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Abstrakt

Velmi p°esná následná astrometrie je nezbytným p°edpokladem sledování
blízkozemních objekt·, které mohou p°edstavovat riziko sráºky se Zemí.
Tato práce p°iná²í ucelený p°ehled p°esné astrometrie, obsahuje pot°ebnou
matematickou teorii, postup p°edzpracování snímk· v astronomii, a nasti-
¬uje pouºití �ltr·. Navrhuje nové metody pro vyrovnání pozadí snímk·
p°ed provedením astrometrického m¥°ení pro p°ípad, kdy nejsou dostupné
kalibra£ní snímky. Tyto metody jsou zaloºeny na vytvo°ení syntetického �at-
�eldu pomocí aplikování �ltru na snímek a následné uºití tohoto �at�eldu pro
odstran¥ní pozadí snímku. Metody byly otestovány na vzorových snímcích a
vzáp¥tí pouºity k získání astrometrických pozic prvního mezihv¥zdného ob-
jektu 1I/2017 U1 ('Oumuamua).

Abstract

High-precision follow-up astrometry is essential for tracking Near-Earth Ob-
jects, which may pose risk of impact to the Earth. This thesis brings an
overview of astrometric process and requirements of precise astrometry, con-
tains the necessary mathematical background, steps of image pre-processing
in astronomy, and outlines the use of �lters. New methods are proposed
to level the background of images prior to performing astrometric measure-
ments for cases when no calibration images were taken. They are based
around applying �lters on an image to create arti�cial �at�eld, which is
then applied back on the image. These methods are tested on sample data
and immediately used to obtain astrometry of the �rst interstellar object
1I/2017 U1 ('Oumuamua).
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Chapter 1

Introduction

Asteroids and comets are small, rocky bodies of the Solar System, orbiting
the Sun along its planets. Some of them come dangerously close to the Earth
and even collide with our planet, occasionally causing mass extinction event.
An ability to track and compute position of these so-called Near-Earth Ob-
jects (NEOs) ahead of time gives us unprecedented opportunity to avoid this
natural hazard to mankind.

To be able to predict an impact event, these objects have to be closely
monitored over time. The measuring of their positions on the sky in given
time is called astrometry, history and present practice of which is detailed
in Chapter 2, following with Chapter 3, which gives overview of the math-
ematics required for further chapters. The most critical task is obtaining
enough of precise positional data of newly discovered objects, called follow-
up astrometry, which is essential to compute meaningful orbit of the object
and therefore predict its future position.

Kle´ Observatory, located on top of Kle´ mountain in Blanský forest, op-
erates the biggest telescope in Europe dedicated to follow-up astrometry of
NEOs. Being one of the few professional observatories which survived tran-
sit from photographic plates to Charge Coupled Device (CCD; essentially
a special digital camera), it strives ceaselessly to improve its high precision
astrometry, be it by incorporating new hardware, swapping to better stel-
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lar catalogs or automatizing processes whenever feasible. Their telescopes,
software and work-�ow are detailed in Chapter 4, and the process of image
acquisition, pre-processing, and the astrometric algorithm itself, in Chapter
5.

The digital images of Kle´ Observatory su�er from very uneven background,
hindering the performance, or even the possibility, of astrometric measure-
ment. The usual pre-processing methods given in Chapter 5 can not be used
in the case of Kle´ Observatory, but they inspired newly designed approach
detailed in Chapter 6. Six �lters are proposed, programmed into software
the author is developing for Kle´ Observatory's needs, and tested on sample
data. Their performance is compared in Chapter 7 and recommendations
for their use by the observer are assembled. These �lters allow for construc-
tion of arti�cial �at�eld (background image), from as little as a single digital
image, used to remove the uneven background, eliminating the need to take
calibration images during the observations, and allowing re-measurement of
vast image archives for which no calibration images are available.

The new �lters were immediately put to use to allow astrometry of the �rst
interstellar object 1I/2017 U1 ('Oumuamua), as described in Chapter 8. The
work is closing with Conclusion in Chapter 9, being followed by the Bibliog-
raphy, Nomenclature, and �nally, Appendices.
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Chapter 2

Astrometry of asteroids and

comets

2.1 Asteroids and comets

Asteroids and comets are solid bodies of the Solar System orbiting the Sun
together with planets and dwarf planets. Their sizes range from several me-
ters to hundreds kilometers big boulders. There is an estimated amount of
millions of these bodies in the inner Solar System alone.

To be able to track these bodies, a set of orbital elements is computed for
each. These can be in turn used to compute ephemeris, which is a position
of the body on the observer's sky in a given time. Six orbital elements are
required to unambiguously de�ne an orbit in space to cover all six degrees of
freedom of the orbit. There are three parameters to de�ne position and three
parameters to de�ne velocity in each position. Due to computational con-
venience, di�erent set of six parameters is traditionally used in astronomy.
These Keplerian elements, depicted on Figure 2.1, are an idealized represen-
tation of an orbit conforming to Kepler's laws without regard to gravitational
perturbations, therefore it is required to state the time Epoch for which the
approximation is valid. Assuming elliptical orbit,
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Figure 2.1: Orbital parameters' illustration

e . . . numerical excentricity gives shape of the elliptical orbit,
0 < e < 1

a . . . semimajor axis, the longest distance between two points
of the orbit, decides the size of the orbit [AU]

i . . . inclination, an angle between the orbit and the ecliptic
orients the plane vertically [deg]

Ω . . . longitude of the ascending node, an angle between the ascend-
ing node (where the orbit passes upward through ecliptic) and
the vernal point Υ orients the orbit horizontally [deg]

ω . . . argument of perihelion, an angle between the ascending node
and perihelion (the point closest to the Sun on the orbit),
de�nes the orientation of the ellipse in the orbital plane

M . . . mean anomaly gives the position of a mean body on the orbit
at the time of Epoch [deg]

There are many subcategories of asteroids and comets sorted by their orbits.
Of an immediate interest to mankind are NEOs, Near-Earth Objects. NEOs
are asteroids and comets with perihelion distance less than 1.3 AU, placing
them inside the inner Solar System. There are over 17 700 discovered NEOs
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CHAPTER 2. ASTROMETRY OF ASTEROIDS AND COMETS

as of January 2018 1. Most of NEOs are asteroids, henceforth denoted as
NEAs, and they are further divided into four groups according to their per-
ihelion distance: Atira (18 asteroids), Aten (1 298 asteroids), Apollo (9 625
asteroids) and Amor (6 666 asteroids), named by the �rst discovered asteroid
of each group.

As of January 2018, 1 886 of these bodies are listed as Potentially Haz-
ardous Asteroids (PHAs). The de�nition of PHA is based on its ability to
threaten the mankind: speci�cally its size and proximity of its orbit to the or-
bit of the Earth. A PHA is an asteroid of an absolute magnitude 22.0 or less
(corresponding to size at least 150 meters when we assume average albedo
of asteroids 0.13) with an Earth MOID (minimal orbit intersection distance,
the minimal distance between the orbit of the asteroid and the orbit of the
Earth) 0.05 AU or less. About 8 000 of known NEAs have diameter over 140
meters, which makes them capable of causing local disaster upon impact,
while about 900 known NEAs have diameter bigger than 1 kilometer, hav-
ing the potential to cause mass extinction event upon impact to the Earth.
To evaluate the risk and predict possible impacts, accurate orbits must be
computed, which requires precise astrometry of asteroids and comets to be
carried out.

2.2 History of astrometry

Astrometry is a precise measurement of positions and movements of celes-
tial bodies. It includes observational techniques, instrumentation, processing
and analysis of observational data, positions and motions of bodies, reference
frames, and relies on a number of theoretical aspects, which relate the ob-
servations to the laws of physics. Among the most important are celestial
mechanics, optics, theory of space and time references, astrophysics, and sta-
tistical inference theory.

Astrometry is a fundamental tool for astronomy as it provides data to many

1http://neo.jpl.nasa.gov/stats/
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Figure 2.2: The orbits of known PHAs in the inner Solar System.

Source: nasa.gov
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CHAPTER 2. ASTROMETRY OF ASTEROIDS AND COMETS

of its branches: stellar catalogs assembled with use of astrometry provide
reference frame to all other celestial observations and allow us to identify
observed objects; stellar dynamics uses stellar catalogs to determine the col-
lective motion of stars in the Galaxy; celestial mechanics uses them to com-
pute motions of celestial objects such as stars, planets including extrasolar
planets, asteroids, the Moon and the arti�cial satellites. Astrometry is also
used to determine parallax of the closest stars, thus being an essential step in
establishing the scale of cosmic distances. At last, astrometry allows for dis-
covery and tracking of PHAs by detecting these faint, moving bodies against
the background of catalogued stars.

Unaided eye

Astrometry emerged with the �rst naked-eye observations of the sky, lead-
ing to discovery of wanderers (planets) among the stars, knowledge of the
cycles of days and years, prediction of eclipses, calendars and catalogs of
observations. The naked eye greatly limited the faintness and positional
accuracy of observed objects. Astrometry was based on measuring angles
between the objects and drawing these observations down. The tools used
were Jacob's sta�, also known as cross-sta�, triquetrum (parallactic ruler),
quadrant, octant, or sextant. The only way to get better measurement was
making these devices ever larger, and �xing them to the �oor instead of using
small, portable versions.

In 150 BC, Hipparchus discovered precession of Earth's axis from observa-
tions with positional accuracy 20' [8], using observations of Spica made 160
years earlier, and also assembled �rst stellar catalog. In 150 AD, Ptolemy
issued his Almagest, a famous scienti�c work of his time, which included his
own stellar catalog and also theoretical explanation of the planetary motions,
placing the Earth into the center of cosmos.

The islamic culture provided the stellar catalogs of Al-Su� in 960, using
armillary sphere, and of Ulugh Beg in 1430, who used a huge sextant, of
precision of the order 5�10'. Tycho Brahe (1546�1601) improved quadrant
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and sextant by mounting sights and scales on them. His observations with
precision of 15�35� were unrivaled in his time, and had a wide impact on
astronomy. The observations of planets (particulary of Mars, which was the
only planet with observations of the necessary precision) led Kepler to de-
velop his laws of motion, which in turn led to Newton's Universal Law of
Gravity. However, it was still impossible to measure stellar parallax, which
cast doubts upon Copernican heliocentric theory, since the parallactic dis-
placement of stars due to motion of the Earth around the Sun remained
undetected.

Telescope

The discovery of telescope in early 17th century led to a signi�cant jump
in accuracy of the measurements due to magni�cation of the viewed scene.
Galileo used this new device to discover the moons of Jupiter and performed
on them the �rst telescopic astrometric observations.

The application of astrometry for navigation and time-keeping led to the
founding of national observatories in Paris (1667), Greenwich (1675), Berlin
(1701), and St. Petersburg (1725). The telescopes were mounted on quad-
rants and sextants and the �eld of view in the telescope was manually drawn
and the drawing was later processed. At the Royal Observatory of Green-
wich, John Flamsteed produced �rst great stellar catalog based on telescopic
observations Historiae Coelestis (1725).

In 1718, Edmond Halley, who would succeed Flamsteed as Astronomer Royal,
showed that the bright stars Aldebaran, Sirius, and Arcturus were displaced
by many arcminutes from their positions in antiquity, thus discovering proper
motions of stars. In 1728, Halley's successor James Bradley discovered stel-
lar aberration, a displacement of a position of a moving object due to the
�nite speed of light. Later on in 1748 Bradley detected the periodic wobbles
of Earth's axis known as nutation, which can amount to 18� di�erence in
position on the sky. The discoverer of planet Uranus, German astronomer
William Herschel, detected the motion of the Sun toward constellation Her-
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CHAPTER 2. ASTROMETRY OF ASTEROIDS AND COMETS

cules from an analysis of stellar proper motions. In 1801, dwarf planet Ceres
was discovered, the circumstances of which are detailed in my Bachelor's
thesis [7].

Another device widely used in this era was a meridian circle. It was a special-
ized telescope attached to a circle which was mounted to a �xed horizontal
axis, and the time of passage of objects across local meridian was measured,
along with their angular distance from the nadir (zenith). With the knowl-
edge of sidereal time (the hour angle of the vernal point), it was possible to
deduce right ascension of the observed object, de�ned in such a way that the
sidereal time is equal to the right ascension of the object on the observer's
meridian. Meridian circle was �rst used in 1689 in Copenhagen, and its de-
sign was modi�ed in 1806 to allow for declination measurement as well. For
over 150 years, the meridian circle was the prime instrument for large-angle
observations.

In 1838 Friedrich W. Bessel, well known for his precise observations, used
meridian circle to achieve the �rst measurement of a stellar parallax, mea-
suring parallax 0.315 arcseconds of star 61 Cygni, and thus the truth of the
Copernican theory was �nally veri�ed and method of directly measuring ac-
curate stellar distances was established. In 1844 Bessel announced discovery
of unseen stellar companions of stars Sirius and Procyon, derived from vari-
ations of the proper motions of those stars, using positional observations of
0�.7 accuracy and proper motions of 0�.5 accuracy. These companions were
later in the century con�rmed by direct telescopic observations.

Photographic plates

While the meridian circle was good for accurate measurements of stars on the
hour circle of the instrument all over the night, the photographic plate could
observe many stars at once in a small �eld of view. Starting on the end of
19th century, photographic plates revolutionized astrometry. The precision of
observations improved again and the glass panels coated with light-sensitive
emulsions removed the disadvantage present through all previous improve-

9



ments � the necessity to use human eye for recording of the observations.
The recorded images also allowed for use of more sophisticated mathematical
methods to obtain the objects' coordinates, and allowed for archiving as well
as for repeated measurements.

The international Astrophotographic Congress in Paris in 1887 coordinated
the �rst photographic sky survey, the Carte du Ciel, resulting in Astrographic

Catalogue (AC). This survey reached about 12th magnitude and subsequent
photographic surveys went as deep as 21st magnitude. Long-focus refractors
were being used at the end of nineteenth century in small �elds for observa-
tions of binary stars, asteroids and satellites.

Charge Coupled Device (CCD)

The last decade of 20th century have experienced a revolution in astrometry
due to Charge Coupled Devices (CCDs) replacing use of photographic plates.
A CCD works using photoelectric e�ect. Its image chip consists of a matrix
of capacitors covered with a layer of light-sensitive semiconductors which,
upon absorbing photons, expel electrons. The electron charge accumulates
in the capacitors and at the end of exposition the total charge of electrons
on each CCD pixel is ampli�ed, converted to voltage and further to ADU
(Analog Digital Units). The relation between the electron count and ADU
count is called Electron gain and expressed in electrons/ADU. The number
of electrons a pixel can store is called Full Well Depth, and the maximum
ADU count available is for example for 16-bit images 65 536 values. Electron
gain is usually set to such a value, that Full Well Depth corresponds to the
maximum ADU count. At such settings, the Full Well Depth and maximal
pixel value are reached nearly simultaneously. The quantum e�ciency 2 of a
CCD is much higher than photographic plates could ever achieve, reaching
over 90% compared to 1% of photographic plate and 0.1% of unaided human
eye. The methodology for coordinate determination derived for photographic
plates remained principally the same and was applied on the digital images
from CCDs. The accuracy of measurements improved to 1 mas (miliarcsec-

2the percentage of registered photons
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CHAPTER 2. ASTROMETRY OF ASTEROIDS AND COMETS

onds), but the image processing became much quicker because of computers,
which allowed for advanced and near-automatic image processing.

CCDs can also be �tted to satellites to perform astrometry from space and
therefore avoid the distortions caused by the atmosphere. The Hipparcos
satellite was a dedicated astrometric satellite launched in 1989 to measure
stellar parallaxes, determining positions and proper motions of 120 000 stars,
and parallax of 60 000 stars, with 1 mas accuracy. Next astrometric missions
could reach microarcsecond accuracies for stars as faint as 20th magnitude.
Such precision implies that the light path between the source and the de-
tector has to be modelled with a similar accuracy, making use of general
relativity and sophisticated mathematical models.

Guide Star Catalog (GSC) was formed by digitization of Palomar photo-
graphic plates for purpose of guiding Hubble Space Telescope. Due to its
dense full sky coverage allowing for a number of stars being present at typical
CCD's �eld of view, GSC became the �rst widely used astrometric catalog.
USNO catalogs had been in long and widespread use, progressively as they
were issued. Starting with USNO-B1.0, proper motions of stars are included,
so the quality of the catalog does not deteriorate that quickly with time.
First UCAC catalogs had relatively few stars for most astrometric use and
UCAC2 was covering only declinations -90 to +40 degrees, so they were not
generally in use until UCAC4 removed these �aws. Although UCAC4 has
just one ninth of the stars of USNO-B1.0, due to its much higher accuracy
the results are by far superior to USNO-B1.0. UCAC4 catalog is the most
precise astrometric catalog to date.

2.3 NEO astrometry in present

Especially for observatories focused on NEOs research, �exibility in observing
plan is crucial. Smaller NEOs are often discovered when passing close to the
Earth and failure in promptly obtaining enough data to determine their orbit
results in inevitable loss of the asteroid. Accordingly, newly discovered NEO
should be observed and its astrometric positions sent to the Minor Planet
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Center (MPC) as soon as feasible. With the additional data available, the
accuracy of the asteroid's orbit increases and there is more time available
to obtain further observations before the asteroid would become lost due
to its deviation from its predicted position. With enough observations, the
computed orbit becomes precise enough to allow for recovering the body at
its next favorable apparition. This fast and accurate astrometry of newly
discovered bodies is called follow-up astrometry. Examples of its profound
e�ect on body's orbital parameters accuracy can be found in my Bachelor's
work [7].

The astrometric observations of minor bodies are collected and processed
by Minor Planet Center (MPC), which operates at the Smithsonian Astro-
physical Observatory, under International Astronomical Union. The MPC is
responsible for the designation of minor bodies (asteroids, comets, moons)
in the Solar System, for the e�cient collection, computation, checking and
dissemination of astrometric observations and orbits of minor planets and
comets.

