPv4 and IPv6
routing tables. For this reason, it tries to generate IPv6 prefix sets based on similarities
with existing IPv4 prefix sets. The key properties, according to this generator, are the
prefix length, the prefix value and the size of a routing table. The generator generates new
IPv6 prefixes in two steps, which are further described below. The first step, which reflects
prefix length distribution is highlighted in red. The second step, which reflects the prefix
value is highlighted in blue.

1 1
1 For each IPv4 prefix :
: allocate space twice Is this prefix .
Load IPv4 prefix set » as large (for 8-bit Sp Add or remove 1 bit | ,
1) fourth in a row?
1 prefixes allocate 24- 1
1 bits) 1
1 1
1 1
1 Y 1
1 1
1 1
1 > Start filling 1
1 1
1 1
Y -1
e T
. A\ 4 '
1 1
1 . » Original IPv4 » i 1
, | Random generation < address < Add AS number (€ Load AS numbers :
1
1 1
1 1
1 1
1 A 4 1
1 1
' | Randomize bits | Resulting IPv6 prefix '
' 24, 25, 26 ” set .
1 1

Figure 3.2: Process flow of Non-Random Generator

1. Prefix length distribution — There is an assumption that IPv6 prefixes should be
twice as long as IPv4 prefixes. However, this will generate only even prefixes. In
real IPv4 prefix sets, it is observed that for each three even prefixes there is one odd.
The Non-random Generator achieves this by adding or removing one bit from every
fourth prefix. Due to the address space allocation policies, the generator also performs
recalculation of 8-bit IPv4 prefixes to 24-bit IPv6 prefixes.

12

2. The prefix value — The generator uses the number of Autonomous Systems (AS)
together with the IPv4 prefix because it is a suitable unique combination of 16-bit
number of AS together with the 32-bit IPv4 address. Finally, the generator fills the
remaining length of the prefix by random bits. Due to the structure of IPv4 prefix
sets, it is also ideal for appropriate bit distribution to generate bits between positions
24 and 26 randomly, which should increase address space efficiency.

3.3 IPv6 Table Generator

In contrast with the previous generator [13], this one focuses on generation based on real
IPv6 prefix sets, which the generator further expands. It notices that there are not many
similarities between the real-life allocation of IPv6 and IPv4 addresses. Instead, the gener-
ator uses static data based on real IPv6 prefix sets and generates the required number of
prefixes using probability. This means that the generated prefix set should correspond to
the original prefix set. The generation consists of two phases. The first phase aims at the
generation of new prefixes and the second phase aims at creating the resulting prefix set.
Figure 3.3 shows the process flow of this generator. The first phase is highlighted in red
and the second phase is highlighted in blue. The generator is further described below.

Resulting prefix set

no generation

satisfied?

What prefix length to |
generate

\ 4 yes

no Store prefix

> Duplicity check

Load static data for
prefix length

Y

Generate prefix

Figure 3.3: Process flow of IPv6 Table Generator

1. The generator uses probability based on a pseudo-random number in interval [0; 100)
to determine the length of a generated prefix. Next, it decides what length to generate,
loads the static data, which correspond to the specified prefix length, and generates
the prefix based on pseudo-random numbers.

2. The second stage checks duplicities. If the prefix was not yet stored, the algorithm
stores the prefix and continues to the next one. If the prefix already exists, the
algorithm discards the prefix and restarts generation. Generation finishes when the
number of prefixes to be generated matches the amount of stored unique prefixes.

13

Chapter 4

Proposal of usable properties

The beginning of this chapter deals with IPv6 address and its properties, including tries.
The second part proposes additional tests specific for generators.

