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Abstract: The current digitization of industrial processes is leading to the development of smart
machines and smart applications in the field of engineering technologies. The basis is an advanced
sensor system that monitors selected characteristic values of the machine. The obtained data need to
be further analysed, correctly interpreted, and visualized by the machine operator. Thus the machine
operator can gain a sixth sense for keeping the machine and the production process in a suitable
condition. This has a positive effect on reducing the stress load on the operator in the production of
expensive components and in monitoring the safe condition of the machine. The key element here is
the use of a suitable classification model for data evaluation of the monitored machine parameters.
The article deals with the comparison of the success rate of classification models from the MATLAB
Classification Learner App. Classification models will compare data from the frequency and time
domain, the data source is the same. Both data samples are from real measurements on the CNC
vertical machining center (CNC-Computer Numerical Control). Three basic states representing
machine tool damage are recognized. The data are then processed and reduced for the use of the
MATLAB Classification Learner app, which creates a model for recognizing faults. The article aims
to compare the success rate of classification models when the data source is a dataset in time or
frequency domain and combination.

Keywords: vibrodiagnostics; classification learner app; machine learning; MATLAB; Python; classifi-
cation model; unbalance

1. Introduction

The current development of Industry 4.0 brings, in addition to the digitization of
production, the collection of large amounts of data, which are suitable for the use of ar-
tificial intelligence methods. Particularly in the field of technical diagnostics, this opens
possibilities for the early detection state of an object (machine) based on the measured data,
which are obtained from different standard diagnostic methods (e.g., vibrodiagnostics,
thermodiagnostics or electrodiagnostics) and it is possible to use special methods of tech-
nical diagnostics such as measuring the magnetic field of the machine [1]. It is therefore
a multi-parameter diagnostic that can more accurately detect, identify, and localize the
emerging fault, thanks to a combination of input data from different areas of diagnostics.

Vibrations are an important carrier of information about the condition of rotating
equipment and this fact is commonly used in the field of vibrodiagnostics. This article
focuses on the machining center and here it is possible to use the vibrodiagnostic system
to detect other information such as machining quality or tool damage. Thus, unexpected
states can be detected by a vibrodiagnostic signal, which may indicate a fault or a safety
risk. However, these signals are unexpected and a simple evaluation mechanism cannot
be designed, for example, with the detection of frequent failures of rotary machines such
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as misalignment, unbalance, or bearing damage. In these cases, it is appropriate to use
self-learning artificial intelligence methods, i.e., they can learn to recognize a fault condition
from historical data for a specific machine or specific machining operations.

In the development process of smart machine tools capable of operating within the
framework of industry 4.0, it is necessary to implement risk analysis already during
the machine design stage not only in terms of potential damage to the health of the
machine operator (according to ISO 12100 [2]), but also in terms of quality management and
monitoring of the capability of the manufacturing process on the machine tool (according
to ISO 9001 [3]). We can apply the good technical practice as described in IEC 31010 [4]
and then implement the necessary diagnostic tools into the machine design or modify this
machine design so that the measurement uncertainty of the sensor system (according to
ISO 3534-1 [5]) would not affect the interpretation of the measured data and the subsequent
decision-making processes in a negative way. A typical example could be early detection
of tool damage and subsequent bringing the machine to a safe state. Breaking and ejecting
the carbide insert from a tool holder can cause damage to the transparent guard of the
machine’s working area, and thus lead to a subsequent loss of its safety function, or it
may cause irreversible damage to the machined surface. Therefore, by early detection of
a machine fault, we can protect the health of the operator as well as reduce the financial
losses caused by poor production or increased wear of the smart machine’s spindle.

This article will, therefore, compare classification methods that can detect a specific
fault from real data, namely a missing insert on a machining tool, the absence of which
could have occurred due to tool damage. A method will be used where predictors for
machine learning will be evaluated in advance and their choice is therefore up to the expert.
The correct choice of predictors has a major impact on the classification success rate. The
authors of the work have already dealt with the issue of evaluating vibrodiagnostic signals
in [6–8]. The idea of using artificial intelligence methods in diagnostics is described in
other publications such as in [9–12] , where artificial intelligence methods are used for the
recognition of gearbox faults. Also, in the paper [13] authors focus on the classification
using neural networks in the planetary gear. The article [14] uses artificial intelligence
methods to recognize the shape of a rotary machine shaft’s orbit; it is a picture classification
according to the shape of shaft orbit. The aim of this research is to determine a fast method
(real-time evaluation) for the timely evaluation of a failure that would reduce the safety of
the machine. Thus, the primary goal is not to diagnose the condition of the machine, such
as a bearing or gearbox failure, and to predict residual life, but to detect failures related to
machine safety and to warn the operator immediately.

This article has several goals and they are:

• Verify that the missing insert on the tool is detectable on the vibrodiagnostic signal
measured on the machine spindle.

• Select and compare predictors from time and frequency domains.
• Effect spindle speeds on the classification success rate.
• Select and compare the most successful classification methods
• Evaluate detection success rate of fault-free state

It is assumed that the process of data collection and evaluation takes place on an IPC
(Industrial PC) computer near the machine (for example IPC SIMATIC PC-based, where
one IPC will be prepared for each CNC machine), and the learning and model generated
process will take place on a server containing commercial software such as MATLAB
(server will be used for many CNC machines). Learning and exporting the model is an
important operation and will take place under strict supervision. The created MATLAB
model will be exported for the use of individual IPCs without MATLAB.

The Python environment also includes Machine Learning tools such as scikit [15] or
Artap used in [16], however in this case the ambitions are to be used in a safety environment
and the authors there rely on the professional Matlab environment. In the future, the above-
mentioned toolboxes will be used and tested to evaluate the condition of the machine.
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Python environment is used for signal processing, the MATLAB and Classification
Learner App [17] are used for data classification.

2. Experimental Procedure

The data were obtained from the machine MCV 754 QUICK (Figure 1), it is a three-axis
CNC (Computer Numerical Control) machining centre, more information can be obtained
on the manufacturer’s website [18]. The obtained data are from the measuring instrument
Microlog CMXA48 and the measurement parameters are in the Table 1.