2.3.1 The requirements of precise astrometry

The images entering astrometry are a�ected by various errors, translating
into inaccuracy in obtained position. That leads to inaccuracy in computed
orbit, and then of predictions of the body's positions (and possible impacts to
the Earth) in future. As there are only a few observations available soon after
the discovery, the accuracy of every single one is that more important. Their
insu�cient quality can result in loss of the asteroid, thus follow-up astrometry
has to be not only quick, but also precise. The essential requirements for
su�cient astrometric precision are given by the 80 characters long format, in
which the observations are sent to Minor Planet Center3 and are as follows:

• Time measured to accuracy under 1 second
• Topocentric position determined to at least 15 meters
• CCD image with small pixels, high dynamic range, low noise and high
quantum e�ciency

3described at http://www.minorplanetcenter.net/iau/info/OpticalObs.html
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CHAPTER 2. ASTROMETRY OF ASTEROIDS AND COMETS

• Stellar catalog with high accuracy evenly covering the sky
• Image processing at least partially automatized
• Robust astrometric method

2.3.2 Time determination

As the astrometry is measuring the position of the object in the given time,
even the best positional measurement is worthless without well measured
time. The astrometric observation format sent to Minor Planet Center allows
for time to be recorded with 0.00001 days precision, translating into 0.864
seconds. The computer time itself is not reliable enough. Freeware programs
are available to synchronize computer time with chosen time servers, achiev-
ing better than one second accuracy.

Global Positioning System is the most widespread supplier of precise time,
the receivers providing accuracy down to 0.1 millisecond. Another option is
to use DCF77 time signal for Europe or WWVB time signal for North Amer-
ica, which are synchronized with the closest available atomic clocks. Most
receivers determine the time to 0.1 second accuracy, which is reasonable for
astrometric measurements[2].

The start of exposure is however delayed by CCD shutter, therefore its reac-
tion time must be on sub-second scale or the beginning of the exposure must
be corrected for the delay. The errors allowed for astrometry are related to
the time it takes for the sky to rotate by 1�, which means the shutter delay
must be lower than 0.07 second.

2.3.3 Topocentric correction

An ideal image and precise time are by themselves not enough to carry out
precise astrometry. The observation is basically a vector in three dimensional
space oriented toward the observed object and projected on the two dimen-
sional plane of Earth's sky. To complete the vector, the observer's position is
required. The closer the object is, the more accurate position of the observer
is required to avoid parallax error. For the Solar System bodies, geocentric
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position of observer becomes insu�cient approximation and topocentric cor-
rections are introduced. The topocentric coordinates have to be determined
to precision better than 0.1� for precision astrometry[32], translating into 15
meters accuracy.

2.3.4 Image distortions

Large re�ector telescopes mounted in observatories' domes equipped with
CCDs and manipulated by remote controlled motors are the norm of todays
professional observational astronomy. Re�ector telescopes perform better
than refractors, which su�er some loss of incoming light through their lenses
and cause color aberrations of the image. The motors of the mount allow for
accurate movement across the sky. The CCDs, as described above, have very
high quantum e�ciency, thus their resolution is limited mainly by seeing of
the atmosphere, and are capable of recording the observation in a form of an
image �le for later, repeated use.

The images are typically taken by a CCD in grayscale, meaning every pho-
ton regardless of its wavelength (color) results in an electron gain as given by
the camera's spectral sensitivity by its manufacturer, and the information of
its color is therefore lost. That can be circumvented by using narrow-band
�lters, which only let in photons of speci�c wavelength, to obtain the color
components, and assembling the color image in the computer. Astronomical
images use special �le formats, which allow for appending various data about
the conditions the image was taken in in the �le's header and saving the im-
age data without compression, which is crucial for subsequent scienti�c use.

Since the precision of astrometric measurements in modern time is so high,
many small sources of inaccuracies have to be dealt with, which were neg-
ligible in past. Going from the source to the detector and then to the �nal
image, the quality of the �nal image may be a�ected by following e�ects,
depending on the site, telescope and the camera:

Cosmic rays, which are high energy particles coming randomly from the
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space. When hitting a CCD detector they appear as bright dots or lines on a
picture. The atmosphere protects ground-based telescopes from most of the
cosmic rays.

Scintillation, an apparent �ickering of position and brightness of the ob-
ject, caused by the packets of light passing through the atmospheric cells
with di�erent refractive index. The change in the refractive index is caused
mostly by temperature changes between layers of the atmosphere, in smaller
amount by humidity changes and air turbulences. Larger telescopes reduce
this e�ect as they cover more atmospheric cells. Considering the long ex-
posure time of astronomical images, this results in the originally dot sized
object being blurred into a fuzzy ball called a seeing disc. The seeing is
measured in arcseconds at FWHM4. Very good observing sites have seeing
under 1' and average site has 2�3�.

Sky brightness, di�used light which is present on the night sky even in ab-
sence of light sources of interest. The light comes from the Moon, nearby
cities, Milky Way, air glow, zodiacal light and others, being di�used by the
atmosphere and setting an impassable brightness limit on possible observa-
tions.

As the telescope is of �nite diameter, the image forms an Airy disc due
to light di�raction. However, for most professional telescopes, the e�ect is
negligible in comparison to seeing.

Telescopes also su�er from inherent image distortions called aberrations,
caused by nonideal mirrors and lenses. Spherical aberration comes from
nonideal shape of the mirror spheroid, so it is better to use parabolic shape
for mirrors. Coma causes o��axis point objects to appear elongated. Astig-
matism appears when the di�erent areas of the mirror have slightly di�erent
focal length. Distortion of �eld happens when the image scale depends on the
distance from the optical axis. Chromatic aberration is caused by refractive

4Full Width at Half-Maximum, which is the width of a stars pro�le at height of half

the maximum value.
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index dependence on wavelength and is therefore relevant only for refractors.
Aberrations can be signi�cantly reduced all at once by lens corrector in front
of the CCD camera. Typically, three lenses are required in the corrector's
construction.

Vignetting occurs when the arriving wavefront is truncated by objects in
di�erent planes obstructing the incoming light. Usually those are the edge
of the aperture, the edge of the CCD chip and central obstruction for cam-
eras positioned in the primary focus. Darkening of the CCD image toward
the edges can be seen. Larger CCD chips su�er from vignetting more, and
focal reducers also introduce vignetting. Vignetting also changes aberration
properties.

Dust particles may be present on the chip and shown on the image as dark
donuts. Professional CCDs are placed in vacuum chamber to avoid the dust.

Light sensitivity of pixels varies slightly. In addition, defect pixels in a form
of hot and cold pixels can be present, as well as whole defect sectors or lines.
Those always read out either very high (for hot pixels) or very low (for cold
pixels) values.

When the CCD accumulates more electrons than a pixel can hold, the elec-
trons leak out to nearby pixels and create bleeding streaks around bright
stars. Antiblooming was developed to counter those. CCDs with antibloom-
ing use spaces between pixels to drain the excessive electrons. Professional
CCDs do not use antiblooming anymore. Devices with antiblooming have
larger space between individual pixels for the drainage of the electrons and
tend to have nonlinear response once the electron count gets close to full well
(the amount of electrons the pixel can hold) as some of the electrons over�ow
to the drainage already. In addition, we have no way of knowing how much
signal was lost to the antiblooming, so interposing an overexposed star with
Gaussian curve5 can yield wrong results.

5Common technique to compute position of the star in the image,

described in Section 5.4.2
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The number of photons which arrived during exposure time �uctuates, which
is known as Poisson noise, photon noise or shot noise. Photon noise follows
Poisson distribution[12].

Dark current is created on the CCD chip by randomly generated electrons,
which is known as thermal noise. It increases with exposure time but can
be reduced by cooling the CCD chip. Because of the limited exposure time
it contains in itself also its own shot noise and therefore the scatter can be
expressed as square root of the number of thermal electrons generated. Ther-
mal noise of modern cameras is very low, in order of electrons RMS (root
mean square)6.

Read-out noise is the noise of the on-chip ampli�er, which converts very
small charge of the electrons generated on the CCD into measurable voltage.
It is present in all images and does not depend on exposure time, but can be
reduced by using lower sampling frequency.

Joining together all of these e�ects, the quality of the image can be expressed
by SNR (Signal to Noise Ratio), which is the ratio of the useful obtained sig-
nal versus the total signal including all the noise, as per De�nition 5.2.

2.3.5 Image pre-processing

As the asteroids pose moving targets, there may be very short window of
opportunity for observations. The observations have to be done in less than
ideal conditions, providing noisy images. In addition to the noises mentioned
in previous paragraph, we may have to do with images containing a gradient
from a nearby bright star or the Moon, dense stellar �eld of Milky Way, or
the asteroid imaged close to the corner of the �eld of view. It is essential to
pre-process the images before reducing them to objects, for which a handful
of simple techniques are used.

6Also called standard deviation. See Section 3.2.1 for de�nition.

17



The �rst group of pre-processing methods relies on obtaining calibration
images and then applying them on the data images. Only their basic expla-
nation is stated in this part, please refer to Section 5.2 for details.

Light Frames

Multiple exposures can be stacked to reduce noise of the image. Enlarg-
ing the images before they are stacked allows for subpixel resolution of the
result. Taking multiple shorter exposures of the target is meaningful to avoid
quick saturation of the CCD chip and for fast moving bodies, where part of
the image could be stacked with prior knowledge of the target's velocity and
angle of movement. However, astrometry of such a target would be less
precise, so this should be avoided unless astrometry could not be obtained
otherwise. Additionally, tracking could be implemented to resolve stars from
moving objects, causing the stars to appear as streaks and moving objects
being a streak of di�erent direction and length on the image. However, the
same e�ect can be achieved by stacking and astrometry of such image would
be highly inaccurate.

Bias Frames

These are images taken with closed shutter of the CCD and shortest pos-
sible exposure time and serve to remove electrons related noise from the
CCD image. Bias still contains read-out noise, therefore it is better to take
more bias images and use their median.

Dark Frames

These images are taken with closed shutter of the CCD and the same ex-
posure, temperature and binning as the image we want to remove the noise
from. They include bias and thermal noise of the CCD chip, but are a�ected
by read-out noise, therefore it is better to use median of several dark frames.
An observatory can create a library of dark frames, each master dark frame
being an average of several dark frames of the same exposure and tempera-
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ture. If the thermal noise is negligible, bias frames are used instead.

Flat�elds

The previous frames were taken with CCD shutter closed. On the other
hand, �at�eld is taken with shutter open, at the target exposure time and
against evenly lit background. It accounts for di�erent pixel sensitivity, dust
particles in the optical system and vignetting. It can not counter cosmic ray
hits or ambient light on the sky like moonlight or nearby bright stars. Flat-
�elds represent the response of the whole optical system. The pixel values of
the �at�eld are normalized to lay between 0 and 1 and the �nal image is then
multiplied or divided by the �at�eld image. If the optical system changes
(the camera is moved, the mirror is re-coated, more dust is accumulated etc.)
new �at�elds have to be taken. Dark frame should be applied to the �at�elds
as to any other image. Observatories often create libraries of master �at�elds
to use later. There are many methods for obtaining a �at�eld, for example
to image zenith of a twilight sky, an evenly illuminated portion of a dome or
cloth pinned to the dome, or to median�combine images of relatively empty
star �elds.

The second group of pre-processing methods employs computer algorithms to
further improve the image. There are a handful free or paid programs avail-
able for enhancing images in this way, but the details of their procedures are
usually not available, making them unsuitable for scienti�c work. Methods
combining several images into one are sometimes used in astrometry, these
are described in Section 5.2.6.

Filtering is a viable option, to which Section 5.3 is devoted. In the �rst
step, the image is converted to frequencies by Fast Fourier Transform. Low
pass �lter can be then applied, reducing high frequency detail, which results
in apparent smoothing of the image. Another �lter, which is used often, is
Median �lter. However any �ltering will alter statistical properties of the
data, and reducing noise will also inevitably reduce low SNR data, hindering
the astrometry itself.
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Additional image processing is not used by observatories performing astro-
metric measurements. Military programmes of asteroid search (LINEAR for
example) may use advanced image processing, however these remain unpub-
lished. Subtractive method, which processes the images in such a way that
stationary objects i.e. stars are removed from the image, could be employed,
leaving only moving objects to be easily spotted by eye or automated proce-
dure, but due to lack of stars astrometry could not be carried out on them.

2.3.6 Stellar Catalog

Stellar catalogs are used for determination of asteroid's position on the sky,
therefore the inaccuracy of catalog can contribute largely to the resulting
error. Quality catalog is essential for high precision astrometry. Ideal star
catalog should be 'dense and deep', o�ering stars of varying brightness dis-
tributed across entire sky, for astrometry to be carried out regardless of aster-
oid's brightness and position. UCAC4 catalog is the most precise astrometric
catalog to date and recommended by Minor Planet Center for observers to
employ. As demonstrated in [23], it is possible to determine and account for
catalog bias to increase average precision of astrometric positions, however
astrometric observations sent to Minor Planet Center have to be unadjusted.

2.3.7 Image astrometry

The CCD images entering the astrometry typically have darkframe or bias
and �at�eld applied. Sometimes co-adding is used, but further image pro-
cessing is not employed. Most of the average astrometry is done by one of
the available programs capable of astrometric measurements, notably Astro-
metrica.at, or SAO Image. As mentioned before, the details of their meth-
ods are not readily available, thus truly dedicated observatories create their
own astrometric software, typically in cooperation with their home univer-
sities. This serves two purposes: the observatory can adjust the software to
their own speci�c needs, and the worldwide astrometric measurements avoid
cumulating possible systematic errors. In either case, astrometric measure-
ments should consistently have an error lower than 1" for observations using
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the same comparison stars, and a night-to-night consistency limited only by
the comparison star catalog.

Automated astrometry is so far the unreachable dream in the �eld. The
largest asteroid surveys � Catalina Sky Survey, NEAT and LINEAR �
tried to replace the observer by an automated system[35], but even having
the possibilities nonmilitary projects are not entitled to, they were forced to
go back to using skilled observers again. The automated astrometry in gen-
eral either lacks completeness (does not recognize part of the objects present
on the images) or it lacks reliability (generates a lot of false detections). The
human brain is still unmatchable in its ability to recognize faint targets on
images and skilled observer is the choice of the observatories.

Typical astrometric procedure is described in detail in Section 5.4. The
resulting equatorial coordinates7 of the measured object are sent to Minor
Planet Center with precision 0.01 second in right ascension and 0.1 arcsecond
in declination, unless higher precision is warranted. To keep the quality of
the included data high, MPC compares the astrometric measurements with
the expected positions and inconsistent measurements are rejected by the
automatic system.

7De�ned in Section 3.1.3.
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Chapter 3

Mathematical background

Required mathematical background is given in this chapter. In no way com-
plete, as the text would become enormously long, only basics are written
about the topic in this text. Required coordinate systems are de�ned and
their transformations stated. A few essential statistics concepts are de-
scribed, including normal probability distribution, leading to derivation of
linear least squares method. Fourier transform, necessary for image process-
ing, is described, including its discrete version.

3.1 Celestial Sphere

Astronomy uses two kinds of coordinate systems for describing positions in
3D, which are Cartesian and Spherical coordinate systems. The most used
form of spherical coordinate system in astronomy is the equatorial coordinate
system. Gnomonic projection then allows us to pass between equatorial
coordinates and 2D cartesian coordinates on the CCD image.

3.1.1 Cartesian coordinate system in 3D

The cartesian coordinate system in three-dimensional case is formed by an
ordered triplet of vectors i, j, and k, which are pair-wise perpendicular, have
a single unit of length and begin at the same point, called origin of the coor-
dinate system. The lines, on which these vectors lay, are usually called axes
x, y and z.
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Figure 3.1:

Spherical Coordinate System.

Source: Wolfram MathWorld

The coordinates of a point R are represented by a position vector r go-
ing from the origin of the coordinate system to the point R. The vector can
be written as linear combination of unit vectors i, j, and k,

r = xi + yj + zk,

where the unit vectors i> = (1, 0, 0), j> = (0, 1, 0), k> = (0, 0, 1) form a
standard basis.

The coordinates of a point R are written as R(x, y, z). The correspond-
ing angles α, β, γ lay between the vector r and the coordinate axes. The
coordinate system can have two orientations depending on the direction of
axis z, either right-handed, or left-handed.

3.1.2 Spherical coordinate system

De�nition 3.1. (Spherical coordinate system). Spherical coordinate system
is formed by vector r and angles φ, θ, where r is radial distance (radius)
from a point to a �xed origin of the coordinate system, φ is polar angle

or zenith angle measured from the positive �xed zenith direction (z-axis)
with 0 ≤ φ ≤ π, and θ is azimuthal angle of its orthogonal projection on a
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reference plane xy that passes through the origin and is orthogonal to the
zenith direction, measured from a �xed reference direction (x-axis) on that
plane, with 0 ≤ θ < 2π.

Another term we will meet is great circle of a sphere, also known as ortho-
drome or Riemannian circle, which is the intersection of the sphere and a
plane that passes through the center point of the sphere, therefore it con-
tains the diameter of the sphere.

The spherical coordinates (r, θ, φ), are related to the Cartesian coordinates
(x, y, z) by

r =
√
x2 + y2 + z2

θ = arctan
y

x

φ = arccos
z

r
,

where r ∈ [0,∞), θ ∈ [0, 2π), φ ∈ [0, π], and the arctan must be suitably
de�ned to output correct quadrant.

Reversely, the Cartesian coordinates (x, y, z) are related to the spherical co-
ordinates (r, θ, φ) by

x = r cos θ sinφ

y = r sin θ cosφ

z = r cosφ

3.1.3 Celestial equatorial coordinate system

Is a spherical coordinate system used in astronomy to specify positions of
celestial objects, and is based on the concept of the celestial sphere.

De�nition 3.2. (Celestial Sphere.) Celestial sphere is an imaginary sphere
of a single unit radius surrounding the planet Earth. The celestial sphere
rotates about the axis passing through the North and South poles of the
Earth, which intersects the celestial sphere at the North celestial pole and
South celestial pole, respectively.
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Figure 3.2:

The equatorial coordinate system.

Source: mwit.ac.th

De�nition 3.3. (The equatorial coordinate system.) The equatorial coordi-
nate system has its origin at the center of the Earth, its fundamental plane
consist of the projection of Earth's equator onto the celestial sphere, forming
celestial equator, and primary direction points towards the vernal point Υ,
which is the apparent location of the Sun at the spring equinox. The system
uses right-handed convention.

