
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA PODNIKATELSKÁ
ÚSTAV INFORMATIKY

FACULTY OF BUSINESS AND MANAGEMENT
INSTITUTE OF INFORMATICS

THE APPLICATION OF FUZZY LOGIC FOR TEST
CASE PRIORITIZATION

APLIKACE FUZZY LOGIKY PRO URČENÍ PRIORITY TESTŮ

DIPLOMOVÁ PRÁCE
MASTER’S THESIS

AUTOR PRÁCE Ing. ANDREA STAROSTOVÁ
AUTHOR

VEDOUCÍ PRÁCE prof. Ing. PETR DOSTÁL, CSc.
SUPERVISOR

BRNO 2014

Abstract

The master’s thesis focuses on determination of Test case priority using Fuzzy logic. As

principle of Fuzzy logic is a convenient way to turn given inputs to final output according

to defined rules, a Fuzzy based model for assigning Test case priority has been chosen.

In order to fulfil the aim of the thesis, firstly particular criteria along with parameters set

to each Test case and its weights needs to be defined accordingly. So as to come to the

conclusion and evaluate input data, the solution for computing in the program MS Excel

and MATLAB is used herein.

Abstrakt

Diplomová práce je zaměřena na stanovení priority testovacích případů s využitím fuzzy

logiky. Vhodným přístupem k získání výstupu na základě definovaného vstupu a

stanovených pravidel byl zvolen fuzzy model přiřazující prioritu testovacím případům. K

dosažení cíle práce byla nejprve stanovena kritéria, parametry a poté určena jejich váha

pro jednotlivé testovací případy. Na závěr jsou vyhodnocena vstupní data s využitím

řešení v programu MS Excel a MATLAB.

Key words

Fuzzy Logic, Fuzzy Logic Toolbox, Software development, Software testing, Test cases

Klíčová slova

Fuzzy logika, Fuzzy Logic Toolbox, Vývoj softwaru, Testování softwaru, Testovací

případ

Bibliographic citation

STAROSTOVÁ, A. The Application of Fuzzy Logic for Test case Prioritization. Brno:

Vysoké učení technické v Brně, Fakulta podnikatelská, 2014. 77 s. Vedoucí diplomové

práce prof. Ing. Petr Dostál, CSc.

Declaration of originality

I hereby declare that this master´s thesis originated entirely from me. Information derived

from the published work has been acknowledged in the text and references are given in the

list of reference. I also declare that I did not breach of copyright in the sense of Act. No.

121/200 coll. on Copyright Law and Rights Related to Copyright and on the Amendment of

Certain Legislative Acts.

Brno, 30th May 2014

 ..

 Ing. Andrea Starostová

Acknowledgements

I would like to thank my tutor doc. Ing. Petr Dostál, CSc. for supervising my master’s

thesis, for his guidance and for providing feedback with this work.

In particular, I would like to express my thanks to Ing. Věslav Zahradník CSc. for his

availability at all times to discuss particular aspects of the thesis. I greatly appreciate his

time and insight. After all, much of this thesis would not have been possible without the

assistance and support of my family and close friends.

CONTENT

INTRODUCTION .. 10

AIM OF THE THESIS ... 11

1 THEORETICAL BACKGROUND .. 12

1.1 Fuzzy logic ... 12

1.1.1 Operations on Fuzzy Sets .. 13

1.1.2 Process of fuzzy logic system ... 14

1.1.3 Contribution of fuzzy logic ... 16

1.2 MATLAB ... 17

1.2.1 Fuzzy Logic Toolbox .. 17

1.2.2 Fuzzy Inference System .. 18

1.3 Software development .. 22

1.3.1 Software development life cycle ... 24

1.3.2 Specifying software requirements ... 25

1.4 Software Project Environment ... 26

1.5 Software testing .. 29

1.5.1 Testing Types .. 31

1.5.2 Levels of testing .. 31

1.5.3 Test case Development ... 35

1.5.4 Prioritization of software testing ... 36

2 PROBLEM ANALYSIS AND CURRENT SITUATION 37

2.1 Company profile ... 37

2.2 BIAC Services .. 38

2.3 Modules in SAP Insurance system ... 42

2.4 Process of software testing in BIAC .. 44

2.4.1 Test Management tasks ... 44

2.4.2 Test coordination ... 44

2.4.3 Test automation ... 45

2.4.4 The execution of Test cases .. 45

3 PROPOSALS AND CONTRIBUTION OF SUGGESTED SOLUTIONS 47

3.1 Input variables .. 48

3.2 Solution in MS Excel .. 50

3.3 Solution in MATLAB ... 53

3.3.1 Input variables scheme .. 53

3.3.2 FIS Editor .. 55

3.3.3 MF Editor .. 56

3.3.4 Rule Editor .. 56

3.3.5 Rule Viewer .. 57

3.3.6 Surface Viewer .. 58

3.3.7 Evaluation of Test case priority in both programs 59

CONCLUSIONS .. 66

REFERENCES ... 67

LIST OF FIGURES .. 71

LIST OF TABLES .. 72

LIST OF GRAPHS ... 72

LIST OF APPENDICES ... 73

10

INTRODUCTION

As a matter of fact, self-learning approaches are applied in software computations

comprising statistics, machine learning, neural networks and Fuzzy logics. Artificial

intelligence has featured as promising, instrumental and practical technique of soft

computing technologies in science and engineering domains. Nevertheless, progression

from bivalent logic to Fuzzy logic is a significant positive step in the evolution of science.

In large measure, the real-world is a fuzzy world. To deal with fuzzy reality what is

needed is fuzzy logic. In coming years, Fuzzy logic is likely to grow in visibility,

importance and acceptance.

From the tests in software engineering point of view, fuzzy expert system provides a

better way of prioritizing the Test cases. Moreover, prioritization of Test cases becomes

all the more important due to fact that it is not feasible to run all the Test cases after each

and every change. Once a change is made it is not possible to retest all the Test cases of

the test suite as it will consume lot of time. Therefore, prioritization of the Test cases has

been widely proposed and used in recent years as it can improve the rate of fault detection

during the testing phase.

More specifically, prioritization is used when the time for the testing is limited. So, in

order to attain maximum coverage, the more important cases are tested. However for this

purpose, Fuzzy expert system should be selected because of better decisions made by it

in comparison to the normal expert system.

In this regard, the master’s thesis aimed at determination of Test case priority using

Fuzzy logic. The work is organized into three main parts as follows. The first part

describes the basis of theoretical background concerning testing phase in software

engineering that is essential for understanding of subsequent parts. The second part

represents analyses focusing on profile of BIAC’s company, BIAC services and process

of software testing in BIAC.

Finally, the last part is dedicated to evaluation of Test case priority in the program MS

Excel and Fuzzy Logic Toolbox in MATLAB. Nevertheless, in order to meet the

objective of the master’s thesis, the last chapter reflects approach of determination of

particular criteria along with parameters set to each Test case and its assigned weights.

11

AIM OF THE THESIS

The aim of master’s thesis is to determine prioritization of Test case using Fuzzy logic

based model. The output of the proposed model will be determination of Test case priority

order in the program MS Excel and Fuzzy Logic Toolbox in MATLAB which would in

fact increase among other things the test effectiveness and fault detection rate.

Nevertheless, the objective of the proposed solution is concentrated on definition of input

variables along with parameters set to each Test case and assigning its particular weights

based on testing environment.

12

1 THEORETICAL BACKGROUND

1.1 Fuzzy logic

According to Zadeh (2008, p.2753), fuzzy logic is a precise logic of imprecision and

approximate reasoning. More specifically, fuzzy logic may be viewed as an attempt at

formalization/mechanization of two remarkable human capabilities. First, the capability

to converse, reason and make rational decisions in an environment of imprecision,

uncertainty, incompleteness of information, conflicting information, partiality of truth

and partiality of possibility – in short, in an environment of imperfect information. And

second, the capability to perform a wide variety of physical and mental tasks without any

measurements and any computations. In fact, one of the principal contributions of fuzzy

logic – a contribution which is widely unrecognized – is its high power of precisiation.

To be more precise, fuzzy logic deals with the concept of partial truth theory and

provides a methodology to model uncertainty and the human way of thinking, reasoning

and perception. Fuzzy logic systems are rule-based or knowledge-based systems first

formulized by Zadeh in 1965. Since the fuzzy set, a class of objects with a continuum of

grades of membership, is descriptive of vague impressions than numerical, variables are

therefore better described by linguistic terms.

Fuzzy logic sets are characterized by membership functions, also known as

characteristic functions that assign to each object a degree of membership varying

between zero and one. Variety of membership functions are in practice such as S-shaped,

Z-shaped, Triangular, and Trapezoidal shaped functions. The triangular membership

functions are formed using straight lines. These straight line membership functions have

the advantage of simplicity. Because of their smoothness and concise notation, Gaussian

membership functions are popular methods for specifying fuzzy sets. These curves have

the advantage of being smooth and nonzero at all points (Taghavifar and Mardani, 2013).

In fact, fuzzy logic measures the certainty and uncertainty of how much the element

appertains to the set. Due to the principle of fuzzy logic, it is practicable to figure out the

solution of a given task better than by conventional methods (Dostál, 2011).

13

1.1.1 Operations on Fuzzy Sets

Basically, a fuzzy set is a class of objects with a continuum of grades of membership.

Such a set is characterized by a membership (characteristic) function which assigns to

each object a grade of membership ranging between zero and one. The notions of

inclusion, union, intersection, complement, relation, convexity, etc., are extended to such

sets, and various properties of these notions in the context of fuzzy sets is proved without

requiring that the fuzzy sets be disjoint (Zadeh, 1965, p.338).

The notion of fuzzy sets aimed at mathematically modelling vague concepts was first

introduced by Zadeh in connection with the representation and manipulation of human

knowledge automatically. As Zadeh (1965, p.339) described, the theory of fuzzy sets is a

generalization of classical set theory, making use of the notion of partial degrees of

membership. Practically, the theory of fuzzy sets provides a systematic framework for

dealing with complex phenomena in describing the behaviour of systems which do not

lend themselves to analysis by classical methods based on probability theory and bivalent

logic.

Since its inception, the mathematical foundation as well as extensive application of the

theory too many different areas have already been well established (Zadeh, 1965). The

examples of fuzzy sets are illustrated in the Figure 1 (ESRU, 2014).

Figure 1 Fuzzy sets 𝝁𝑨, 𝝁𝑩. Adopted from ESRU (2014)

The following Figure 2 gives an instance of intersection of the fuzzy set between 5 and 8

AND about 4 (ESRU, 2014).

14

 Figure 2 Intersection of two fuzzy sets. Adopted from ESRU (2014)

In Figure 3, the union of two fuzzy sets is shown. Besides that, the negation of the

fuzzy set A is represented by blue line (ESRU, 2014), (see Figure 4).

 Figure 3 Union of two fuzzy sets. Adopted from ESRU (2014)

 Figure 4 Negation of the fuzzy set A. Adopted from ESRU (2014)

1.1.2 Process of fuzzy logic system

The fuzzy logic system compose of three basic steps: fuzzification, fuzzy inference,

and defuzzification (Dostál, 2011), (see Figure 5).