Table 1. Measurement parameters of Microlog CMXA48.

Measurement Parameters:

Analysis type: Acceleration time domain

Units: g

Frequency range: 1000 Hz

Y-Axis units: g

WAV (Waveform Audio File Format) File Parameters:

Bits per sample: 16

Samples per second: 2560

Average bytes per second: 10,240

Format: PCM (Pulse Code Modulation)

Figure 1. CNC vertical machining center MCV 754.

The instrument Microlog uses a CMSS 2111 accelerometer sensor that has been at-
tached to the spindle with a magnet. The position of the sensor on the machine is shown
in Figure 2. Used tool H490 F90AX D040-4-16-12 has the possibility of changing the teeth
(inserts), which are fixed with a screw, as shown in Figure 3. Three states/classes were
chosen for the experiment, namely:

• Class 0—Tool in the fault-free state (Figure 3-left)
• Class 1—Tool without insert (carbide insert), but with screw-simulation of damage

and breakage of an insert (Figure 3-middle)
• Class 2 —Tool without insert and screw (Figure 3-right)
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CMSS 2111 accelerometer 

Figure 2. Placement of the CMSS 2111 accelerometer to the machine MCV 754.

Expected measurable changes are caused by the unbalance of the tool when this
vibration is transmitted to the spindle. The failure of unbalance is characterized by an
increase in vibrations in the region of the first harmonic frequency. The unbalance is
described in the [19–21] and is divided into a static unbalance and a dynamic unbalance.

The first experiment verified that the missing insert was reflected in spindle vibrations
at 700, 1050, and 1400 RPM. The results are shown in Figure 4, which shows the area around
the first harmonic frequency. The aim of this experiment was to determine at which spindle
speeds the manifestations are visible in the frequency spectrum and which speeds are
suitable for data collection in a machine learning dataset. From the result, it is evident that
at the speed 700 RPM the effect of the unbalances in the frequency domain is insignificant,
and therefore undetectable. For this reason, speeds were selected to obtain a dataset from
1000 to 1500 RPM.

Figure 3. The tool H490 F90AX D040-4-16-12 in fault-free state-Class 0 (left), without the insert
Class 1 (middle) and without the insert and without the screw Class 2 (right).

2.1. Dataset Obtain

For each state/class, a series of data was measured for different operating speeds that
are within the recommended speed range for the tool. Specifically, the speed was from
1000 RPM to 1500 RPM after the step of 50 RPM in two repetitions and 20 s is maintained at
each speed level. The total time is therefore 20 × 11 × 2 = approx. 440 s for one state (class).
The speed setting was programmed and started for each state in the same way, Figure 5
shows the time record of the speed change over time. The aim is to obtain data at a wide
range of operating speeds. The data were captured in a recorder mode, i.e., one long time
record was obtained, which was later processed into individual samples, which formed a
dataset for machine learning.
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Figure 4. The first test of the effect of the fault in frequency domain (C0−C2 are Class 0−Class 2,
1H—first harmonic frequency, max(1H)—maximum of the first harmonic frequency).
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Figure 5. The variation of the spindle speed over time during the dataset obtain.

2.2. Predictors

Predictors are arbitrary parameters, and their values (or combinations thereof) deter-
mine the properties of the class being searched. If these parameters did not adequately
reflect the properties of the class, the data classification would not be successful. An ex-
ample of the use of a predictor is the known area for image data processing. The input is
information about individual pixels and at full HD resolution (1920 × 1080) it is more than
2 × 106 pixels and each pixel contains information about three colours (RGB). This amount
of data is disproportionately large and contains a lot of useless information, so there is a
need to reduce data such as reducing the number of colours, edge detection, and more. The
outputs of this reduction are predictors, which are the input for artificial intelligence, and
based on their values (and their combinations) it is possible to classify individual classes.
The properties of predictors should be:

• Clearly describe the class properties (state)-improved achievement classification
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• Low computational complexity-speeds up the predictor calculation
• Low number of predictors-speeds up the learning and evaluation process

The input data in vibrodiagnostics are time domain signals. In this particular case, the
sampling frequency is 2560 Hz (sampling period is approximately 0.4 ms), which means
2560 values every second of recording for one axis. It is, therefore, necessary to reduce
this data flow and evaluate suitable predictors from it, which will be the input for artificial
intelligence. The aim is to select appropriate predictors and compare their impact on the
success of data classification.

2.3. Data Processing and Selection of Predictors

In this article, a method is chosen that classifies data into individual classes based on
predictors. The selection and calculation of predictors are performed before the classifi-
cation of data and the correct choice of these predictors has a significant impact on the
results of the classification and it is necessary to know the issue and have experience with
similar experiments. The author of the article has already dealt with this issue in [7,8] and
verified which predictors are applicable for a similar type of problem. This article will
compare the classification successes for time and frequency domain predictors and their
combinations. It was also necessary to choose the length of the time signal and divide the
resulting samples. The times of 0.25 s and 0.5 s were chosen and again the advantages and
disadvantages of these lengths were compared. The following predictors were used.

Predictors from the time domain:

• Speed-Current RPM during one sample
• RMS-Root Mean Square of acceleration amplitudes from one sample
• STD-The standard deviation of the acceleration amplitudes from a single sample
• PCA-Principal Component Analysis realized with scikit learn library R2 (with param-

eters n_components = 1 and explained_variance_ = 0) [22]

The result is a vector that contains 4 predictors for each sample (RPM, RMS, STD and
PCA); the values in this vector are further labelled as “T predictors”.

Frequency domain predictors are based on FFT (Fast Fourier Transform) frequency
analysis performed using the NumPy library “Standard FFTs” [23] and a range of 4 to
100 Hz is used. The minimum value of 4 Hz is determined by the minimum measuring
range of the sensor used. The maximum value of 100 Hz is the maximum value of the
occurrence of the first harmonic in all operating speeds of the tool and any tooth frequency.
The maximum operating speed is 1432 RPM, the maximum tooth frequency is therefore
(1432 × 4)/60 = 95.47 Hz, therefore the maximum frequency of 100 Hz was chosen.