Its coordinates are right ascension and declination, denoted (RA, Dec) or
(α, δ). Declination δ is measured in degrees north and south of the celestial
equator, δ ∈ 〈+90,−90〉. Right Ascension α is measured eastward along
the celestial equator from the vernal point Υ to its intersection with the ob-
ject's hour circle (the great circle passing through the object and through the
north celestial pole), and is measured in hours, minutes and seconds1, where
24 hours of right ascension are equivalent to 360 degrees; α ∈ 〈0, 24).

1The rationale for this unit is based on 24 hours (sidereal time) required for the stellar

object to pass through the observer's local meridian � the great circle passing through

the celestial poles, the zenith and the nadir of the observer's location.
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Since the equatorial system is aligned with Earth's equator and poles, decli-
nation δ is the equivalent of latitude, and right ascension α is analogous to
longitude. The right-hand convention means that the coordinates increase
northward from and eastward around the fundamental plane. The equato-
rial coordinate system is based on the celestial equator and the vernal point
Υ, therefore it does not rotate with the Earth and remains relatively �xed2

against the background stars. Changes in the latitude and longitude of the
observer do not a�ect equatorial coordinates of the object, and neither does
the annual motion of the Earth.

3.1.4 Gnomonic projection

Gnomonic projection allows us to compute spherical coordinates from CCD
image by describing how these spherical coordinates project onto the tangent
plane of the CCD chip.

Figure 3.3:

Gnomonic projection.

Source: Wolfram MathWorld

De�nition 3.4. (Gnomonic Projection). Gnomonic projection is a noncon-
formal projection obtained by projecting point P2, (or P1) on the surface of
sphere from a sphere's center O to point P in a plane that is tangent to a
point S [9].

2The precession and nutation of Earth's axis cause a slow drift of the vernal point Υ.

In order to �x the primary direction, it is necessary to specify the date, known as Epoch,

for which the coordinate system is valid.
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In the Figure 3.3, S is the south pole, but it can in general be any point
on the sphere. Since this projection obviously maps antipodal points P1 and
P2 to the same point P in the plane, it can only be used to project one
hemisphere at a time. In a gnomonic projection, great circles (sections of
the sphere which contain the diameter of the sphere) are mapped to straight
lines. The gnomonic projection represents the image formed by a spherical
lens, and is sometimes known as the rectilinear projection.

The gnomonic projection is well known in geodesy [10] , using (λ, φ), where
λ is longitude and φ is colatitude, computed from latitude by φ = 90◦ − δ.
Let's have celestial equatorial coordinates (α, φ), where α is right ascension
and φ = 90◦− δ is computed from declination δ, and the center of the image
S = (α, φ) = (0, 0) is laying in known equatorial coordinates (α0, φ1). Then
the transformation equations of the plane tangent at the point S are given
by [24]

x =
cosφ sin(α− α0)

cos c

y =
cosφ1 sinφ− sinφ1 cosφ cos(α− α0)

cos c
,

where c is the angular distance of the point (x, y) from the center of the
projection, given by cos c = sinφ1 sinφ+cosφ1 cosφ cos(α−α0). The inverse
transformation equations are,

φ = arcsin(cos c sinφ1 + y sin c cos c cosφ1)

α = α0 + arctan
x

cosφ1 − y sinφ1

.

3.2 Theory of errors

Every observation includes an error, a di�erence between the measured and
true value. The error is not known (otherwise we could just add it to the
measurement to obtain the true value), but using an associated statistics,
it can be evaluated and quanti�ed into uncertainty, which characterizes the
dispersion of measured values.
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Let x̂ be the estimated value of a parameter x, and σx be the quantity
such, that for the normal distribution, the true value x0 has a probability of
0.683 or being in the interval x̂− σx < x0 < x̂+ σx. Then we write

x0 = x̂± σx.

The quantity σx is called the standard deviation, also standard uncertainty
or root mean square (RMS) and is de�ned in following chapter.

3.2.1 Random errors

Generally, the best available estimate of the expected value of x that varies
randomly, and for which n independent values xk were measured, is the
arithmetic mean or average, µ,

x = µ =
1

n

n∑
k=1

xk.

The residual of each measurement is

rk = xk − µ.

We introduce the variance of the measurements,

σ2(xk) =
1

n− 1

n∑
k=1

r2k, (3.1)

and the standard deviation, σk, which is the square root of the variance.

3.2.2 Combination of random quantities

Let's have a quantity to be determined, z, which depends upon N di�erent
random parameters xi, and a model that links these parameters

z = f(x1, x2 . . . xN).

Let us assume that each of the parameters xi is random, with an expected
value µi and standard deviation σi. For small deviations from these expected
values, the �rst-order Taylor expansion gives

z − µz =
N∑
i=1

∂f

∂xi
(xi − µi)
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The expected value of z then is

µz = f(µ1, µ2 . . . µN),

and

(z−µz)2 =
N∑
i=1

(
∂f

∂xi

)2

(xi−µi)2+2
N∑
i=1

N∑
j=i+1

∂f

∂xi

∂f

∂xj
(xi−µi)(xj−µj). (3.2)

The expected value of (z − µz)2 is the variance σ2 of z, and for each of the
parameters, the expected values of (xi − µi)2 are σ2

i .

Now in the Equation 3.2, the expected value of (xi − µi)(xj − µj) is written
as σiσjρij, where ρij is by de�nition the correlation coe�cient of xi and xj.
The product σij = σiσjρij is called the covariance of xi and xj. If xi and xj
are independent variables, meaning that their variations do not depend one
on another or on a common cause, the correlation coe�cient is null. With
these notations, Equation 3.2 becomes

σ2
z =

N∑
i=1

(
∂f

∂xi

)2

σ2
xi

+ 2
N∑
i=1

N∑
j=i+1

∂f

∂xi

∂f

∂xj
σiσjρij.

We can �nally introduce variance-covariance matrix, the symmetric matrix
|σij|, whose elements are σii = σ2

i in row i, column i, and σij both in row i,
column j and row j, column i.

3.2.3 Probability density function

A probability density function (PDF) is a function of a continuous random
variable whose integral across an interval gives the probability that the value
of the variable lies within the same interval. A PDF is nonnegative every-
where and its integral over the entire space is one.

Central limit theorem states, that the sum of large number of mutually in-
dependent random variables tends to a probability density function called
Gaussian, or normal, density function, given by

f(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 ,
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where µ is the mean of the probability distribution and σ is the standard
deviation. The normal PDF is represented on Figure 3.4.

Figure 3.4: Normal probability density function.

Source: ned.ipac.caltech.edu

Level of con�dence C is then the probability of a value to be within an
interval µ− kpσ < x < µ+ kpσ, where kp is the coverage factor,

C =

∫ µ+kpσ

µ−kpσ
f(x)dx.

An important property of normal PDF is that any random variable, formed
by taking a linear combination of independent normally distributed random
variables, is itself also normally distributed.

A sample of N observations, that obeys the normal PDF, with variance
σ2, is described by Chi-square PDF. The average of the sample is

x =
N∑
i=1

xi
N
,
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and the variance of the sample

s2 =
1

N − 1

(
N∑
i=1

x2i −Nx 2

)
.

We then consider the random variable

y =
νs2

σ2
,

where ν = N − 1 is the degree of freedom. This random variable has Chi-
square probability density function, χ 2

ν(y),

χ 2
ν(y) = Ky(ν−2)/2ey/2,

where the constant K is chosen in such a way, that
∫ +∞
−∞ χ2(ν) = 1. We have

K =
1

2 ν/2Γ(ν/2)
,

in which Γ is the gamma function

Γ(x) =

∫ ∞
0

e−ttx−1dt.

The Chi-square PDF is usually tabulated as a function of degree of freedom
ν and is used to �nd the probability that s2 exceeds some given value, which
shows how well is the sample representative of the distribution.

3.3 Least squares method

Although this method is not the only one used to estimate an unknown pa-
rameters of a measurement model, its special properties justify its wide use.
Description of the method from [18] was adapted for this text, as it relates
well to our use.

Let X(x1, x2 . . . xn) be the vector of unknowns, A(a1, a2 . . . am) the vector
of measurements, and P(p1, p2 . . . pq) the vector of the parameters entering
the model which relates A to X. We have

A + E = F(X,P), (3.3)

with n + q unknowns and E(ε1, ε2 . . . εm) is an unknown error vector of the
measurements A.
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3.3.1 Linearization of the equations

The method of least squares is designed to �nd the most probable estimation
âi of the components ai of A. The necessary assumptions are, that the
unknowns

• have normal probability density function
• are su�ciently small, so that we can neglect their squares

The �rst assumption is met if all the parameters, which may cause a bias,
are taken into account by Equation 3.3, so that their uncertainties may be
considered as random. The second assumption implies that, unless the un-
knowns are indeed small, we know an approximate value X0(x

0
1, x

0
2 . . . x

0
n)

and P0(p
0
1, p

0
2 . . . p

0
q), so that we can develop Equation 3.3 as follows:

A = F(X0,P0) +
n∑
i=1

(
∂F(X0,P0)

∂xi

)
δxi (3.4)

+

q∑
j=1

(
∂F(X0,P0)

∂pj

)
δpj − E, (3.5)

where ∂xi and ∂pj are the new unknowns and, following our assumption, the
second order of development is negligible and can be added to E without
changing its randomness. So we shall include in X all unknowns, whether
they are of astronomical interest or are additional parameters. Writing Equa-
tion 3.4 for each component of A, we get a set of m equations

aj − Fj(x1 . . . xk) =
k∑
i=1

(
∂Fj(x1 . . . xk)

∂xi

)
δxi − εj, (3.6)

where 1 ≤ j ≤ m, and k = n+ q is the number of unknown quantities, while
εj describes the statistical properties of uncertainties of aj. This set of linear
equations in δxi can not be solved if k < j. Therefore it is necessary to
increase the number of equations by adding more observations obeying the
same model. For example during plate reduction, described in the part of
Section 5.4.3 where plate parameters are computed, we measure a su�cient
amount of reference stars, each providing two equations. The least squares
method allows any number m of Equations 3.6 as long as m is strictly larger
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than the number k of the unknowns. A general experience is that is it desir-
able that m be of the order of two to three times larger than k. The quantity
m− k = v is the degree of freedom as introduced in Section 3.2.3.

A set of Equations 3.6 is called the equations of condition, or design equa-

tions, and the coe�cients of the second members form the design matrix D.
Equations 3.6 can be written as

C = DY + E, (3.7)

where Y is the vector of the new unknowns (δx1 . . . δxk), and C is the vector
of the left-hand members of Equations 3.6

C = (aj − Fj(x1 . . . xk)), j = 1 . . .m.

3.3.2 Principle of the least squares method

If the conditions stated in the beginning of Section 3.3.1 are met, the expected
value of E is zero and its variance is

1

m− 1

m∑
j=1

ε2j .

In reality, this of course is not the case. The objective of the least squares
method is to determine the vector Y that minimizes the sum of the squares
of the components of E,

m∑
j=1

ε2j = E> · E = (C−DY)> · (C−DY), (3.8)

where the superscript > denotes matrix transposition. The quantity in Equa-
tion 3.8 is minimum if its derivative with respect toY is zero. The right-hand
member of Equation 3.8 can also be written as

C> ·C− (DY)> ·C−C · DY + (DY)> · DY.

Its derivative with respect to Y is

−DC +D>DX + (DY)>D −C>D = 0,
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which is equivalent to
D>DY = D>C. (3.9)

The product of the transposed design matrix by itself is a square matrix of
dimension k. Hence we can solve Equation 3.9 and obtain the solution

Ŷ = (D>D)−1D>C, (3.10)

which is the estimate of Y by the least squares procedure.

3.3.3 Weighted least squares solution

An important result concerning this solution is the Gauss�Markov theorem,
which states that the least squares estimate Ŷ from Equation 3.9 is bet-
ter estimator than a solution given by any other possible linear estimator,
provided that all of the components of E have the same variance and are
uncorrelated. We shall assume the estimate of the variance of an observation
εj was done.

The absence of correlation usually implies that the unknowns are well cho-
sen, in a sense that they correspond to the minimum needed to describe the
model. For example, a rotation around an axis should be represented by an
angle θ, and not by sin θ and cos θ, which would be correlated.

A simple way to equalize the variances in Equation 3.3 is to multiply each
equation by the inverse of εj. Let G be a square matrix of order m, whose
elements are all zeroes except for the main diagonal components, which are
gj = ε−1j . This operation is performed on Equation 3.7 by multiplying both
sides of the equation by G,

GDY + GE = GC,

so that the right-hand member of Equation 3.8 becomes

(GC− GDY)> · (GC− GDY).

Let W be the square matrix of order k

W = G>G.
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After some calculations, Equation 3.10 becomes

Ŷ = (D>WD)−1D>WC. (3.11)

The matrix W is the weight matrix and all its terms are zeroes, except on
the main diagonal, where they are wjj = ε−2j . The procedure described by
Equation 3.11 is weighted least squares method to which the Gauss�Markov
theorem applies.

The weight matrix can also be generalized to include cases when correla-
tion between the unknowns is present. Then the non-diagonal terms are not
all zeroes.

Remark 3.5. The de�nition of G, as adopted here, implies that the vari-
ances, and hence the standard deviations, are unity. We could use gii = sε−1j ,
where s is standard deviation, and verify whether the assumptions concerning
the variances are signi�cant.

Let's compute the variance of the residuals by applying Equation 3.8 to the
estimated unknowns, and extending Equation 3.1 tom−k degrees of freedom.
We get

s20 =
1

m− k
(C−DŶ)>W(C−DY).

Or, if we call R(ri) the vector of residuals,

R = C−DŶ,

s20 =
1

m− k
R>WR. (3.12)

It can be shown that s20 is an unbiased estimate of the unit weight variance.

3.3.4 Variance�covariance matrix of the estimation

An important result is that the variance�covariance matrix for the estimation
Ŷ is

V = (D>WD)−1,
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proof of which is above the scope of this work and can be found in literature
on statistics. Then Equation 3.11 can be rewritten as

Ŷ = VD>WC.

The diagonal terms of matrix V , vii are the formal variances of ŷi. They are
computed as if the model described by Equation 3.6 is exact, which means
the true value is actually underestimated. To get more realistic estimations,
we should multiply them by the unit weight variance s20. The best estimate
of standard deviation of ŷi then is

σ̂i = s0
√
vii.

The best estimates of correlation coe�cients are not a�ected by s0, and so
we have

ρ̂ij =
σ̂ij
σ̂iσ̂j

=
vij√
vii
√
vjj
.

3.3.5 Chi-square test

It is generally good idea to check whether the model used is indeed represen-
tative of the reality described by the observations C, which can be simply
achieved by Chi-square test. Let us introduce the random variable u

u =
n∑
i=1

(
ri
s0

)2

,

and apply the probability distribution of u, as given in Section 3.2.3,

χ2(ν, u) =
(

2 ν/2 Γ
(ν

2

))−1
u(ν−2)/2e−u/2,

where ν is the degree of freedom. When ν increases, the Chi-square PDF
tends to normal distribution, whose mean is ν and variance 2ν. The functions
(or their integrals) giving the probability of having u < u0 are tabulated in
most books on probability or in statistical software.

3.3.6 Goodness of �t

The computation of χ2, corresponding to the residuals of least squares solu-
tion, and the determination of the probability that it exceeds the computed
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value, gives an indication of the �t to the adopted model.

If the value obtained is such that the probability of exceeding it is small,
some systematic e�ects may remain in the residuals. That may be caused
by small number of observations with large residuals increasing χ2. For ex-
ample during astrometric reduction of the CCD image to stars, a star could
have been mistaken for another, or its position extremely inaccurately mea-
sured (perhaps a satellite dash crossing the star confusing the software).
These cases should be investigated by considering the distribution of residu-
als, which should obey the normal law. The small number of the observations
with large residuals (outliers) can then be omitted and the least squares so-
lution recomputed. If the new solution is still insu�cient, some systematic
cause remains and the linearized model used to describe the observations is
not adequate.

The drawback of Chi-square test is that the values to compare χ2 to χ2
0

are dependent on the degree of freedom ν. For ν > 20 or 30, we can em-
ploy another test independent of ν, derived from F2 statistics, which is a
transformation of χ2 statistics of the least square �t,

F2 =

(
9ν

2

)1/2
((

χ2

ν

)1/3

+
2

9ν
− 1

)
.

If χ2 follows the Chi-square distribution with a degree of freedom ν, then F2

is approximately normal with a mean value zero and with a unit standard
deviation. The value of F2 is the goodness of �t. A value larger than 3 is
a clear indication of modelling error (probability < 0.0027), especially if the
outliers were already removed.

3.4 Fourier Transform

The Fourier transform is an integral transform, which transforms functions
of one or more variables into another function of the same number of vari-
ables. Since CCD image is a function of two spatial variables and Fourier
transform of a function is in general case a function with complex image, we
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will deal in Section 3.4.1 only with functions f : R2 → C. The following sec-
tion deals with the Fourier transform of functions in R×R discrete domain.
In general, CCD images are rectangles, however the images from KLENOT
telescope are solely square, which allows us to deal here with square images
only. Although the discrete nature of CCD images calls for using discrete
Fourier transform, some derivations of image processing methods are better
done with the Fourier transform of functions with the domain R2, since oper-
ations like rotation and scaling are easily modelled on them. The connection
between the Fourier transform of functions de�ned on R2 and the discrete
Fourier transform is shown at the end of this chapter. Many of the de�nitions
and theorems are adapted from [31].

3.4.1 Fourier Transform of function f : R2 → C

The standard de�nition of the Fourier transform of a function of two real
variables is as follows.

De�nition 3.6. (Fourier Transform). Let f(x, y) : R2 → C be a function
such that ∫∫

R2

| f(x, y) | dx dy

exists and is �nite. The Fourier transform of f is function F{f} = F (ξ, η)

de�ned as

F (ξ, η) =

∫∫
R2

f(x, y)e−i(xξ+yη) dx dy.

Function F if also called Fourier spectrum of function f .