15

Figure 5 Architecture of fuzzy decision making system. Adopted from Emerald Insight (2014)

The first step (fuzzification of data) represents the transformation of language

variables into numerical values. For instance, the variable could be characterized as very

low, low, medium, high and very high. It is usually defined by three to seven attributes

(terms). The degree of membership of attributes is determined by mathematical functions.

Nevertheless, there are many shapes and types of membership functions that are used.

Both input and output variables are defined by attribute and membership functions

(Dostál, 2011).

Figure 6 The types of membership functions , . Adopted from Dostál (2011).

The second step (fuzzy inference) defines the system behaviour in terms of the rules

such as <IF>, <THEN>, <WITH>. The fuzzy sets are essential to perform the fuzzy

model based on that rule using an implication function. This implication functions,

however, known as If-then true rule or called linguistic rule. The rules determine the input

16

and output membership functions that will be used in inference procedure. The fuzzy

rules determine the fuzzy expert system. Furthermore, it is required to determine the

weight of the rule in the system. It is allowed to change the weight rules during the process

of optimization. The fuzzy rule base is usually constructed from the experience of the

decision maker (Dostál, 2011).

For example, IF there is excellent software quality with a strong analyst capability

THEN there must be less number of errors in the software. In this case excellent, strong,

and less are fuzzy sets qualifying the variables software quality, analyst capability and

number of errors respectively (Srivastava, Kumar, Singh and Raghurama 2010).

The third step (defuzzification) represents the reverse process of fuzzification.

Defuzification is necessary to convert the output fuzzy values to linguistic values in order

to present verbally the results of a fuzzy computing cycle. In the process of entering the

data, the fuzzy logic system works as an automat (Dostál, 2011).

1.1.3 Contribution of fuzzy logic

As Zadeh (2008, p.2753) described, the most visible, the best understood and the most

widely used contribution of fuzzy logic is the concept of a linguistic variable and the

associated machinery of fuzzy if–then rules. But there are other equally important

contributions which are much less visible and much less well understood. What is needed

to understand the significance of these contributions is fuzzy logic in its non-traditional

setting.

The machinery of linguistic variables and fuzzy if–then rules is unique to fuzzy logic.

This machinery has played and is continuing to play a pivotal role in the conception and

design of control systems and consumer products. However, its applicability is much

broader. A key idea which underlies the machinery of linguistic variables and fuzzy if–

then rules is centred on the use of information compression. In fuzzy logic, information

compression is achieved through the use of fuzzy granulation (Zadeh 2008, p.2753).

In conclusion, fuzzy logic is described as an approximation process, in which crisp

inputs are turned to fuzzy values based on linguistic variables, set of rules and the

inference engine provided (Omran, 2010).

17

1.2 MATLAB

MATLAB is a high – level programming language and technical computing

environment developed by MathWorks. MATLAB allows analysing data, developing of

algorithms, plotting of functions and data and creating models and applications. The

language and tools in MATLAB enable to use several approaches and reach a solution

faster than with classical programming languages including C/C++ or Java (MathWorks,

2014a).

Moreover, the MATLAB deals with a range of applications, such as signal processing

and communications, design and video processing, control systems, test and

measurement. The language of technical computing is used by many engineers and

scientists in industry and academia (Matlab, 2014a).

1.2.1 Fuzzy Logic Toolbox

The Fuzzy Logic Toolbox deals with functions, apps and a Simulink block focused on

providing analysis, design and simulating systems built on fuzzy logic. The product is

able to develop and analyse fuzzy inference systems and several methods like adaptive

neurofuzzy inference systems and fuzzy clustering (MathWorks, 2014b; MathWorks,

2014c).

Basically, the toolbox is aimed at modelling comprehensive system behaviours using

simple logic rules and shift these rules to a fuzzy inference system accordingly.

Furthermore, the toolbox uses fuzzy inference blocks in Simulink and simulate the fuzzy

systems within a complex model of the whole dynamic system. It is also possible to

generate C code from Simulink for use in embedded applications that involve fuzzy logic.

As all toolboxes in MATLAB, Fuzzy Logic Toolbox can be adjusted as well. Such

revisions incorporate modifying of source code and algorithms, adding own membership

or using defuzzification techniques (MathWorks, 2014b; MathWorks, 2014c).

Key features

 Fuzzy Logic Design app for setting up fuzzy inference systems and viewing and

analysing results

 Membership functions for building fuzzy inference systems

18

 Support for AND, OR, and NOT logic in user-defined rules

 Standard Mamdani and Sugeno-type fuzzy inference systems

 Automated membership function shaping through neuroadaptive and fuzzy

clustering learning techniques

 Capability of including a fuzzy inference system in a Simulink model

 Capability of generating embeddable C code or stand-alone executable fuzzy

inference engines (MathWorks, 2014d).

,

Figure 7 Fuzzy Inference Diagram. Adopted from MathWorks (2014e)

1.2.2 Fuzzy Inference System

Fuzzy inference is a method that interprets the values in the input vector and, based on

user-defined rules, assigns values to the output vector. Using the editors and viewers in

the Fuzzy Logic Toolbox, the rules set, definition of the membership functions and

analysis of the behaviour of a fuzzy inference system (FIS) can be built (MathWorks,

2014f), (see Figure 8). The following editors and viewers are provided:

FIS Editor displays general information about a fuzzy inference system. Furthermore,

the input and output membership functions, the rule base and the fuzzy operators can be

defined, with the FIS editor (Klingenberg 2014; MathWorks, 2014f).

19

Figure 8 Fuzzy inference system. Adopted from MathWorks (2014g)

Figure 9 FIS Editor. Adopted from Klingenberg (2014)

20

Membership Function Editor demonstrates and edits the membership functions

associated with the input and output variables of the FIS (MathWorks, 2014f).

Figure 10 Membership Function Editor. Adopted from Klingenberg (2014)

Rule Editor enables to view and set up the fuzzy rules (Dostál, 2011).

Figure 11 Rule Editor. Adopted from Klingenberg (2014)

21

Rule Viewer illustrates detailed behaviour of a FIS to help diagnose the behaviour of

specific rules and enables evaluation of the dependence of the output on the values of

inputs (Dostál, 2011; MathWorks, 2014f), (see Figure 11).

Surface Viewer generates a 3-D surface from input variables and the output of an FIS

and displays dependence of single variables created by the rules (Dostál, 2011;

MathWorks, 2014f), (see Figure 12).

Figure 12 Rule Viewer. Adopted from Klingenberg (2014)

Figure 13 Surface Viewer. Adopted from MathWorks (2014g)

22

1.3 Software development

Basically, main objective of software development is customer satisfaction. According

to Srivastava, Kumar, Singh and Raghurama (2010, p.183), software engineering is the

application of a systematic, disciplined, quantifiable approach to the development,

operation, and maintenance of software. The main aim of software engineering is to

produce software at low cost with higher efficiency. Apart from the fact that the field is

still relatively young compared to its sister fields of soft computing, there is still much

discussions around what software engineering indeed is, and if it the title engineering is

used properly. Software development area composes of several phases. However,

software testing is defined one of the most important in all the phases of Software

Development Life Cycle (SDLC).

Nevertheless, drawing on Rodrigez, Vizcino, Piattini and Beecham (2012, p. 664),

Global Software Engineering (GSE) has become an increasing area of research, besides

being an expanding trend in the Information Technology environment. GSE requires

software tools (management tools, development tools, etc.) to encourage the specific

features that this area has, and which have mainly come about as a consequence of the

distance factor (temporal, geographic and socio-cultural distance).

Furthermore, modern software development, such as globally distributed teams, makes

up particular challenges and risks (despite the benefits that can be gained) for the software

field, which is essential to take into account. Actually, developing software systems

through collaboration with other partners and in distinct geographical locations is a good

opportunity for firms (Rodrigez, Vizcino, Piattini and Beecham, 2012).

Software tools for GSE should hence help to mitigate problems e.g.:

 Geographic Dispersion, which sometimes causes a loss of synchronous

communication or team interactions, since the sites are in different time zones.

 Control and Coordination Breakdown, due to the difficulties created by a

distributed environment.

 Loss of Communication - this is the case in this type of environment, if we

consider that the richest communication medium is face-to-face communication.

 Loss of Team Spirit and trust among team members.

23

 Cultural Differences which occur when people from different cultures work

together in a global environment (Rodrigez, Vizcino, Piattini and Beecham, 2012).

Tools designed to alleviate the challenges stated above should hence comprise unique

characteristic, for instance supporting the interaction of distributed teams by applying

communication and collaboration technology, supporting the development of real-world

projects, minimizing the cost of the tools and infrastructure needed, together with their

maintenance effort or helping to make up a feeling of trust between the members, and

facilitating the knowledge of team ethics within the others.

However, there is lack of information considering which tools are able to help in the

aforementioned challenges, or about which specific tools offer characteristics that are

appropriate to allow them to be used in a GSE area. The most that we can state is that

certain surveys exist in which some of the existing tools, usually those with regard to

collaboration, are shortly demonstrated. A good instance of this is in which the authors

present a set of collaboration tools for GSE, classified by the fields in which they can be

used (Rodrigez, Vizcino, Piattini and Beecham, 2012).

As Kelkar (2009) described, software represents both computer programmes and

related documentation together. It has impact on all areas of knowledge. In general, the

system plays a dual role. It is a product by itself (information ’’transformer’’). It

represents the ’’vehicle’’ for delivering other products (supporting system functionality,

controlling other programmes).

Characteristics of a good software:

 Maintainability

o The information system must allow for changing requirements.

 Dependability

o Software must be reliable.

 Efficiency

o The system resources should be saved.

 Usability

o Software should be applicable by the users for whom it is constructed.

24

1.3.1 Software development life cycle

The development of an information system demands the commitment of valuable

company resources and time. Large projects often require much more effort and take

years to complete (Everett and McLeod, 2009).

In fact, software development life cycle (SDLC) includes several phases which

generally involves the planning, definition, requirements, design, building,

implementation, testing and maintenance. Under each of these phases, IT professionals

or project leader needs to come up with deliverables, which depend on specifications of

the software system or the project itself. For instance, within the planning phase of SDLC,

there are various deliverables which are needed. As the planning phase includes a high-

level view of the software project, a set of aims is required to be written down. This also

involves information about the financial resources. Therefore, the deliverables may

include documentation like the SDLC templates (Lewis, 2008).

Figure 14 Iterative waterfall model. Adopted from (Kelker, 2009)

Within the definition stage, the deliverable represents a documentation which indicates

the project plan. Within the requirements phase, the following deliverables might be

demanded: a business process model (business proposal), requirements for information

system, standards for the data architecture and analysis on how data will be transformed.

The last two stages which involves building and implementation may need deliverables

25

as application forms, tested applications, site configuration, user training plan and

software delivery (Lewis, 2008).

1.3.2 Specifying software requirements

Lewis (2008) described that the software system requirements may differ from

company to company, but the main aim is clear. System’s requirements aim to standardize

the set of practices used in developing an information system, as that development will

be both cost – effective and feasible.