• Speed-Current RPM during one sample
• Spectrum energy (eF)-calculated as ∑ A f (i)2 for the 4–100 Hz range, where A f (i)

are amplitudes of spectral lines.
• Af(i)-the sequence of amplitudes of individual spectral lines for frequencies 4–100 Hz

The result is a vector whose size varies according to the length of the signals used,
i.e., division into individual samples. For example, if the signal is 0.25 s long and has a
sampling frequency of 2560 Hz, the situation is as follows:

N = fs · t = 2560 · 0.25 = 640

Bin(∆ f ) =
fs

N
=

2560
640

= 4

For range 4–100 Hz:

NBin =
fmax − fmin

Bin
=

100 − 4
4

= 24
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For a 0.25 s signal (t1), the output will be a vector containing 26 (24 + 1 + 1) predictors
for each data sample. The disadvantage of such a short signal is the frequency resolution
(Bin) of 4 Hz, where this value may be insufficient. Furthermore, signals with a length of
0.5 s will be compared. There is the following situation

N = fs · t = 2560 · 0.5 = 1280

Bin(∆ f ) =
fs

N
=

2560
1280

= 2

For range 4–100 Hz:

NBin =
fmax − fmin

Bin
=

100 − 4
2

= 48

For a 0.5 s signal (t2), the output will be a vector containing 50 (48 + 1 + 1) predictors
for each data sample. With this signal distribution, we get a frequency resolution ∆ f (Bin)
of 2 Hz, which is more suitable than the previous case, but we get only half of the samples
for machine learning from the limited recording.

The resulting vector for frequency domain predictors contains the measured RPM
value, the calculated Spectrum energy value (labeled as eF) and the sequence of amplitudes
of individual spectral lines (Af1 to Af24 for t1 and Af1 to Af48 for t2), calculated using the
FFT function, see Figure 6. The values in this vector are further labelled as “F predictors”.

Both variants will be compared with each other.
The detailed data processing procedure is as follows:
Data processing (outside MATLAB)

• Combination of vibration channel and tacho channel data
• Splitting the signal according to the selected time (t1 = 0.25 s or t2 = 0.5 s)
• Checking whether the change is not greater than 10 RPM during the duration (t1 or

t2) (elimination of transients)
• Sorting the signal into individual classes
• Predictor calculation, for each sample (T-time domain, F-Frequency domain or FT-all

predictors)
• Saving predictors to a file according to individual classes (preparation for MATLAB)

Processed in MATLAB:

• Random mixing and merging of data of individual classes into one dataset
• Evaluating in the environment “Classification learner app”
• Generating and saving the most successful model

Verification of the generated model:

• Randomly selected n samples from each class (selected n = 100 per class)
• Accuracy and TPR (True positive rate) and FNR (False negative rate) evaluated
• Results displayed and saved as the Confusion matrix

Figure 6. Scheme of predictors calculation using IPC (“eF”—Spectrum energy, “Af1” to “Afn”—the
sequence of amplitudes of individual spectral lines).
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3. Classification Methods

Classification Learner App (CL) compared different classification methods to deter-
mine which methods are appropriate for the problem. This application allows you to
compare different methods and then select and create a model containing the selected
method (chosen were the most successful). The individual methods are described in more
detail in [24]. Datasets were tested on all methods that CL allows and their success is in a
Tables 2–4. The number of repetitions of the learning process was 10 for each model, and the
interval estimate was calculated using “The t Confidence interval” [25] with alpha = 0.05.
Furthermore, the hyperparametric optimization provided by Matlab was verified. Each
winning model was subjected to hyperparametric optimization with the same dataset, and
these results are shown in Table 5. Due to the time consuming, only one repetition was
performed, the average improvement of the prediction accuracy with hyperparametric
optimization is only 0.55%. Models without hyperparametric optimization were used for
further validation.

Briefly, these are the following classification methods:

Table 2. Resulting success rate of classification of individual methods for experiments with sample time t1 (0.25 s). The best
results are marked in bold.

t1R1T t1R1F t1R2T t1R2F t1R3T t1R3F t1R4T t1R4F

Fine tree 79.9 ± 0.55 69.9 ± 1.66 67.9 ± 1.14 80.1 ± 1.23 63.9 ± 0.95 94.1 ± 0.32 59.4 ± 0.60 73.2 ± 0.37

Medium tree 77.2 ± 0.89 59.4 ± 1.29 62.3 ± 0.89 79.2 ± 1.29 55.6 ± 1.15 94.1 ± 0.32 54.9 ± 0.40 67.1 ± 0.24

Coarse tree 76.8 ± 0.54 47.2 ± 1.08 57.6 ± 0.89 72.4 ± 0.97 51.6 ± 0.98 94.5 ± 0.46 52.9 ± 0.29 58.1 ± 0.42

Linear discriminant 74.1 ± 0.30 60.1 ± 0.95 56.8 ± 0.30 74.1 ± 0.80 51.8 ± 0.62 95.0 ± 0.30 51.3 ± 0.18 64.3 ± 0.19

Quadratic discriminant 74.2 ± 0.52 69.1 ± 1.41 59.9 ± 0.20 81.4 ± 0.86 44.7 ± 0.93 95.6 ± 0.58 52.3 ± 0.07 69.5 ± 0.18

Gaussian Naive Bayes 69.6 ± 0.68 57.5 ± 1.13 56.7 ± 0.38 73.7 ± 0.61 42.0 ± 0.65 91.1 ± 0.61 48.8 ± 0.12 59.2 ± 0.37

Kernel Naive Bayes 68.1 ± 0.51 60.3 ± 0.88 60.8 ± 0.61 77.0 ± 0.82 48.1 ± 0.82 94.0 ± 0.31 53.6 ± 0.16 64.1 ± 0.19

Linear SVM 73.0 ± 0.50 60.3 ± 0.80 57.1 ± 0.56 75.4 ± 0.93 51.9 ± 0.62 94.9 ± 0.51 52.1 ± 0.13 65.1 ± 0.23

Quadratic SVM 73.5 ± 0.31 73.8 ± 1.06 59.9 ± 0.49 83.5 ± 0.50 48.9 ± 0.69 96.9 ± 0.28 51.2 ± 0.80 74.6 ± 0.26