4.1 Basic properties of prefix sets

Prefix sets contain several similarities between each other. This is mostly due to the way
addresses are allocated (Chapter 2). Even though IPv6 addresses are noted in hexadecimal,
in computer world they are stored in binary. This means that we should try to understand
an address on the binary level and find similarities. The main similarities that we can notice
are in prefix length distribution and bit value distribution. [19] [13]

4.1.1 Prefix length distribution

IPv6 prefix sets consist of prefixes of various lengths. According to current address alloca-
tion principles mentioned in Chapter 2, we can expect mainly prefixes of lengths /32, /48
and /64 to be allocated. By using prefix generators, we are trying to get larger prefix sets
than those currently available. Therefore, we need to figure out a way of generating pre-
fixes that are as close to reality as possible. The prefix length distribution can be therefore
used as a simple comparison between generated prefixes and those we can expect in future.
Talking about the future, we should take into account that with an increasing number of
addresses the percentage representation of /32 addresses will be lower and will transfer to
/48 and later to /64 prefixes.

4.1.2 Bit value distribution

Each bit of IPv6 prefix can get one of two states. This is something we can study by
calculating the probabilities of ones and zeros at each bit. While looking at real prefix sets,
we can notice that the more sample bits of prefixes we get, the more balanced distribution of
zeros and ones we see. This is not currently true mainly for the first three bits because there
is only one 2000: : /3 unicast address block released. Ignoring this fact, we can expect that
bits with most samples would approach balanced distribution while bits with less samples
would be extreme in terms of distribution.

14

4.2 Properties of trie

A prefix tree, also known as trie, is the basic data structure for storing a prefix set used
in the majority of routing tables. Trie is a binary tree meaning that there are at most two
children leading from one node. [20] [11]

In trie, prefixes are represented by a path to a node, which is different from binary tree,
where the data are stored inside of nodes. This means that trie cannot self-balance itself
without losing a stored value.

Prefixes:

P1:1*

P2:10*
P3: 01*
P4: 110"
P5: 100*
P6: 001*
P7:000*

Figure 4.1: Example of a trie

Figure 4.1 shows the structure of trie. There are seven prefixes stored inside of the
trie, which are noted in the table. The root node itself does not represent any value and
is located at level 0. To simplify the description of storing values into trie we shall assume
that right edge represents binary one and the left edge represents binary zero.

In order to store prefix P1, we have to go from the root on the right edge to store leaf
P1. To store P2 we will go the same path as for P1 and continue on the left edge creating
a new leaf and making P1 a branch node. This way we can create trie shown in Figure 4.1.

Prefix lookup in a trie works similarly. Let us take an example prefix 2001::1, which
is also currently the only unicast address range released. Translated to binary it starts as
0010%*. A search algorithm starts at the root node and descends on the left edge. From this
position, it continues once again via the left edge and finally by the right edge. Since this
is the best match we can get for said address, the search algorithm stops.

There are several properties of tries that can be observed. As we can see, there are
some nested prefixes. Trie, as stated above, cannot be balanced and there are different
probabilities of branching at different levels.

4.2.1 Prefix nesting

One of the properties of prefixes is nesting. We can observe this when allocating prefixes
from regional registry’s /32 prefix to local registry’s /48 prefix. LIR’s prefix is therefore
nested into RIR’s prefix. Prefix nesting thus occurs when several prefixes are stored on the
same path of trie. [1]

15

In Figure 4.1 we can see several nested prefixes: 1%, 10%, 100*, and 110*. In other
words, prefix 1* contains other prefixes and generalizes them, hence we say this prefix is
shorter and matches to more addresses than any other prefix nested inside it.

For testing purposes, we will take into consideration only nesting values of leaf nodes.
The path to prefix 100* in the example, which is a leaf node, has prefix nesting of 3, while
prefix 110* has nesting of 2.

4.2.2 Branching of trie

Branching occurs when a trie node has more than one child. Trie is usually not balanced,
thus branching of trie is not guaranteed. We can however talk about branching probability

at different levels.
100%

Sl

Figure 4.2: Probability of branching

100%

To get an idea about structure of said trie, we need to know how often it can branch
and more precisely at what levels the branching occurs most. This is something we cannot
notice while talking about probability of bit positions described above.

