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Abstract: The current digitization of industrial processes is leading to the development of smart
machines and smart applications in the field of engineering technologies. The basis is an advanced
sensor system that monitors selected characteristic values of the machine. The obtained data need to
be further analysed, correctly interpreted, and visualized by the machine operator. Thus the machine
operator can gain a sixth sense for keeping the machine and the production process in a suitable
condition. This has a positive effect on reducing the stress load on the operator in the production of
expensive components and in monitoring the safe condition of the machine. The key element here is
the use of a suitable classification model for data evaluation of the monitored machine parameters.
The article deals with the comparison of the success rate of classification models from the MATLAB
Classification Learner App. Classification models will compare data from the frequency and time
domain, the data source is the same. Both data samples are from real measurements on the CNC
vertical machining center (CNC-Computer Numerical Control). Three basic states representing
machine tool damage are recognized. The data are then processed and reduced for the use of the
MATLAB Classification Learner app, which creates a model for recognizing faults. The article aims
to compare the success rate of classification models when the data source is a dataset in time or
frequency domain and combination.

Keywords: vibrodiagnostics; classification learner app; machine learning; MATLAB; Python; classifi-
cation model; unbalance

1. Introduction

The current development of Industry 4.0 brings, in addition to the digitization of
production, the collection of large amounts of data, which are suitable for the use of ar-
tificial intelligence methods. Particularly in the field of technical diagnostics, this opens
possibilities for the early detection state of an object (machine) based on the measured data,
which are obtained from different standard diagnostic methods (e.g., vibrodiagnostics,
thermodiagnostics or electrodiagnostics) and it is possible to use special methods of tech-
nical diagnostics such as measuring the magnetic field of the machine [1]. It is therefore
a multi-parameter diagnostic that can more accurately detect, identify, and localize the
emerging fault, thanks to a combination of input data from different areas of diagnostics.

Vibrations are an important carrier of information about the condition of rotating
equipment and this fact is commonly used in the field of vibrodiagnostics. This article
focuses on the machining center and here it is possible to use the vibrodiagnostic system
to detect other information such as machining quality or tool damage. Thus, unexpected
states can be detected by a vibrodiagnostic signal, which may indicate a fault or a safety
risk. However, these signals are unexpected and a simple evaluation mechanism cannot
be designed, for example, with the detection of frequent failures of rotary machines such
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as misalignment, unbalance, or bearing damage. In these cases, it is appropriate to use
self-learning artificial intelligence methods, i.e., they can learn to recognize a fault condition
from historical data for a specific machine or specific machining operations.

In the development process of smart machine tools capable of operating within the
framework of industry 4.0, it is necessary to implement risk analysis already during
the machine design stage not only in terms of potential damage to the health of the
machine operator (according to ISO 12100 [2]), but also in terms of quality management and
monitoring of the capability of the manufacturing process on the machine tool (according
to ISO 9001 [3]). We can apply the good technical practice as described in IEC 31010 [4]
and then implement the necessary diagnostic tools into the machine design or modify this
machine design so that the measurement uncertainty of the sensor system (according to
ISO 3534-1 [5]) would not affect the interpretation of the measured data and the subsequent
decision-making processes in a negative way. A typical example could be early detection
of tool damage and subsequent bringing the machine to a safe state. Breaking and ejecting
the carbide insert from a tool holder can cause damage to the transparent guard of the
machine’s working area, and thus lead to a subsequent loss of its safety function, or it
may cause irreversible damage to the machined surface. Therefore, by early detection of
a machine fault, we can protect the health of the operator as well as reduce the financial
losses caused by poor production or increased wear of the smart machine’s spindle.

This article will, therefore, compare classification methods that can detect a specific
fault from real data, namely a missing insert on a machining tool, the absence of which
could have occurred due to tool damage. A method will be used where predictors for
machine learning will be evaluated in advance and their choice is therefore up to the expert.
The correct choice of predictors has a major impact on the classification success rate. The
authors of the work have already dealt with the issue of evaluating vibrodiagnostic signals
in [6-8]. The idea of using artificial intelligence methods in diagnostics is described in
other publications such as in [9-12] , where artificial intelligence methods are used for the
recognition of gearbox faults. Also, in the paper [13] authors focus on the classification
using neural networks in the planetary gear. The article [14] uses artificial intelligence
methods to recognize the shape of a rotary machine shaft’s orbit; it is a picture classification
according to the shape of shaft orbit. The aim of this research is to determine a fast method
(real-time evaluation) for the timely evaluation of a failure that would reduce the safety of
the machine. Thus, the primary goal is not to diagnose the condition of the machine, such
as a bearing or gearbox failure, and to predict residual life, but to detect failures related to
machine safety and to warn the operator immediately.

This article has several goals and they are:

e Verify that the missing insert on the tool is detectable on the vibrodiagnostic signal
measured on the machine spindle.

¢ Select and compare predictors from time and frequency domains.

¢  Effect spindle speeds on the classification success rate.

e  Select and compare the most successful classification methods

*  Evaluate detection success rate of fault-free state

It is assumed that the process of data collection and evaluation takes place on an IPC
(Industrial PC) computer near the machine (for example IPC SIMATIC PC-based, where
one IPC will be prepared for each CNC machine), and the learning and model generated
process will take place on a server containing commercial software such as MATLAB
(server will be used for many CNC machines). Learning and exporting the model is an
important operation and will take place under strict supervision. The created MATLAB
model will be exported for the use of individual IPCs without MATLAB.