Cubic SVM 73.0 ± 0.73 78.6 ± 1.11 60.2 ± 1.08 85.2 ± 0.59 34.9 ± 1.15 96.6 ± 0.31 35.5 ± 0.80 83.4 ± 0.35

Fine Gaussian SVM 73.8 ± 0.93 71.0 ± 1.20 65.3 ± 1.13 67.4 ± 1.07 55.9 ± 0.87 70.2 ± 1.80 61.7 ± 0.19 79.0 ± 0.65

Medium Gaussian SVM 71.7 ± 0.45 73.9 ± 0.64 60.5 ± 0.60 83.1 ± 0.71 50.7 ± 0.97 96.7 ± 0.48 57.6 ± 0.24 75.6 ± 0.27

Coarse Gaussian SVM 73.0 ± 0.44 57.2 ± 0.84 57.2 ± 0.54 71.4 ± 0.96 49.8 ± 0.87 93.5 ± 0.23 52.8 ± 0.13 65.4 ± 0.17

Fine KNN 82.2 ± 0.63 75.0 ± 1.24 78.7 ± 1.12 80.2 ± 0.94 74.5 ± 0.66 89.6 ± 0.59 77.5 ± 0.21 81.7 ± 0.29

Medium KNN 72.1 ± 0.72 53.5 ± 0.69 59.7 ± 0.78 64.8 ± 0.79 51.6 ± 0.86 81.4 ± 0.74 60.9 ± 0.32 67.7 ± 0.37

Coarse KNN 68.4 ± 0.30 44.9 ± 1.00 56.2 ± 0.59 65.5 ± 0.92 47.8 ± 0.83 75.2 ± 1.11 59.3 ± 0.18 64.5 ± 0.11

Cosine KNN 68.2 ± 0.98 55.7 ± 0.94 57.4 ± 1.06 63.0 ± 0.61 51.4 ± 1.57 81.2 ± 1.13 59.4 ± 0.30 66.6 ± 0.17

Cubic KNN 72.1 ± 0.73 55.4 ± 1.26 59.2 ± 0.94 64.0 ± 1.07 51.3 ± 1.10 78.1 ± 2.12 60.9 ± 0.23 66.8 ± 0.27

Weighted KNN 82.8 ± 0.40 76.1 ± 1.01 80.6 ± 1.24 81.8 ± 0.70 75.3 ± 0.84 89.4 ± 0.77 78.5 ± 0.31 82.6 ± 0.34

Boosted Trees 79.0 ± 0.95 72.9 ± 1.12 65.2 ± 1.05 84.3 ± 0.90 61.5 ± 1.04 35.4 ± 0.00 57.0 ± 0.39 71.5 ± 0.31

Bagged Trees 84.1 ± 0.58 76.9 ± 1.13 78.8 ± 1.19 77.0 ± 1.00 75.7 ± 0.94 96.1 ± 0.39 78.4 ± 0.27 84.4 ± 0.33

Subspace Discriminant 73.4 ± 0.42 59.6 ± 0.83 55.6 ± 0.61 73.0 ± 0.64 52.3 ± 0.44 95.3 ± 0.32 51.1 ± 0.11 63.2 ± 0.29

Subspace KNN 82.1 ± 0.67 72.6 ± 1.18 76.3 ± 1.16 74.8 ± 0.71 74.7 ± 0.98 84.3 ± 1.64 75.5 ± 0.25 77.4 ± 0.51

RUSBoosted Trees 76.9 ± 0.58 64.1 ± 1.34 63.4 ± 0.97 82.4 ± 1.03 61.5 ± 1.57 66.6 ± 9.85 55.8 ± 0.41 68.4 ± 0.28
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Table 3. Resulting success rate of classification of individual methods for experiments with sample time t2 (0.5 s). The best
results are marked in bold. Note: F-model failed (one or more of the classes have singular covariance matrices).

t2R1T t2R1F t2R2T t2R2F t2R3T t2R3F t2R4T t2R4F

Fine tree 81.8 ± 1.70 72.9 ± 1.79 65.5 ± 1.58 85.1 ± 1.39 63.3 ± 2.23 94.2 ± 0.60 62.6 ± 0.48 82.9 ± 0.81

Medium tree 81.6 ± 1.61 72.8 ± 1.67 62.4 ± 1.86 85.1 ± 1.39 60.3 ± 2.21 94.2 ± 0.60 58.1 ± 0.52 73.9 ± 0.74

Coarse tree 75.7 ± 0.78 55.2 ± 1.02 58.0 ± 1.12 79.4 ± 1.60 59.5 ± 1.69 94.1 ± 0.95 53.9 ± 2.25 60.9 ± 0.39

Linear discriminant 76.9 ± 0.90 70.6 ± 2.28 55.1 ± 0.83 84.4 ± 1.46 59.0 ± 0.86 97.7 ± 0.31 54.5 ± 0.24 72.0 ± 0.17

Quadratic discriminant 72.3 ± 0.86 F 53.3 ± 0.75 F 50.5 ± 1.05 F 54.3 ± 0.31 83.2 ± 0.28

Gaussian Naive Bayes 68.2 ± 0.67 67.2 ± 1.68 52.6 ± 1.17 74.2 ± 1.60 41.0 ± 0.59 85.4 ± 0.50 51.8 ± 0.31 64.5 ± 0.51

Kernel Naive Bayes 69.3 ± 0.99 77.8 ± 1.46 50.7 ± 0.77 84.6 ± 1.92 48.0 ± 1.22 98.4 ± 0.72 55.0 ± 0.27 74.4 ± 0.27

Linear SVM 74.2 ± 0.76 71.7 ± 0.78 55.7 ± 1.30 83.1 ± 1.35 59.9 ± 0.78 95.7 ± 0.43 55.7 ± 0.27 72.7 ± 0.28

Quadratic SVM 77.4 ± 0.72 84.0 ± 1.87 55.4 ± 1.40 89.5 ± 0.84 61.6 ± 0.99 98.0 ± 0.50 56.6 ± 0.31 87.4 ± 0.33