Therefore, establishing the requirements for a software product is a significant

undertaking and directs the course of action for the remaining software development

effort. Traditionally, requirements specifications address the overall product under

development and its external interfaces. However, an important practice employed by

most engineering disciplines is the specification of requirements for every element of the

product architecture or design. Therefore, there are significant implications with this

practice that demand that the complete software architecture be formulated, including a

specification for each element of the software product and associated post-development

sustainment processes (Schmidt, 2009, p.10).

Drawing on Schmidt (2009, p.10), the software requirements specifications for the

product guide the definition of the product architecture, software implementation, and

software test and evaluation efforts. Requirements that are nonessential, over-specified,

or introduce unacceptable risks place the project in jeopardy of being unsuccessful. This

represents a situation where the software development team may attempt to do too much

with too. Projects are constrained by the amount of resources available to produce a

product. Project budget and schedule objectives must be the primary focus when

establishing product requirements.

However, every software product is intended to serve a purpose and the software

requirements should represent those product features and performance factors that enable

the product to serve its purpose. Software products may support a business process,

control the operation of a system or process, support data gathering and analysis activities,

guide work productivity by automating mundane tasks, or provide some entertainment

relevance. Thus, there exists a significant cost-benefit motivation for every software

development undertaking that must be appreciated. Caution must be taken when

26

establishing software requirements that broaden the scope of the development effort

beyond the means of the project to achieve its objectives. Improperly extending the

software product scope sets the development effort on a path destined for failure. Every

requirement implies a level of effort necessary to devise a suitable solution. Managing

the scope of the software engineering undertaking is essential to the success of each and

every development project (Schmidt, 2009, p.10).

1.4 Software Project Environment

The effective and profitable execution of a software engineering project involves an

understanding of the complex interactions and dependencies inherent in the project

environment. This knowledge must be fortified with a set of supervisory tools that provide

information concerning the current status of tasks and work products. This information

contains obscure symptoms of potential situations that threaten the project’s success or

software product’s quality and competitiveness in the marketplace. Software engineering

exploits this information to permit its attentive practitioners to recognize disruptive trends

and react in a positive manner to neutralize the root causes of problematic conditions

(Schmidt, 2009, p.55).

There are three fundamental management tools that are used to guide a project toward

successful completion. The first is the integrated master plan (IMP), which identifies the

organizational roles and responsibilities, tasks to be performed, and expected outcomes.

The second is the integrated master schedule (IMS), which provides a timeline of key

events, milestones, reviews, and decision points. And finally, there is the project budget,

which identifies the resources that are allocated to each organization to enable the

execution of planned tasks. However, these project management instruments must be

properly developed, monitored, and adjusted to reflect the ambiguity inherent in task

estimation. Initial planning forecasts of anticipated productivity, performance, and results

must account for project uncertainty (Schmidt, 2009, p.55).

Software development projects are established with the aim of delivering a “new”

software product to one or more customers. Therefore, until the software product

definition is relatively complete, the project plans will always be imprecise. This implies

that the project plans, schedules, and budgets are simply tools that direct the project team

toward the definition, design, implementation, testing, documenting, and delivery of a

27

software product. The dilemma faced by the project team is determining how to define

the software product in such a manner that the project goals and objectives can be

satisfied. Inherent in this situation is the fact that project plans, schedules, and budgets

are simply a means to an end to the successful delivery of a software product on time

(according to schedule) and without exceeding authorized funding thresholds (according

to budget). As long as the project team can define and deliver an acceptable software

product by the delivery date and does not expend more resources than authorized, the

project should be deemed successful (Schmidt, 2009, p.56).

Within the project environment there exists a variety of decision points that represent

opportunities to maintain the project scope so that goals and objectives can be attained.

Software engineering practices and tools are structured to recognize when the definition

of the software product presents an opportunity to revisit the project plan. At each

opportunity, a decision must be made on which way to proceed among alternative

approaches. Making proper architectural design decisions involves the following factors:

 Understanding the product functions and characteristics that are important to

stakeholders (requirements analysis).

 Determining how each product characteristic will be provided (functional analysis

and design synthesis).

 Identifying which design approach best serves the current product stakeholders and

the envisioned stakeholder community or customer base (trade-off analysis).

 Eliminating unknown conditions that improve the likelihood of achieving project

and product objectives (risk assessment).

 Ensuring that every function or characteristic is necessary to the operation of the

product and not in excess of what is needed (verification and validation).

Controlling product complexity to simplify software operational and support costs

(integrated product and process development, IPPD).

 Refining technical and project plans, schedules, and budgets to reflect the selected

course of action (control) (Schmidt, 2009, p.57).

Fundamentally, the software product architecture determines the project effort

necessary to successfully implement, test, deliver, and support the product throughout its

life cycle. If the project definition is allowed to drive the software product definition, then

the product may be less beneficial and noteworthy in a competitive environment.

28

The project scope must be aligned to provide the resources (personnel, facilities,

equipment, tools, budget, schedule, etc.) necessary to define, design, implement, test, and

deliver the software product to its customers. The software product must be developed to

accommodate the needs and expectations of all stakeholders, including users, support

staff, training staff, investors, and enterprise management. When the product definition

and project scope are unbalanced, then the software engineering, technical, and project

management teams must collaborate to stabilize the situation (Schmidt, 2009, p.57).

The software engineering effort represents the total technical effort within the project

scope. As such, the software engineering leadership is responsible for defining the

software product architecture in a manner that is consistent with the project scope. When

it is perceived that the product value to its customers (consumers, operators, investors,

etc.) can be enhanced with the application of additional project resources, then change

proposals are generated to establish the merit of the enhancement. This occurs whenever

the enhancement cannot be accommodated within the established project cost and

schedule objectives. Figure 10 depicts the role of software engineering within a project

environment (Schmidt, 2009, p.57).

Figure 15 Role of software engineering within a project environment. Adopted

from (Schmidt, 2009, p.58).

29

1.5 Software testing

Software testing can be defined as the execution of a program against Test cases with

the intent of revealing faults. The different testing techniques are defined based on the

artefact used to derive Test cases. Functional – or black-box – testing derives Test cases

from the specification or description of a program; structural – or white-box – testing

derives Test cases from implementations; fault-based testing derives Test cases from fault

models based on common mistakes committed by programmers; and model-based testing

derives Test cases from system specification models. To deem a software system correct,

one could test every possible element of the system's input domain and check whether the

output is consistent with the expected output (Lemos, Ferrari, Eler, Maldonado and

Masiero, 2012).

However, even for simple programs this is usually infeasible, because the input

domains tend to be very large (imagine, for instance, the input space of a compiler

system). Therefore, a large portion of testing research focus on proposing ways to select

meaningful subsets of Test cases to enhance the chance of revealing faults. Based on the

categories of testing techniques described above, several testing selection criteria were

proposed (Lemos, Ferrari, Eler, Maldonado and Masiero, 2012).

Besides testing techniques and criteria, there are many other aspects involved in the

testing activity. For instance, in general, it is too expensive to test programs manually;

therefore, software testing usually relies on tools to automate the Test case generation,

execution, and results gathering. After faults are revealed while testing the programs, they

must be localized and fixed. This activity is usually not included under the software

testing activity, being called debugging (Lemos, Ferrari, Eler, Maldonado and Masiero,

2012).

Since it is closely related to testing, we decided to include papers concerned with it in

our survey. Other topics that are important to software testing and were included are the

following: fault-injection, which consists in intentionally introducing known failures into

the system during its execution to evaluate if the system is robust enough to recover

without crashing regression testing, which consists in selectively retesting a system to

verify whether modifications have not caused unwanted effects and testing strategy,

which consists in the way by which Test case design methodologies are combined to

30

provide an effective testing activity (Lemos, Ferrari, Eler, Maldonado and Masiero,

2012).

Software Testing is an important process of software development which is performed

to support and enhance reliability and quality of the software. It consists of estimating

testing effort, selecting suitable test team, designing Test cases, executing the software

with those Test cases and examining the results produced by those executions. Studies

indicate that 40-50 percent of the cost of software development is devoted to testing, with

the percentage for testing critical software being even higher (Lemos, Ferrari, Eler,

Maldonado and Masiero, 2012).

As such software testing is the process of validation and verification of the software

product. Effective software testing will contribute to the delivery of reliable and quality

oriented software product, more satisfied users, lower maintenance cost, and more

accurate and reliable result in day to day working environment of software professionals.

However, ineffective testing will lead to the opposite results, low quality products,

unhappy users, increased maintenance costs, unreliable and inaccurate results.

Hence, software testing is a necessary and important activity of software development

process. Myers states that “Software Testing is the process of executing a program with

the intent of finding errors”. The importance of testing can be understood by the fact that

“around 35% of the elapsed time and over 50% of the total cost are involved in testing

programs” (Srivastava, Kumar, Singh and Raghurama, 2010, p.183).

Practitioners are generally short of time or resources and tend to perceive systematic

testing as not so very lucrative job. However, it affects overall software life cycle, because

quality of software life cycle depend upon testing technique demanding adequate Test

case preparation, modeling, and documentation which make the process complicated and

challenging. These impending challenges have to be addressed by researchers and

practitioners working closely together by estimating the amount of effort that is required

to develop user-friendly software (Srivastava, Kumar, Singh and Raghurama, 2010,

p.183).

31

1.5.1 Testing Types

Manual testing

Manual testing involves the testing of the software manually for instance without using

any automated tool or any script. Therefore, the tester takes over the role of an end user

and test the software to detect any unexpected behaviour or bug. Manual testing includes

various levels like Unit testing, Integration testing, System testing and User Acceptance

testing (Khan, 2011; Tutorialspoint, 2014).

In order to test the software and ensure the completeness of testing, testers use test

plan, Test cases or test scenarios. Manual testing also includes initial testing as testers

investigate the software to determine defects in it (Khan, 2011; Tutorialspoint, 2014).

Automation testing

Automation testing also known as “Test Automation” includes software testing when

the tester writes scripts and utilizes another software for testing. This process incorporates

automation of a manual process. Automation testing aimed at rerunning the test scenarios

that were performed manually, quickly and repeatedly. Besides regression testing,

automation testing is also utilized to test the application from load, performance and stress

point of view. It growths the test coverage, improve accuracy, saves time and money by

comparison to manual testing (Khan, 2011; Tutorialspoint, 2014).

However, it is impossible to automate everything in the software. Hence, the areas at

which user can make transactions such as login form or registration forms etc., any area

where large amount of users’ can access the Software simultaneously should be

automated. Moreover, all GUI items, connections with databases or field validations

could be efficiently tested by automating the manual process (Khan, 2011; Tutorialspoint,

2014).

1.5.2 Levels of testing

Software testing is the process of accessing the functionality and correctness of a

software through analysis. It also identifies most important defects, flaws, or errors in the

application code that must be fixed. The system must be tested in steps with the planned

build and release strategies. The key to successful testing strategies selecting the right

32

level of test at each stage in a project. The level of testing have a hierarchical structure

which build up from the bottom-up where higher level assume successful and satisfactory

completion of lower level test. Each level of test is characterized by an environment i.e.

type of people, hardware, data etc. and these environmental variables vary from project

to project. Each completed level represent a milestone on the project plan and each stage

represents a known level of physical integration and quality. These integrated stages are

known as level of testing (Khan, 2011).