Other de�nitions of the Fourier transform can be found in literature. They
di�er in multiplicative constant before the integral or in the exponent, and in
the meaning of the integral over R2 (for our de�nition treated in [31] ). Di�e-
rent theorems can be proven with di�erent de�nitions, therefore one must be
cautious when taking information about Fourier transform from individual
sources.

The domain of f(x, y) is commonly called spatial domain or time domain,

38



CHAPTER 3. MATHEMATICAL BACKGROUND

depending on the type of data recorded, while the domain of F (ξ, η) is called
frequency domain.

De�nition 3.7. (Inverse Fourier Transform). Let F (ξ, η) : R2 → C be a
function such that ∫∫

R2

| F (ξ, η) | dξ dη

exists and is �nite. The Inverse Fourier Transform of function F is function
F−1{F}(x, y) = f(x, y) : R2 → C de�ned as

f(x, y) =
1

4π2

∫∫
R2

F (ξ, η)ei(xξ+yη) dξ dη.

It is not generally true that an inverse Fourier transform of a Fourier trans-
form of a function is the function itself, F−1{F{f}} 6= f . However, the
assumption would be correct under certain conditions, as proven by Fourier
Inversion Theorem[13][14].

Theorem 3.8. (Fourier Inversion Theorem). Let f(x, y) : R2 → C be a
continuous function such that∫∫

R2

| f(x, y) | dx dy

exists and is �nite. Let F (ξ, η) be the Fourier transform of f . Then for every
(ξ, η) ∈ R2

f(x, y) = lim
ε→0

1

4π2

∫∫
R2

F (ξ, η)ei(xξ+yη)e−ε
2 ξ

2+η2

2 dξ dη.

If also the integral ∫∫
R2

| F (ξ, η) | dξ dη

exists and is �nite, then

F−1{F{f(x, y)}} =
1

4π2

∫∫
R2

F (ξ, η)ei(xξ+yη) dξ dη = f(x, y).
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Digital image is a matrix of �nite values, which can be approximated by �t-
ting smooth functions de�ned on R2 through the pixel values and therefore
will have �nite integrals and ful�ll the conditions for Fourier Inversion The-

orem. That is very important step as in image processing, Fourier Inversion
Theorem plays critical role.

The basic strategy in many applications of image processing is to apply the
Fourier transform, perform operations on the data set, and then apply the
inverse Fourier Transform. This seemingly more complicated way is in fact
advantageous due to some operations being simpli�ed if done in frequency

domain, as opposed to doing them in the spatial domain. The notions of
amplitude spectrum and phase spectrum are commonly referred to in image
processing. They are de�ned as follows.

De�nition 3.9. (Amplitude Spectrum, Phase Spectrum). Let function
f(x, y) ∈ L(R2) have Fourier spectra F (ξ, η). The amplitude spectrum [31]
of function f is function A(ξ, η) : R2 → R+

0 de�ned as

A(ξ, η) = |F{f(x, y)}| = |F (ξ, η)|.

The phase spectrum [31] of function f is function Φ(ξ, η) : R2 → 〈0, 2π)

de�ned as

<F (ξ, η) = A(ξ, η) cos Φ(ξ, η),

=F (ξ, η) = A(ξ, η) sin Φ(ξ, η).

If A(ξ, η∗) = 0 for some (ξ, η), we de�ne that Φ(ξ, η) = 0.

One of the operations frequently used in this regard is convolution, which
becomes multiplication in frequency domain, as per following Convolution

Theorem.

De�nition 3.10. (Convolution). Let functions f1(x, y), f2(x, y) ful�ll the
assumptions of De�nition 3.6. The convolution [16] f1 ∗ f2 of functions f1, f2
is a function

f(x, y) =

∫∫
R2

f1(s, t)f2(x− s, y − t)ds dt.
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Theorem 3.11. (Convolution Theorem). Let functions f1(x, y), f2(x, y) ful-
�ll the assumptions of De�nition 3.6. Let F1(ξ, η), F2(ξ, η) be their Fourier
spectra, and let F denote the Fourier transform operator. Then

F{f1(x, y) ∗ f2(x, y)} = F1(ξ, η) · F2(ξ, η)

F{f1(x, y) · f2(x, y)} =
1

4π2
F1(ξ, η) ∗ F2(ξ, η).

For proofs see [31].

3.4.2 Discrete Fourier Transform

In image processing, we deal with two-dimensional images composed of pixels.
Consequently, the Fourier transform changes into discrete Fourier transform
as the integrals change to sums to handle the discrete data. The images this
work deals with are square datasets, so we will de�ne the discrete Fourier
transform for function f(x, y) de�ned on {0, 1, . . . , N−1}×{0, 1, . . . , N−1},
where N is natural number.

De�nition 3.12. (Discrete Fourier Transform). Let f(x, y) be a function
{0, 1, . . . , N − 1} × {0, 1, . . . , N − 1} = {0, 1, . . . , N − 1}2 → C, N ∈ N.
The discrete Fourier transform of function f(x, y) is function D{f}(ξ, η) =

F (ξ, η) : {0, 1, . . . , N − 1}2 → C de�ned as

F (ξ, η) =
N−1∑
x=0

N−1∑
y=0

f(x, y)e−
2πi
N

(xξ+yη). (3.13)

Function F is also called the Fourier spectrum of function f .

De�nition 3.13. (Inverse Discrete Fourier Transform). Let f(x, y) be a
function {0, 1, . . . , N−1}2 → C, N ∈ N and let F (ξ, η) be its discrete Fourier
transform. The inverse discrete Fourier transform of function F (ξ, η) is
function D−1{F}(x, y) : {0, 1, . . . , N − 1}2 → C de�ned as

D−1{F}(x, y) =
1

N2

N−1∑
ξ=0

N−1∑
η=0

F (ξ, η)e
2πi
N

(xξ+yη).

Digital images have �nite size, therefore N is �nite and the condition of
Fourier Inversion Theorem is ful�lled. For proof of the following theorem
see [31].
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Theorem 3.14. (Fourier Inversion Theorem). Let f(x, y) be a function
of {0, 1, . . . , N − 1}2 → C, N ∈ N and let F (ξ, η) be its discrete Fourier
transform. Then the inverse discrete Fourier transform of function F (ξ, η) is
function f(x, y),

D−1{D{f(x, y)}} = f(x, y).

When talking about digital image processing, the notions of high frequency

and low frequency are commonly used, referring to the opposite parts of the
domain of the Fourier spectrum of a function. Low frequencies lie near the
origin of the Fourier spectrum and represent the underlying trend in the ex-
amined data, while high frequencies lie far from the origin and represent the
minute di�erences on small scale in the data, which is usually noise where
sensitive scienti�c measurements are taken. In the case of Discrete Fourier
Transform in R2, low frequencies correspond to the regions close to the cor-
ners ([0, 0], [N − 1, 0], [0, N − 1], [N − 1, N − 1]) of the spectrum, while the
high frequencies are in the center of the domain of the spectrum.

The de�nition of the amplitude and the phase spectrum of functions de-
�ned on {0, 1, . . . , N−1}2 is analogous to the de�nition for functions de�ned
on R2.

De�nition 3.15. (Amplitude Spectrum, Phase Spectrum). Let function
f(x, y) be a function {0, 1, . . . , N − 1}2 → C, N with Fourier spectrum
F (ξ, η). The amplitude spectrum [16] of function f is function A(ξ, η) :

{0, 1, . . . , N − 1}2 → R de�ned as

A(ξ, η) = |D{f(x, y)}| = |F (ξ, η)|.

The phase spectrum [16] of function f is function Φ(ξ, η) : {0, 1, . . . , N −
1}2 → 〈0, 2π) de�ned as

<F (ξ, η) = A(ξ, η) cos Φ(ξ, η),

=F (ξ, η) = A(ξ, η) sin Φ(ξ, η).

If A(ξ, η) = 0 for some (ξ, η), we de�ne that Φ(ξ, η) = 0.

In the previous section, we discussed the connection of convolution to the
Fourier transform. Here we do the same with the discrete Fourier transform
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and the discrete periodic convolution. The periodic extension of a function
de�ned on {0, 1, . . . , N − 1}2 is necessary for this to be de�ned. Since the
Equation 3.13 can be evaluated for any (ξ, η) ∈ Z2, this allows us to de�ne
the periodic extension as follows:

De�nition 3.16. (Periodic extension of function and its Fourier spectrum).
Let f(x, y) be a function {0, 1, . . . , N − 1}2 → C, N ∈ N and let F (ξ, η) be
its Fourier spectrum. The periodic extension of Fourier spectrum F [31] is
function F̃ (ξ, η) : Z2 → C de�ned as

F̃ (ξ, η) =
N−1∑
x=0

N−1∑
y=0

f(x, y)e−
2πi
N

(xξ+yη).

The periodic extension of function f is function f̃(x, y) : Z2 → C de�ned as

f̃(x, y) =
1

N2

N−1∑
ξ=0

N−1∑
η=0

F (ξ, η)e
2πi
N

(xξ+yη).

The de�nition has following consequences (for details see [31] ):

Corollary 3.17. Let f(x, y) be a function {0, 1, . . . , N − 1}2 → C, N ∈ N.
Then for every (x, y), (ξ, η) ∈ {0, 1, . . . , N − 1}2 and k, l ∈ Z it holds:

f(x, y) = f̃(x+ kN, y + lN),

F (ξ, η) = F̃ (ξ + kN, η + lN).

In particular,

f̃(x, y) = f(x, y), f̃(−x,−y) = f(N − x,N − y),

F̃ (ξ, η) = F (ξ, η), F̃ (−ξ,−η) = F (N − ξ,N − η).

De�nition 3.18. (Discrete Fourier transform of function's periodic exten-
sion.) Let f(x, y) be a function {0, 1, . . . , N − 1}2 → C, N ∈ N. The discrete
Fourier transform of the periodic extension of function f , f̃(x, y) : Z2 → C
is function D{f̃}(ξ, η) = F (ξ, η) : {0, 1, . . . , N − 1}2 → C de�ned as

F (ξ, η) =
N−1∑
x=0

N−1∑
y=0

f̃(x, y)e−
2πi
N

(xξ+yη).
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De�nition 3.19. (Inverse discrete Fourier transform of function's periodic
extension.) Let f(x, y) be a function {0, 1, . . . , N − 1}2 → C, N ∈ N and
let F (ξ, η) be its discrete Fourier transform with periodic extension F̃ (ξ, η) :

Z2 → C. The inverse discrete Fourier transform of function F̃ (ξ, η) is function
D−1{F̃}(x, y) : {0, 1, . . . , N − 1}2 → C de�ned as

D−1
{
F̃
}

(x, y) =
1

N2

N−1∑
ξ=0

N−1∑
η=0

F̃ (ξ, η)e
2πi
N

(xξ+yη).

Corollary 3.20. Let f(x, y) be a function {0, 1, . . . , N − 1}2 → C, N ∈ N
with Fourier spectrum F (ξ, η). For every (x, y) ∈ {0, 1, . . . , N−1}2, it holds:

D{f(x, y)} = D
{
f̃(x, y)

}
,

D−1
{
D
{
f̃(x, y)

}}
= D−1

{
F̃ (ξ, η)

}
= f(x, y).

We can proceed to the de�nition of the discrete periodic convolution and its
connection with the discrete Fourier transform.

De�nition 3.21. (Discrete periodic convolution). Let f1(x, y), f2(x, y) be
functions of {0, 1, . . . , N−1}2 → C, N ∈ N. Functions f(x, y) : {0, 1, . . . , N−
1}2 → C is called the discrete periodic convolution of functions f1, f2 denoted
by f(x, y) = f1(x, y) ∗ f2(x, y), if

f(x, y) =
N−1∑
s=0

N−1∑
t=0

f1(s, t)f̃2(x− s, y − t).

Theorem 3.22. Let functions f1(x, y), f2(x, y) : {0, 1, . . . , N − 1}2 → C,
N ∈ N have Fourier spectra F1(ξ, η), F2(ξ, η). Then

D{f1(x, y) ∗ f2(x, y)} = F1(ξ, η) · F2(ξ, η),

D{f1(x, y) · f2(x, y)} =
1

N2
F1(ξ, η) ∗ F2(ξ, η).

For proofs see [31].

Remark 3.23. This approach using periodic extension can be found for ex-
ample in [16], while in [15] uses di�erent approach employing modulo arith-
metics.
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Connection between the Fourier series and the discrete Fourier

transform, sampling

The connection between the discrete Fourier transform and the Fourier series
is described in [16]. Let f be a p−periodic function R → R and Φf (x) its
Fourier series. The Fourier series is in the exponential form as per [13],

Φf (x) =
∞∑

k=−∞

cke
2πi kx

p = c0e
0 +

∞∑
k=1

(
cke

2πi kx
p + c−ke

−2πi kx
p

)
= (3.14)

= c0 +
∞∑
k=1

(
ck cos

2πkx

p
+ cki sin

2πkx

p
+ c−k cos

2πkx

p
− c−ki sin

2πkx

p

)
=

= c0 +
∞∑
k=1

(
(ck + c−k) cos

2πkx

p
+ i(ck − c−k) sin

2πkx

p

)
, (3.15)

where
ck =

1

p

∫ p

0

f(x)e−2πi
kx
p dx

are complex numbers. The Fourier series can also be written in the real form
described in [13],

Φf (x) =
a0
2

+
∞∑
k=1

(
ak cos

2πkx

p
+ bk sin

2πkx

p

)
, (3.16)

where ak, bk are real numbers. Comparing equations 3.15 and 3.16, we obtain
the connections between ck and ak, bk,

c0 =
a0
2

(3.17)

ck + c−k = ak (3.18)

i(ck − c−k) = bk. (3.19)

At this point, ak, bk are real, while ck is complex. Let us split the complex
numbers ck into their real and imaginary parts ck = αk+iβk in the equations
3.18 and 3.19. Noting that the left-hand sides of these equations are real,

ck + c−k = (αk + α−k) + i(βk + β−k) is real =⇒ βk = −β−k,
ck − c−k = (αk − α−k) + i(βk − β−k) is imaginary =⇒ αk = α−k.
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Hence, ck = c∗−k.

Let us now sample the function f with an equidistant sampling using N steps
of length p

N
in each interval of length p. Denoting

u
f(n) = f

(
n
p

N

)
, n ∈ Z (3.20)

and plugging formally Equation 3.14 into Equation 3.20 in a point where Φf

converges to f , we obtain

u
f(n) =

∞∑
k=−∞

cke
2πi k

p
n p
N =

∞∑
k=−∞

cke
2πi kn

N .

Function e2πi
kn
N is periodic in interval k with period N , therefore we can

separate k into k = l+Nm, where m ∈ Z, l ∈ {0, 1, . . . , N − 1}, and rewrite
the Equation 3.20 as

u
f(n) =

∞∑
m=−∞

N−1∑
l=0

cl+Nme
2πi
N
n(l+Nm) =

∞∑
m=−∞

N−1∑
l=0

cl+Nme2πi
nl
N .

Due to the series being absolutely convergent, we can swap the order of
summation,

u
f(n) =

N−1∑
l=0

∞∑
m=−∞

cl+Nme2πi
nl
N . (3.21)

Denoting
u
F (l) =

∞∑
m=−∞

cl+Nm,

we can rewrite Equation 3.21 as

u
f(n) =

N−1∑
l=0

u
F (l)e2πi

nl
N ,

which is almost exactly the formula for one dimensional inverse discrete

Fourier transform. We can use its formula to express
u
F (l) from the last

equation as
u
F (l) =

1

N

N−1∑
n=0

u
f(n)e−2πi

nl
N ,
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which yields the connection between the Fourier series and the discrete
Fourier transform as

N
u
F (l) = N

∞∑
m=−∞

cl+Nm =
N−1∑
n=0

u
f(n)e

−2πi
N

nl.

Note: If a sequence ck has a subsequence of length N or less, each
u
F (l) equals

to zero or to one particular ck. This means that the Fourier series of the orig-
inal function f has a �nite number of terms and can be fully reconstructed

from
u
F (l). Such functions are called bandlimited and the Fourier series is

equivalent notion with the discrete Fourier transform for them. According
to Nyquist-Shannon sampling theorem, a bandlimited signal can be fully re-
constructed from its samples provided the sampling rate exceeds twice the
maximum frequency in the bandlimited signal.
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Chapter 4

Kle´ Observatory

Kle´ Observatory is located 1068 meters above sea level in southwestern part
of the Czech Republic in a protected landscape area with Bortle's dark sky
class 1 to 2. Typical seeing1 on the site is 1.5�2�. The observatory ranks
among the worlds most proli�c professional NEO follow-up programmes.
Kle´ Observatory's team consists currently of just two members, but handles
the largest telescope in continental Europe used exclusively for astrometric
observation of asteroids and comets. The program includes con�rmation of
newly discovered NEO candidates, early follow-up of newly discovered NEOs,
long-arc follow-up of NEOs in need of further astrometric data, recovery of
lost NEOs and detection of cometary features. The highest priority is given
to Virtual Impactors and Potentially Hazardous Asteroids.

Kle´ Observatory has been carrying out astrometric measurements since 1969
using photographic plates, and since 1994 using CCD. Starting in 2002, it
operates 1.06-m KLENOT telescope, the largest telescope in Europe used ex-
clusively for follow-up astrometry of asteroids and comets. Kle´ Observatory
developed a work�ow allowing for astrometric positions to be sent within
few minutes of images' acquisition. The KLENOT project contributed 52
658 astrometric measurements of 5 867 bodies to Minor Planet Center be-
tween 2002 and 2008. Since 2014, KLENOT project cooperates with Space
System Awareness Program of European Space Agency and obtained total

1See Section 2.3.4 for seeing explanation.
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Figure 4.1: The two telescopes of Kle´ Observatory.

Left: 0.57-m telescope. Right: 1.06-m KLENOT telescope.

Source: Kle´ Observatory

27 426 astrometric measurements of 3 455 bodies between October 2014 and
February 2017.

4.1 Hardware

Kle´ Observatory uses two re�ectors, 1.06-m KLENOT telescope and 0.57-m
telescope, both equipped with CCDs.

