
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

MODULEFORPRONUNCIATIONTRAININGANDFOR-
EIGN LANGUAGE LEARNING
MODUL PRO VÝUKU VÝSLOVNOSTI CIZÍCH JAZYKŮ

MASTER’S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Bc. VLADAN KUDLÁČ
AUTOR PRÁCE

SUPERVISOR Ing. IGOR SZŐKE, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2021

Brno University of Technology
Faculty of Information Technology

 Department of Computer Graphics and Multimedia (DCGM) Academic year 2020/2021

 Master's Thesis Specification

Student: Kudláč Vladan, Bc.
Programme: Information Technology
Field of
study:

Computer Networks

Title: Module for Pronunciation Training and Foreign Language Learning
Category: Speech and Natural Language Processing
Assignment:

1. Get familiar with basics of pronunciation training and comparison of two audio
examples (using DTW). Study basics of implementation for OS Android.

2. Study provided language learning mobile application.
3. Refactor the provided mobile implementation, profile it and propose optimizations with

respect to increasing accuracy, and processing speed and decreasing memory footprint (if
possible).

4. Discuss achieved results and future work.
5. Create an A2 poster and a short video presenting your work.

Recommended literature:
M. Muller, Information Retrieval for Music and Motion, Springer-Verlag, 2007.
According to supervisor's recommendation

Requirements for the semestral defence:
Items 1, 2 and part of item 3.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Szőke Igor, Ing., Ph.D.
Head of Department: Černocký Jan, doc. Dr. Ing.
Beginning of work: November 1, 2020
Submission deadline: May 19, 2021
Approval date: October 30, 2020

Powered by TCPDF (www.tcpdf.org)

Master's Thesis Specification/23944/2020/xkudla15 Page 1/1

Abstract
The goal of this thesis is to refactor the implementation of speech processing module for
mobile application used for teaching pronunciation, profile it and propose optimizations
with respect to increasing accuracy, processing speed, and decreasing memory footprint.

Abstrakt
Cílem této práce je vylepšit implementaci modulu pro mobilní aplikace pro výuku výslovnosti,
najít místa vhodná pro optimalizaci a provést optimalizaci s cílem zvýšit přesnost, snížit
čas zpracování a snížit paměťovou náročnost zpracování.

Keywords
speech processing, profiling, optimisation, DTW, TensorFlow, Android, parallelization

Klíčová slova
zpracování záznamu řeči, profilování, optimalizace, DTW, TensorFlow, Android, paralelizace

Reference
KUDLÁČ, Vladan. Module for Pronunciation Training and Foreign Language Learning.
Brno, 2021. Master’s thesis. Brno University of Technology, Faculty of Information Tech-
nology. Supervisor Ing. Igor Szőke, Ph.D.

Rozšířený abstrakt
Při výuce jazyka je výslovnost důležitou součástí. Zatímco slovíčka lze trénovat psaním

slov a vět, a následným porovnáním se správnou variantou, výslovnost lze trénovat pouze
opakováním a vyslovováním frází a vět. U výslovnosti neexistuje správná a špatná odpověď,
obvykle lze porovnat přesnost výslovnosti vůči referenční nahrávce nebo pomocí výslovnos-
tního modelu.

Cílem této práce je optimalizovat modul pro mobilní aplikaci, který umožní získat
přesnost výslovnosti. Výstupem této práce je modul, který je schopen rychle ohodnotit
výslovnost i na méně výkonných chytrých telefonech a tabletech, který bude fungovat i na
pomalém nebo žádném internetovém připojení.

Pro demonstrační účely má modul jednoduché grafické rozhraní, pomocí kterého je
možné zkoušet různé případy použití. Rozhraní je implementované v React Native a není
určeno pro koncové uživatele. Modul by měl být implementován do aplikace, která umožní
uživateli přehrát referenční nahrávku, nahrát svůj hlas, vyhodnotit výslovnost a zobrazit
uživateli výsledky.

Vedoucí práce poskytl původní výpočetní modul implementovaný v programovacím
jazyce Java. Modul byl poskytnut včetně natrénovaného modelu pro extrakci příznaků
z řeči, vzorové anotované nahrávky a vypočítaných příznaků pro vzorovou nahrávku. Dále
poskytl jednoduché grafické rozhraní implementované pomocí React Native frameworku.
Původní modul byl nestabilní a obsahoval chyby ve výpočtu. V rámci práce byl modul
přepsán, byla přidána možnost automatizovaného spouštění a testování, a díky tomu mohly
být nepřesnosti ve výpočtu lokalizovány a opraveny. V uživatelském rozhraní byly opraveny
pády a bylo rozšířeno zobrazování aktuálního stavu modulu, zejména při více souběžných
operacích.