Unit Testing

Unit testing represents the first and the lowest level of testing. In this level, respective

components of software are tested. Unit testing is performed by individual developer on

individual units of source code assigned areas. The aim of unit testing is to separate each

part of the programme and show that individual parts are correct in terms of requirements

and functionality. Therefore it helps to expose defects that might be hidden (Khan, 2011).

However, there are certain bounds of scenarios and test data that the developer can use

to verify the source code. So when the developer exhausts all options there is no choice

but to stop unit testing and unify the code segment together with other units

(Tutorialspoint, 2014).

Integration Testing

Integration testing represents the level after unit testing where either the developer or

an independent tester performs testing. The goal of integration testing is to test combined

parts of a software and determine if they function correctly together. Furthermore,

integration testing aimed at verifying functional, performance and reliability requirements

placed on major design items. The importance of integration testing must not be

overlooked due to the fact that approximately 40% of software bugs are exposed during

testing. There are two types of integration testing:

 Bottom-Up Integration testing

 Top-Down Integration testing

In a comprehensive software development environment, Bottom-Up testing is usually

done first, followed by Top-Down testing (Khan, 2011; Tutorialspoint, 2014).

33

System Testing

System testing begins after completion of integration testing. Once all the components

are integrated, the application as a whole is tested rigorously to see that it meets Quality

Standards. System testing represents the first step in Software Development Life Cycle,

where the application is tested as a whole. The application is tested in an environment

which is very close to the production environment where the application will be deployed.

System Testing enables us to test, verify and validate both the business requirements as

well as the Applications Architecture. This type of testing is performed by a specialized

testing team if there is one (Oladimeji, 2007; Tutorialspoint, 2014).

Acceptance Testing

In software engineering acceptance testing is a level of software testing where the

system is tested for user acceptability. This is arguably the most important type of testing

as it is performed by the Quality Assurance Team who will appraise whether the

application meets the intended specifications and satisfies the client’s requirements.

Acceptance testing is performed after system testing and before making the system

available for actual use.

Acceptance tests are not only intended to point out simple spelling mistakes, cosmetic

errors or Interface gaps, but also to point out any bugs in the application that will result

in system crashers or major errors in the application. By performing acceptance tests on

an application the testing team will deduce how the application will perform in

production. There are also legal and contractual requirements for acceptance of the system

(Khan, 2011; Tutorialspoint, 2014).

34

Figure 16 Acceptance testing. Adopted from Khan (2011).

Regression Testing

Unlike the previous levels of testing discussed, regression testing spans through the

testing phase. Important reason for regression testing is that it is often extremely difficult

for a programmer to find out how the changes in one part of the software effects the other

part. Hence, regression testing is carried out whenever the system is modified either by

adding new components during testing or by fixing errors. Its goal is to determine if

modification to the system has introduced new errors in the system.

Therefore, the quality of a system is directly connected to good regression testing.

Furthermore, regression testing is a very important aspect of the system maintenance.

There are three types of regression testing techniques namely selection, prioritization and

minimization (Oladimeji, 2007; Khan, 2011; Bhasin, Gupta and Kathuria, 2013).

35

Figure 17 Verification, validation and testing: schematic. Adopted from Kelkar (2009, p. 31)

1.5.3 Test case Development

As a tester, the best way to determine the compliance of the software to requirements

is by designing effective Test cases that provide a thorough test of a unit. So basically, a

Test case represents a detailed procedure that fully tests a feature or an aspect of a feature.

While the test plan describes what to test, a Test case describes how to perform a

particular test. Therefore, it is needed to develop Test cases for each test listed in the test

plan. Set of Test cases is called Test case suite (Bhasin, Gupta and Kathuria, 2013;

Symbiosys Technologies, 2013).

General Guidelines

Moreover, various Test case design techniques enable the testers to develop effective Test

cases. Besides, implementing the design techniques, every tester needs to keep in mind

general guidelines that will aid in Test case design:

 The purpose of each Test case is to run the test in the simplest way possible.

 Concentrate initially on positive testing i.e. the Test case should show that the

software does what it is intended to do.

36

 Existing Test cases should be enhanced and further Test cases should be

designed to show that the software does not do anything that it is not specified

to do i.e. Negative Testing

 Where appropriate, Test cases should be designed to address issues such as

performance, safety requirements and security requirements

 Further Test cases can then be added to the unit test specification to achieve

specific test coverage objectives. Once coverage tests have been designed, the

test procedure can be developed and the tests executed (Symbiosys

Technologies, 2013)

1.5.4 Prioritization of software testing

The prioritization of Test case becomes all the more important owing to the fact that it

is not feasible to run all the Test cases after each and every change. Once a change is

made it is not possible to retest all the Test cases of the test suite as it will consume lot of

time. Therefore, prioritization of the Test cases has been widely proposed and used in

recent years as it can improve the rate of fault detection during the testing phase

(Chaudhary, Sangwan and Singh, 2012).

Generally, prioritization is used when the time for the testing is limited. In order to

attain maximum coverage, the more important cases are tested. However for this purpose,

fuzzy expert system should be selected because of better decisions made by it in

comparison to the normal expert system. Basically, fuzzy expert system provides a better

way of prioritizing the Test cases (Bhasin, Gupta and Kathuria, 2013).

In the work conducted by Zhewei Xu, Kehan Gao and Taghi M Khoshgoftaar, a fuzzy

expert system has been proposed so as to select the Test cases when information of the

source code is not available to testers. The system takes different Test cases as inputs and

determines test importance accordingly (Bhasin, Gupta and Kathuria, 2013).

37

2 PROBLEM ANALYSIS AND CURRENT SITUATION

2.1 Company profile

BIAC GmbH (Business Insurance Application Consulting) is the IT and SAP

Competence Centre primarily of the VIG (Vienna Insurance Group). The company

supports the business processes of its clients of VIG and also for clients outside the VIG

group with solutions based mainly on SAP. The service extends from consulting to the

correct application up to development of specific solutions for the insurance industry,

including planning, implementation, support and training and constant updating (BIAC,

2014a; BIAC 2014b).

BIAC basically offer holistic solutions with several complex services – from Customer

consulting to Project Management to Hosting services and Service levels. The company

enables to offer the services separately as well. The approach is based on the developing

all systems in such a way as to offer the highest possible quality within a business

framework. The main focus lies clearly on SAP Insurance and its surrounding systems

(BIAC, 2014a; BIAC 2014b).

History

1985 - Separating of the IT division from WIENER STÄDTISCHE Versicherung and

founding of Metropolitan Datenservice GmbH.

2005 - Foundation of BIAC Business Insurance Application Consulting as legal successor

to Metropolitan Datenservice GmbH and to Central Point Insurance IT-Solutions (CP)

2008 - Foundation of the wholly-owned subsidiary B&A in Ostrava, CZ

2010 - Acquisition of 30 % of AIS s.r.o. in Brno, CZ

2010 - Integration of TBI-Info in Sofia, Bulgaria for the implementation of the SAP in

Bulgaria (BIAC, 2014a)

38

2.2 BIAC Services

Project Management

In general, taking into consideration systematic project management, it is the vital

requirement for the successful management and implementation of projects along the way

of all their stages. With regard to BIAC’s company, a project contract is developed for

each project and mutually agreed to the company and the customer. The attainment of the

project aims depends on all the phases of the project, from planning, through

implementation and testing up to its successful conclusion.

Therefore, starting with the project requirements as defined by the client, a description

of the project (a business case) with project plan, description of approach, extent,

dependencies as well as a schedule with clear phases and milestones, including

coordination of third parties and a technical design concept of the subject of the project

is designed. The project management team thereby takes over control of the project with

the establishment of the processes, the management of the extent of the project taking

into account possible changes in requirements, quality control, schedules, costs and

dependencies (BIAC, 2014c).

Test Management

Test management supports the activities of planning and test development. Hence,

proper test management is critical to the success of a project. It covers the areas of test

organisation, planning, automation and stand-alone active test implementation, test data

management and reporting of the test results. The task of the cross function “Test

Coordination and Test Automation” is the support of the development team in all test

activities.

Within the framework of test organisation all activities are planned, documented and

agreed with the development teams and specialist departments; the infrastructure is

prepared, the testers are instructed about test scenarios and so on. It develops the

information interfaces between the specialist department/s, BIAC and external providers.

Besides that, other tasks include monitoring and reporting of test activities and test

evaluation for the project leadership and overall product leadership (BIAC, 2014d).

39

Support services

All current requirements are covered with quick response times by the support

services. Whole process starts with the ticket registration and processing at the support

desk up to the Key User support and User Management. In addition, other important

support services consist of change-request registration, its processing and evaluation and

problem processing for production releases. However, the major concerns also dealt with

IT security and ensuring of knowhow through training (BIAC, 2014e).

There are also further support services incorporated such as:

 First and Second Level Support

 MSA Application Support

 Third Level Support

 SAP Userline (BIAC, 2014e).

Business consulting

Business consulting offers support with the analysis and development of the specialist

tasks and blueprints and, together with the client, defines the requirements in a

prospective integrated solution. Superlative industry knowledge along with deep

knowhow of process solutions in SAP applications together make up the basis for the

realisation of sophisticated client solutions (BIAC, 2014f).

Solution consulting

In Solution consulting the step-by-step realisation of the IT technical client solution

on the basis of the formulated specialist requirements takes place. SWD Software

Development provides professional support and conduct in all software development

phases. The services provided include support and advice in the creation of technical

blueprints, SAP and non-SAP software development, test, quality and performance

management, as well as migration support and the handover of the developed software

into production systems (BIAC, 2014g).

40

Architecture

The function of the architecture is to view the application and project portfolio in its

entirety and to highlight potential for improvement. Whilst doing so it also has in mind

the TCO (Total Cost of Ownership) of IT to the VIG. This happens mainly in the

framework of duties associated with projects under the title of the Architecture Board,

when needed also through timely reviews in the framework of an Architecture Check.

Concrete duties in close collaboration with the projects within the framework of a project

include:

 Establishment of the current and desired architecture of the application affected

by the project

 Impact analysis on associated applications

 Checking the list of applications affected by a project for its completeness

 Definition of cross over scenarios and the necessary interfaces for them

 Identification of intersections with already existing functionalities or

functionalities developed in parallel in other projects

 Standardisation of the entire functionality and ensuring its use

 Separation of specialist requirements into components in special cases

 Checking the compliance of architecture standards

 Clarification of technical and organisational effects of requirements on

operations and costs

Functions of architecture not directly involved in the project include: architecture

standards, suggestions for process optimisation regarding project development (e.g. early

definition of hardware requirements) and suggestions for the reduction of the Total Cost

of Ownership (TCO) for projects (BIAC, 2014h).

41

Quality Management

Quality Management tasks include:

 Description of the enterprise from a systemic, integrated point of view (QM

manual; guidelines, templates, BIAC Q-targets/standards)

 Creating of templates for QM documents (reports, procedure instructions,

enquiry catalogue, checklists etc.)

 Carrying out audits (projects, QM systems etc)

 Quality assurance related to development (checks for project documents such

as PHB, PMHB etc) coordinated with the relevant BIAC and SAP QA

activities (QA KPIs)

 Providing an integrated description of the as-is situation of the enterprise

(management review)

 Support with the development/derivation of Q targets/SLAs/KPIs, reporting,

Q gates

 Platforms for improvements (e.g. KVP etc.)