KLENOT Telescope

1.06-m f/3 main mirror + 4-lenses primary focus corrector

f/2.7 optical system

CCD camera FLI ProLine PL-230, thermoelectric cooling (since 2013)

chip e2v 2048x2048 pix, pixel size 15 microns, scale 1.1''/pix

FOV 37'x37', limiting magnitude 22 mag for 120s exposure time

0.57-m Telescope

0.57-m f/5.2 main mirror

CCD camera SBIG ST-8, thermoelectric cooling, antiblooming

chip 1530x1020 pix, pixel size 9 microns, scale 0.9''/pix

FOV 16'x10', limiting magnitude 19.5 mag for 120s exposure time
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The 1.06-m KLENOT telescope is equipped with computer controlled par-
allactic mount. Calibration images are not used. The whole setup, meaning
the camera, mount and the dome, is operated from a control room.

The mount of the 0.57-m telescope is manually operated and its motors
accuracy allows up to few minutes exposures. The focusing of the CCD is
done manually as well. Dark frames are taken before each image set and im-
mediately applied. Either 2x2 or 3x3 binning is used to avoid oversampling.
Flat�elds are not used.

4.2 Software and work�ow

The observing process can be divided into several steps, each of which has
its own software developed directly by Kle´ Observatory to keep control over
all of the aspects of the processing and of future development. The observa-
tory's work�ow is depicted on Figure 4.2. The observing time for both tele-
scopes is taken from freeware program AboutTime, which provides the CCD-
controlling computer with averaged time, including correction from chosen
servers, to a subsecond precision.

The Ephem tool lists the observable objects of desired category and bright-
ness in right ascension order. Observational priority is given to NEOCPs2,
V.I.s3, minor bodies scheduled for observation by radio telescopes, and NEOs
with high orbit uncertainty [1].

A set of the target object's images is taken and its up to the observer, sup-
plemented with custom tool Blink, to identify the object. Blink is developed
by the author of this work and can adjust the contrast, smooth the images,

2NEO Con�rmation Page of Minor Planet Center with newly discovered asteroids in

acute need of con�rmatory observations
3Virtual Impactors, asteroids with nonzero collision probability within the next 100

years
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Figure 4.2: Work�ow of KLENOT project's observing night.

51



and automatically align them. Printscreen of the running program can be
found in Appendix E. Blink can animate the images of the set, making it
easier for the observer to spot moving object, and stack the images to e�ec-
tively lengthen their exposure time and therefore raise SNR, and even stack
the images on a moving target. The last technique was immediately used
to obtain astrometry of dwarf planet (136472) Makemake4 [3]. In addition,
KLENOT team developed an algorithm to mark spots where known aste-
roids and comets are expected on the image, which was also implemented
into Blink to further simplify the work of the observer.

The Astrometry tool is used to reduce the image to objects and carry out the
astrometry utilizing a stellar catalog. Although the core of Astrometry was
written in 1993, new astrometric catalogs are implemented when available
and the software is being continually upgraded. Printscreen of the running
program can be found in Appendix F. The identi�cation of stars is carried
out employing similarity of triangles. The newest UCAC4 stellar catalog is
used for identi�cation of stars[33]. Plate parameters are computed, stars' po-
sitional errors are determined and standard 80 character output is produced
for the targeted object. Typical SNR of observed targets, as measured by
the program, is around 5, though it can be as low as 0.1 or as high as 20.
The measured magnitude would therefore contain high errors, but an esti-
mated value can be provided for other observatories to assess observability of
the object on their own telescopes. The measured data is also automatically
added to local MySQL databases.

The Residua tool is ran and the observed positions of the object are compared
with ephemerides computed using local orbital elements database, which is
updated daily with new Minor Planet Center data. The observer can there-
fore verify the correctness of the identi�cation and possibly drop the obser-
vations with higher error before sending them to Minor Planet Center. The

4A precovery program by the author of the work determined it should be possible to �nd

the new dwarf planet on old archived images. The images were stacked and the astrometry

carried out, which lengthened the observing arc years prior to the dwarf planets discovery,

leading directly to its orbit determination.
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Residuals
Years N Obs RA Decl System Setup

2002-2007 47326 0.13 ± 0.53 0.25 ± 0.50 1.06-m + S300 + USNO A2.0
2008-2012 8134 0.05 ± 0.49 0.11 ± 0.49 1.06-m + S300 + USNO B1.0
2013-2017 28355 0.05 ± 0.44 -0.03 ± 0.45 1.06-m + PL-230 + UCAC4

Table 4.1: Kle´ Observatory's average astrometric error.

whole process from taking the image set to sending out the objects observa-
tions takes up to several minutes.

The usual astrometric accuracy of professional observatories is under 0.5�
0.7�, depending on the star catalog used. The observatory's average astro-
metric error improved over the years [32], as can be seen in Table 4.1.
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Chapter 5

Image acquisition and processing

The details of the described observing work�ow are laid in this chapter. For
every chosen target asteroid, a set of images is taken. That is, however, only
the start of a process to obtain the desired positional data of the asteroid.

5.1 CCD Image

Let's describe and specify the parameters of a grayscale CCD image we deal
with in this text. The image is taken by a CCD, a Charge Coupled Device,
which constitutes of usually square elements arranged into �at matrix. The
elements, called pixels, release electrons upon impact of photons on their
photosensitive material. The electrons pile up for the integration time of the
image's exposure and then are read-out by the device, assembling an image.
Therefore a grayscale CCD image is a discrete function of two variables in
Cartesian coordinates de�ned as,

De�nition 5.1. (Grayscale CCD image.) Let M = {0, 1, 2, . . . , ω − 1} ×
{0, 1, 2, . . . , h− 1} where ω, h ∈ N, let R ∈ R. Function

f : M → R

is called a grayscale CCD image. The set M is called �eld of view. The
natural number ω is called image width and the natural number h is called
image height. Elements of [x, y] ∈ M are called pixels and the value of
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function f in pixel [x, y], f(x, y) = Ix,y is called pixel value or intensity on
pixel [x, y].

Images are often taken in sets of n ∈ N images of the same area of sky, with
the same exposure and taken in quick succession, called image sets.

Signal-to-Noise Ratio (S/N or SNR) is a single most important property
involved with regard to astrometry. It de�nes the ratio between the useful
signal from the observed target versus the the total measured signal which
includes sky background and noises of any origin, and therefore determines
the accuracy, or even feasibility, of the observation.

De�nition 5.2. (Signal-to-Noise Ratio.) Let (IT + Iξ) be a sum of pixel
values over n ∈ N pixels on which the target is present. Let Iξ be a sum of
pixel values over n ∈ N pixels without the target present (intensity of noise).
Then SNR of the target is

SNR = (IT + Iξ)/Iξ.

The larger the SNR, the less uncertain are the data measured. However, this
de�nition does not allow for easy measurement of SNR in practice. Instead,
image's background must be determined at �rst, along with its standard
deviation σ, which is a measure of the noise in the image. Then (IT + Iξ) is
measured over the n ∈ N pixels covered by the target, and divided by

√
n.

The result is divided by σ to obtain SNR.

5.2 Image Calibration

In an idealized case, the image taken by the CCD accurately captures the
function of light intensities in the �eld of view. In reality, that is not the
case and the image is deformed by the used optical and imaging system, and
also contains additional noise which was not present in the incoming light.
The purpose of image calibration is to remove or reduce these instrumental
in�uences without altering the attained light. The theory described in this
chapter is based on [34].
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5.2.1 CCD camera response model

Pixel values on a CCD image can be expressed as follows

s(x, y) = B(x, y) + tD(x, y) + tG(x, y)I(x, y) + ξ, (5.1)

where B(x, y) is the bias value of each pixel, t is the integration time (also
called exposure time), D(x, y) is the dark current, G(x, y) is the instrument's
sensitivity and I(x, y) is the light �ux reaching the pixel [x, y]. The remain-
ing component, noise denoted ξ, is not dealt with in image calibration.

To solve the Equation 5.1 for I, we have to express B, D, and G, which
is done by taking calibration images (also called calibration frames) under
controlled conditions: bias, dark and �at frames respectively.

5.2.2 Bias Frame

An image taken with the shortest possible exposure time t = 0 and closed
camera shutter I(x, y) = 0 is called bias frame. The bias frame contains only
readout noise1. The Equation 5.1 becomes

b(x, y) = B(x, y) + ξ.

Since the noise is random, we use b to obtain the estimate of B, using a tilde
to denote the estimate

B̃(x, y) = b(x, y).

We can further re�ne the estimate by averaging several bias frames. Due
to the random nature of the included noise, its contribution decreases with
the square root of the number of frames averaged. The re�ned bias frame is
called master bias frame.

B̃(x, y) =
1

N

N∑
i=1

bi(x, y)

1 See [6] for details on various instrumental noise
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5.2.3 Dark Frame

An image taken with the exposure time td and closed camera shutter I(x, y) =

0 is called dark frame. The dark frame contains thermal noise and readout
noise, which means it includes bias frame in itself.

d(x, y) = B(x, y) + tdD(x, y) + ξ

We subtract the bias and divide by the exposure time td to obtain dark
current estimate

D̃(x, y) =
d(x, y)− B̃(x, y)

td

and re�ne the dark current estimate by averaging M dark current estimates

D̃(x, y) =
1

td

1

M

M∑
i=1

di(x, y)− B̃(x, y).

In practice, we do not work with dark current frames. Instead, dark frame
is taken with the same exposure time as data images and the included bias
is left as is. Several such dark frames are averaged to reduce the noise and
the resulting image is called master dark frame.

D̃M(x, y) =
1

M

M∑
i=1

di(x, y) =
1

M

M∑
i=1

Bi(x, y) + tDi(x, y) + ξ (5.2)

This master dark frame also includes master bias frame and therefore solves
�rst two terms in Equation 5.1.

5.2.4 Flat Frame

Flat frame, generally called �at�eld frame, is an image taken with the expo-
sure time tf of an evenly illuminated �eld, where I(x, y) is constant. Flat�eld
image represents the response of the whole optical system to the arriving
light. It accounts for di�erent pixel sensitivity, dust particles in the optical
system, vignetting, and also contains dark frame (and therefore also bias
frame) in itself. The �at frame is

f(x, y) = B(x, y) + tfD(x, y) + tfG(x, y)L+ ξ, (5.3)
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where L is the light �ux reaching each pixel, assumed equal across the frame.
We take a set of the �at frames and subtract master dark frame DF

M(x, y)

from each, obtaining

f ′(x, y) = f(x, y)−DF
M(x, y) = tfG(x, y)L+ ξ

and average the images to reduce the noise contribution, arriving to master

�at frame

F̃M(x, y) =
1

N

N∑
i=1

f ′(x, y) =
1

N

N∑
i=1

f(x, y)−DF
M(x, y). (5.4)

If we knew the light �ux L, we could solve the Equation 5.3 for G(x, y).
However, the value of L is not known and so instead we settle with the
assumption that L is constant, which allows us to remove the light �ux
variations across the frame. We introduce

G(x, y) = Gg(x, y),

where G is the average of G(x, y) across the image and the average of g(x, y)

across the image is 1. The Equation 5.4 becomes

F̃M(x, y) = tfGg(x, y)L+ ξ.

We take the average of F̃M(x, y) across the frame

F =
∑
x

∑
y

tfGg(x, y)L = tfGL
∑
x

∑
y

g(x, y) = tfGL

and then by dividing the Equation 5.4 by F we obtain the normalized master

�at frame

F̃M(x, y)

F
= g(x, y) (5.5)

5.2.5 Reducing data frames

Now we can proceed to reduce our data frame

s(x, y) = B(x, y) + tD(x, y) + tGg(x, y)I(x, y) + ξ.
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We subtract the master dark frame from Equation 5.2 and divide by the
normalized master �at frame from Equation 5.5

F

F̃M(x, y)
[s(x, y)− D̃M(x, y)] = tGI(x, y) + ξ

Ĩ(x, y) =
1

G · t
F

F̃M(x, y)
[s(x, y)− D̃M(x, y)]

to obtain an estimate of the arrived light �ux, which is the best we can do
without a reference source calibrated in absolute units.

5.2.6 Frame combining methods

Before we can combine the frames, they need to have the same range of in-
tensity values, so we have to normalize the images. They also need to be
aligned for stacking, which could be done by astrometric measurement of the
image as described in Section 5.4 to obtain the plate parameters, then using
their knowledge to achieve the desired translation, rotation and scaling of
the images. In practice, mostly translation is used for images in the set. The
astrometric measurement provides coordinates of the center of each image,
which is su�cient to translate the images appropriately for averaging them.
Although that may mean the arithmetic average, there are also several other
notable methods of frame combining worth mentioning.

Arithmetic mean

Arithmetic mean, or simply mean, or average, de�ned as

I(x, y) =
1

N

N∑
i=1

Ii(x, y)

is computed for each pixel [x, y] of the N data images. Arithmetic average re-
duces the random noise in the image and is suitable for gaussian-distributed
data. The result is not an integer value, unlike the data, therefore it smoothes
out the quantization e�ect. On the downside, the arithmetic mean is very
sensitive to outliers (data points far from the average of the most other data
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points). These deviant values, caused by for example cosmic ray hits, easily
skew the average value.

Median

Median is the middle value of a sorted set of numbers, which makes it more
suitable for handling data with outliers than arithmetic mean. It makes me-
dian useful to remove cosmic ray hits from the images. There is no widely
accepted standard notation for the median, hence the following de�nition is
based on [11].

De�nition 5.3. (Median.) Let's have a set of measured pixel intensities
(I1, I2, . . . , IN), where N ∈ N, and arrange them from smallest to greatest
into a sorted list

I(1) ≤ I(2) ≤ · · · ≤ I(N),

then median Ĩ is de�ned as the middle number of this sorted list,

Ĩ =

{
I(N+1

2
) N is odd

1
2
(I(N

2
) + I( 2

2
+1)) N is even.

In our case, median is computed x · y times, once for each pixel [x, y] of the
N data images I(x, y) and the x · y medians construct the resulting image.
The outliers do not a�ect the result in a major way. On the downside, as the
result is also an integer value, the median does not smooth the quantization
e�ect. Median also reduces gaussian noise less than the arithmetic mean does.

Mean�median

Mean�median counters the disadvantages of median by improving the statis-
tical e�ciency of median and bypassing the quantization problem. Denoting
J0 = {1, .., N}, where N is the number of images in the set, we start by
computing the median e(x, y), and then the standard deviation σ(x, y) of
the pixel values around the median e(x, y),

σ(x, y) =

√
1

N

∑
i=J0

(Ii(x, y)− e(x, y))2.
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We discard the values outside a speci�ed number of standard deviations κ
(usually 1.5 or 2)

J1(x, y) = {i ∈ J0 | Ii(x, y)− e(x, y) |≤ κσ}.

The remaining values are averaged

e1(x, y) =
1

| J1 |
∑
i=J1

Ii(x, y).

The computation of mean�median e1(x, y) is repeated for every pixel [x, y] of
the image, and the computed mean�medians produce the �nal image. The
mean�median works well on large image sets, where the outliers do not in-
crease the computed standard deviation drastically.

Kappa�sigma clipping

Kappa�sigma clipping is more elaborate version of mean�median. Denot-
ing J1 = {1, .., N}, where N is the number of images in the set, and setting
the iteration count k = 1 for the �rst iteration, we calculate the median
ek(x, y) and the standard deviation σk(x, y) of the pixel values around the
median ek(x, y),

σk(x, y) =

√
1

N

∑
i=Jk

(Ii(x, y)− ek(x, y))2.

The values with large deviations (usually κ is set to 1.5 or 2) relative to the
standard deviation are excluded

Jk+1(x, y) = {i ∈ Jk | Ii(x, y)− ek(x, y) |≤ κσ}

and the remaining values are averaged using arithmetic mean

ek+1(x, y) =
1

| Jk+1 |
∑
i=Jk+1

Ii(x, y).

Second iteration k = 2 is ran to compute anew the standard deviation σk(x, y)

and so on, repeating the process until there is no change in the arithmetic
mean or the iteration limit is reached. The arithmetic mean ek+1(x, y) then
becomes the �nal value for the examined pixel [x, y]. The process is repeated
for each pixel of the image.
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5.3 Filters

Filters re-evaluate the value of every pixel in an image. The basic notion
is that the image contains signal we want to enhance or suppress. Mathe-
matically, �lters are example of use of convolution, as per De�nition 3.10.
Convolution is a mathematical operation on two functions (in our case, that
is the image and the �lter) which produces third function (the adjusted im-
age). Operation reverse to convolution is deconvolution. Depending on the
process of re-evaluation, we can divide �lters into di�erent categories:

• Linear Filters, whose output values are linear combinations of the pix-
els in the original image, are well understood and fast to compute, but
incapable of smoothing the image without simultaneously blurring it.
Nonlinear �lters lack this property.

• Filters applied in spatial or frequency domain. Making use of Fourier
transform, it is possible to decompose the image into frequencies that
make it up, called frequency domain representation, as described in
Section 3.4. Filters can then be applied either in the spatial domain,
or in the frequency domain. Some operations are advantageous to per-
form in one of the domains, for example convolution in spatial domain
corresponds to ordinary multiplication in frequency domain. After per-
forming the operations, transformation of the result back to the spatial
domain is made.

• High-pass or Low-pass �lters. Taking advantage of Fourier transform

again to represent the image in the frequency domain, low-pass �l-
ter passes signal with low frequency and suppresses signal with high
frequency, e�ectively blurring the image. High-pass �lter does the op-
posite, passing signal with high frequency and suppressing signal with
low frequency, e�ectively sharpening the image. When a low-pass and
high-pass �lter is combined, it results in band-pass �lter which removes
both low and high frequencies.
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5.3.1 Linear low-pass �lters

Low-pass �lter passes signal with low frequency and suppresses signal with
high frequency. Also called blur or smooth �lter, it reduces noise by remov-
ing small �uctuations on the image. The �lter consists of a set of weights,
and each �ltered pixel is obtained as the weighted mean of itself and small
number of its neighbors.

Moving average, also called Box �lter, is an example of a simple linear, low-
pass �lter. It replaces each pixel value by the average of pixel values in a
square centered at that pixel. Other linear �lters work in a similar manner,
just making use of a weighted average instead.