The Python environment also includes Machine Learning tools such as scikit [15] or
Artap used in [16], however in this case the ambitions are to be used in a safety environment
and the authors there rely on the professional Matlab environment. In the future, the above-
mentioned toolboxes will be used and tested to evaluate the condition of the machine.
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Python environment is used for signal processing, the MATLAB and Classification

Learner App [17] are used for data classification.

2. Experimental Procedure

The data were obtained from the machine MCV 754 QUICK (Figure 1), it is a three-axis
CNC (Computer Numerical Control) machining centre, more information can be obtained
on the manufacturer’s website [18]. The obtained data are from the measuring instrument

Microlog CMXA48 and the measurement parameters are in the Table 1.

Table 1. Measurement parameters of Microlog CMXA48.

Measurement Parameters:

Analysis type: Acceleration time domain
Units: g
Frequency range: 1000 Hz
Y-Axis units: g
WAV (Waveform Audio File Format) File Parameters:
Bits per sample: 16
Samples per second: 2560
Average bytes per second: 10,240
Format: PCM (Pulse Code Modulation)

Figure 1. CNC vertical machining center MCV 754.

The instrument Microlog uses a CMSS 2111 accelerometer sensor that has been at-
tached to the spindle with a magnet. The position of the sensor on the machine is shown
in Figure 2. Used tool H490 FO0AX D040-4-16-12 has the possibility of changing the teeth
(inserts), which are fixed with a screw, as shown in Figure 3. Three states/classes were

chosen for the experiment, namely:

Class 0—Tool in the fault-free state (Figure 3-left)
Class 1—Tool without insert (carbide insert), but with screw-simulation of damage
and breakage of an insert (Figure 3-middle)

Class 2 —Tool without insert and screw (Figure 3-right)
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@ CMSS 2111 accelerometer

Figure 2. Placement of the CMSS 2111 accelerometer to the machine MCV 754.

Expected measurable changes are caused by the unbalance of the tool when this
vibration is transmitted to the spindle. The failure of unbalance is characterized by an
increase in vibrations in the region of the first harmonic frequency. The unbalance is
described in the [19-21] and is divided into a static unbalance and a dynamic unbalance.

The first experiment verified that the missing insert was reflected in spindle vibrations
at 700, 1050, and 1400 RPM. The results are shown in Figure 4, which shows the area around
the first harmonic frequency. The aim of this experiment was to determine at which spindle
speeds the manifestations are visible in the frequency spectrum and which speeds are
suitable for data collection in a machine learning dataset. From the result, it is evident that
at the speed 700 RPM the effect of the unbalances in the frequency domain is insignificant,
and therefore undetectable. For this reason, speeds were selected to obtain a dataset from
1000 to 1500 RPM.

- o
o o

o

Figure 3. The tool H490 FOOAX D040-4-16-12 in fault-free state-Class 0 (left), without the insert
Class 1 (middle) and without the insert and without the screw Class 2 (right).

2.1. Dataset Obtain

For each state/class, a series of data was measured for different operating speeds that
are within the recommended speed range for the tool. Specifically, the speed was from
1000 RPM to 1500 RPM after the step of 50 RPM in two repetitions and 20 s is maintained at
each speed level. The total time is therefore 20 x 11 x 2 = approx. 440 s for one state (class).
The speed setting was programmed and started for each state in the same way, Figure 5
shows the time record of the speed change over time. The aim is to obtain data at a wide
range of operating speeds. The data were captured in a recorder mode, i.e., one long time
record was obtained, which was later processed into individual samples, which formed a
dataset for machine learning.
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Figure 4. The first test of the effect of the fault in frequency domain (CO—C2 are Class 0—Class 2,
1H—first harmonic frequency, max(1H)—maximum of the first harmonic frequency).

RPM Measurement for DataSet
1600 T T T T T T T T

1500

1400

1300

1200

1100

1000

Revolution per Minute (RPM)

900 1 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400

Time (s)

Figure 5. The variation of the spindle speed over time during the dataset obtain.

2.2. Predictors

Predictors are arbitrary parameters, and their values (or combinations thereof) deter-
mine the properties of the class being searched. If these parameters did not adequately
reflect the properties of the class, the data classification would not be successful. An ex-
ample of the use of a predictor is the known area for image data processing. The input is
information about individual pixels and at full HD resolution (1920 x 1080) it is more than
2 x 10° pixels and each pixel contains information about three colours (RGB). This amount
of data is disproportionately large and contains a lot of useless information, so there is a
need to reduce data such as reducing the number of colours, edge detection, and more. The
outputs of this reduction are predictors, which are the input for artificial intelligence, and
based on their values (and their combinations) it is possible to classify individual classes.
The properties of predictors should be:

®  C(learly describe the class properties (state)-improved achievement classification
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e  Low computational complexity-speeds up the predictor calculation
¢ Low number of predictors-speeds up the learning and evaluation process

The input data in vibrodiagnostics are time domain signals. In this particular case, the
sampling frequency is 2560 Hz (sampling period is approximately 0.4 ms), which means
2560 values every second of recording for one axis. It is, therefore, necessary to reduce
this data flow and evaluate suitable predictors from it, which will be the input for artificial
intelligence. The aim is to select appropriate predictors and compare their impact on the
success of data classification.