 To provide a description of how our clients/contact persons see us (client

feedback)

 Involvement in all activities and tasks in order to maintain the QM relevant

points/tasks/topics

 Competent contact partner for enquiries about the relevant standards (ISO

9000ff; 19011; 10005ff)

 Supporting standardization. Input for the topic of Corporate Identity and

formal minimal requirements for documents (e.g. version control)

 Interface to Q certification organisations

 Offers of the relevant training

 Monitoring easy traceability of relevant documents (guidelines, templates, lists

of documents) and delivery of input for improvement

 Making tools for quality control (CAST, Code Inspector) in important core

processes available and overall monitoring

 Contact for modifications and owner of the affected processes (BIAC, 2014h).

42

2.3 Modules in SAP Insurance system

FS-PM – Policy Management

SAP Policy Management is a division-overlapping policy management system which

is suitable for both regional and global market oriented insurance enterprises. This is

ensured by its inclusion within the SAP landscape (BIAC, 2014i).

msg.PM – Product Management

msg.PM (Product Management) is used for insurance product calculations (rates, tariff

checks, balance sheets) across all lines of business for SAP Insurance modules. It is

always used in combination with FS-PM (BIAC, 2014i).

FS-CD – Collection and Disbursement for payments in/out

FS-CD manages collection and disbursement tasks across all lines of business,

including current accounting, payment processing, incoming payment processing,

correspondence and dunning. It also displays key account, corporate, broker and

coinsurance business information (BIAC, 2014i).

Figure 18 SAP Modules. Adopted from BIAC (2014i).

43

FS-ICM – Incentive Commission Management for commissions

The SAP Module FS-ICM is a cross sector solution that allows companies to manage

all types of commissions and incentives paid both to employees and to partners. It

provides up-to-date and transparent information about all previously earned and expected

commissions and incentives. FS-ICM is a management instrument used to realise

strategic corporate goals using monetary and/or non-monetary incentives, e.g. by

increasing sales, by improving quality, reducing costs or other forms of adding value

(BIAC, 2014i).

FS-CM – Claims Management for damages/indemnification

The SAP module FS-CM is used to set up and manage settlement claims for non-life

insurance policies and benefit entitlement claims for life insurance policies (BIAC,

2014i).

FS-BP – Financial Services Business Partner for the management of partner data

FS-BP is used to store and manage information on business partners in a central

application. This can be of particular interest when a company has more than one business

relationship with a specific partner, e.g. as an existing supplier and a prospective

customer. FS-BP utilises information technology benefits (e.g. data integrity and the

elimination of redundant data) and, at the same time, facilitates customer service and new

customer acquisition (BIAC, 2014i).

FS-RI – Reinsurance

The FS-RI module allows comprehensive management of active and passive

reinsurance policies and contracts. Reinsurance is insurance for insurers. Reinsurance

means that the direct insurer has transferred part of the policy risk, payments and

premiums to another insurer (the reinsurer). The reinsurer in turn balances its risk by

taking over the “risks” of several direct insurers. FS-RI has been designed for use in both

active and passive reinsurance and offers direct insurers, reinsurers and agents flexible

means of managing and administrating their reinsurance policies (BIAC, 2014i).

44

2.4 Process of software testing in BIAC

2.4.1 Test Management tasks

As already mentioned above, Test management in BIAC supports the activities of

planning and test development as software testing is a necessary and important activity

of software development process. In general, effective software testing will contribute to

the delivery of reliable and quality oriented software product, more satisfied users, lower

maintenance cost, and more accurate and reliable result in day to day working

environment of software professionals.

Therefore, proper test management is critical to the success of a project. As a tester,

the best way to determine the compliance of the software to requirements is by designing

effective Test cases that provide a thorough test of a unit. So basically, a Test case

represents a detailed procedure that fully tests a feature or an aspect of a feature. In other

words, Test cases are flows or sequences of so-called Test Steps which are processed in

the test object.

The test process, roles and responsibilities that are in place are defined with the support

of renowned consulting firms and correspond to the customary international standards

(ISO 9126). The members of the test management team are also trained and certified to

the customary international standards (ISTQB). The test processes and tools used

correspond to the standard recommendations for SAP implementation projects (BIAC,

2014j).

2.4.2 Test coordination

Moreover, there are a number of activities that must be carried to ensure tests are

organised effectively. The careful preparation of test concepts and joint planning and

agreement on test activities between the development team and the department is the first

step in this process and should be based on defined and established test processes

(guidelines smile test concept) (BIAC, 2014j).

Test organisation also extends to the preparation of the test infrastructure, which

includes the organisation of rooms, equipment, systems, user rights and software

installations. The nominated testers are offered wide support in the test preparation phase.

This ranges from the provision of test documentation templates, advice on how to

45

describe test scenarios and test cases, risk analysis and test case prioritisation, roles and

rights assignment, training in how to use the test tools (SAP Solution Manager, Support

Desk), as well as guidance in preparing reports and preselecting test data.

With regard to test plans and test packages (work lists for testers), they are provided

at the end of the test preparation phase. During the actual test process, the test

coordination team serves as the information interface between the department(s), BIAC

and the external providers.

Further tasks carried out during the test process include test status tracking, the

monitoring of test and error resolution progress, the provision of test reports to the

departments and project management teams, as well as the preparation of go-live

recommendations and final test reports. Consolidated reporting of the results of the

departmental tests and BIAC regression tests to release management forms the basis for

a go-live decision (BIAC, 2014j).

2.4.3 Test automation

Test automation is an important aspect in comprehensive test management. In addition

to the manual tests, automated regression tests are also an absolute necessity and are

regularly required. Test automation activities include the establishment of an automated

regression test portfolio to safeguard production applications and support projects, regular

mechanical regression tests (“smoke tests”) to control quality in test systems after project

changes or changes to production applications, as well as regular application of the

automated regression test portfolio during the project and release test phases (BIAC,

2014j).

2.4.4 The execution of Test cases

From the BIAC point of view, all required input and verification parameters are

specified in the Test cases, especially in the software tool for testing TOSCA

Commander™. The execution of Test cases can be initiated by any user, no specific

technical know-how is thus required. Therefore, this provides the advantage that

everyone, even without special of knowledge TOSCA Commander™ (business unit) can

create, administrate and execute Test cases, but the Test cases and results can nevertheless

be administrated in a central tool (and together with automated Test cases) (BIAC, 2014j).

46

The execution of a Test case can be started directly in TOSCA Commander™ or by

directly starting TOSCA Executor. This flexibility is based on the use of test set data files,

which contain the actual information for the execution of a Test case. During the

execution via TOSCA Commander™ these test sets are created automatically. If required,

they can be created manually by experienced users.

Furthermore, each Test case is defined in MS-Excel according to the defining rules of

the Test Management Team. This requires an Excel spreadsheet, which organizes the test

data in rows and columns. Test cases are represented by columns; particular data sets are

represented by rows. The Excel-sheets contain an identification so that a selected policy

with the additional check criteria will be used for a certain test execution. The policy

numbers are referenced analogue to the regression Test cases with previously generated

policies (BIAC, 2014j).

47

3 PROPOSALS AND CONTRIBUTION OF SUGGESTED

SOLUTIONS

In order to determine the Test case prioritization several software tools are proposed.

The conceptual design can be implemented using any proper computer programming

language and data base management technology. As fuzzy logic is a convenient way to

map an input space to output space, a fuzzy based technique for assigning priority of Test

case has been chosen. With this regard, the solution in the programme MS Excel and

MATLAB is presented in master’s thesis.

Taking into consideration proposed programmes, Microsoft Excel is a software

programme included in the Microsoft Office suite of applications, which allow users to

organize, format and calculate data with formulas using a spreadsheet system (Janssen,

2014). Moreover, using Microsoft Excel it is possible to integrate fuzzy logic decision-

making with the existing source of data.

As was already mentioned in previous chapter, MATLAB is a high – level

programming language and technical computing environment developed by MathWorks.

MATLAB allows analysing data, developing of algorithms, plotting of functions and data

and creating models and applications. In comparison to Microsoft Excel, MATLAB using

Fuzzy Logic Toolbox is able to design and simulate fuzzy logic systems based on fuzzy

logic principle.

So as to process and compute analysed data, firstly input data needs to be defined.

Therefore, in the following chapter different criteria (variables) considered for assigning

weight will be elaborated based on priorities of test coordinators in BIAC. Basically, each

input variable represents one decision criterion. In order to assign its weights (attributes),

input variables are classified based on their importance in the test environment.

48

3.1 Input variables

Test cases often differ in execution in terms of specifying specific values or

environment information. In addition to business-based processes, information, which is

derived from the execution environment and should be used in Test Steps and Test Step

Values (or in Modules) plays a major role. Nevertheless, following 8 different criteria

(variables) and its weight are determined and depicted below based on priorities of test

coordinators in BIAC.

Number of Test steps

Test steps are executable actions which are executed in the test object. The input

variable Number of Test Steps has been divided into five intervals according to executed

steps count as shown in Table 1.

Number of verification steps

A Test case describes an elementary and functional sequence, which is used for the

verification of one or several properties underlying a specification. However, the value

that is expected according to the Test case specification does not always correspond to

the value provided by the test object. Therefore, it is verified whether a particular state is

reached or not with comparison to specified value. So basically, number of verification

steps involves eventual number of stages (steps) necessary to verify results with desired

values. This criterion is described by 5 categories depicted in Table 1.

Module integration complexity

Integration metric defines aspect of complexity of component-based software. This

criterion takes into account number of interfaces (interactions) with other components.

Module integration complexity variable is sorted into 4 intervals illustrated in Table 1.

Business priority

In general, all Test cases are specified by customer’s business department. Therefore,

each Test case specification is exclusively business-referred and is gradually adapted to

the test object (application under test). Business priority of Test cases determine in fact

the order of the Test cases to be executed and how they are assigned to tests. In order to

49

evaluate business priority one of the decision criteria for prioritization of tests, it has to

be divided into 4 categories described as ‘Low’, ‘Medium’, ‘High’, ‘Very high’ (see

Table 1).

Test case background

Test case background is divided into 2 categories: Test cases based on specification

and Test cases based on daily basis. Both criteria have equal value in terms of

determination of priority for testing.

Type of Test case

Type of Test case is split into 2 fundamental categories: Automated Test case and

Manual Test case. Manual Test cases are able to manage in TOSCA Commander™

software tool for testing. Even without specific knowledge of the tool it is feasible to

create, administrate and execute Test cases. Furthermore, existing manual Test Steps can

be converted into automated Test Steps. However, there are specified 2 criteria mentioned

below which are associated only with automated Test cases.

Execution time

Criterion execution time is related only to automated cases. It represents time for

execution of Test case measured in minutes. Execution time is divided into 5 intervals

(see Table 1).

Preparation effort for execution

As already mentioned above, variable preparation effort for execution is valid to take

into account only for automated Test cases. It is related to effort made to prepare all

necessary steps before execution of Test case and it also includes time spent when

execution is changed. This variable is sorted into 3 main groups shown in Table 1

measured in minutes.