Let's have a discrete function fij, where i, j = 1, . . . , n, denoting the pixel
values of the CCD image. A linear �lter of size (2m + 1) × (2m + 1), with
speci�ed weight wkl for k, l = −m, . . . ,m, gives

gij =
m∑

k=−m

m∑
l=−m

wklfi+k,j+l, (5.6)

for i, j = (m+ 1), . . . , (n−m), meaning excluding the edges m of the image.
There are various ways to deal with the border edges of g:

• Discarding, resulting in g smaller than f
• Setting their pixels to zero or to f
• Modifying the �lter, for example to

� ignore the pixels laying outside the image f
� re�ect the image f , so that fi,n+1 = fi,n−1 etc.
� wrap the image f around so that fi,n+1 = fi,1 etc.

Additionally, all considered �lters in this work have odd number sizes for
simplicity.

If all the elements in w are positive, the e�ect of the �lter is smoothing.
The smoothing blurs the image, but we can avoid severe loss of resolution
by choosing m smaller than one half of the width of the expected features.
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If some of the weights are negative, the �lter outputs a di�erence between
pixel values, which emphasizes edges.

The most commonly used smoothing �lter is moving average, for which the
weights from the Equation 5.6 are wkl = 1/(2m+ 1)2. That means (2m+ 1)2

additions and multiplications per pixel involved, which may make the �lter-
ing slow for huge images. However, the �lter is separable.

A �lter is said to be separable, if it can be performed by �rst �ltering the
image inside a (2m+ 1)×1 window (column), and then inside a 1× (2m+ 1)

window (row). We obtain

hij =
m∑

k=−m

wckfi+k,j

for i = (m + 1), . . . , (n − m), j = 1, . . . , n while using column weights
wc−m, . . . , w

c
m, followed by a row operation

gij =
m∑

l=−m

wrl fi,j+l

for i, j = (m+1), . . . , (n−m) and row weights wr−m, . . . , w
r
m. In order for his

to be possible, the array of weights wkl must be expressible as the product
of the column and row weights,

wkl = wckw
r
l for k, l = −m, . . . ,m.

This reduces the number of operations per pixel from (2m+1)2 to 2(2m+1).

Even quicker computation is possible using recursive implementation. The
�lter's window moves along pixels, but most of the pixels remain the same
between two steps. Therefore instead of computing each pixel intensity from
scratch, it is possible to take the output from location (i, j) and update it to
obtain the output at location (i+ 1, j). Speci�cally, the �rst (2m+ 1) pixel
values in column j are averaged,

hm+1,j =
1

2m+ 1

2m+1∑
k=1

fkj.
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Then, the pixel value in the �rst row f1,j is dropped from the average and
the pixel in row (2m+ 2) is added. The operation is repeated for every value
in column j,

hij = hi−1,j +
fi+m,j − fi−m−1,j

2m+ 1

for i = (m + 2) . . . (n − m). This procedure is repeated for each column
j = 1, . . . , n to obtain h. Then the same algorithm is applied along each row
of h, to obtain g. The number of operations per pixel has been reduced to 4
irrespective of the �lter size m.

Although the moving average �lter is simple and fast, it has two drawbacks: it
is not isotropic (circularly symmetric), but smoothes further along diagonals,
and the weights have abrupt cut-o� instead of gradually dropping to zero,
which leaves discontinuities in the smoothed image. These disadvantages are
removed by employing a Gaussian �lter, which has weights determined by
the probability density function of bivariate Normal distribution with vari-
ance σ2. With circular Gaussian function, where σi = σj = σ, the weights
are

wij =
1

2πσ2
e−

i2+j2

2σ2 ,

for whole numbers i, j = −3σ, . . . , 3σ. Note that the divisor of 2πσ2 ensures
that the weights sum to unity, which is a common convention for smoothing
�lters. As to its computational speed, Gaussian �lter can be implemented
e�ciently by approximating it with several passes of moving average �lters.

5.3.2 Linear high-pass �lters

High-pass �lter passes signal with high frequency and suppresses signal with
low frequency. Also called sharpen, brings out �ne details but also the noise
in the image. The process consists of baseline or continuum estimation and
subsequent subtraction. That can be done for example by least squares �t-
ting of a polynomial.

Unsharp masking is an example of a linear, high-pass �lter. It is often avail-
able in image processing software and commonly used in astronomy to bring
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out the details and enhance the contrast of images.

Let's have a CCD image f(x, y). First, heavy blur using a low-pass �lter
is applied to f(x, y), resulting into fB(x, y). The blurred image is subtracted
from the CCD image, creating a mask of edges and other high frequency
components of the image. This mask is then added to the CCD image.

g(x, y) = f(x, y) + α(f(x, y)− fB(x, y))

Scaling factor α controls the strength of the unsharp masking e�ect. The
degree to which fB(x, y) is blurred controls what size structures the mask
functions on most e�ectively: strongly blurred image enhances large struc-
tures but will miss small structures, while small subtle blurs enhance tiny
structures but miss larger structures.

It is also possible to work in Laplacian sharpening, which blurs the CCD
image at several di�erent scales, producing mask for each scale. Laplacian
transform is a true wavelet transform, which is why this method of sharpen-
ing is sometimes referred to as wavelet sharpening. There are many various
wavelet transforms which can be used for image enhancement in various ways.

5.3.3 Nonlinear �lters

Linear, low-pass (smoothing) �lters inevitably blur the edges, because both
noise and edges are high frequency components of the image. Nonlinear �l-
ters are able to reduce noise while preserving the edges. However, there is a
vast number of �lters to choose from, each to be used for di�erent noise con-
ditions and image types, they may be computationally demanding and may
also distort the features in the image, so they should be used with caution,
especially in astrometric research.

Many of these �lters are based on the histogram of pixel values around the
pixel to be adjusted, or on spatial distribution of pixel values in a neighbor-
hood.
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An example of a low-pass, but nonlinear �lter is moving median �lter. It
uses median, described in Section 5.2.6, instead of average and is favored
for images with high intensity changes (edges), where average would result
in high blurring. Median can also e�ectively remove salt-and-pepper noise,
which in our case are hot and cold pixels of CCD image.

In general sense, other more robust estimators can be used in the place of
median, for example trimmed mean, which is obtained by averaging the 50%

of pixel values nearest to the median in each �lter window [30].

5.3.4 Adaptive �lters

An adaptive �lter is a system containing �lter that has a transfer function
controlled by variable parameters and means to adjust those parameters ac-
cording to an optimization algorithm.

Minimum variance �lter is an elegant and fast adaptive �lter. For this �lter,
mean f and variance S are evaluated in �ve (2m+ 1)× (2m+ 1) subwindows
within a (4m + 1) × (4m + 1) window, and the �lter output is the mean of
the subwindow with the smallest variance.

5.4 Astrometry algorithm by Kle´

This chapter mathematically covers the method in which Kle´ Observatory
obtains its astrometrical measurements. As the point of this work is to
eliminate background variations from CCD images to raise both the quality
and quantity of the acquired astrometrical positions of asteroids and comets,
it is essential to understand how these are computed from the CCD images.
The incentive for this chapter comes from the source code of Astrometry

program, routinely used on Kle´ Observatory for astrometric measurements
of small bodies of the Solar system, and was also published in [4].

67



5.4.1 Gray level remapping

After pre-processing and �ltering of the data image is done, an observer
should be able to identify the object to be measured on the image by his
sight. Since the CCD has many more intensity values than human eye is
capable of perceiving, and screen is capable of displaying, it is necessary to
remap the intensity values to 256 intensities intended to be viewed on screen.

De�nition 5.4. (CCD image). The image has dimension n × m, where
n,m ∈ N, and contains N = n ·m pixels with intensities I ∈ N. 2 The pixels
are arranged in a two-dimensional matrix, Ixy, where x = {0, . . . , n − 1},
y = {0, . . . ,m− 1}.

Assuming the image has level background, the program constructs a his-
togram mi from the N image pixel intensities I,

N =
∑
i

mi. (5.7)

The Background value is determined as a mean µ according to the following
equation, because

∑
i imi =

∑
I. Standard deviation σ is also computed.

µ =
1

N

∑
i

i ·mi (5.8)

σ =

√
1

N

∑
i

mi · (µ− i)2

The histogram is limited to 3σ around the current Background value µ and
the computation is iterated. This is cutting o� the wings of the numerosity
graph until the Background value stabilizes or an arbitrary 20 iterations are
reached.

N =

µ+3σ∑
i=µ−3σ+1

mi. (5.9)

Since Kle´ Observatory focuses on observing faint objects, the image inten-
sities are then remapped to show to the observer 2σ intensity levels around
the Background value,

Jxy =
Ixy − µ

4σ
· 255,

2Since the camera uses 16-bit A/D electronics, the available values for I ∈ 〈0; 65535〉

68



CHAPTER 5. IMAGE ACQUISITION AND PROCESSING

while lower values are assigned RGB[0,0,0] and higher values are assigned
RGB[255,255,255]. This remapping is of interim nature for the sake of the
observer only and the following astrometry is done with the full intensity
scale of the data.

5.4.2 Image reduction

The astrometry starts with reduction of CCD image to objects. Objects on
the image are discerned by an algorithm, which scans the image for inten-
sity peaks. Detection is successful if the peak intensity is above the SNR
threshold chosen by the user. Usually, as in De�nition 5.2, SNR is de�ned as
SNR = Ixy/σ, however Kle´ algorithm uses SNR = (Ixy−µ)/σ, therefore the
program is unable to detect objects with peak intensity under the estimated
Background value µ.

The position of each detected object is re�ned to subpixel accuracy by �tting
the object with a two-dimensional centroid. The calculation is analogous to a
center of mass calculation of an object, with the local mass density replaced
by pixel intensity values and allowing a discrimination level at the average
background µ. The computation is performed over a box size [w, h] preset by
the user, starting at coordinates [X0, Y0]. Pij represents the intensity value
of the pixel at coordinates [X0 + i, Y0 + j].

Xcentroid = X0 +

w−1∑
i=0

h−1∑
j=0

i× Pij − µ

w−1∑
i=0

h−1∑
j=0

Pij − µ

Ycentroid = Y0 +

w−1∑
i=0

h−1∑
j=0

j × Pij − µ

w−1∑
i=0

h−1∑
j=0

Pij − µ

Remark 5.5. The positional accuracy of astrometry is in no small amount
a�ected by the choice of the CCD chip. Optimally, the CCD chip should
have pixel size half the best seeing on the site, and use binning (pairing of
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pixels) for worse observing nights. If the pixels are too big, the image of a
star becomes undersampled � the image does not cover enough pixels to
interpose Gaussian pro�le and determine the center of the star accurately.
In extreme case, having the star on one pixel means its position can be
determined only to one pixel accuracy. On the other hand, too small pixels
will result in oversampled image. The useful signal is spread over more pixels
than necessary, each pixel containing noise as well, and SNR lowers.

5.4.3 Catalog stars' identi�cation

The identi�cation of the star �eld is near automatic. The user chooses a key
star and the software, using known target coordinates of the telescope, lists
in its memory catalog stars in the �eld of view, starting with the key star's
coordinates. The following parts of identi�cation algorithm is repeated until
the user approves the result.

Triangle identi�cation

At this moment we have the CCD image reduced to list of objects with
positions [xO, yO] on the image, and list of catalog stars in the �eld of view
with positions [xH , yH ]. Let us match three of the objects, which we will
mark L,M,N , with three of the catalog stars, which we will mark i, j, k.

Starting with the key star i chosen by the user, the algorithm compares
distances between each two catalog stars with distances between every pair
of reduced objects, until a match is found (within some marginal error). Let
us mark the matching pair L,M and i, j. A third star N , such that the re-
sulting triangle has every corner angle greater than 10 degrees, is chosen, and
distances of the stars in the triangle L,M,N are computed and compared
with distances between objects i, j and any another object, until matching
object k is found. As similarity of triangles is used to match the triangle
of stars to reduced objects, hence even rotated and �ipped images will be
�awlessly identi�ed. If there happens to be no match at any of the steps, the
algorithm repeats with next suitable choice on the list until a match is found.
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The three objects L,M,N and their matching three catalog stars i, j, k are
highlighted in magenta in user's interface (see Appendix F).

Matching catalog stars to reduced objects

The CCD image does not overlap with the catalog �eld exactly: it may
be moved, rotated, �ipped or scaled. To automatically match the rest of the
stars, the transformation covering these changes has to be found. The trian-
gle of the three reduced objects L,M,N = {[xOL, yOL], [xOM , yOM ],[xON , yON ]}
and the corresponding triangle of the three catalog stars i, j, k = {[xHi, yHi],
[xHj, yHj], [xHk, yHk]} are used to determine �eld parameters, a similarity
transformation between the two triangles covering translation, rotation and
scaling of the triangle.

A2 =
(xON − xOL) · (xHj − xHi)− (xOM − xOL) · (xHk − xHi)

(yHk − yHi) · (xHj − xHi)− (yHj − yHi) · (xHk − xHi)

A1 =
xOM − xOL − A2 · (yHj − yHi)

xHj − xHi
A0 = xOL − A1 · xHi − A2 · yHi

B2 =
(yON − yOL) · (xHj − xHi)− (yOM − yOL) · (xHk − xHi)

(yHk − yHi) · (xHj − xHi)− (yHj − yHi) · (xHk − xHi)

B1 =
yOM − yOL −B2 · (yHj − yHi)

xHj − xHi
B0 = yOL −B1 · xHi −B2 · yHi

The transformation is applied on position [xH , yH ] of every catalog star to ob-
tain their expected positions on the image [A0+A1 ·xH+A2 ·yH , B0+B1 ·xH+

B2 · yH ], which are then compared with coordinates of reduced objects. The
catalog stars, which were matched with objects, are highlighted in lime color.

The result is presented to the user as per the image in Appendix F. On
the left side of the program is the stellar catalog �eld, with the triangle
of the three stars used for �eld parameters determination highlighted. On
the right is the reduced CCD image taken by the telescope. Objects enter-
ing astrometry algorithm are marked in yellow, the triangle of stars used in
�eld parameters determination is marked in magenta and objects which were
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matched with catalog stars are marked in lime color. The user either rejects
the identi�cation, causing the algorithm to start anew in search for the next
suitable triangle, or con�rms the correctness of the identi�cation.

Gnomonic projection

At this point, the cartesian coordinates of the reduced objects are matched
to the cartesian coordinates of the catalog stars. However, the celestial equa-
torial coordinates [α, δ] of the stars can not be used right away. The catalog
celestial equatorial coordinates [α, δ] of stars need to be projected from spher-
ical plane to the �at CCD image. Given that the center of the image [αC , δC ]

is known, gnomonic projection, described in Section 3.1.4, can be used to
obtain the projected coordinates [ξ, η] of each identi�ed star.

Plate parameters

The resulting projected position [ξ, η] of any object is a function of posi-
tion on the image [x0, y0]. Least squares method, described in Section 3.3,
is used on the two-dimensional data of identi�ed stellar positions. For the
number of stars N < 16 linear method is used, otherwise quadratic �tting
gives more accurate results. Known positions [x0, y0] of the N identi�ed stars
are used to build vector s according to chosen method and matrices A and B
are calculated. Gauss elimination is used to solve matrix A to obtain plate
parameter a and to solve matrix B to obtain plate parameter b.

Linear Method : s =

(
N∑
i=1

1,
N∑
i=1

xi,

N∑
i=1

yi

)

Quadratic Method : s =

(
N∑
i=1

1,
N∑
i=1

xi,

N∑
i=1

yi,

N∑
i=1

x2i ,

N∑
i=1

xiyi,

N∑
i=1

y2i

)

Matrix A for a : A =

(
s · s>|

N∑
i=1

ξi · s>
)

Matrix B for b : B =

(
s · s>|

N∑
i=1

ηi · s>
)
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5.4.4 Object's astrometry

The user marks desired unknown object on the image and plate parameters
are used on its cartesian position [x, y] to determine its projected celestial
coordinates [ξ, η]. Vector s is computed for the method used and N = 1

objects, then the projected coordinates [ξ, η] are

ξ =
N∑
i=1

aisi, η =
N∑
i=1

bisi.

Inverse gnomonic projection is applied to obtain object's celestial coordi-
nates [α, δ]. In the same manner position [α0, δ0] of each identi�ed star is
determined. The di�erences against the catalog values along with variance
from Chi-square test are written into a table and presented to the user. The
user can reject identi�ed stars based on their higher astrometry error, upon
which the astrometry repeats the computations from determination of plate
parameters onward. When the measurement is accepted by the user, the
program writes output in standard MPC line3 and saves basic CCD image
data to local MySQL server database for later use.

5.4.5 Limitations

The algorithm described performs very well on an image taken by KLENOT
telescope in ideal conditions, requiring dark, moonless nights with low hu-
midity, the measured object not being close to the edges of the CCD and
without bright stars being in the �eld of view, and shorter exposure times
being used. However, such ideal conditions are often not possible.

As Kle´ Observatory does not use calibration images, the background is very
uneven due to many contributing factors, including fringing, vignetting, and
background gradient from various sources, and also other random noise, to
the point of being unable to carry out astrometric measurements at all. Ad-
ditionally, starting to use calibration images as of now (2018) helps very little
with mining information from the vast archive of Kle´, containing over 150
000 digital images.

3Which can be found on http://www.minorplanetcenter.net/iau/info/OpticalObs.html
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The weak point of the astrometric process is assuming level background on
the image. SNR threshold set by the observer is used to reduce the image to
objects, their position re�ned by �tting through a Gaussian pro�le. When-
ever the strict assumption of level background is not locally satis�ed, the
astrometry is burdened by error. Even worse situation occurs for objects in
darker parts of the image, where the intensity values are under the average
background computed by Equation 5.8, making the object literally unde-
tectable by Astrometry even when the observer can see it. On the other end
of the problem are brighter parts of the image, where even random noise is
bright enough to be confused for objects by Astrometry program. An exam-
ple of a problematic image is included in Appendix A, and its counterpart
from Astrometry program right after it in Appendix B. Constructing an arti-
�cial �at�eld to level the background of the images will have an undisputable
impact on astrometry of KLENOT project.
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Chapter 6

Chosen background �attening

methods

Since KLENOT project observes very faint objects, usually only several pix-
els across in size, tampering with high frequency noise on the image will
inevitably lead to corruption of the astrometric data. On the other hand,
the low frequency noise (background) could be removed.