2.3. Data Processing and Selection of Predictors

In this article, a method is chosen that classifies data into individual classes based on
predictors. The selection and calculation of predictors are performed before the classifi-
cation of data and the correct choice of these predictors has a significant impact on the
results of the classification and it is necessary to know the issue and have experience with
similar experiments. The author of the article has already dealt with this issue in [7,8] and
verified which predictors are applicable for a similar type of problem. This article will
compare the classification successes for time and frequency domain predictors and their
combinations. It was also necessary to choose the length of the time signal and divide the
resulting samples. The times of 0.25 s and 0.5 s were chosen and again the advantages and
disadvantages of these lengths were compared. The following predictors were used.

Predictors from the time domain:

e  Speed-Current RPM during one sample

¢  RMS-Root Mean Square of acceleration amplitudes from one sample

¢ STD-The standard deviation of the acceleration amplitudes from a single sample

e  PCA-Principal Component Analysis realized with scikit learn library R2 (with param-
eters n_components = 1 and explained_variance_ = 0) [22]

The result is a vector that contains 4 predictors for each sample (RPM, RMS, STD and
PCA); the values in this vector are further labelled as “T predictors”.

Frequency domain predictors are based on FFT (Fast Fourier Transform) frequency
analysis performed using the NumPy library “Standard FFTs” [23] and a range of 4 to
100 Hz is used. The minimum value of 4 Hz is determined by the minimum measuring
range of the sensor used. The maximum value of 100 Hz is the maximum value of the
occurrence of the first harmonic in all operating speeds of the tool and any tooth frequency.
The maximum operating speed is 1432 RPM, the maximum tooth frequency is therefore
(1432 x 4)/60 = 95.47 Hz, therefore the maximum frequency of 100 Hz was chosen.

¢ Speed-Current RPM during one sample

e Spectrum energy (eF)-calculated as " Af(i)? for the 4-100 Hz range, where Af (i)
are amplitudes of spectral lines.

¢ Af(i)-the sequence of amplitudes of individual spectral lines for frequencies 4-100 Hz

The result is a vector whose size varies according to the length of the signals used,
i.e., division into individual samples. For example, if the signal is 0.25 s long and has a
sampling frequency of 2560 Hz, the situation is as follows:

N = f; -t =2560-0.25 = 640

. 2560
Bln(Af) — % — @ —

For range 4-100 Hz:

) 7fmax_fmin _ 100 — 4 _
Noin =" =~ %
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For a 0.25 s signal (t1), the output will be a vector containing 26 (24 + 1 + 1) predictors
for each data sample. The disadvantage of such a short signal is the frequency resolution
(Bin) of 4 Hz, where this value may be insufficient. Furthermore, signals with a length of
0.5 s will be compared. There is the following situation

N =f;-t=2560-0.5=1280

. 2560
Bm(Af):%: 1280 ~ 2

For range 4-100 Hz:

Ngiy = fmax _fmin _ 100 — 4 _
Bin 2

For a 0.5 s signal (t2), the output will be a vector containing 50 (48 + 1 + 1) predictors
for each data sample. With this signal distribution, we get a frequency resolution A f (Bin)
of 2 Hz, which is more suitable than the previous case, but we get only half of the samples
for machine learning from the limited recording.

The resulting vector for frequency domain predictors contains the measured RPM
value, the calculated Spectrum energy value (labeled as eF) and the sequence of amplitudes
of individual spectral lines (Afl to Af24 for t1 and Afl to Af48 for t2), calculated using the
FFT function, see Figure 6. The values in this vector are further labelled as “F predictors”.

Both variants will be compared with each other.

The detailed data processing procedure is as follows:

Data processing (outside MATLAB)

¢  Combination of vibration channel and tacho channel data

*  Splitting the signal according to the selected time (t1 =0.25s or t2 =0.5s)

e Checking whether the change is not greater than 10 RPM during the duration (t1 or
t2) (elimination of transients)

*  Sorting the signal into individual classes

e Predictor calculation, for each sample (T-time domain, F-Frequency domain or FT-all
predictors)

¢  Saving predictors to a file according to individual classes (preparation for MATLAB)

Processed in MATLAB:

48

¢ Random mixing and merging of data of individual classes into one dataset
*  Evaluating in the environment “Classification learner app”
®  Generating and saving the most successful model

Verification of the generated model:

e  Randomly selected n samples from each class (selected n = 100 per class)
*  Accuracy and TPR (True positive rate) and FNR (False negative rate) evaluated
*  Results displayed and saved as the Confusion matrix

(-~ T T TTTTTTTTo I

| |

Accelerometr I) RPM|RMS | STD | PCA :

) | 1 :

CNC IPC ,'_________________________________________T__E’_ig_cilc_fg_r_%
—> . :
Tacho 13—) RPM| eF | Af1 |-« -| Afm i

Figure 6. Scheme of predictors calculation using IPC (“eF”—Spectrum energy, “Af1” to “Afn”—the
sequence of amplitudes of individual spectral lines).
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3. Classification Methods

Classification Learner App (CL) compared different classification methods to deter-
mine which methods are appropriate for the problem. This application allows you to
compare different methods and then select and create a model containing the selected
method (chosen were the most successful). The individual methods are described in more
detail in [24]. Datasets were tested on all methods that CL allows and their success is in a
Tables 2—4. The number of repetitions of the learning process was 10 for each model, and the
interval estimate was calculated using “The t Confidence interval” [25] with alpha = 0.05.
Furthermore, the hyperparametric optimization provided by Matlab was verified. Each
winning model was subjected to hyperparametric optimization with the same dataset, and
these results are shown in Table 5. Due to the time consuming, only one repetition was
performed, the average improvement of the prediction accuracy with hyperparametric
optimization is only 0.55%. Models without hyperparametric optimization were used for
further validation.