In the example in Figure 4.2 the red nodes represent non-branching nodes and the
green ones represent branching nodes. We can see that the closer to the root the more we
can expect branching. This is something that differs among prefix sets and can affect the
performance of search algorithms.

To calculate branching probability, we take into consideration only nodes with at least
one successor. For example, at level two in Figure 4.2 there are three non-leaf nodes and one
leaf. Since we are calculating branching probability for 2-children nodes, we use Equation

4.1

2-children nodes
b hing = 1 4.1
ranching all non-leaf nodes * 100 (4.1)

Hence, the example at level two would have branching probability of 33% for 2-children
nodes.

16

4.2.3 Skew of trie

It is desired to have balanced trees for optimal searching in binary trees. While a classic
binary tree can balance itself, in trie a path represents a prefix, thus cannot be rebalanced.
However, in a trie we can calculate the weight of each subtree to calculate the skew of
branching nodes. [14]

0,25

0,5

Figure 4.3: Calculated skew for nodes and levels

We can only calculate skew for branching nodes and generalize the skew by level. To
calculate the skew of the root node in Figure 4.3, we can use Equation 4.2

weight of lighter subtree
skew =1 —

4.2
weight of heavier subtree (42)

In this equation lighter subtree represents the subtree with less prefix nodes in contrast
with a heavier subtree, which contains more prefix nodes. The result would be:

3
SREW 5

For skew at selected level we then sum all skews and divide it by the number of branching
nodes.
4.3 Properties of prefix generators

While other properties focus mainly on IPv6 representation, there are also another aspects
of generating prefixes. Mainly the number of duplicates in generated samples, as there are
no duplicates in forwarding tables. The second aspect are hardware requirements required
by the generator for prefix set generation.

4.3.1 Duplicates

Although raw data from routing tables contain duplicates, when we consider forwarding
tables where only the best paths are stored, there are no duplicates. Prefix sets that we

17

want to be generated therefore do not need duplicates and we might consider them as
redundant data. It should also be faster to proceed with tests if we remove all unnecessary
data.

4.3.2 Hardware requirements

Sometimes we might want to generate data in timely manner due to computer time. Other
times we are generating large sets of data without much RAM. For these reasons, it is
also important to know other aspects of said generators than only the generated data. We
propose to gather RAM consumption, disk R/W operations and CPU time as a simple way
to determine the positives and negatives of each generator hardware requirements. These
data can also be later compared between different generators or runs to gather an average.

18

Chapter 5

Implementation of prefix set
comparison

This chapter consists of two subchapters. The first one is proposed way, which proposes
the ways of comparison of IPv6 prefix sets and the structure of our script for comparison.
The second subchapter consists of the implementation of the script and the possible ways
of run.

5.1 Proposed way

This subchapter aims at the comparison of generators in contrast with reality.

5.1.1 Optimal testing

As described earlier, generators should follow registrar policies. This means that we can
expect similarities to some extent between generated sets and reality. Even though this is
true, reality might be slightly different in comparison to registrar policies, but still close.
This could be for example due to a local anomaly. However, even in this case we should
still aim to get a sample as close to our observed reality as possible.

To test this, we cannot predict the future. Instead, we can use prefix sets from the
past and generate new prefix sets which we can compare with current prefix sets. However,
for this we need data from routing tables that go far enough in the past, because we need
samples from the same routing table to compare such samples. Using this technique, we
can study the difference between current original set and its generated version from the
past.

5.1.2 Operation of script

The script can be divided into three sections of operation shown in Figure 5.1.

The first section is highlighted in red and focuses on gathering statistic data about prefix
sets, which either already exist or should be generated by a generator. If we want to first
generate a new prefix set via this script, it will start by capturing the hardware resources
taken by the generator. After that we have to decide, which group of tests we want to test
our prefix set on and decide whether or not we also want graphs for each test.

The second section consists of operations over existing results. In this case, the script
does not need to recalculate each stat from the original prefix set. Instead, it uses already

19

calculated results, which are stored. These data can be used later for further manipulation,
such as graphs. We can also use these data to calculate RMSE between samples or merge
multiple samples in order to increase comparison accuracy. In case of RMSE, we can also
print graphs.