While many image processing methods are known, most are not suitable
for our special case. These methods were carefully considered and the most
promising ones were chosen. Some were adjusted to be suitable for our use
as appropriate, and new methods were developed to deal with our images.

Six methods were developed for this work, where the �rst three deal with
a set of consecutively taken images, which is the usual way of taking im-
ages for astrometric purposes, while the last three deal with a single image.
They were programmed into Blink, software for image processing and view-
ing which the author is developing for Kle´ Observatory's needs, and tested
for performance. Blink is routinely used for astrometric observations by Kle´
Observatory, and newly carries out the new �at�eld processes automatically
when the user chooses the desired method.
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6.1 Median �at�eld

Median �lter, described in Section 5.2.6, is commonly used to reduce gaus-
sian noise in the image, for which the images have to be precisely aligned
with each other. Such use of median does not achieve background removal
through arti�cial �at�eld creation. However, photographers use median to
remove moving objects from an image to take scenery photos at frequented
places without the walking people being present on the resulting image. The
median of values on each pixel of the set of images is used for the result,
therefore a person walking across photographed scene present only in less
than half of the images on given pixels is removed as the result.

The KLENOT telescope takes a set of images of each observed �eld of view.
Its imperfect tracking causes the stars to 'walk' across the �eld of view, which
led me to the idea of using median to create an arti�cial �at�eld from the
image set.

The images have to be normalized due to each image of the set having slightly
di�erent background. For each image of the set Ii(x, y), where i = (1, .., N),
Background values βi are computed according to equations 5.7 to 5.9. The
images are normalized by

Fi(x, y) =
βi

Ii(x, y)
. (6.1)

This e�ectively turns the images into '�at�elds', although still containing
stars and other objects. For each pair of (x, y), their median is computed
according to De�nition 5.3, and the resulting �at�eld F̃ (x, y) comprising of
the x · y medians is applied back on the image set as usual.

6.2 Kappa�sigma clipping �at�eld

Kappa�sigma clipping, described in Section 5.2.6, is an elaborate version of
median �lter from Section 6.1, employing mean and iterative process to get
around the most profound weaknesses of median �lter. The �lter was pro-
grammed into Blink. As with the median �lter, it was not used to stack an
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image set, but to construct an arti�cial �at�eld.

Taking up the normalized images Fi(x, y) and their median image F̃ (x, y)

from the previous section, for each pixel [x, y] we proceed by the equations of
Section 5.2.6, where the median is ek(x, y) = F̃ (x, y) and κ = 2. The iteration
is stopped after 5 repetitions or when the mean's 4th decimal place does not
change between the iterations, and the resulting mean is ek+1(x, y) = D(x, y).

The �at�eld D(x, y), comprised of the iterated means, is then applied on
the image set as usual.

6.3 SMin �at�eld

The previous two methods tend to leave 'shadows' of the brightest stars in
the �at�eld data. A possible solution is to construct the �at�eld not from
a median or its variations, but take the minimal values instead. This �lter
creates an image from minimal values on each pixel in the image set, which
is sometimes used to achieve defringing of digital images. The correction
image created by SMIN �lter has included noise equivalent to one image of
the series. The method was adapted into Blink as follows.

As with Median �at�eld in Section 6.1, the images of the set Ii(x, y), where
i = (1, .., N), have to be normalized into Fi(x, y). Background values βi are
computed according to equations 5.7 to 5.9 and the image is normalized us-
ing Equation 6.1.

Again, this e�ectively turns the images into '�at�elds' containing stars. The
�nal �at�eld is created from maximal values on each pixel (x, y) of the Fi(x, y)

set, corresponding to the minimal values of Ii(x, y), by equation

D(x, y) = max
∀i

Fi(x, y).

The �at�eld D(x, y) is applied back on the image set as usual.
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6.4 α-quantile �at�eld

This is a �lter the author came up with to create an arti�cial �at�eld for
any single CCD image of mostly stellar �eld. It is not needed to work a set
of images or take any calibration images. Originally, the intent was to im-
prove background estimate for Astrometry program, by working with local
background value instead of global background value as per Section 5.4.1.
We could compute background in a given window, and stack these windows
beside each other to create an image representation of the computed back-
grounds, which in turn could be used as an arti�cial �at�eld. The smaller the
background windows, the �ner details it can preserve, but the more a�ected
by the stars it becomes. There is also going to be intensity jumps at the
edges between the windows. All this can be resolved by designing a �lter
instead, and computing background value for each pixel from a handful of
its neighbors.

Let I(x, y) be a CCD image with measured intensities. The �lter's mask
the size of m×m, where m is odd, is centered on a pixel I(x, y) and deter-
mines the part of image from I(x − m−1

2
, y − m−1

2
) to I(x + m−1

2
, y + m−1

2
)

containing N = m · m image pixels. These are arranged from smallest to
greatest into a sorted list I(n), where n = (1, 2, . . . , N),

I(1) ≤ I(2) ≤ · · · ≤ I(N).

The α-quantile Ĩ(x, y) lies between 0 and 1 and is de�ned as such a value,
that α · 100 percent values in the sorted list I(n) falls under Ĩ(x, y). It is
determined as

Ĩ(x, y) = I(α(N+1)),

or its closest index. For α = 0.5, the Ĩ(x, y) is median, for α = 0.25, the
Ĩ(x, y) is �rst quartile. The user chooses α, for a stellar �eld it should be
suitable to set α ∈ 〈0.25, 0.5〉.

The computation is carried out for all pixels (x, y), and the resulting α-
quantile intensities Ĩ(x, y) form an arti�cial background image, which is then
turned into �at�eld by Equation 6.1 and applied on the original image I(x, y).
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The second controllable parameter of this method is the size of the �lter
m × m. It should be big enough for the stars to constitute less than half
(in case of median when α=0.5) of the �lter's pixels, but not too large, since
smaller background variations will get omitted with too big a mask.

The method was programmed into Blink and various α and m were tested
for performance.

6.5 Unsharp masking �lter

This image sharpening technique is commonly used in astronomy to bring
out the details in the image. Unsharp masking, described in Section 5.3.2
was programmed into Blink. The low-pass �lters chosen were Gaussian Blur
(kernel 7 × 7) and Box Blur (kernel 7 × 7), since Gaussian kernel converges
to Box kernel after a few passes. The �lter strength parameter α was set to
α = 1.

6.6 Savitzky�Golay �lter

This �lter, called Savitzky�Golay [25], but also least squares [20] or DISPO

(Digital Smoothing Polynomials)[29], is widely used to smooth the data in
analytical chemistry. Even though it has an exceptional features, it is rarely
used in image processing. The smoothing increases SNR without greatly dis-
torting the signal. Savitzky�Golay �lter works with single image.

The �lter locally �ts a low degree polynomial through a subset of the data
by linear least squares method, one data point at time: each data point is
replaced with a new value obtained from a polynomial �t to 2n+1 neighbor-
ing points (including the point to be smoothed), with n >= than the order
of the polynomial. In general case, this would be achieved by using NURBS
(NonUniform Rational B-Spline) �tting, which would be computationally
burdensome with over 16 million pixels of our CCD images.
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Savitzky�Golay �lter derives from a particular formulation of the data smooth-
ing problem. When the data points are equally spaced, which holds true for
a CCD image, an analytical solution to the least squares equations can be
found[19] in a form of a set of convolution coe�cients, which enormously sim-
pli�es its application. The convolution coe�cients can be computed ahead
of time and then applied on the data in a form of a weighted moving average

�lter, where the weights are the precomputed convolution coe�cients.

The method was popularized by Savitzky and Golay in [25], where they
published tables of the convolution coe�cients1, and was later extended for
the treatment of 2D and 3D data. The �lter got into widespread use after
being included in [22]. Although it is originally used for smoothing, the �l-
ter's second derivative can be used for baseline �attening.

Let us �rst derive the analytical solution. A digital �lter is applied to a
series of N equally spaced data values fi ≡ f(ti), where ti ≡ t0 + i∆ for a
constant sample spacing ∆, i ∈ {1, . . . , N} and n = . . . − 2,−1, 0, 1, 2, . . . .
The simplest type of digital �lter (the nonrecursive or �nite impulse response
�lter) replaces each data value fi by a linear combination of itself and a num-
ber of nearby neighbors,

gi =

nR∑
n=−nL

cnfi+n, (6.2)

where nL is the number of points used 'to the left' of a data point i, meaning
earlier in case of time series, while the number nR is the number used to the
right, meaning later for time series.

Let us consider a �lter with �xed nL = nR = m−1
2
, where m is the num-

ber of �tted points, and where we also exclude the m−1
2

edges2 of the dataset
by taking only {i | nL < i < N −nR}. Let's take each gi as an average of the
data points from fi−nL to fi+nR and the constant cn = 1/m. This �lter would

1Some errors of the original paper are corrected in [26]
2these excluded edges usually are either cropped o� the result or the data can be

extended by assuming an edge of constant value around the dataset or 'mirroring' the

data beyond the edge.
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be called moving average �lter and is also a special case of Savitzky�Golay
�lter, where the data is �tted with a straight line. If the underlying function
is constant, or linearly changing (increasing or decreasing), then no bias is
introduced into the result. Higher points on one end of the averaging inter-
val are balanced by lower points on the other end in the resulting average.
However, if the underlying function has nonzero second derivative, a bias is
introduced.

The idea of Savitzky�Golay �ltering is to �nd �lter coe�cients cn, that ap-
proximate the underlying function not by a constant (whose estimate is the
average), but by a polynomial of higher order: for each point fi we do a least
squares �t with a polynomial to all m = nL + nR + 1 points in the moving
window, and then set gi to be the value of that polynomial at position i.
Then we move on to a point fi+1 and do anew the least squares �tting using
the shifted window.

Since the process of least squares �tting involves only a linear matrix in-
version, the coe�cients of a �tted polynomial are themselves linear in the
values of the data. That means we can do all the �tting in advance for a
given polynomial degree and window size, using a �ctional data consisting of
all zeros except for a single 1, and then do all the �tting with real data just
by taking linear combinations of the result. That is the key advantage of
Savitzky�Golay �lter: there exists a particular set of �lter coe�cients cn for
which Equation 6.2 'automatically' accomplishes the process of least squares
�tting inside a moving window.

To derive coe�cients cn, consider how g0 might be obtained: we want to
�t a polynomial of degree M in z, namely a = a0 + a1z + · · ·+ aMz

M to the
values f−nL , . . . , f−nR . Then g0 will be the value of that polynomial at z = 0,
namely a0. The design matrix for his problem as per Section 3.3 is

Azj = zj z = −nL, . . . , nR, j = 0, . . . ,M,

and the normal equations for the vector of aj's in terms of the vector of fz's
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is in matrix notation

(A> ·A) · a = A> · f or a = (A> ·A)−1 · (A> · f)

We also have the speci�c forms{
A> ·A

}
zj

=

nR∑
n=−nL

AnzAnj =

nR∑
n=−nL

nz+j

and {
A> · f

}
j

=

nR∑
n=−nL

Anjfn =

nR∑
n=−nL

njfn.

Since the coe�cient cn is the component a0 when f is replaced by the unit
vector en, −nL ≤ n < nR, we have

cn =
{

(A> ·A)−1 · (A> · en)
}

0
=

M∑
m=0

{
(A> ·A)−1

}
0m
nm. (6.3)

Note that the Equation 6.3 says that we need only one row of the inverse
matrix. Numerically we can obtain it by LU decomposition with only a single
backsubstitution.

Let's choose a 5-point cubic polynomial de�ned g = a0 + a1z + a2z
2 + a3z

3,
where z = (−2,−1, 0, 1, 2). Its coe�cients are obtained by solving the normal
equations of a matrix a = (J>J)−1J>f and are

a0,i =
1

35
(−3fi−2 + 12fi−1 + 17fi + 12fi+1 − 3fi+2)

a1,i =
1

12
(1fi−2 − 8fi−1 + 0fi + 8fi+1 − 1fi+2)

a2,i =
1

14
(2fi−2 − 1fi−1 − 2fi − 1fi+1 + 2fi+2)

a3,i =
1

12
(−1fi−2 + 2fi−1 + 0fi − 2fi+1 + 1fi+2) (6.4)

The coe�cients of f are known as the convolution coe�cients and are ele-
ments of the matrix C = (J>J)−1J>. They were tabulated and published by
Savitzky and Golay in [25]. The fraction in a form 1

h
in the equations is a

scaling factor with h being a sum of used coe�cients3 cn.
3Some sources call convolution coe�cients directly cn, while others mean cn

h . Care

must be taken to check the author's notation.
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CHAPTER 6. CHOSEN BACKGROUND FLATTENING METHODS

In general, adding to Equation 6.2, we get

(C ⊗ f)i = gi =

nR∑
n=−nL

cnfi+n. (6.5)

The numerical derivatives are obtained by di�erentiating the �tted polyno-
mial g, which means that the derivatives are calculated for the smoothed
data curve.

g = a0 + a1z + a2z
2 + a3z

3 = a0 at z = 0

dg

dz
=

1

h
(a1 + 2a2z + 3a3z

2) =
1

h
a1 at z = 0

d2g

dz2
=

1

h2
(2a2 + 6a3z) =

2

h2
a2 at z = 0

d3g

dz3
=

6

h3
a3 at z = 0

and h is a scaling factor.

Filling into these equations the convolution coe�cients computed in Equa-
tions 6.4, the i-th data point is computed as follows for smoothing, 1st deriva-
tive and 2nd derivative:

gi =
1

35
(−3fi−2 + 12fi−1 + 17fi + 12fi+1 − 3fi+2)

g′i =
1

12h
(1fi−2 − 8fi−1 + 0fi + 8fi+1 − 1fi+2)

g′′i =
1

7h2
(2fi−2 − 1fi−1 − 2fi − 1fi+1 + 2fi+2)

We compute gi (or its derivatives) of every data point fi in the dataset to
obtain the result.

The speci�c nature of Savitzky�Golay �lter assumes that the underlying
function can be locally well-�tted by a polynomial. When that is true, as for
smooth line pro�les not too much narrower than the �lter window, Savitzky�
Golay �ltering is very useful. While the polynomial itself performs smoothing
on the dataset, the 1st (and 3rd) derivative locates maxima and minima in
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the data, the 2nd derivative can be used for baseline �attening, and 2nd or
4th derivative can enhance the resolution of the data.

Extrapolation into 2D

Savitzky�Golay �lter can be extended for use on two-dimensional datasets,
such as intensity values in a CCD image, which is composed of rectangular
set of pixels. The trick is to transform the rectangular grid into a single row
by ordering the indices of the data points. Where the one-dimensional �lter
coe�cients are found by �tting a polynomial in variable z to a set of m data
points, the two-dimensional �lter coe�cients are found by �tting a polyno-
mial in variables v, w to a set of m × n data points. The process parallels
the 1D-�tting as above.

Let's choose a bi-cubic polynomial, with moving windowm×n havingm = 7,
n = 5, v = (−3,−2, . . . , 2, 3), w = (−2,−1, . . . , 1, 2) and the �tted polyno-
mial is g = a00 + a10v + a01w + a20v

2 + a11vw + a02w
2 + a30v

3 + a21v
2w +

a12vw
2 + a03w

3. There are m × n = 35 data points in the moving window,
indexed d1, . . . , d35,

w \v -3 -2 -1 0 1 2 3
-2 d1 d2 d3 . . . d7
-1 d8 d9 d10 . . . d14
0 . . .
1 . . .
2 d29 d30 d31 . . . d35

which become vector d = (d1 . . . d35)
>. The Jacobian has 10 columns, one

for each of a00 to a03, and 35 rows, one for each pair of w and v values. Each
row has the form,

Jrow = 1 v w v2 vw w2 v3 v2w vw2 w3.

The convolution coe�cients are calculated as

C = (J>J)−1J>
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CHAPTER 6. CHOSEN BACKGROUND FLATTENING METHODS

The �rst row of C contains 35 convolution coe�cients, which are multiplied
with the 35 data values, respectively, to obtain the polynomial coe�cient a00,
which is the smoothed value. The convolution coe�cients are applied by

g =

p∑
i=0

q∑
j=0

ai,jv
iwj,

where p < m and q < n, proposed in [28].

Application

Savitzky�Golay �ltering for two-dimensional dataset was programmed into
Blink. Two-dimensional convolution coe�cients computed by Chandra She-
khar in [27] were used. Possible practical application of this �lter for Kle´
Observatory's needs include image smoothing to raise SNR, use of 2nd deriva-
tive of the �lter for baseline �attening to remove background irregularities,
and use of 4th derivative for resolution enhancement in case the observed
asteroid happens to be too close to a nearby star to resolve the two apart.
The last implementation, although appealing in case of dense stellar �elds in
the region of milky way on the sky, goes beyond the scope of this work and
will not be carried out for now.

Upon choosing the Savitzky�Golay �lter in the menu of Blink, the user can
specify the �lter parameters within boundaries of the included coe�cient ta-
ble: �tted polynomial degree M , the size of square �lter window m×m and
the order of the derivative. The algorithm �nds the corresponding m × m
�lter coe�cients, a00 for smoothing or a20 and a02 for the second derivative,
in included �le and applies the �lter on the image by equation

g(x,y) =

nR∑
i=−nL

nR∑
j=−nL

C(i,j)f(x+i,y+j),

for each (x, y) of the image excluding the nL = nR edges to compute the
result. For smoothing (0th derivative), the C = a00, and for 2nd derivative,
partial derivative with respect to x is applied by setting C = 2a20, then
partial derivative with respect to y is applied on the result by setting C =
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2a02. Since the second derivative �attens the baseline, an extra intensity
bu�er has to be added to avoid the intensity values oscillating around zero.
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Chapter 7

Comparison of performance

The six methods detailed in previous chapter were programmed into Blink, an
image processing and viewing software routinely used by Kle´ Observatory,
which the author of this work is developing. Image set of a typical stellar �eld
was processed by these methods and the results were compared at �rst by
human eye in Blink, as the observations rely on experienced human observer
to identify the observed body, and then in Kle´ Observatory's astrometric
program Astrometry, where an algorithm described in Section 5.4 is employed
to process the images for astrometric positions of the observed body.