Briefly, these are the following classification methods:

Table 2. Resulting success rate of classification of individual methods for experiments with sample time t1 (0.25 s). The best

results are marked in bold.

tIR1T t1IR1F t1R2T t1R2F t1IR3T t1R3F t1R4T t1R4F
Fine tree 799+055 699+1.66 679+114 801+123 639+095 941+032 594+060 732=+0.37
Medium tree 772+089 594+129 623+0.89 792+129 556=+1.15 941+032 549+040 67.1+0.24
Coarse tree 76.8+054 472+1.08 576+089 724+097 51.6+098 945+046 529+029 581042
Linear discriminant 741+030 60.1+095 568=+030 741+080 51.8+0.62 950+030 51.3+0.18 64.3+0.19
Quadratic discriminant 742+ 052 69.1+1.41 599+020 814+0.86 447+093 956+058 523+0.07 69.5+0.18
Gaussian Naive Bayes  69.6+0.68 575+1.13 567+038 737+061 420+0.65 91.1+061 488=+012 59.2+0.37
Kernel Naive Bayes 68.1 051 60.3+0.88 60.8+0.61 770+0.82 481+082 94.0+031 53.6+x0.16 64.1+0.19
Linear SVM 73.0+050 603+080 571+056 754+093 519+062 949+051 521+013 65.1+023
Quadratic SVM 735+031 738+1.06 599+049 835+050 489+0.69 969+0.28 512+080 74.6+0.26
Cubic SVM 73.0+0.73 786+111 602+1.08 852+059 349+115 966+031 355+080 834=+035
Fine Gaussian SVM 738+093 71.0+120 653+113 674+1.07 559+087 702+180 61.7+0.19 79.0=0.65
Medium Gaussian SVM  71.7+ 045 739+0.64 605+0.60 83.1+071 507+097 96.7+048 57.6+024 756027
Coarse Gaussian SVM  73.0+0.44 572+0.84 572+054 714+096 498=+0.87 935+023 528=+0.13 654+0.17
Fine KNN 822+063 75.0+x124 787+112 802+094 745+066 89.6+0.59 775+021 81.7+0.29
Medium KNN 721+0.72 535+069 59.7+0.78 648+0.79 51.6+086 814+0.74 609+032 67.7+0.37
Coarse KNN 68.4+030 449+1.00 562+059 655+092 478+083 752+111 593+0.18 64.5=+0.11
Cosine KNN 682+098 557+094 574+106 63.0+061 514+157 812+1.13 594+030 66.6=0.17
Cubic KNN 721+0.73 554+126 592+094 640+1.07 51.3+1.10 781+212 609+023 66.8=+0.27
Weighted KNN 828+040 761+101 80.6+124 81.8+070 753+084 894+077 785+031 82.6=+0.34
Boosted Trees 79.0+095 729+112 652+1.05 843+090 61.5+1.04 354+0.00 57.0+039 71.5+0.31
Bagged Trees 84.1+058 769+113 788=+1.19 770+100 757+094 96.1+039 784=+027 844+033
Subspace Discriminant 734+ 042 59.6+0.83 55.6+061 73.0+0.64 523+044 953+032 51.1+011 63.2+0.29
Subspace KNN 82.1+067 726+118 763+1.16 748+071 747+098 843+164 755+025 774+051
RUSBoosted Trees 769+058 64.1+134 634+097 824+103 615+157 66.6+9.85 558+041 684+0.28
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Table 3. Resulting success rate of classification of individual methods for experiments with sample time t2 (0.5 s). The best

results are marked in bold. Note: F-model failed (one or more of the classes have singular covariance matrices).