50

3.2 Solution in MS Excel

Solution developed in Microsoft Excel specifies all fuzzy variables and computations

of total relative weighting regarding evaluating variables related to Test case

prioritization. The output of the proposed solution represents per cent and written

assessment of Test case’s priority. Nevertheless, firstly input matrix and transformation

matrix need to be defined.

Description of transformation matrix

The description of transformation matrix consists of 8 variables which represent input

data needed for appraisal of Automated Test case prioritization. This matrix remains the

same for each particular Automated Test case (ATC) used for assessment (see Table 1).

In order to evaluate priority of Manual Test case, 2 last variables (Execution time,

Preparation effort for execution) are not taken into consideration. These variables are

related only to Automated Test cases.

Table 1 Description of transformation matrix. Constructed by author.

State matrix

The state matrix describes which attribute of input variable belongs to particular

analysed Test case. For each Test case is built one state matrix which corresponds to real

values of attributes. There are 2 possible values of attributes – Yes (Y) or No (N). For

further calculation computed in MS Excel, values Yes or No are replaced by binary values

1 for Yes or 0 for No. The following Table 2 gives an instance of state matrix.

Type of

test case

Number of

test steps

Number of

verification

steps

Module

integration

complexity
Business priority

Test case

background

Execution time

 (only for ATC)

Preparation effort for

execution

(only for ATC)

1

Manual <1,10 > <1,5> <1,3> 4 (Low)

Based on daily

business

 experience

<0,2> <0,10>

2
Automated < 11,30 > <6,12> <4,6> 3 (Medium)

Based on

specification
(2,5> (10,20>

3 <31,50 > <13,20> <7,10> 2 (High) (5,8> (20,60>

4 < 51,100 > <21,40> <11,20> 1 (Very High) (8,15>

5 <41,60> (15,60>

51

Table 2 State (Yes - No) matrix. Constructed by author.

Transformation matrix

Based on description of transformation matrix, the transformation matrix itself is

evaluated. Each individual weight is determined according to importance of particular

variables and its attributes which are set up by test experts in the company BIAC. Cells

related to description of variables and its values need to correspond to each other.

In order to determine Test case priority, the function SUMPRODUCT is used. In

general, the function SUMPRODUCT in MS Excel multiplies corresponding components

in the transformation and state matrices and the sum of those products is returned. So

calculation made of transformation matrix and state matrix gives an evaluation of Test

case priority. The transformation matrix with illustrations of membership functions is

shown in the Table 3.

Table 3 Transformation matrix. Constructed by author.

Type of

test case

Number of

test steps

Number of

verification

steps

Module

integration

complexity
Business priority

Test case

background

Execution time

 (only for ATC)

Preparation effort for

execution

(only for ATC)

1 N N N Y Y Y N Y

2 Y Y Y N N N Y N

3 N N N N N N

4 N N N N N

5 N N

Type of

test case

Number of

test steps

Number of

verification

steps

Module

integration

complexity
Business priority

Test case

background

Execution time

 (only for ATC)

Preparation effort for

execution

(only for ATC)

1 90 70 90 20 1 80 80

2 80 65 80 70 1 70 70

3 70 60 70 120 60 60

4 60 55 60 150 50

5 40 40

Max 90 70 90 150 1 80 80

Min 60 40 60 20 1 40 60

No weights

assigned

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

105

110

115

120

125

130

135

140

145

150

155

160

1 2 3 4 50

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

1 2 3 4 5 0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

1 2 3 4 5

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

1 2 3 4 5

0

5

1 2 0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

1 2 3 4 5 0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

1 2 3 4

A
x
is

T
it
le

Axis Tit le

52

Retransformation matrix

The retransform matrix transforms the numerical values of Test case prioritization into

linguistic values. The priority of Test cases is thus divided into 5 categories determined

according to range of percentage relevant to final priority. Retransformation matrix as a

result of solution in MS Excel is shown in Table 4. So when time is limited for execution

of all hundreds of Test cases, determination of priority is essential in order to test

maximum coverage of the most important Test cases.

 Table 4 Retransformation matrix.

 Constructed by author.fuzz

Percentage Priority

1 0%-20% Very low

2 20%-40% Low

3 40%-60% Medium

4 60%-80% High

5 80% -100% Very High

53

3.3 Solution in MATLAB

As was already mentioned at the beginning of this chapter, fuzzy logic using Fuzzy

Logic Toolbox, part of the MATLAB can be used for determination of Test case priority.

For creating of fuzzy logic model is necessary to define input variables, their intervals,

output variable and also membership functions. Nevertheless, the Fuzzy Logic Toolbox

it is possible to trigger in a command window by the command fuzzy.

The fuzzy logic model is adjusted according to certain factors set up by test experts.

To evaluate the attributes of variables, certain linguistic values are assigned such as very

low, low, medium, high and very high. Once all the fuzzy inputs for each Test case are

known and membership functions are set up, fuzzy rule base is constructed to arrive at

the fuzzy output.

3.3.1 Input variables scheme

Fuzzy model consists of 3 inputs and 1 output. Each input is composed of set of

variables as shown in Figure 19 and Figure 20. However, it is essential to take into

consideration the fact, that for determination of priority of automated Test cases, 2

additional variables as ‘Execution time’ and ‘Preparation for execution’ time are needed

for getting the proper results (see Figure 19).

54

 Figure 19 Input variable scheme for Automated Test cases. Constructed by author.

Figure 20 Input variable scheme for Manual Test cases. Constructed by author.

55

Fuzzy logic process:

 Input data are defined as a result of the number of years of experience gained by

test experts in the company

 Input data are fuzzified using membership functions

 Fuzzy rule base is applied on fuzzy input to evaluate the fuzzy output

 Fuzzy output is defuzzified in order to get final value

3.3.2 FIS Editor

Fuzzy Inference System (FIS) is the process of formulating the mapping from a given

input to an output using fuzzy logic. This will use Mamdani’s fuzzy inference method

which is most commonly seen fuzzy methodology. FIS Editor is shown in Figure 21

where variables of Input 1 are taken into consideration.

Figure 21 FIS Editor – Input1. Constructed by author.

56

3.3.3 MF Editor

With the Membership Function Editor it is possible to display and revise all of the

membership functions associated with all of the input and output variables for the entire

fuzzy inference system. Hence, the tool can be used to define the number, type, range and

parameters of membership functions in case of each variable. In order to open MF Editor

it is mandatory to double-click on the input variable. MF Editor for the variable Number

of Test cases and its membership functions is illustrated in the Figure 22.

Figure 22 MF Editor – Input1. Constructed by author.

3.3.4 Rule Editor

The fuzzy logic based model presented herein specifies each parameter of Test case

using membership values and uses fuzzy rule base for calculating Test case priority.

Based on the descriptions of the input and output variables defined with the FIS Editor,

57

the Rule Editor allows to construct the rule statements. Total of 81 different rules have

been formulated in order to analyse the results for Input1, as shown in Figure 23.

Figure 23 Rule Editor – Input 1. Constructed by author.

3.3.5 Rule Viewer

Further graphical user interface (GUI) tool in Fuzzy Logic Toolbox is Rule Viewer which

enables to view the fuzzy inference diagram. Moreover, it is possible to see which rules

are active or how individual membership function shapes affect the results. Rule Viewer

displaying rules for Input 1 is shown in Figure 24.

58

Figure 24 Rule Viewer - Input 1. Constructed by author.

3.3.6 Surface Viewer

The Surface Viewer can generate a three-dimensional output surface where any two

of the inputs vary. The Figure 25 represents the surface view of the variable Number of

verification steps and the variable Number of test steps and their relation to the evaluation.

59

Figure 25 Surface Viewer – Input 1. Constructed by author.

3.3.7 Evaluation of Test case priority in both programs

So, in order to get evaluation of Test case priority in Fuzzy Logic Toolbox in

MATLAB program, there are 2 possibilities how to come to the feasible solution. One of

the possibility consists of entering input values of variables manually directly in

Command Window. With that regard, firstly it is necessary to determine whether

calculation is related to Manual Test case (see Figure 20) or Automated Test case (see

Figure 19).

Moreover, for the purpose of evaluating priority of Automated Test cases, 2 more

criteria as Execution time and Preparation for execution time are taken into account as

illustrated in Figure 27. Source code used for both types is depicted in Appendix 1.

60

Figure 26 Determination of priority for Manual Test Cases derived from Command Window.

 Constructed by author.

Figure 27 Determination of priority for Automated Test Cases derived from Command Window.

 Constructed by author.

Second option how to get evaluation of Test case priority deals with loading input data

directly from data source saved in MS Excel. It enables to load automatically as many

Test cases (rows) as is needed for evaluation. In order to start with execution of input data

in Command Window, firstly type of Test cases (0-Manual, 1-Automated) to be filled in

and secondly name of Excel Sheet needs to be defined as shown in Figure 28.

61

Figure 28 Determination of priority for Test Case inputs derived from MS Excel. Constructed by author.

Nevertheless, input data saved in MS Excel (see Table 5) are sorted into columns in

the same order as they are entered manually in Command Window. Final values

considering priority of Automated Test cases are written automatically into last column

named Output after calculation is made in Fuzzy Logic Toolbox. So, priority of Test cases

is written both in Excel Sheet and in Command Window of Fuzzy Logic Toolbox.

Table 5 Input data for evaluation of Automated Test cases for computation made in MATLAB.

Constructed by author.

Output

Number of

test steps

Number of

verification

steps

Modul integration

complexity

Business

priority

Test case

background

Execution

time

Preparation for

execution time

Priority

[%]

<1;100> <1;60> <1;20> <1;4> <1;2> <0;60> <0;60>

40 10 5 4 1 3 5 39,75%

40 10 2 1 2 6 5 80,11%

15 15 15 3 2 3 15 58,87%

20 10 5 2 1 3 15 79,99%

5 2 2 1 1 1 15 95,51%

Input 1 Input 2 Input 3

62

In addition to solution derived from MATLAB, the computational process of the

proposed decision support system is created in MS-Excel as well (see Table 6). The output

of that solution represents Test case’s priority expressed as a percentage and as linguistic

variables according to final figures as shown in Table 7.

Table 6 Input data for evaluation of Automated Test cases for computation made in MS Excel.

Constructed by author.

 Table 7 Priority of Automated Test cases computed in MS Excel

 Constructed by author.

Comparison of results taken from MS Excel (see Table 7) and MATLAB (see Table5)

gives evaluation of analysed Automated Test cases. Basically, final output values

conducted in both programs do not differ so much from each other. For better comparison,

both results are illustrated in the Graph 1.

Type of test

case

Number of

test steps

Number of

verification

steps

Module

integration

complexity
Business priority

Test case

background

Execution time

 (only for ATC)

[minutes]

Preparation effort for

execution

(only for ATC)

[minutes]

1 Automated <31,50 > <6,12> <4,6> 4 (Low)

Based on daily

business

 experience

(2,5> <0,10>

2 Automated <31,50 > <6,12> <1,3> 1 (Very High)
Based on

specification
(5,8> <0,10>

3 Automated < 11,30 > <13,20> <4,6> 3 (Medium)
Based on

specification
(2,5> (10,20>

4 Automated < 11,30 > <6,12> <4,6> 2 (High)

Based on daily

business

 experience

(2,5> (10,20>

5 Automated <1,10 > <1,5 > <1,3> 1 (Very High)

Based on daily

business

 experience

<0,2> (10,20>

Test case Percentage Priority

1 37,50% Low

2 83,93% Very high

3 53,57% Medium

4 73,21% High

5 96,43% Very high

63

Graph 1 Comparison of results for Automated Test cases computed in MS Excel and MATLAB.