Finally, the last section consists of erasing all data gathered in order to start a new
series of tests.

Prefix set generation —>| (T P

1

1

stats :

Existing prefix set y What prefix stats to :
sting prefix se gather (trie/basic) | |
"""""""""""""""""" : E
! 1

Start Existing results : Y '
+—> Generate graphs :

What tests to !]

RMSE include (trie/basic) :

1

1

Merging results

Finish

Y

Figure 5.1: Script flow chart

5.1.3 Interpreting results

If we consider the size of routing tables, it is obvious that we do not need to work with exact
numbers for each bit. Instead, we need to know the percentage representation throughout
the sample set. This way we can also compare smaller sets with larger ones. This works
for basic results of sets; however, if we want to compare such samples between each other
or in comparison to the original prefix set, it is better to use Root Mean Square Error
(RMSE). The RMSE is shown in Equation 5.1, where § represents the original prefix set
and y; represents the generated prefix set for n samples.

RMSE shows us the average difference between the generated set and the original.
In other words, it measures the error between these sets. We can even merge multiple
generated sets and compare these to the original sample, which better corresponds to the
generator. [8]

n ~ 2
RMSE = M (5.1)
n

5.2 Implementation

Each test, except for prefix length distribution, requires translating an IPv6 address into
binary. This means that we should first translate our addresses into binary for simpler use.

There were several approached problems during implementation. The first was to find
an effective way of working with a large number of IPv6 prefixes. The original idea was to

20

create separate scripts for each test described in Chapter 4 but mainly due to the need to
use the same data in each script, we decided to create one larger script, which partly divides
the tests and reduces overall time and allocations. Therefore, we have divided two basic
tests into separate functions, while the trie tests are calculated simultaneously. Another
problem occurred when we exported prefix sets from routing tables as there were many
duplicates. Followed by the need to translate each IPv6 prefix from hexadecimal to binary
for every script. It was decided to first translate all prefixes into binary and then remove
duplicities to remove any duplicates hidden in different IPv6 representation and store them
back into hexadecimal for better readability.

Based on Chapter 2 where we explain prefix allocation from registrars, it was expected
that only prefixes of length 64 and shorter would get into routing tables. While looking at
real prefix sets, we can however see this is not true. Based on the total number of prefixes
in a set, there can be up to several hundred prefixes longer than 64. These prefixes might
not be significant for a set of one million prefixes. However, it is still a property that might
be missing in generators that are strictly based on allocation policies of generators. Due
to this reason, we have decided to calculate the tests to length of 128. However, in graphs
these will not be taken into account.

As noted earlier, the first idea was to create several independent scripts that would
perform tests on generated prefix sets. At first, prefix length distribution and probability
of zero were written this way. However, it was soon obvious that creating a series of
independent tests would take a lot of unnecessary resources. Since the first two basic tests
are not much time consuming, they were included into a larger script.

Tests on trie were another challenge. Since we could not use a simple binary tree,
because in tries a path represents a value, we had to create our own tree that would allow
us to fill it the way we needed. In this scenario, it was soon noticeable that we have
decided to go the right way of trying to generalize the trie tests as much as possible because
otherwise it would take up to four times longer to get all the information for each test.
Eventually, it was necessary to pass the trie twice in order to retrieve all trie information
about the prefix set. It was necessary to go at least once from the root to leaf nodes and
then recursively level by level from bottom of trie to the root.

5.2.1 Running script

The final script has several ways of operation. In order to further understand each switch,
we can refer to Figure 5.2, which shows switches described in this section in the flow diagram
of the script. There are two ways of initializing a prefix set; either by giving the script an
already existing prefix set by the -input="sample" switch, or by starting a generator by
the script using the ~gen="run sample generator" switch to first generate a new prefix
set. In order to gather hardware requirements information about prefix set generation, it
is necessary to include the -r switch. In order to start tests on