t2R1T t2R1F t2R2T t2R2F t2R3T t2R3F t2R4T t2R4F
Fine tree 81.8+1.70 729+179 655+158 851+139 633+223 942+0.60 62.6+048 82.9+0.81
Medium tree 816161 728+167 624+186 851+139 603+221 942+060 581+052 739=x074
Coarse tree 757078 552+102 580+112 794+160 595+1.69 941+095 539+225 609=0.39
Linear discriminant 769+090 706+228 551+083 844+146 59.0+086 97.7+031 545+024 720+0.17
Quadratic discriminant ~ 72.3 + 0.86 F 53.3+0.75 F 50.5 +1.05 F 543+031 832+0.28
Gaussian Naive Bayes 682 +0.67 67.2+1.68 526+117 742+160 41.0+059 854+050 51.8x031 645+0.51
Kernel Naive Bayes 69.3+099 778+146 50.7+0.77 84.6+192 480+122 984+0.72 55.0+027 744+027
Linear SVM 742+076 71.7+078 557+130 831+135 599+078 957+043 557+027 727+028
Quadratic SVM 774+072 84.0+187 554+140 89.5+084 61.6+099 98.0+050 56.6+031 87.4=+0.33
Cubic SVM 76.8+125 849+176 540+154 882+083 548+185 979+067 393+135 89.6+0.31
Fine Gaussian SVM 786+138 739+165 649+181 754+242 640+£1.07 729+147 639+034 71.7+0.34
Medium Gaussian SVM 767 +1.85 849+195 562+1.17 878+130 621+107 979+x049 609+030 847=+0.30
Coarse Gaussian SVM ~ 71.8 £1.07 58.1+£0.64 543+091 720+129 50.8+1.18 81.7+0.59 554+0.21 70.0+0.22
Fine KNN 86.2+161 820+213 784+144 832+152 747+177 91.7+119 783+046 851+040
Medium KNN 699128 593+182 545+162 708+139 595+203 851+119 642+021 73.6+045
Coarse KNN 499+1.05 539+1.09 520+121 549+137 585+095 72.0+068 61.8+024 683+0.20
Cosine KNN 64.0+091 625+153 579+109 676+126 57.7+173 842+112 61.7+0.33 73.5+0.61
Cubic KNN 71.5+123 591+132 557+114 694+136 608+143 799+075 64.0+039 725+0.32
Weighted KNN 876+161 817+169 787+141 843+087 77.7+1.68 915+146 79.6+040 86.2+043
Boosted Trees 871+119 79.6+129 706+180 373+000 703+240 36.7+0.00 603+037 81.3+0.38
Bagged Trees 884+118 799+118 772+138 878+122 774+130 943+121 79.8+0.39 86.0+041
Subspace Discriminant  75.5+0.86 71.6+159 51.7+080 841+134 586+113 969+041 53.7+020 71.1+0.12
Subspace KNN 85.0+159 734+141 725+222 783+200 737+197 855+193 76.7+036 79.7+0.49
RUSBoosted Trees 862+144 777+153 67.1+156 479+386 626+208 760+9.04 594+034 77.6+046

3.1. Classification Trees

Binary decision trees for multiclass learning [26]. This method is easy to interpret
and fast for data prediction, has low memory requirements, but may not achieve sufficient
prediction accuracy. Decision making takes place through a tree structure from the begin-
ning (root) to the final class (leaves). The method was probably first published by ]J. Ross
Quinlan in 1975. The tested variants are:

. Fine tree
. Medium tree
. Coarse tree

3.2. Discriminant Analysis

Regularized linear and quadratic discriminant analysis [27]. This method is easy to
interpret and fast for data prediction for large datasets. Using “Quadratic Discriminant”
increases memory requirements. It is one of the methods of N-dimensional statistical
analysis (multivariate statistical analysis), where, based on the decision rule, objects are
divided into groups according to probability densities. The method was probably first
published by Ronald Fisher in 1936. The tested variants are:

. Linear discriminant
¢ Quadratic discriminant
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3.3. Naive Bayes

Naive Bayes model with Gaussian, multinomial, or kernel predictors [28]. This method
is easy to interpret and achieves good results for multi-class classification. Prediction speed
is slow (medium for Gaussian), memory usage is a medium (small for Gaussian). The
method is based on Bayes’ theorem on conditional probabilities and class affiliation testing.
Bayes’ Theorem was published by Thomas Bayes in 1736 and the classifier was probably
first published in 1960. The tested variants are:

*  Gaussian Naive Bayes
¢  Kernel Naive Bayes

Table 4. Resulting success rate of classification of individual methods for experiments with combined predictors. The best

results are marked in bold. Note: F-model failed (one or more of the classes have singular covariance matrices).

t1R1 t1R2 t1IR3 t1R4 t2R1 t2R2 t2R3 t2R4

Fine tree

782+096 854+064 933+047 776+049 802+166 883+172 97.0+042 83.5=+0.66

Medium tree

775+1.06 843+080 933+047 723+037 802+166 883+172 97.0+042 73.7+044

Coarse tree

76.0+081 745+086 922+036 588+044 781+128 788+136 97.0+042 621+045

Linear discriminant

762+068 783+059 961+032 703+013 81.0+1.66 81.4+18.01 981+0.26 76.4+0.20

Quadpratic discriminant

81.5+0.79 831+1.01 93.7+052 77.6+0.16 F F F 87.5+0.25

Gaussian Naive Bayes

714+085 712+059 81.6+0.65 61.0+029 623+2352 80.0+127 93.7+0.59 67.7=+0.56

Kernel Naive Bayes

784+089 767+077 927+028 705+026 825+126 858+058 99.0+0.27 78.7+0.36

Linear SVM 76.5+053 776+039 956+048 713+026 83.6+121 828+089 976+050 76.3+0.33
Quadratic SVM 852+091 850+064 956+038 81.6+021 866070 882+052 984+024 89.5+0.36
Cubic SVM 858+0.85 85.6+055 96.3+0.33 881+027 862+082 881+£089 98.6+039 90.9+0.22