Cubic SVM 76.8 ± 1.25 84.9 ± 1.76 54.0 ± 1.54 88.2 ± 0.83 54.8 ± 1.85 97.9 ± 0.67 39.3 ± 1.35 89.6 ± 0.31

Fine Gaussian SVM 78.6 ± 1.38 73.9 ± 1.65 64.9 ± 1.81 75.4 ± 2.42 64.0 ± 1.07 72.9 ± 1.47 63.9 ± 0.34 71.7 ± 0.34

Medium Gaussian SVM 76.7 ± 1.85 84.9 ± 1.95 56.2 ± 1.17 87.8 ± 1.30 62.1 ± 1.07 97.9 ± 0.49 60.9 ± 0.30 84.7 ± 0.30

Coarse Gaussian SVM 71.8 ± 1.07 58.1 ± 0.64 54.3 ± 0.91 72.0 ± 1.29 50.8 ± 1.18 81.7 ± 0.59 55.4 ± 0.21 70.0 ± 0.22

Fine KNN 86.2 ± 1.61 82.0 ± 2.13 78.4 ± 1.44 83.2 ± 1.52 74.7 ± 1.77 91.7 ± 1.19 78.3 ± 0.46 85.1 ± 0.40

Medium KNN 69.9 ± 1.28 59.3 ± 1.82 54.5 ± 1.62 70.8 ± 1.39 59.5 ± 2.03 85.1 ± 1.19 64.2 ± 0.21 73.6 ± 0.45

Coarse KNN 49.9 ± 1.05 53.9 ± 1.09 52.0 ± 1.21 54.9 ± 1.37 58.5 ± 0.95 72.0 ± 0.68 61.8 ± 0.24 68.3 ± 0.20

Cosine KNN 64.0 ± 0.91 62.5 ± 1.53 57.9 ± 1.09 67.6 ± 1.26 57.7 ± 1.73 84.2 ± 1.12 61.7 ± 0.33 73.5 ± 0.61

Cubic KNN 71.5 ± 1.23 59.1 ± 1.32 55.7 ± 1.14 69.4 ± 1.36 60.8 ± 1.43 79.9 ± 0.75 64.0 ± 0.39 72.5 ± 0.32

Weighted KNN 87.6 ± 1.61 81.7 ± 1.69 78.7 ± 1.41 84.3 ± 0.87 77.7 ± 1.68 91.5 ± 1.46 79.6 ± 0.40 86.2 ± 0.43

Boosted Trees 87.1 ± 1.19 79.6 ± 1.29 70.6 ± 1.80 37.3 ± 0.00 70.3 ± 2.40 36.7 ± 0.00 60.3 ± 0.37 81.3 ± 0.38

Bagged Trees 88.4 ± 1.18 79.9 ± 1.18 77.2 ± 1.38 87.8 ± 1.22 77.4 ± 1.30 94.3 ± 1.21 79.8 ± 0.39 86.0 ± 0.41

Subspace Discriminant 75.5 ± 0.86 71.6 ± 1.59 51.7 ± 0.80 84.1 ± 1.34 58.6 ± 1.13 96.9 ± 0.41 53.7 ± 0.20 71.1 ± 0.12

Subspace KNN 85.0 ± 1.59 73.4 ± 1.41 72.5 ± 2.22 78.3 ± 2.00 73.7 ± 1.97 85.5 ± 1.93 76.7 ± 0.36 79.7 ± 0.49

RUSBoosted Trees 86.2 ± 1.44 77.7 ± 1.53 67.1 ± 1.56 47.9 ± 3.86 62.6 ± 2.08 76.0 ± 9.04 59.4 ± 0.34 77.6 ± 0.46

3.1. Classification Trees

Binary decision trees for multiclass learning [26]. This method is easy to interpret
and fast for data prediction, has low memory requirements, but may not achieve sufficient
prediction accuracy. Decision making takes place through a tree structure from the begin-
ning (root) to the final class (leaves). The method was probably first published by J. Ross
Quinlan in 1975. The tested variants are:

• Fine tree
• Medium tree
• Coarse tree

3.2. Discriminant Analysis

Regularized linear and quadratic discriminant analysis [27]. This method is easy to
interpret and fast for data prediction for large datasets. Using “Quadratic Discriminant”
increases memory requirements. It is one of the methods of N-dimensional statistical
analysis (multivariate statistical analysis), where, based on the decision rule, objects are
divided into groups according to probability densities. The method was probably first
published by Ronald Fisher in 1936. The tested variants are:

• Linear discriminant
• Quadratic discriminant
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3.3. Naive Bayes

Naive Bayes model with Gaussian, multinomial, or kernel predictors [28]. This method
is easy to interpret and achieves good results for multi-class classification. Prediction speed
is slow (medium for Gaussian), memory usage is a medium (small for Gaussian). The
method is based on Bayes’ theorem on conditional probabilities and class affiliation testing.
Bayes’ Theorem was published by Thomas Bayes in 1736 and the classifier was probably
first published in 1960. The tested variants are:

• Gaussian Naive Bayes
• Kernel Naive Bayes

Table 4. Resulting success rate of classification of individual methods for experiments with combined predictors. The best
results are marked in bold. Note: F-model failed (one or more of the classes have singular covariance matrices).

t1R1 t1R2 t1R3 t1R4 t2R1 t2R2 t2R3 t2R4

Fine tree 78.2 ± 0.96 85.4 ± 0.64 93.3 ± 0.47 77.6 ± 0.49 80.2 ± 1.66 88.3 ± 1.72 97.0 ± 0.42 83.5 ± 0.66

Medium tree 77.5 ± 1.06 84.3 ± 0.80 93.3 ± 0.47 72.3 ± 0.37 80.2 ± 1.66 88.3 ± 1.72 97.0 ± 0.42 73.7 ± 0.44

Coarse tree 76.0 ± 0.81 74.5 ± 0.86 92.2 ± 0.36 58.8 ± 0.44 78.1 ± 1.28 78.8 ± 1.36 97.0 ± 0.42 62.1 ± 0.45

Linear discriminant 76.2 ± 0.68 78.3 ± 0.59 96.1 ± 0.32 70.3 ± 0.13 81.0 ± 1.66 81.4 ± 18.01 98.1 ± 0.26 76.4 ± 0.20