Constructed by author.

In order to proceed with solution for evaluation of Manual Test cases, the same

approach is used analogously. The output for determination of priority derived from

MATLAB is shown in the last column of Table 8. Apart from that, input data for

computation made in Excel are shown in the Table 9. Final evaluated figures computed

in MS Excel are expressed in percentage in the Table 10.

 Table 8 Input data for evaluation of Manual Test cases computed in MATLAB. Constructed by author.

44,64%

83,93%

53,57%

73,21%

96,43%

39,68%

80,11%

59,36%

79,99%

95,51%

0,00%

20,00%

40,00%

60,00%

80,00%

100,00%

Test case 1 Test case 2 Test case 3 Test case 4 Test case 5

Evaluation of Test case priority

MS Excel MATLAB

Output

Number of

test steps

Number of

verification

steps

Modul integration

complexity

Business

priority

Test case

background

Priority

[%]

<1;100> <1;60> <1;20> <1;4> <1;2>

40 15 8 4 1 14,50%

20 3 5 1 2 94,78%

40 15 8 3 2 39,72%

5 10 2 2 1 79,67%

70 15 2 1 1 79,67%

Input 1 Input 2

64

 Table 9 Input data for evaluation of Manual Test cases for computation made in MS Excel.

 Constructed by author.

 Table 10 Priority of Manual Test cases computed in MS Excel

 Constructed by author.

Last but not least, the output of Test case priority calculated in both programs is

depicted in the Graph 2. Input data compared in this graph are resulted from Table 8 and

Table 10. Nevertheless, the eventual amount of Test cases which is considered to be

evaluated depends mainly on type of executed tests.

Test

case

Type of test

case

Number of

test steps

Number of

verification

steps

Module

integration

complexity

Business

priority

Test case

background

1 Manual <31,50 > <13,20> <7,10> 4 (Low)

Based on daily

business

 experience

2 Manual < 11,30 > <1,5> <4,6> 1 (Very High)
Based on

specification

3 Manual <31,50 > <13,20> <7,10> 3 (Medium)
Based on

specification

4 Manual <1,10 > <6,12> <1,3> 2 (High)

Based on daily

business

 experience

5 Manual < 51,100 > <13,20> <1,3> 1 (Very High)

Based on daily

business

 experience

Test case Percentage Priority

1 18,18% Very low

2 90,91% Very high

3 40,91% Medium

4 84,09% Very high

5 81,82% Very high

65

Graph 2 Comparison of results for Manual Test cases computed in MS Excel and MATLAB.

Constructed by author.

18,18%

90,91%

40,91%

84,09% 81,82%

14,50%

94,78%

39,72%

79,67% 79,67%

0,00%

20,00%

40,00%

60,00%

80,00%

100,00%

Test case 1 Test case 2 Test case 3 Test case 4 Test case 5

Evaluation of Test case priority

MS Excel MATLAB

66

CONCLUSIONS

The aim of master’s thesis was to determine prioritization of Test case using Fuzzy logic

based model. So as to get evaluation of Test cases in order of priority, Fuzzy based model

was selected because of better decisions made by it in comparison to the additional normal

expert systems. Moreover, Fuzzy logic allows the integration of numerical data and expert

knowledge and can be a powerful tool when tackling significant problems in software

engineering especially in testing environment such as determination of Test case priority.

In fact, the output of the proposed model is resulted from determination of Test case

priority order in the program MS Excel and Fuzzy Logic Toolbox in MATLAB. In order

to fulfil the aim, firstly, it was essential to determine input variables along with parameters

set to each Test case and assigning its particular weights based on testing environment in

BIAC’s company.

From the overall point of view, prioritization is used when the time for the testing is

limited. In general, determination of Test case priority can improve the test effectiveness

and the rate of fault detection during the tests phase. Therefore, prioritization of the Test

cases was widely proposed in the BIAC’s company. The results obtained due to this

process are very encouraging for better decision-making in whole Test Management.

However, one of the greatest difficulties in using the model is determination of proper

fuzzy rules which depends on current priority of tests which are executed in that moment.

These fuzzy rules express the information for interpretation of the nature of Test cases in

testing department. The interpretation of each fuzzy rule is made by analysing its basis

and its output finally provides a determination of Test case priority order. Besides that,

additional measures, improvements and fine-tuning will be conducted in Test department

in the foreseeable future.

With regard to the aim of master’s thesis, whole concept was divided into three main

parts. The first part was dedicated to literature review which consisted of theoretical

knowledge concerning testing phase in software engineering. The second part represents

analyses focusing on profile of BIAC’s company, SAP modules and process of software

testing in BIAC. Finally, the last part is dedicated to evaluation of Test case priority in

the program MS Excel and Fuzzy Logic Toolbox in MATLAB. Furthermore, results

derived from both solutions are depicted and compared in the graphs.

67

REFERENCES

BHASIN H., GUPTA S. and KATHURIA M., 2013. Regression Testing Using Fuzzy

Logic. International Journal of Computer Science and Information Technologies.

[online], 4(2), pp. 378-380. Available via: International Journal of Computer Science and

Information Technologies [Accessed 11 November 2013].

BIAC, 2014a. About us [online]. Business Insurance Application Consulting GmbH.

Available at: http://www.biac.at/en/about-us [Accessed 12 April 2014].

BIAC, 2014b. Insurance Solutions [online]. Business Insurance Application Consulting

GmbH. Available at: http://www.biac.at/en/insurance-solutions [Accessed 12 April

2014].

BIAC, 2014c. Project Management [online]. Business Insurance Application

Consulting GmbH. Available at: http://www.biac.at/en/project-management [Accessed

12 April 2014].

BIAC, 2014d. Test Management [online]. Business Insurance Application Consulting

GmbH. Available at: http://www.biac.at/en/test-management [Accessed 12 April 2014].

BIAC, 2014e. Support Services [online]. Business Insurance Application Consulting

GmbH. Available at: http://www.biac.at/en/support-services [Accessed 12 April 2014].

BIAC, 2014f. Business Consulting [online]. Business Insurance Application Consulting

GmbH. Available at: http://www.biac.at/en/business-consulting [Accessed 12 April

2014].

BIAC, 2014g. Solution Consulting [online]. Business Insurance Application Consulting

GmbH. Available at: http://www.biac.at/en/solution-consulting [Accessed 12 April

2014].

BIAC, 2014h. Architecture and Quality Management [online]. Business Insurance

Application Consulting GmbH. Available at: http://www.biac.at/en/architecture-and-

quality-management [Accessed 12 April 2014].

BIAC, 2014i. SAP Insurance Modules [online]. Business Insurance Application

Consulting GmbH. Available at: http://www.biac.at/en/insurance-solutions#FS-PM

[Accessed 28 April 2014].

68

BIAC, 2014j. BIAC Service Catalogue. Intranet, BIAC, Vienna.

CHAUDHARY N., SANGWAN O.M., and SINGH Y., 2012. Testcase Prioritization

Using Fuzzy Logic for GUI based Software. International Journal of Advanced Computer

Science and Applications. [online], 3(12), pp.222-227. Available via: International

Journal of Advanced Computer Science and Applications [Accessed 12 November 2013].

DOSTÁL P., 2011. Advanced decision making in business and public services. 1st ed.

Brno: Akademické nakladatelství CERM. 167 p. ISBN 978-80-7204-747-5

EMERALD INSIGHT, 2014. Architecture of fuzzy decision making system [online].

Emerald Group Publishing Limited. Available at:

http://www.emeraldinsight.com/content_images/fig/1820240402017.png [Accessed 08

April 2014].

ESRU, 2014. Operations on Fuzzy Sets [online]. University of Strathclyde. Available at:

http://www.esru.strath.ac.uk/Reference/concepts/fuzzy/operations.htm [Accessed 09

April 2014].

EVERETT G., MCLEOD R., 2009. Software Testing: Testing Across the Entire Software

Development Life Cycle. New Jersey: John Wiley & Sons. 345 p. ISBN 0470146346

JANSSEN C., 2014. Microsoft Excel [online]. Techopedia. Available at:

http://www.techopedia.com/definition/5430/microsoft-excel [Accessed 04 May 2014].

KELKAR S.A., 2009. Software Project Management: A concise study. 2nd ed. New Delhi:

PHI Learning Pvt. 230 p. ISBN 8120336720

KHAN E., 2011. Different Software Testing Levels for Detecting Errors. International

Journal of Software Engineering. [online], 2(4) pp. 70-80. Available at:

http://cscjournals.org/csc/manuscript/Journals/IJSE/volume2/Issue4/IJSE-60.pdf

[Accessed 8 April 2014].

KLINGENBERG B., 2014. Beginners Tutorial [online]. Calvin College Engineering.

Available at: http://www.calvin.edu/~pribeiro/othrlnks/Fuzzy/tutorial1.htm [Accessed

13 April 2014].

LEMOS O.A.L., FERRARI F.C., ELER M.M., MALDONADO J.C. and MASIERO

P.C., 2012. Evaluation studies of software testing research in Brazil and in the world: A

survey of two premier software engineering conferences. The Journal of Systems and

Software. [online], 86(2013) pp. 951-969. Available via: The Journal of Systems and

Software. [Accessed 5 April 2014].

69

LEWIS J., 2008. SDLC 100 Success Secrets - Software Development Life Cycle (SDLC)

100 Most Asked Questions, SDLC Methodologies, Tools, Process and Business Models.

Newstead: Emereo Publishing. 184 p. ISBN 1921523158

MATHWORKS, 2014a. Matlab: The Language of Technical Computing [online]. The

MathWorks, Inc. Available at: http://www.mathworks.com/products/matlab/ [Accessed

12 April 2014].

MATHWORKS, 2014b. Fuzzy Logic Toolbox: Design and simulate fuzzy logic systems

[online]. The MathWorks, Inc. Available at:

http://www.mathworks.com/products/fuzzy-logic/index.html [Accessed 12 April 2014].

MATHWORKS, 2014c. Fuzzy Logic Toolbox: Working with the Fuzzy Logic Toolbox

[online]. The MathWorks, Inc. Available at:

http://www.mathworks.com/products/fuzzy-logic/description2.html

[Accessed 12 April 2014].

MATHWORKS, 2014d. Fuzzy Logic Toolbox: Key Features [online]. The MathWorks,

Inc. Available at: http://www.mathworks.com/products/fuzzy-logic/description1.html

[Accessed 12 April 2014].

MATHWORKS, 2014e. Interpreting the Fuzzy Inference Diagram [online]. The

MathWorks, Inc. Available at:

http://www.mathworks.com/cmsimages/40305_wl_fl_mainimage_wl_3248.gif

[Accessed 12 April 2014].

MATHWORKS, 2014f. Fuzzy Logic Toolbox: Building a Fuzzy Inference System

[online]. The MathWorks, Inc. Available at:

http://www.mathworks.com/products/fuzzy-logic/description3.html

[Accessed 12 April 2014].