Fine Gaussian SVM 708+094 704+077 721+136 81.5+040 694+128 757+160 668+133 749+041
Medium Gaussian SVM 855+ 0.78 844 +0.77 952+0.65 825+020 879£078 86.6+055 981+050 88.4=+0.25
Coarse Gaussian SVM ~ 71.5+040 71.1+043 929+040 708+0.15 772+079 71.6+075 981+034 74.0=+0.31
Fine KNN 782+083 80.8+084 901+088 845+014 831+157 854+095 937+0.72 87.1=+0.33
Medium KNN 61.3+0.76 649+1.03 832+073 739+017 705+140 687+186 91.7+068 78.2+0.38
Coarse KNN 559+0.79 59.0+£097 823+047 725+025 582+061 631+105 903+078 69.5+0.69
Cosine KNN 640+115 67.0+087 845+098 737+022 768+141 673+200 883+0.76 77.4+0.32
Cubic KNN 624+069 622+088 802+072 728+025 708+133 707+171 863+0.69 757=+042
Weighted KNN 822+096 83.0+1.07 899+061 86.4+025 837+126 875+136 941+0.69 88.5+0.33

Boosted Trees

847+086 87.7+057 344+000 776+024 508+899 36.0+0.00 354+0.00 82.0+037

Bagged Trees

847+1.02 858+055 923+051 882%0.36 821+130 863+182 956+0.83 852+051

Subspace Discriminant

760+ 040 765+047 957+060 693+0.19 852+£126 86.0+£099 985+023 74.8=0.31

Subspace KNN

755+130 714+115 844+098 780+039 723+144 788+1.03 920+064 80.7+0.63

RUSBoosted Trees

81.8+0.74 851+1.03 649+£999 733+046 81.6+293 69.7+8.09 60.5+1042 757+0.34
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Table 5. Results of prediction accuracy after hyperparametric optimization, “Hyperparameter opt”-best model with

hyperparameter optimization, “Difference”-Difference between result with and without hyperparameter optimization, “Avr.

difference”-average difference from all experiments.

tIR1T t1R1F t1IR2T t1R2F tIR3T t1R3F t1R4T t1R4F

Best model: 84.0% 74.1% 77.8% 85.6% 74.7% 96.7% 78.3% 84.7%
Hyperparameter opt: 85.3% 77.6% 81.5% 85.8% 75.2% 94.6% 80.9% 86.2%
Difference: 1.3% 3.5% 3.7% 0.2% 0.5% —2.1% 2.6% 1.5%
t2R1T t2R1F t2R2T t2R2F t2R3T t2R3F t2R4T t2R4F

Best model: 86.7% 85.8% 79.8% 87.3% 76.3% 97.5% 79.5% 88.9%

Hyperparameter opt:

83.1% 84.9% 81.1% 86.4% 80.8% 97.5% 79.5% 88.7%

Difference: —3.6% —0.9% 1.3% —0.9% 4.5% 0.0% 0.0% —0.2%
t1R1 t1R2 t1R3 t1R4 t2R1 t2R2 t2R3 t2R4
Best model: 86.6% 86.7% 97.1% 87.4% 89.3% 89.5% 99.2% 91.0%
Hyperparameter opt: 87.3% 87.1% 96.7% 89.1% 88.4% 89.5% 99.2% 91.3%
Difference: 0.7% 0.4% —0.4% 1.7% —0.9% 0.0% 0.0% 0.3%

Average difference: 0.55%.

3.4. Support Vector Machine Classification

Support vector machines (SVM) for binary or multiclass classification [29].

This method is difficult to interpret (not for the linear variant). If there are more than
two classification classes, then the problem must be divided into several partial binary
problems, therefore, it has high memory requirements and is therefore slow in multi-class
classification. The principle of the method is to find a hyperplane that separates individual
objects based on class affiliation. The method was probably first published by Vladimir N.
Vapnik and Alexey Ya. Chervonenkis in 1963. The tested variants are:

. Linear SVM

e Quadratic SVM

e Cubic SVM

. Fine Gaussian SVM

. Medium Gaussian SVM
e Coarse Gaussian SVM

3.5. Nearest Neighbors

k nearest neighbours (KNN) classification using Kd-tree search [30]. This method is
difficult to interpret and the success of the method decreases with the growth of classes.
Prediction speed and memory requirements are media. The principle of the method consists
of finding the nearest neighbours of objects in N-dimensional space with the properties of
the class. The method was probably first published by Evelyn Fix and Joseph Hodges in
1951. The tested variants are:

U Fine KNN

U Medium KNN
o Coarse KNN

o Cosine KNN

e  Cubic KNN

¢ Weighted KNN

3.6. Classification Ensembles

Boosting, random forest, bagging, random subspace, and ECOC (Error-Correcting
Output Codes) ensembles for multiclass learning [31]. This method combines several sim-
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Sample time

Revolutions

Time/Frequency
domain

Codename

1y

ple methods into one powerful model. Interpretability is difficult, however, the prediction
speed is from fast to medium (depending on the combination used) and memory usage is
low (medium for Subspace KNN). The tested variants are:

*  Boosted Trees

*  Bagged Trees

®  Subspace Discriminant
*  Subspace KNN

e RUSBoosted Trees

4. Comparison of Classification Results

The experiments were divided into several variants, according to the properties of
the input data, to be able to compare results of the classification and determine which pa-
rameters/predictors and under what conditions they affect the success of the classification.
The first step is to use a sample length of 0.25 s and 0.5 s (t1 and t2). The choice of this
parameter affects the number of predictors-(frequency spectrum resolution) and also the
number of samples for the dataset because the measured data have a limited length (for
more details, see Section 2 in Figure 5). Another division will focus on determining the
effect of spindle speed variability. Datasets labeled R1-R3 have a constant speed (1000, 1250,
1500 RPM) and experiments labelled R4 have a dataset with combinations of all speeds, so
it is a random mixing of sample R1 to R3 regardless of speed. And the last experiments
contain a combination of all predictors, ie. from the time and frequency domain (without T
or F marking). A unique code name was chosen for each experiment so that it was possible
to refer to a specific variant in the text. The overall division of the experiment is shown in
Figures 7 and 8.
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Figure 7. The code names of experiments.
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Sample time

Revolutions

Codename

!