Zpracování probíhá přímo v zařízení, takže funguje i off-line. Tomu bylo potřeba přizpů-
sobit použité algoritmy. Zvolený algoritmus je založený na porovnávání příznaků dvou au-
dio nahrávek. Oproti převodu řeči na text a následném porovnání vyžaduje tento přístup
menší neuronovou síť, tedy menší výpočetní nároky. Tento přístup je také více zaměřený
na intonaci a správnou výslovnost.

Nejprve je nahrán hlas uživatele jako jednokanálové audio (mono), kde jednotlivé vzorky
jsou reprezentovány pomocí nekomprimované pulzně kódové modulace (PCM) s bitovou
hloubkou 16 bitů. Tento formát je používaný například u formátu WAV (RIFF). U za-
řízeních s OS Android je jediná garantovaná vzorkovací frekvence 44 100 Hz. Po nahrání
hlasu je sníženo vzorkování nahrávky ze 44 100 Hz na 8 000 Hz. Poté jsou z jednotlivých
vzorků audio nahrávky vytvořeny překrývající se rámce. Pro tyto rámce jsou vypočteny
frekvenční charakteristiky pomocí diskrétní Fourierovy transformace. Tyto frekvence jsou
poté převedeny a sloučeny do Mel bank. Mel banky charakterizují úseky nahrávek z hlediska
frekvencí, které jsou pro lidský hlas význačné, pomocí 24 charakteristik (bank). Poté
probíhá výpočet fonémů. Protože ale nepotřebujeme převádět hlas na textový přepis,
využívají se pouze 3 vrstvy z původní neuronové sítě pro výpočet fonémů a výstupem
je nejmenší z vrstev (bottleneck vrstva), která dokáže rámec popsat pomocí 30 číselných
hodnot. Protože potřebujeme porovnat dvě odlišné nahrávky, s odlišnou délkou a s různě
rychlými řečníky, potřebujeme části nahrávek zarovnat pomocí DTW algoritmu. Výstu-
pem algoritmu je řetězec ve formátu JSON, který obsahuje celkový výsledek i úspěšnost
pro jednotlivá slova.

Hlavní náplní a největším přínosem této práce je identifikace částí, které lze vylepšit
a optimalizovat. Použité techniky lze použít v podobných aplikacích, protože uvedený
způsob zpracování řeči je poměrně rozšířený. Nejprve byla aplikace částečně přepsána

z programovacího jazyka Java do jazyka Kotlin. To umožnilo použití knihovny Kotlin
Coroutines. Knihovna je určena pro snadné psaní asynchronního kódu a obsahuje další
nástroje pro paralelní programování (např. Kotlin Channels pro komunikaci mezi vlákny).

Poté jsme se zaměřili na zrychlení načítání modulu a zrychlení zpracování nahrávek
při zachování přesnosti. Pro využití nízko úrovňových funkcí, které hardware dnešních
telefonu poskytuje, jsme využili vysoko úrovňovou knihovnu TensorFlow Lite. Vyzkoušeli
jsme různé akcelerátory, ale nakonec se pro použitý model osvědčila CPU varianta s jedním
vláknem (použitá neuronová síť není dostatečně složitá, s dostatečnou aritmetickou inten-
zitou). Výpočet se podařilo dále zrychlit výpočtem více rámců zaráz. Jako optimální se
jeví výpočet 16 rámců zaráz, další zvětšování počtu rámců nevede k dalšímu zrychlení. Pro
složitější sítě se ukázalo výhodné provádět výpočet na GPU. Naopak NNAPI se neukázalo
pro tento typ modelu příliš výhodné. Díky TensorFlow Lite se podařilo zkrátit dobu
načítání neuronové sítě ze 7,6 sekund na 0,8 sekund. Zpracování 10sekundové nahrávky
trvá 1 sekundu místo původních 2,7 sekund. U 5s nahrávky se doba zpracování zkrátila
z 1,1 sekund na 0,3 sekund.

Jako druhou techniku jsme zvolili paralelizaci. Identifikovali jsme problematické bloky
pro paralelizaci a navrhli možné způsoby paralelizace. Implementované paralelní řešení
zachovává původní přesnost a přináší zrychlení 45 % oproti časům po nasazení TensorFlow
Lite.

Poslední věcí je uživatelské rozhraní. Zpracování se může zrychlit, ale pokud je uživa-
telské rozhraní a vykreslování pomalé, uživatel žádné zrychlení nepocítí. Navíc i po použití
výše uvedených optimalizací je pro zpracování stále potřeba 174 ms. Tuto dobu může ap-
likace skrýt do přechodů mezi stavy nebo do krátkých animací, takže z pohledu uživatele
bude zobrazení výsledků okamžité.