7.1 Object detection in Blink

The images were taken by 1.06-m KLENOT telescope equipped with CCD
camera on 8th June 2014. The set contains 13 images. On the Figure 7.6 we
can see section of the the raw image 3 of the set on the top and corresponding
sections of the corrected images under it in the order the six methods are
described. The full raw image can be found in Appendix C. The settings
for Background and Range, which recomputes the images from the 65 536
intensities recorded by the camera to 256 intensities intended to be viewed
by human eye, were kept the same between the processed images for clarity
of comparison. Results of each method is discussed, and their side-by-side
comparison is included on the Figure 7.6.
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Median �at�eld

The �at�eld was created as a median of the set, as described in Section
6.1, and applied back on the images. We can see dramatic increase in the
image's quality on Figure 7.6, however the stars cast shadows on the corrected
image. That is caused by the stars walking too slowly (or alternatively, the
image set being too short) in the set of images used for the �at�eld's creation.

Kappa�sigma clipping �at�eld

The �at�eld was created by kappa�sigma clipping method described in Sec-
tion 6.2 from the image set, removing outliers of standard deviation > 2,
with maximum 5 iterations allowed, and the resulting �at�eld was applied
back on the images. On the Figure 7.6 we can see dramatic increase in the
image's quality very similar to using median �lter, but the stars cast slightly
less pronounced shadows on the corrected image than they did with an image
corrected by median �lter.

SMIN �at�eld

The �at�eld was created using SMIN method from the image set as per Sec-
tion 6.3 and applied back on the images. In the Figure 7.6, we can see the
stars no longer cast visible shadows on the result. Images treated with SMIN
�lter retain slightly more gaussian noise. The corrected image is slightly
lighter because the minimal intensity chosen to represent a pixel is used as
a denominator while creating a �at�eld, resulting in lighter image. Usually,
the image's contrast would be recomputed for human eye, which was omitted
for the sake of more clear comparison between the methods.

α-quantile �at�eld

The �at�eld was created from a single image using the new method described
in Section 6.4, and applied back on the image. The processed image o�ers
very sharp, even scene, however slight remnants of the background noise can
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CHAPTER 7. COMPARISON OF PERFORMANCE

be seen. The stars do not cast any shadow, but brighter stars developed a
dark center. As these are too overexposed to be used in �nal astrometry
computation anyway, this e�ect can be safely disregarded.

The �lter's performance is controlled by two parameters, size of the �lter
m×m, and α, which speci�es the quantile of the result. The e�ect of vary-
ing these parameters can be seen on a small cut-out of the image in Figures
7.1 and 7.2. On Figure 7.1, we can see that high m omits smaller background
variations in the image, while small m would not cover enough background
pixels close to bigger stars and in dense stellar �elds. On Figure 7.2, α is var-
ied. High α leaves the stars intact, therefore they are present in the �at�eld
by which the image is divided and cause dark stains over the stars, while
very low α leaves some of the background noise intact.

It was concluded that for the usual stellar �eld image, the best performance
from the observer's point of view are reached for α = 0.5, which is median,
and m = 13.

Figure 7.1: Results of parameters α = 0.5 and varyingm as denoted in the cut-outs.
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Figure 7.2: Results of varying α as denoted in the cut-outs and m = 13.

Unsharp masking �lter

Unsharp masking method as described in Section 6.5 was applied on the
image. The method works directly with an image without an assistance of
�at�eld creation. Strength of the �ltering is controlled by scaling factor α
and the size of a�ected structures is controlled by the degree of blurring.
There could be two possible ways for us to use this �lter, which were tested.

1) Heavy blur: A very heavy blur in the �rst step should make stars
disappear, which basically creates an approximate background image, which
could be then used to create �at�eld instead of carrying out the rest of the
unsharp masking procedure. Since the image is blurred, small sized features
will not be a�ected by the image processing.

It shows that not even heavy blur removes the stars due to the CCDs high
dynamic range resulting in high di�erence between the background and the
peaks of the stars. In astrophotography, stars would often be removed by
hand, which is unacceptable for our purposes.

90



CHAPTER 7. COMPARISON OF PERFORMANCE

Figure 7.3: Cut-outs of unsharp masking results. O: Original, S1,S2,S3: One

to three passes with Box Blur 7x7 kernel, G1,G2,G3: One to three passes with

Gaussian Blur 7x7 kernel.

2) Small �lter kernel: Unsharp masking �lter with small kernel blur should
a�ect small structures on the image, e�ectively enhancing their contrast and
thus raising SNR, making the faint asteroids easier to measure.

While the processed image itself may look sharper to human eye overall,
closer inspection reveals that it is substantially noisier. The �lter enhanced
contrast in noise just as well as in the real features. It is a common misuse
of this very popular and widely used �lter to try to bring faint objects out of
the sky's background. Although unsharp masking is globally �ux conserving,
it does not conserve �ux locally on the scale of a few times the smoothing
width, which is why, when trying to enhance faint features like asteroids and
faint stars out of the background, we might just as well elevate local noise to
the status of star-hood.

With a few passes of the �lter, as seen in Figure 7.3, it is obvious that
while the total �ux in the image is conserved, the SNR decreases with each
pass. Images suitable for this �lter should have high SNR and low contrast
scenes with �ne details we wish to enhance, which is the direct opposite of
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our images. For low SNR and high contrast stellar �eld, this method is highly
unsuitable.

These results illustrate that a popular, widely used method which is rec-
ommended often does not guarantee good results. Understanding of the
mathematics behind the �lter's method is essential to picking correct �lter.

Savitzky�Golay �lter

This �lter works directly on single image without an assistance of �at�eld
creation. User chooses the �tted polynomial degreeM and the size of square
�lter window m×m. Blink �nds the corresponding m×m �lter coe�cients
in included �le and applies the �lter on the image.

The smoothing of the image with Savitzky�Golay �lter looks promising on
Figure 7.4. Although it does not remove the background, the image is notice-
ably less noisy without visible loss of detail. The 2nd derivative, depicted on
Figure 7.5, easily removes the background, but has adverse e�ect on stellar
objects, which would interfere with astrometric measurements, due to steep
intensity increases in stellar pro�les. Additional adjustments may be imple-
mented, for example to apply logarithmic scaling before and after the �lter,
which are left to future research.

Figure 7.4: Cut-outs of a CCD image and its equivalent smoothed by Savitzky�

Golay �lter.
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Figure 7.5: Cut-outs of images with applied 2nd derivative of Savitzky�Golay �lter.

The �lter sizes used are 5, 7, 9, and 11 pixels, the �tted polynomials were of 3rd,

4th and 5th order.

Side-by-Side comparison

The adjusted images were set side by side for better comparison on Figure 7.6.
The �rst three �lters work with an image set and o�er good background re-
moval, although SMIN �lter seems the best.α-quantile �lter is slightly worse,
but can be used with a single image. Unsharp masking �lter only adds more
noise, and Savitzky�Golay �lter evens the background sacri�cing the ability
to perform the astrometric measurement altogether.
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Figure 7.6: Comparison, from top to bottom: Raw image, Median �at�eld, Kappa�

sigma clipping �at�eld, SMIN �at�eld, α-quantile �at�eld (α = 0.5, m = 13),

Unsharp Masking �lter (Gaussian kernel 7x7), Savitzky�Golay 2nd derivative �lter

(M = 4, m = 9)
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7.2 Object measurement in Astrometry

The adjusted images were saved and opened in Astrometry software, de-
scribed in Section 5.4, for carrying out the astrometric measurements. Using
the same parameters settings (BoxSize 5, SNR for Display/Reduction 2.5,
SNR for Identi�cation 6.0), images were reduced to detected objects and dis-
played.

The reduction of original image to objects, as per Section 5.4.2, along with
the reduction of the images processed by the chosen methods, are displayed
in the Figure 7.7. Since only four of the six methods were able to provide
enhancement of the image, only these four are depicted. The yellow dots
represent objects which will enter identi�cation algorithm, the gray dots rep-
resent the rest of the detected objects. The red dots stand for overexposed
objects and the blue dots for di�use objects.

Let us compare the �rst three methods, which employ a set of images for back-
ground �attening. They all o�er drastically better object detection than the
unprocessed image, as well as enhancing their SNR and, consequently, posi-
tional accuracy. Kappa�sigma clipping �at�eld seems to perform slightly
better thanMedian �at�eld, and SMIN �at�eld performs slightly worse.
Choosing a very faint object at random, it shows its SNR is undetectable
at the raw image (SNR < 0.7 results in range check error due to too many
possible objects), while with median �lter its SNR is 4.9, with kappa�sigma
clipping �at�eld it is 5.3 and with SMIN �at�eld 4.4.

Let's inspect astrometric performance of α-quantile �at�eld, which re-
quires only single image. α-quantile �at�eld with α=0.5, m = 13 o�ers a
very even result across the whole �eld of view, as seen in Figure 7.7, al-
though not as good as previous methods, which can be attributed to the fact
we are dealing only with one image instead of a whole set. The same faint
object as before now has SNR 3.5. If we vary the parameters of the method
as in Table 7.1, we can see the results are more dependent on the size of the
mask m×m than on α.
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α = 0.5, m is varied
m 5 7 9 11 13 15 17 21
SNR 2.5 3.0 3.3 3.5 3.5 3.6 3.6 3.6

m = 13, α is varied
α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
SNR 3.4 3.5 3.5 3.5 3.5 3.6 3.5 3.3

Table 7.1: An e�ect of varying parameters m and α on SNR of the chosen faint

object.

The detection interface of Astrometry for varying m can be found in Ap-
pendix D.

Now for the last two methods, which are not included in Figure 7.7. Un-

sharp masking �lter enhanced contrast of the noise, making Astrometry

run into 'Range check error' already at 1.2 SNR, and the chosen faint object
is impossible to measure on the image. Savitzky�Golay �lter's 2nd deriva-
tive is out of question due to inability to discern faint objects altogether.
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Figure 7.7: Comparison of images' astrometry. Image cut-outs from top to bottom:

Raw image, Median �at�eld, Kappa�sigma clipping �at�eld, SMIN �at�eld, α-

quantile �at�eld (α = 0.5, m = 13).
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7.3 Recommendations for use

The use of these methods newly programmed into Blink is discussed in this
section to serve as guidance for the observers using the program. Four of
the tested methods mean a huge leap in quality � or even possibility � of
the astrometric measurement for KLENOT project, although there are con-
ditions which make one or another more useful.

It is suggested to employ Savitzky�Golay smoothing implemented in 2D
for smoothing the image intended for object detection by human sight, as
it preserves the contrast di�erences better than the simple blur used in its
place now.

For an image set where the stellar �eld shifts slightly between the images,
it is recommended to use my customized kappa�sigma clipping �at�eld

to create an arti�cial �at�eld for the set. In the case when the stellar 'shad-
ows' are too pronounced while using this method, it is advised to use SMIN

�at�eld instead.

For a single image or stars moving too slowly across the �eld of view, it
is recommended to use the newly devised α-quantile �at�eld with default
α = 0.5, m = 13 for creation of arti�cial �at�eld. Its superior advantage is
the ability to generate arti�cial �at�eld from a single image.

The rest of the examined methods are not suitable for our use in astrometry
of faint asteroids. Median �at�eld is replaced by better kappa�sigma clip-
ping �at�eld, and neither unsharp masking �lter or 2nd derivative of
Savitzky�Golay �lter were able to provide utilizable results.

Blink also provides an option to save the modi�ed images, which are then in
turn loaded into Astrometry to carry out the astrometric measurement itself.
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Chapter 8

First results: Interstellar body

1I/2017 U1 'Oumuamua

The small object with extreme speed was discovered on 19th October 2017
by Pan-STARRS and originally designated as comet C/2017 U1 due to its
atypical orbit. No cometary features were detected and the designation was
changed to inactive comet A/2017 U1. Excentricity of its orbit was e = 1.18,
which corresponds to hyperbolic orbit, placing the origin of the object outside
the Solar System. The object's designation was changed again and 1I/2017

U1, named 'Oumuamua�meaning 'Scout' in Hawaiian, became the �rst mem-
ber of newly created category of Interstellar objects.

The body is elongated, with size estimated to be about 230 by 35 meters,
and composed of metal-rich rock, with dark red hue at the surface associated
with longterm exposition to cosmic radiation. It �ew past the Sun and left
the Solar System in the direction of Pegasus constellation.

1.06-m KLENOT telescope observed the object on 19th October 2017, when
ten 5-second exposures were taken. The experienced measurer M. Tichý was
unable to process the images of the fast, faint body for astrometric positions,
as it was 20.4 mag (V band) in the time of observation.
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Figure 8.1: Orbit of the interstellar object 1I/2017 U1 ('Oumuamua).

Source: nasa.gov

The images were treated with SMIN method the author of this work pro-
grammed into Blink. It was then possible to measure the object's position
in Astrometry. The astrometric measurements of 1.06-m KLENOT telescope
were published in [5] together with the object's astrometry from 2.4-m tele-
scope in New Mexico, USA, and 5.0-m telescope on Mt. Palomar, USA.
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Chapter 9

Conclusion

The doctoral thesis Numerical Methods of Image Analysis in Astrometry

gives a systematic overview of astrometric measurement of small Solar Sys-
tem bodies. The history of astrometry is brie�y described, being followed by
the astrometric process as done in present, the considerations and require-
ments it demands. The necessary mathematical background for following
parts is given.

As the aim of this work is related to Kle´ Observatory's astrometric needs,
the overview of the hardware, software and the observing process of the ob-
servatory is given. Image processing and calibration is described in detail,
followed by the usual image combining methods and basic �lters in use. The
astrometric algorithm of the Kle´ Observatory is detailed.

The aim of the thesis is 'to �nd a suitable mathematical method to even
out the background of a CCD image without a�ecting the small irregular-
ities containing combined noise and data to achieve increase in both qual-
ity and quantity of astrometric measurements on Kle´ Observatory'[6]. To-
tal six promising methods were chosen to be programmed into Blink, soft-
ware for image processing and viewing in routine use by Kle´ Observatory,
which the author of this work is developing. They were tested, compared,
and recommendations for their use were assembled for the observer to fol-
low. The new image processing routines were immediately used and al-
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lowed astrometry of the �rst, and so far the only known, interstellar object
1I/2017 U1 ('Oumuamua)[5].

The doctoral thesis ful�lls the goals set in the treatise as written above.
Four from the six methods were successful in evening out the background
of the CCD images without tampering with its high frequency components.
Median �at�eld and Kappa�sigma clipping �at�eld make use of the stellar
�eld's drift between images of the set, while SMIN �at�eld can be applied
even on static set. α-quantile �at�eld requires only single image to perform
its task. These methods allow for astrometric measurements to be carried
out even in unfavorable conditions, e.g. at areas where the raw image was
darker or brighter than the average background for the image, or pronounced
background intensity gradient was present, where astrometry would be im-
possible before. Additionally, �attening the background by these methods
raises the SNR of the objects, thus it is recommended to apply these methods
even in the cases when the astrometry can be performed on the raw images,
to raise the precision of the result. Not only these methods can be applied
on new observations, but they can be also utilized on an extensive archive of
CCD images for precovery use.[3]

Furthermore, new options of enhancing the astrometry of Kle´ Observatory
were revealed and will be subject to additional research. Namely, the arti�cial
�at�eld creation using the new �lters could be automatized, and the astro-
metric algorithm itself could be partially re-coded for better performance.
Savitzky�Golay �lter can be implemented for more e�ective smoothing of
the image for the observer's sight. Its 2nd derivative could be further deve-
loped for background removal, and its 4th derivative may have promising
application for resolution enhancement to resolve asteroid nearby a star or
in a dense stellar �eld.
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Nomenclature

The following tables contain abbreviations and symbols used thorough the
thesis. Locally used nomenclature is not included.

Abbreviations

AU Astronomical Unit
CCD Charge Coupled Device
FWHM Full-Width Half Maximum
MPC Minor Planet Center
NEA Near-Earth Asteroid
PDF Probability Density Function
RMS Root Mean Square
SNR Signal-to-Noise Ratio
Symbols

=z Imaginary part of a complex number z
C The set of complex numbers
N The set of natural numbers
R The set of real numbers
Z The set of integer numbers
F Fourier transform
F−1 Inverse Fourier transform
µ Arithmetic mean or average
<z Real part of a complex number z
σ Standard deviation, or root mean square
f ∗ g Convolution of functions f and g
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Appendix A
Image from KLENOT telescope with CCD Photometrics S300.

Appendix B
Object detection in Astrometry program.

Appendix C
Image from KLENOT telescope with CCD ProLine PL-230.

Appendix D
Astrometry of images processed with α-quantile �at�eld with di�erent win-
dow sizes m.

Appendix E
Interface of Blink program developed by the author of this work.

Appendix F
Stellar �eld identi�cation in Astrometry program.
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Appendix A: Image taken by KLENOT telescope with CCD Photometrics S300,

in use 2002�2012.

Source: Kle´ Observatory



Appendix B: The object detection from the image in previous �gure performed

by Astrometry program. Notice the lack of detections at darker regions (notably,

corners) and high number of false detections in brighter regions.

Source: Kle´ Observatory



Appendix C: Image taken on 8th June 2014 by KLENOT telescope with CCD

ProLine PL-230, used for �lter's performance comparison in Chapter 7.

Source: Kle´ Observatory



Appendix D: Comparison of astrometry with an image processed by α-quantile

�at�eld with di�erent �lter's sizes [m]. Notice the marked triangle. No dot means

no detection by Astrometry, dot implies low SNR, small circle better SNR. Blue

circle means the program assesses the detection as di�use object. The best results

are given by m 13 and 15.



Appendix E: Blink program, developed by the author of this work for Kle´ Obser-

vatory. The program automatically centers the images (manual centering is also

possible), allows animating the image set or its part, zooming to part of the image,

smoothing, inverting, stacking the images including stacking on moving object,

and other useful functions for the observer. The methods from Chapter 6 were

programmed in and can be chosen by the observer to process the images.
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