MATHWORKS, 2014g. Documentation Center: Build Mamdani Systems (GUI)

[online]. The MathWorks, Inc. Available at:

http://www.mathworks.com/help/fuzzy/building-systems-with-fuzzy-logic-toolbox-

software.html

[Accessed 12 April 2014].

OLADIMEJI P., 2007. Levels of Testing. [online], Swansea University. Available at:

http://www.cs.swan.ac.uk/~csmarkus/CS339/dissertations/OladimejiP.pdf

[Accessed 12 April 2014].

70

OMRAN H., 2010. Fuzzinator: A Fuzzy Logic Controller [online]. Code Project.

Available at: http://www.codeproject.com/Articles/33214/Fuzzinator-A-Fuzzy-Logic-

Controller [Accessed 09 April 2014].

RODRIGEZ J.P., VIZCAINO A., PIATTINI M. and BEECHAM S., 2012. Tools used in

Global Software Engineering: A systematic mapping review. Information and Software

Technology. [online], pp. 663-685. Available via: Information and Software Technology

[Accessed 2 April 2014].

SCHMIDT R., 2009. Software Engineering: Architecture-driven Software Development.

San Francisco: Morgan Kaufmann. 376 p. ISBN 0124077684

SRIVASTAVA P.R., KUMAR S., SINGH A.P. and RAGHURAMA G., 2010. Software

Testing Effort: An Assessment Through Fuzzy Criteria Approach. Journal of Uncertain

Systems. [online], 5(3), pp. 183-201. Available via: Journal of Uncertain Systems

[Accessed 1 April 2014].

SYMBIOSYS TECHNOLOGIES, 2013. Beginners Guide to Software Testing [online].

Symbiosys Technologies. Available at:

http://api.ning.com/files/5jbHWSIOQjGopyhKTRk3iXyBYhqM7zg7HF-

ZRD9JLI8kUS2pIv1eJ9ieZ1CrfAzzlFXAlE0DpEACMZ6nLf5YF6wU536XIsWQ/Gui

deSoftwareTesting.pdf [Accessed 12 April 2014].

TAGHAVIFAR H. and MARDANI A., 2013. Fuzzy logic system based prediction effort:

A case study on the effects of tire parameters on contact area and contact pressure.

Applied Soft Computing. [online], 14(2014) pp. 390-396. Available at: ScienceDirect

[Accessed 8 April 2014].

TUTORIALSPOINT, 2014. Software Testing Tutorial [online]. Tutorialspoint.

Available at:

http://www.tutorialspoint.com/software_testing/software_testing_pdf_version.htm

[Accessed 08 April 2014].

ZADEH, L.A., 1965. Fuzzy sets. Information and Control. [online], 8(3), pp. 338-353.

Available via: ScienceDirect [Accessed 1 April 2014].

71

LIST OF FIGURES

Figure 1 Fuzzy sets μA, μB. .. 13

Figure 2 Intersection of two fuzzy sets. .. 14

Figure 3 Union of two fuzzy sets. ... 14

Figure 4 Negation of the fuzzy set A. ... 14

Figure 5 Architecture of fuzzy decision making system. ... 15

Figure 6 The types of membership functions , ... 15

Figure 7 Fuzzy Inference Diagram. .. 18

Figure 8 Fuzzy inference system. ... 19

Figure 9 FIS Editor ... 19

Figure 10 Membership Function Editor .. 20

Figure 11 Rule Editor. .. 20

Figure 12 Rule Viewer .. 21

Figure 13 Surface Viewer ... 21

Figure 14 Iterative waterfall model .. 24

Figure 15 Role of software engineering within a project environment. 28

Figure 16 Acceptance testing .. 34

Figure 17 Verification, validation and testing: schematic .. 35

Figure 18 SAP Modules .. 42

Figure 19 Input variable scheme for Automated Test cases. .. 54

Figure 20 Input variable scheme for Manual Test cases. ... 54

Figure 21 FIS Editor – Input1. Constructed by author. .. 55

Figure 22 MF Editor – Input1. Constructed by author. .. 56

Figure 23 Rule Editor – Input 1. Constructed by author. ... 57

Figure 24 Rule Viewer - Input 1. Constructed by author. .. 58

Figure 25 Surface Viewer – Input 1. Constructed by author. ... 59

Figure 26 Determination of priority for Manual Test Cases derived from Command

Window. .. 60

Figure 27 Determination of priority for Automated Test Cases derived from Command

Window. .. 60

Figure 28 Determination of priority for Test Case inputs derived from MS Excel. 61

file:///C:/Users/astarost/Desktop/Diplomka/Moja%20DP/Draft_Diploma%20thesis_Andrea_Starostova2.docx%23_Toc388997106

72

LIST OF TABLES

Table 1 Description of transformation matrix .. 50

Table 2 State (Yes - No) matrix. ... 51

Table 3 Transformation matrix ... 51

Table 4 Retransformation matrix. ... 52

Table 5 Input data for evaluation of Automated Test cases for computation made in

MATLAB. ... 61

Table 6 Input data for evaluation of Automated Test cases for computation made in MS

Excel. .. 62

Table 7 Priority of Automated Test cases computed in MS Excel 62

Table 8 Input data for evaluation of Manual Test cases computed in MATLAB. 63

Table 9 Input data for evaluation of Manual Test cases for computation made in MS

Excel. .. 64

Table 10 Priority of Manual Test cases computed in MS Excel 64

LIST OF GRAPHS

Graph 1 Comparison of results for Automated Test cases computed in MS Excel and

MATLAB .. 63

Graph 2 Comparison of results for Manual Test cases computed in MS Excel and

MATLAB .. 65

73

LIST OF APPENDICES

Appendix 1 - M-file derived from MATLAB .. 74

Appendix 2 - M-file derived from MATLAB .. 76

Appendix 1 - M-file derived from MATLAB

Source code for evaluation of Test case priority used for user who enters the input data

manually.

Type_of_testcase= input ('Enter type of test case in the form 0-Manual

or 1-Automated:');

switch Type_of_testcase
 case 0
 a=readfis ('Input1.fis');
 Input1=input ('Enter input data in the form\n[Number of test

steps;Number of verification steps;Modul integration complexity]:');
 evalI1=evalfis (Input1, a);

 b=readfis ('Input2.fis');
 Input2=input ('Enter input data in the form [Business

priority; Test case background]:');
 evalI2=evalfis (Input2, b);

 d=readfis ('Input_man.fis');
 Input_man(1) =evalI1;
 Input_man(2) =evalI2;
 Priority=evalfis (Input_man, d);
 Input_man
 Priority

 if Priority <=0.30 'Very low'
 elseif Priority <0.40 'Low'
 elseif Priority <0.60 'Medium'
 elseif Priority <0.80 'High'
 elseif Priority <1 'Very high'
 end

 %fuzzy (d)
 %mfedit(d)
 %ruleedit(d)
 %surfview(d)
 %ruleview(d)

 case 1
 a=readfis ('Input1.fis');
 Input1=input ('Enter input data in the form \n[Number of test

steps; Number of verification steps; Modul integration complexity

]:');
 evalI1=evalfis (Input1, a);

 b=readfis ('Input2.fis');
 Input2=input ('Enter input data in the form [Business

priority; Test case background]:');
 evalI2=evalfis (Input2, b);

 c=readfis ('Input3.fis');
 Input3=input ('Enter input data in the form [Execution time;

Preparation for execution time]:');

 evalI3=evalfis (Input3, c);

 d=readfis ('Input_aut.fis');
 Input_aut(1) =evalI1;
 Input_aut(2) =evalI2;
 Input_aut(3) =evalI3;
 Priority=evalfis (Input_aut, d);
 Input_aut
 Priority

 if Priority <=0.30 'Very low'
 elseif Priority <0.40 'Low'
 elseif Priority <0.60 'Medium'
 elseif Priority <0.80 'High'
 elseif Priority <1 'Very high'
 end

 %fuzzy (d)
 %mfedit(d)
 %ruleedit(d)
 %surfview(d)
 %ruleview(d)

 otherwise
 disp('Invalid value of type of test case');
 end

Appendix 2 - M-file derived from MATLAB

Source code for evaluation of Test case priority used for automatic loading the input data

from Excel Sheet to Fuzzy Logic Toolbox.

Type_of_testcase= input ('Enter type of test case in the form 0-Manual

or 1-Automated:');

switch Type_of_testcase
 case 0
 a=readfis ('Input1.fis');
 b=readfis ('Input2.fis');
 d=readfis ('Input_man.fis');

 File_name = input ('Enter file name in the form name.xls

written with an apostrophe :');
 Input1matrix = xlsread (File_name,

'Manual_testcases','A4:C99');
 Input2matrix = xlsread (File_name,

'Manual_testcases','D4:E99');
 Input1matrix_size = size(Input1matrix);

 for row=1:1:Input1matrix_size(1)
 Input1 = Input1matrix(row, :);
 Input2 = Input2matrix(row, :);

 evalI1=evalfis (Input1, a);
 evalI2=evalfis (Input2, b);

 Input_man(1) =evalI1;
 Input_man(2) =evalI2;
 Priority=evalfis (Input_man, d);
 Input_man
 Priority
 xlswrite(File_name, Priority, 'Manual_testcases', ['F'

num2str(3+row)]);

 if Priority <=0.20 'Very low'
 elseif Priority <0.40 'Low'
 elseif Priority <0.60 'Medium'
 elseif Priority <0.80 'High'
 elseif Priority <1 'Very high'
 end

 %fuzzy (d)
 %mfedit(d)
 %ruleedit(d)
 %surfview(d)
 %ruleview(d)
 end

 case 1
 a=readfis ('Input1.fis');
 b=readfis ('Input2.fis');

 c=readfis ('Input3.fis');
 d=readfis ('Input_aut.fis');

 File_name = input ('Enter file name in the form

[name.xls]written with an apostrophe :');
 Input1matrix = xlsread (File_name,

'Automated_testcases','A4:C99');
 Input2matrix = xlsread (File_name,

'Automated_testcases','D4:E99');
 Input3matrix = xlsread (File_name,

'Automated_testcases','F4:G99');
 Input1matrix_size = size(Input1matrix);

 for row=1:1:Input1matrix_size(1)
 Input1 = Input1matrix(row, :);
 Input2 = Input2matrix(row, :);
 Input3 = Input3matrix(row, :);

 evalI1=evalfis (Input1, a);
 evalI2=evalfis (Input2, b);
 evalI3=evalfis (Input3, c);

 Input_aut(1) =evalI1;
 Input_aut(2) =evalI2;
 Input_aut(3) =evalI3;
 Priority = evalfis (Input_aut, d);
 Input_aut
 Priority
 xlswrite(File_name, Priority, 'Automated_testcases', ['H'

num2str(3+row)]);

 if Priority <=0.20 'Very low'
 elseif Priority <0.40 'Low'
 elseif Priority <0.60 'Medium'
 elseif Priority <0.80 'High'
 elseif Priority <1 'Very high'
 end

 %fuzzy (d)
 %mfedit(d)
 %ruleedit(d)
 %surfview(d)
 %ruleview(d)
 end
end