Proces optimalizace lze vyhodnotit jako úspěšný. Podařilo se snížit čas zpracovávání 5s
záznamu z 928 ms na 174 ms se stejnou přesností. Delší záznam (10 sekund) byl původně
zpracován za 2,5 sekundy, na konci práce pouze za 0,5 sekundy. Doba načítání neuronové
sítě byla snížena ze 6 sekund na 8 milisekund.

V modulu jsou stále prostory pro zrychlení. V paralelizaci lze použít normalizaci s
plovoucím oknem a experimentovat s přesností. DTW lze upravit tak, aby pracovalo pouze
s částí stavového prostoru. V grafickém rozhraní stále dochází ke zpomalení, pokud probíhá
více operací současně.

V budoucnu je plánováno nasazení ve skutečné aplikaci pro výuku cizích jazyků. Dále je
zamýšleno využít tyto techniky na další podobné aplikace, jako například na rozpoznávač
řeči.

Module for Pronunciation Training and Foreign
Language Learning

Declaration
I hereby declare that this Master’s thesis was prepared as an original work by the author
under the supervision of Doc. Igor Szőke. I have listed all the literary sources, publications
and other sources, which were used during the preparation of this thesis.

. .
Vladan Kudláč

May 17, 2021

Acknowledgements
I would like to thanks to the supervisor who was providing valuable advice and hints and
who introduced me deeper into the issue of speech processing. Many thanks to my family
for their support.

Contents

1 Introduction 3

2 Mobile application 5
2.1 React Native UI . 5
2.2 Speech Engine module . 7
2.3 Program functions . 7
2.4 Use case . 7

3 Speech processing 10
3.1 Recording . 11
3.2 Down-sampling . 12
3.3 Mel filter . 12

3.3.1 Framing . 12
3.3.2 Hamming window . 12
3.3.3 Discrete Fourier transform (DFT) 13
3.3.4 Mel banks . 14

3.4 Feed forward neural network . 16
3.4.1 Mean normalization . 17

3.5 Dynamic time warping . 18
3.6 Calculating the score . 20
3.7 Conclusion . 20

4 Refactoring 21
4.1 Code readability and maintainability . 21
4.2 Kotlin with Java code . 23
4.3 Kotlin coroutines . 23

5 Optimizing 24
5.1 Measurement methodology . 24
5.2 Profiling before optimization . 25
5.3 TensorFlow Lite . 26

5.3.1 Creating custom model . 26
5.3.2 Deploying model . 28
5.3.3 Profiling . 29
5.3.4 Batch processing . 31
5.3.5 Number of threads . 33
5.3.6 Conclusion . 34

5.4 Parallelization . 34

1

5.4.1 Identify parallelizable code . 35
5.4.2 Implementation . 37
5.4.3 Profiling . 38

5.5 Improving the UI response time . 40
5.6 Conclusion . 41

6 Conclusion 44

Bibliography 46

A API Documentation 47

B Configuration files 49
B.1 SpeechEngineConfig.json . 49
B.2 Task1Config.json . 49

2

Chapter 1

Introduction

The goal of this thesis is to refactor the provided implementation of the speech processing
module used in the Android mobile application for learning foreign languages. Refactoring
should mainly speed up processing, improve code readability and divide the code into
separate modules, which should make easier development in the future.

When learning a language, we need to learn new vocabulary, the written form, and
learn how to pronounce it. Then compose words into sentences and learn proper intonation
and accent. The grammar can be checked by writing the sentence, composing from blocks,
or selecting the correct form. But only repeating or reading phrases or words can check
the pronunciation. Also, in terms of pronunciation, there is no correct or wrong answer.
There is usually a reference recording or pronunciation model to be compared with. Users
can get success a rate or success/fail in case of applying a threshold. The output of this
thesis will be a library, which will to evaluate the user pronunciation from a recording. The
application is intended, among other countries, for the Indian market. So, there is a request
for fast speech evaluation even on low-end smartphones or tablets and for low mobile data
usage and offline mode. That is the purpose of refactorization and finding ways, how to
speed up the evaluation process.

My supervisor provided me the evaluation module, including a trained model in the
binary form used for features extraction, one example of annotated recording, reference
features of recording, and a simple React Native wrapper (GUI). The original module was
created by porting JavaScript implementation used in the company ReplayWell1 into Java.
The module was able to evaluate the speech but it was crashing when calling the API
in the wrong order or multiple times. Beyond the scope of this work, I fixed the crashes
and changed error handling and logging. The evaluation results seemed inaccurate, but it
was not possible to test the implementation. Before experimenting with different models
and optimizations, I added loading and saving user speech into the WAV file. Thus, the
application can be run multiple times with the same input data, which generates the same
output results. So, the output results can be compared. The application now includes a
debug mode which dumps output, as a matrix of each processing phase, into the file. With
the debug mode, I was able to locate and fix the source of evaluation inaccuracy. Figures
4.1 and 4.2 display the difference between the original solution and the refactored solution.
Refactorizations with impact on speed or accuracy are included in chapter five. The user
interface was simplified into a more compact layout. Messages from the processing module
are parsed to show multiple progress bars. All known bugs, that were causing the crashes,

1ReplayWell - systems for speech and video processing, https://www.replaywell.com

3

https://www.replaywell.com

were fixed. The added profiling mode can automatically go through an initializing phase
to the processing phases based on states received from the computing module.