Experiments combinations (Both predictors)

0.25s 0.5s

1000RPM  1250RPM  1500RPM 10001500 14545ppp;  1250RPM  1500RPM  1000-1500

RPM | RPM

t1R1 —
tiR2
tlR3 —
tlR4 —
t2R1
t2R2
t2R3
t2R4

Figure 8. The code names of experiments (the combined predictors).

5. Verification of Resulting Models

The following section compares the success of each method for all variants of experi-
ments. The goal was to find out what methods are suitable for the given predictors, and
how the success of the classification differs with the spindle speed, and how successful the
time and frequency domain predictors are.

The accuracy of the models is compared and is determined as follows. In the case of
selecting the most successful model, an evaluation method was used, which the Matlab
Learner app calls “Accuracy” (in the generated code as “validationAccuracy”)

AllTruePrediction

AllPrediction 100

Accuracy =

where:

Accuracy—success rate of classification (ideal value is 100%)

AllTruePrediction—True prediction from all class

AllPrediction—All (true and false) prediction from all class

To verify the model (Figures 10 and 11) the method used by Matlab was used, namely
“True positive rate”-TPR, where each class was evaluated separately; the remaining fields
on the lines in CM (Confusion matrix) are False negative rate-FNR for the class. The line
amount is therefore 100%.

TrueClassPrediction

TPR = AllClassPrediction

100

where:
TPR—True positiv rate (ideal value is 100%)
TrueClassPrediction—True (correct) prediction per class
AllClassPrediction—All (true + false) prediction per class

TrueClassPrediction
FNR = PredictedClass 100

where:
FNR-False positiv rate (ideal value is 0%)
PredictedClass—Predicted class (incorrect) for True class
AllClassPrediction—All (true + false) prediction per class

In Tables 2—4 are the results of individual methods and it is clear that some methods
are more successful for predictors from the time domain than predictors from the frequency
domain. More interesting is the graphic display in Figure 9, where the success rate of the
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classification depends on the spindle speed. Descriptions in the graph mean “Classification
success rate” is the Accuracy (AllTruePrediction/ All Prediction) for the created models at
the number of a random selection of 100 samples per class and “Fault-free detection success
rate” is the TPR (True positive rate) for class 0, i.e., faultless condition.

In the case of predictors from the frequency domain, the success rate increases with
spindle speed, because the effect of the unbalances fault is more noticeable with increasing
spindle speed, but in the case of the predictor from the time domain it the course is the
opposite, see Figure 9.

Classification success rate (t1)

Classification success rate (t2)

100 ] 100 ]
< os| Soest ]
g 90 T T T T T T o~ 8 90 —\’/ 1
o o ——
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P 75t Tr | st i
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70 : 70 .
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o e
g 851 \\ ﬁ 85} 1
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70 - 70 -
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Figure 9. The resulting successes rate of the classification and the success rate of the prediction of the
fault-free state. The waveforms from the graph are T—Time domain predictors only, F—Frequency
domain predictor only, TF—AII predictors together, TF mix—All predictors together for all RPM
(from 1000 to 1500 with step 50).

The next step was to select the most successful models and subject them to further
verification. From the confusing matrix in Figures 10 and 11 is clear that the models had
a problem recognizing classes 1 and 2, it is a variant without an insert with a screw and
a variant without an insert and a screw, i.e., a defect was determined, but incorrectly
classified. However, the classification of the fault-free state is more important, it determines
the success with which the model classifies the fault-free state-class 0, this information is
the most important and is graphically shown in Figure 9-bottom. The experiment, which
combined all predictors and contained datasets from all speeds, achieved a success rate of
the classification of the fault-free state (classification of class 0-marked “TF mix”) equally
97% for the dataset for lengths of 0.25 s (t1) and 98% for the dataset for lengths of 0.5 s
(t2). Experiment with speed 1500 RPM and combined predictors achieved a success rate of
100% for both datasets for lengths of 0.25 s (t1) and 0.5 s (t2).
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Figure 10. Resulting confusion matrix for experiments with sample time t1 (0.25 s).
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Figure 11. Resulting confusion matrix for experiments with sample time t2 (0.5 s).
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Time Consumption of Prediction

The time consumption of the prediction is highly dependent on the performance of the
computing unit that will perform the prediction. In general, the time-consuming process is
the learning of the model, but this operation is only performed once when the systems are
deployed or when a new dataset is available for learning. Thus, the learning process can
be efficiently scheduled and is not critical to the running of the system.