Quadratic discriminant 81.5 ± 0.79 83.1 ± 1.01 93.7 ± 0.52 77.6 ± 0.16 F F F 87.5 ± 0.25

Gaussian Naive Bayes 71.4 ± 0.85 71.2 ± 0.59 81.6 ± 0.65 61.0 ± 0.29 62.3 ± 23.52 80.0 ± 1.27 93.7 ± 0.59 67.7 ± 0.56

Kernel Naive Bayes 78.4 ± 0.89 76.7 ± 0.77 92.7 ± 0.28 70.5 ± 0.26 82.5 ± 1.26 85.8 ± 0.58 99.0 ± 0.27 78.7 ± 0.36

Linear SVM 76.5 ± 0.53 77.6 ± 0.39 95.6 ± 0.48 71.3 ± 0.26 83.6 ± 1.21 82.8 ± 0.89 97.6 ± 0.50 76.3 ± 0.33

Quadratic SVM 85.2 ± 0.91 85.0 ± 0.64 95.6 ± 0.38 81.6 ± 0.21 86.6 ± 0.70 88.2 ± 0.52 98.4 ± 0.24 89.5 ± 0.36

Cubic SVM 85.8 ± 0.85 85.6 ± 0.55 96.3 ± 0.33 88.1 ± 0.27 86.2 ± 0.82 88.1 ± 0.89 98.6 ± 0.39 90.9 ± 0.22

Fine Gaussian SVM 70.8 ± 0.94 70.4 ± 0.77 72.1 ± 1.36 81.5 ± 0.40 69.4 ± 1.28 75.7 ± 1.60 66.8 ± 1.33 74.9 ± 0.41

Medium Gaussian SVM 85.5 ± 0.78 84.4 ± 0.77 95.2 ± 0.65 82.5 ± 0.20 87.9 ± 0.78 86.6 ± 0.55 98.1 ± 0.50 88.4 ± 0.25

Coarse Gaussian SVM 71.5 ± 0.40 71.1 ± 0.43 92.9 ± 0.40 70.8 ± 0.15 77.2 ± 0.79 71.6 ± 0.75 98.1 ± 0.34 74.0 ± 0.31

Fine KNN 78.2 ± 0.83 80.8 ± 0.84 90.1 ± 0.88 84.5 ± 0.14 83.1 ± 1.57 85.4 ± 0.95 93.7 ± 0.72 87.1 ± 0.33

Medium KNN 61.3 ± 0.76 64.9 ± 1.03 83.2 ± 0.73 73.9 ± 0.17 70.5 ± 1.40 68.7 ± 1.86 91.7 ± 0.68 78.2 ± 0.38

Coarse KNN 55.9 ± 0.79 59.0 ± 0.97 82.3 ± 0.47 72.5 ± 0.25 58.2 ± 0.61 63.1 ± 1.05 90.3 ± 0.78 69.5 ± 0.69

Cosine KNN 64.0 ± 1.15 67.0 ± 0.87 84.5 ± 0.98 73.7 ± 0.22 76.8 ± 1.41 67.3 ± 2.00 88.3 ± 0.76 77.4 ± 0.32

Cubic KNN 62.4 ± 0.69 62.2 ± 0.88 80.2 ± 0.72 72.8 ± 0.25 70.8 ± 1.33 70.7 ± 1.71 86.3 ± 0.69 75.7 ± 0.42

Weighted KNN 82.2 ± 0.96 83.0 ± 1.07 89.9 ± 0.61 86.4 ± 0.25 83.7 ± 1.26 87.5 ± 1.36 94.1 ± 0.69 88.5 ± 0.33

Boosted Trees 84.7 ± 0.86 87.7 ± 0.57 34.4 ± 0.00 77.6 ± 0.24 50.8 ± 8.99 36.0 ± 0.00 35.4 ± 0.00 82.0 ± 0.37

Bagged Trees 84.7 ± 1.02 85.8 ± 0.55 92.3 ± 0.51 88.2 ± 0.36 82.1 ± 1.30 86.3 ± 1.82 95.6 ± 0.83 85.2 ± 0.51

Subspace Discriminant 76.0 ± 0.40 76.5 ± 0.47 95.7 ± 0.60 69.3 ± 0.19 85.2 ± 1.26 86.0 ± 0.99 98.5 ± 0.23 74.8 ± 0.31

Subspace KNN 75.5 ± 1.30 71.4 ± 1.15 84.4 ± 0.98 78.0 ± 0.39 72.3 ± 1.44 78.8 ± 1.03 92.0 ± 0.64 80.7 ± 0.63

RUSBoosted Trees 81.8 ± 0.74 85.1 ± 1.03 64.9 ± 9.99 73.3 ± 0.46 81.6 ± 2.93 69.7 ± 8.09 60.5 ± 10.42 75.7 ± 0.34



Machines 2021, 9, 222 11 of 19

Table 5. Results of prediction accuracy after hyperparametric optimization, “Hyperparameter opt”-best model with
hyperparameter optimization, “Difference”-Difference between result with and without hyperparameter optimization, “Avr.
difference”-average difference from all experiments.

t1R1T t1R1F t1R2T t1R2F t1R3T t1R3F t1R4T t1R4F

Best model: 84.0% 74.1% 77.8% 85.6% 74.7% 96.7% 78.3% 84.7%

Hyperparameter opt: 85.3% 77.6% 81.5% 85.8% 75.2% 94.6% 80.9% 86.2%

Difference: 1.3% 3.5% 3.7% 0.2% 0.5% −2.1% 2.6% 1.5%

t2R1T t2R1F t2R2T t2R2F t2R3T t2R3F t2R4T t2R4F

Best model: 86.7% 85.8% 79.8% 87.3% 76.3% 97.5% 79.5% 88.9%

Hyperparameter opt: 83.1% 84.9% 81.1% 86.4% 80.8% 97.5% 79.5% 88.7%

Difference: −3.6% −0.9% 1.3% −0.9% 4.5% 0.0% 0.0% −0.2%

t1R1 t1R2 t1R3 t1R4 t2R1 t2R2 t2R3 t2R4

Best model: 86.6% 86.7% 97.1% 87.4% 89.3% 89.5% 99.2% 91.0%

Hyperparameter opt: 87.3% 87.1% 96.7% 89.1% 88.4% 89.5% 99.2% 91.3%

Difference: 0.7% 0.4% −0.4% 1.7% −0.9% 0.0% 0.0% 0.3%
Average difference: 0.55%.