More important is the prediction time and the possible reaction of the system to a
possible problem. The prediction time consists of two steps, namely data preprocessing,
i.e., extraction of predictors, and then the prediction itself. These times were tested on a
personal computer with Intel(R) Core(TM) i7-2600 CPU @ 3.40 GHz, 16 GB RAM and a
similar configuration is possible for the current IPC. Time was measured for 100 repetitions
each time to eliminate random variations in performance. Measured time includes only
computation time without loading or saving data from recording media. Winning models
for the most challenging variants containing all predictors (time and frequency domain)
were used. For experiment T1R4, the winning model was “Bagged Trees” and the results
are as follows. The data processing time for 100 repetitions is 1.13 s and the prediction time
for 100 repetitions is 5.12 s, that is, the average total time is (1.13 + 5.12) /100 = 0.0625 s i.e.,
62.5 ms. For T2R4 experiment, the winning model was “Cubic SVM” and the results are
as follows. The data processing time for 100 repetitions is 2.04 s and the prediction time
for 100 repetitions is 1.43 s, that is, the average total time is (2.04 + 1.43)/100 = 0.0347 s i.e.,
34.7 ms. The measured times are only approximate and depend on many circumstances,
also there is a possibility for optimizing the classifier selection according to its prediction
time. For our purposes, the achieved times are sufficient.

6. Implementation of the Trained Model

The procedure for implementing a trained model is as follows. The model can be
generated as a function of MATLAB, or as source code in C language, then it is easy to
compile it for any platform. Its function (ability to classify) does not change over time
because there is no learning process. However, provided the conditions have changed or
a new dataset is available, it is possible to start the learning process again and train the
model for the new data.

Figure 12 schematically shows the possible connection of the server with individual
clients. Each IPC performs data collection and especially timely evaluation based on a
trained model that was learned in the MATLAB environment on the server and then
exported. The process is as follows:

(a) Data acquisition and learning process

*  The server requests data from individual IPCs and creates a dataset for creating a clas-
sification model (Data is predictors-it evaluates IPCs, only predictors are transmitted).

e If there is a sufficient amount of data (or conditions have changed, etc.), then MATLAB
performs learning and creates a trained classification model for a specific IPC and
exports it to the C language (this MATLAB allows).

e  The trained model is sent to a specific IPC.

Individual machines and their IPCs can be distributed anywhere in different places
and there will be only one server with MATLAB, which will generate a model for a specific
machine and send it to a specific IPC. If necessary, the MATLAB SW can be replaced by
another system, however, the functionality will be maintained and the change will be made
on only one server.

(b) Evaluation process

e IPC performs data collection and predictor calculation-this is a simple operation
and can be performed in any programming language, for simplicity and availability
Python was chosen, which performs statistical operations and frequency analysis.

¢  Performs classification using MATLAB created and trained model, which was ex-
ported to C language (Python allows to run code in C language).
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Such a topology and partitioning allows for easy changes on both the IPC and server-
side, including changing the programming environment.

As for the specific deployment for monitoring the machine, it is important to note
that nowadays it is not easy to implement elements of artificial intelligence in the safety
segment, where it is necessary to certify the software and verify its functions. However,
it is possible to deploy a similar system only as an informative element that would alert
the operator, but not interfere with the operation of the machine. The use of artificial
intelligence methods is particularly advantageous in the field of technical diagnostics for
the evaluation of multiple criteria and operator alerts.

Data archive

Area 1 : '-=
______________________________ . 4 '
r ______________________________________________________ZI_ K _Y R 2 —

|
|
< Server i
|

Figure 12. IPC and server location topology.

7. Results and Discussions

Figure 9 summarizes the results in graphical form and expresses the dependence of
the predictors on the spindle speed. For predictors from the frequency domain, an increase
in success with increasing speed is evident due to a more pronounced manifestation of an
unbalance fault in the frequency spectrum (increasing the first harmonic). In contrast, time
domain predictors achieve a higher success rate at lower speeds than frequency domain
predictors. Thus, using all predictors (time and frequency) increases the success rate at
lower speeds and does not decrease at higher speeds. The figure also focuses on the
detection of a fault-free state, i.e., assuming that we modify the classes only to the fault-free
state (classO) and any fault state (class 1 or 2), then it is obvious that the success of fault-free
detection will increase because we do not include misclassification between class 1 and
class 2, which are similar. This is important if we only want to detect a fault-free condition
and in any other case, an operator warning is issued.

Important results are shown in the Tables 2—4, which compare the successes of indi-
vidual classification methods. Furthermore, Figures 10 and 11 compare the successes of the
classification of individual classes and the most important is the comparison in Figure 9,
which shows the success of the classification and the success of fault-free state detection,
wherewith variant R4 (TF mix-the combination of all speeds), 97% for t1 and 98% for 2
success rate is achieved.
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8. Conclusions

The article aimed to verify the possibilities of artificial intelligence for the classification
of machine tool failure based on an experiment from a real machine. Early detection of
the disorder is an important factor in protecting the health and eliminating damage. The
use of artificial intelligence methods brings the possibility of creating universal algorithms,
which, thanks to the ability to learn, adapt to a specific machine, and a specific phase
of machining.

The described method approaches the possibility of using artificial intelligence for
data classification, in this case for the classification of various machine states. A similar
method can be used to classify any classes, where only a change of predictors that describe
the problem sought is needed.

The choice of predictors used is an important factor which, together with the operating
conditions, influences the success of the classification. Future experiments will focus on
the possibility of detecting a fault condition of a tool during machining and will focus on
obtaining a larger dataset with different machining conditions.
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