3.4. Support Vector Machine Classification

Support vector machines (SVM) for binary or multiclass classification [29].
This method is difficult to interpret (not for the linear variant). If there are more than

two classification classes, then the problem must be divided into several partial binary
problems, therefore, it has high memory requirements and is therefore slow in multi-class
classification. The principle of the method is to find a hyperplane that separates individual
objects based on class affiliation. The method was probably first published by Vladimir N.
Vapnik and Alexey Ya. Chervonenkis in 1963. The tested variants are:

• Linear SVM
• Quadratic SVM
• Cubic SVM
• Fine Gaussian SVM
• Medium Gaussian SVM
• Coarse Gaussian SVM

3.5. Nearest Neighbors

k nearest neighbours (KNN) classification using Kd-tree search [30]. This method is
difficult to interpret and the success of the method decreases with the growth of classes.
Prediction speed and memory requirements are media. The principle of the method consists
of finding the nearest neighbours of objects in N-dimensional space with the properties of
the class. The method was probably first published by Evelyn Fix and Joseph Hodges in
1951. The tested variants are:

• Fine KNN
• Medium KNN
• Coarse KNN
• Cosine KNN
• Cubic KNN
• Weighted KNN

3.6. Classification Ensembles

Boosting, random forest, bagging, random subspace, and ECOC (Error-Correcting
Output Codes) ensembles for multiclass learning [31]. This method combines several sim-
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ple methods into one powerful model. Interpretability is difficult, however, the prediction
speed is from fast to medium (depending on the combination used) and memory usage is
low (medium for Subspace KNN). The tested variants are:

• Boosted Trees
• Bagged Trees
• Subspace Discriminant
• Subspace KNN
• RUSBoosted Trees

4. Comparison of Classification Results

The experiments were divided into several variants, according to the properties of
the input data, to be able to compare results of the classification and determine which pa-
rameters/predictors and under what conditions they affect the success of the classification.
The first step is to use a sample length of 0.25 s and 0.5 s (t1 and t2). The choice of this
parameter affects the number of predictors-(frequency spectrum resolution) and also the
number of samples for the dataset because the measured data have a limited length (for
more details, see Section 2 in Figure 5). Another division will focus on determining the
effect of spindle speed variability. Datasets labeled R1-R3 have a constant speed (1000, 1250,
1500 RPM) and experiments labelled R4 have a dataset with combinations of all speeds, so
it is a random mixing of sample R1 to R3 regardless of speed. And the last experiments
contain a combination of all predictors, ie. from the time and frequency domain (without T
or F marking). A unique code name was chosen for each experiment so that it was possible
to refer to a specific variant in the text. The overall division of the experiment is shown in
Figures 7 and 8.

Figure 7. The code names of experiments.
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Figure 8. The code names of experiments (the combined predictors).

5. Verification of Resulting Models

The following section compares the success of each method for all variants of experi-
ments. The goal was to find out what methods are suitable for the given predictors, and
how the success of the classification differs with the spindle speed, and how successful the
time and frequency domain predictors are.

The accuracy of the models is compared and is determined as follows. In the case of
selecting the most successful model, an evaluation method was used, which the Matlab
Learner app calls “Accuracy” (in the generated code as “validationAccuracy”)

Accuracy =
AllTruePrediction

AllPrediction
· 100

where:
Accuracy—success rate of classification (ideal value is 100%)
AllTruePrediction—True prediction from all class
AllPrediction—All (true and false) prediction from all class
To verify the model (Figures 10 and 11) the method used by Matlab was used, namely

“True positive rate”-TPR, where each class was evaluated separately; the remaining fields
on the lines in CM (Confusion matrix) are False negative rate-FNR for the class. The line
amount is therefore 100%.

TPR =
TrueClassPrediction
AllClassPrediction

· 100

where:
TPR—True positiv rate (ideal value is 100%)
TrueClassPrediction—True (correct) prediction per class
AllClassPrediction—All (true + false) prediction per class

FNR =
TrueClassPrediction

PredictedClass
· 100

where:
FNR-False positiv rate (ideal value is 0%)
PredictedClass—Predicted class (incorrect) for True class
AllClassPrediction—All (true + false) prediction per class

In Tables 2–4 are the results of individual methods and it is clear that some methods
are more successful for predictors from the time domain than predictors from the frequency
domain. More interesting is the graphic display in Figure 9, where the success rate of the
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classification depends on the spindle speed. Descriptions in the graph mean “Classification
success rate” is the Accuracy (AllTruePrediction/AllPrediction) for the created models at
the number of a random selection of 100 samples per class and “Fault-free detection success
rate” is the TPR (True positive rate) for class 0, i.e., faultless condition.

In the case of predictors from the frequency domain, the success rate increases with
spindle speed, because the effect of the unbalances fault is more noticeable with increasing
spindle speed, but in the case of the predictor from the time domain it the course is the
opposite, see Figure 9.
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Figure 9. The resulting successes rate of the classification and the success rate of the prediction of the
fault-free state. The waveforms from the graph are T—Time domain predictors only, F—Frequency
domain predictor only, TF—All predictors together, TF mix—All predictors together for all RPM
(from 1000 to 1500 with step 50).

The next step was to select the most successful models and subject them to further
verification. From the confusing matrix in Figures 10 and 11 is clear that the models had
a problem recognizing classes 1 and 2, it is a variant without an insert with a screw and
a variant without an insert and a screw, i.e., a defect was determined, but incorrectly
classified. However, the classification of the fault-free state is more important, it determines
the success with which the model classifies the fault-free state-class 0, this information is
the most important and is graphically shown in Figure 9-bottom. The experiment, which
combined all predictors and contained datasets from all speeds, achieved a success rate of
the classification of the fault-free state (classification of class 0-marked “TF mix”) equally
97% for the dataset for lengths of 0.25 s (t1) and 98% for the dataset for lengths of 0.5 s
(t2). Experiment with speed 1500 RPM and combined predictors achieved a success rate of
100% for both datasets for lengths of 0.25 s (t1) and 0.5 s (t2).
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Figure 10. Resulting confusion matrix for experiments with sample time t1 (0.25 s).
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Figure 11. Resulting confusion matrix for experiments with sample time t2 (0.5 s).
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Time Consumption of Prediction

The time consumption of the prediction is highly dependent on the performance of the
computing unit that will perform the prediction. In general, the time-consuming process is
the learning of the model, but this operation is only performed once when the systems are
deployed or when a new dataset is available for learning. Thus, the learning process can
be efficiently scheduled and is not critical to the running of the system.

More important is the prediction time and the possible reaction of the system to a
possible problem. The prediction time consists of two steps, namely data preprocessing,
i.e., extraction of predictors, and then the prediction itself. These times were tested on a
personal computer with Intel(R) Core(TM) i7-2600 CPU @ 3.40 GHz, 16 GB RAM and a
similar configuration is possible for the current IPC. Time was measured for 100 repetitions
each time to eliminate random variations in performance. Measured time includes only
computation time without loading or saving data from recording media. Winning models
for the most challenging variants containing all predictors (time and frequency domain)
were used. For experiment T1R4, the winning model was “Bagged Trees” and the results
are as follows. The data processing time for 100 repetitions is 1.13 s and the prediction time
for 100 repetitions is 5.12 s, that is, the average total time is (1.13 + 5.12)/100 = 0.0625 s i.e.,
62.5 ms. For T2R4 experiment, the winning model was “Cubic SVM” and the results are
as follows. The data processing time for 100 repetitions is 2.04 s and the prediction time
for 100 repetitions is 1.43 s, that is, the average total time is (2.04 + 1.43)/100 = 0.0347 s i.e.,
34.7 ms. The measured times are only approximate and depend on many circumstances,
also there is a possibility for optimizing the classifier selection according to its prediction
time. For our purposes, the achieved times are sufficient.

6. Implementation of the Trained Model

The procedure for implementing a trained model is as follows. The model can be
generated as a function of MATLAB, or as source code in C language, then it is easy to
compile it for any platform. Its function (ability to classify) does not change over time
because there is no learning process. However, provided the conditions have changed or
a new dataset is available, it is possible to start the learning process again and train the
model for the new data.

Figure 12 schematically shows the possible connection of the server with individual
clients. Each IPC performs data collection and especially timely evaluation based on a
trained model that was learned in the MATLAB environment on the server and then
exported. The process is as follows:

(a) Data acquisition and learning process

• The server requests data from individual IPCs and creates a dataset for creating a clas-
sification model (Data is predictors-it evaluates IPCs, only predictors are transmitted).

• If there is a sufficient amount of data (or conditions have changed, etc.), then MATLAB
performs learning and creates a trained classification model for a specific IPC and
exports it to the C language (this MATLAB allows).

• The trained model is sent to a specific IPC.

Individual machines and their IPCs can be distributed anywhere in different places
and there will be only one server with MATLAB, which will generate a model for a specific
machine and send it to a specific IPC. If necessary, the MATLAB SW can be replaced by
another system, however, the functionality will be maintained and the change will be made
on only one server.

(b) Evaluation process

• IPC performs data collection and predictor calculation-this is a simple operation
and can be performed in any programming language, for simplicity and availability
Python was chosen, which performs statistical operations and frequency analysis.

• Performs classification using MATLAB created and trained model, which was ex-
ported to C language (Python allows to run code in C language).
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Such a topology and partitioning allows for easy changes on both the IPC and server-
side, including changing the programming environment.

As for the specific deployment for monitoring the machine, it is important to note
that nowadays it is not easy to implement elements of artificial intelligence in the safety
segment, where it is necessary to certify the software and verify its functions. However,
it is possible to deploy a similar system only as an informative element that would alert
the operator, but not interfere with the operation of the machine. The use of artificial
intelligence methods is particularly advantageous in the field of technical diagnostics for
the evaluation of multiple criteria and operator alerts.

Figure 12. IPC and server location topology.

7. Results and Discussions

Figure 9 summarizes the results in graphical form and expresses the dependence of
the predictors on the spindle speed. For predictors from the frequency domain, an increase
in success with increasing speed is evident due to a more pronounced manifestation of an
unbalance fault in the frequency spectrum (increasing the first harmonic). In contrast, time
domain predictors achieve a higher success rate at lower speeds than frequency domain
predictors. Thus, using all predictors (time and frequency) increases the success rate at
lower speeds and does not decrease at higher speeds. The figure also focuses on the
detection of a fault-free state, i.e., assuming that we modify the classes only to the fault-free
state (class0) and any fault state (class 1 or 2), then it is obvious that the success of fault-free
detection will increase because we do not include misclassification between class 1 and
class 2, which are similar. This is important if we only want to detect a fault-free condition
and in any other case, an operator warning is issued.

Important results are shown in the Tables 2–4, which compare the successes of indi-
vidual classification methods. Furthermore, Figures 10 and 11 compare the successes of the
classification of individual classes and the most important is the comparison in Figure 9,
which shows the success of the classification and the success of fault-free state detection,
wherewith variant R4 (TF mix-the combination of all speeds), 97% for t1 and 98% for t2
success rate is achieved.
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8. Conclusions

The article aimed to verify the possibilities of artificial intelligence for the classification
of machine tool failure based on an experiment from a real machine. Early detection of
the disorder is an important factor in protecting the health and eliminating damage. The
use of artificial intelligence methods brings the possibility of creating universal algorithms,
which, thanks to the ability to learn, adapt to a specific machine, and a specific phase
of machining.

The described method approaches the possibility of using artificial intelligence for
data classification, in this case for the classification of various machine states. A similar
method can be used to classify any classes, where only a change of predictors that describe
the problem sought is needed.

The choice of predictors used is an important factor which, together with the operating
conditions, influences the success of the classification. Future experiments will focus on
the possibility of detecting a fault condition of a tool during machining and will focus on
obtaining a larger dataset with different machining conditions.
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