This thesis is divided into six chapters. In the second chapter, I will describe the func-
tionality and usage of this module. In the third chapter, I will explain the used algorithm
for speech processing, which explains the background of algorithm complexity. In chap-
ters four and five, the process of refactorization is described. The refactorization process
is divided into two parts. Chapter four is about changes improving module architecture
and chapter five is an experimental part, which describes proposed optimizations and the
process of their implementation.

4

Chapter 2

Mobile application

In this chapter, I will describe application architecture, communication between React Na-
tive UI and native Speech Engine module, the functionality of the module, typical usage of
the API, options available in configuration files, and file structure of tasks and the module
itself. The module lacked documentation, so I will reference to API or schemas attached in
Appendices.

2.1 React Native UI
The SpeechEngine module will be used in an application already implemented in React
Native1. The module does not have its user interface. The SpeechEngine module is wrapped
in a simple React Native user interface to demonstrate module functionalities and test them
properly. Buttons are calling corresponding API functions (see appendix A) and state and
progress indicators displaying feedback from the module, see figure 2.1. This interface is
not intended for users as wrong combinations of call sequences will cause errors The UI of a
real application will be like the UI of the module implemented in JavaScript with the user
interface written in HTML (see figure 2.2).

Building React Native app requires Node.js2 (at least version 12 for React Native version
0.64) and npm3. JSX (JavaScript extended by React Native) describes UI and its behaviour.
JavaScript engine renders native UI and handles OS events using React Native Bridge.
Modules implemented in Kotlin or Java are wrapped into React Package using Native
Modules. Communication between the JavaScript engine and the native module is by
emitting and listening to asynchronous calls.

The project can be deployed in development mode to mobile using Android Studio.
React Native part is distributed using the Metro server4. The app is released for users as
a regular APK (Android application package) file with its requirements for minimal and
targeting Android version directed by application developers. The minimal required API
level is currently 23 (Android Marshmallow).

1React Native - a framework for building Android and iOS applications using React, https://
reactnative.dev

2Node.js - JavaScript runtime, build on Google’s V8 engine, https://nodejs.org
3npm - package manager for Node.js, https://www.npmjs.com.
4Metro - JavaScript bundler for React Native, https://facebook.github.io/metro

5

https://reactnative.dev
https://reactnative.dev
https://nodejs.org
https://www.npmjs.com
https://facebook.github.io/metro

Figure 2.1: Graphical user interface (GUI) of React Native wrapper. The buttons corre-
spond to the functions from the API. Numbers in the circles indicate the order in which the
buttons are used (numbers are not part of GUI). There are two configured tasks (buttons
3a and 3b) to choose from.

Figure 2.2: Screenshot of ReplayWell user interface demonstration written in HTML and
JavaScript. Available at: https://www.replaywell.com/glplayer/demo/.

6

https://www.replaywell.com/glplayer/demo/

2.2 Speech Engine module
The speech engine module provides functionalities for playing reference recording, recording
user’s voice and evaluating the accuracy of pronunciation. This part is implemented in Java
and Kotlin, and unlike to React Native part, it is targeted only to Android. Creating a
native engine module for iOS is not covered by this thesis.

2.3 Program functions
The following use case diagram (figure 2.3) represents functions that can be called from the
application. There are functions to initialize the speech engine and to control the audio
recorder or player. There is also debugging function allowing to load user voice from WAV.
Along with other options, it is available through configuration files SpeechEngineConfig.json
and TaskConfig.json (see appendix B).

Load component
configuration

Load task configuration

Select task segment

Initiate recorder

Start audio recorder

Stop audio recorder
Evaluate

Start audio player
reference whole

Start audio player
reference nth word

Stop audio player
reference

Start audio player
user whole

Start audio player
user nth word

Stop audio player
user

Application

Figure 2.3: Use case diagram representing functions that can be called from the application.

2.4 Use case
In figure 2.4 can be seen an example of the typical use case of this module. A user launches
the application and the component configuration is loaded in the background. If the user
selects a lesson that includes a task with pronunciation, the application loads task config-
uration in the background.

As a lesson, we can imagine for example “exercise 3.12” from some book. This lesson
(exercise) would be focused on job interviews. The lesson would include multiple tasks (lines
“a)” to “f)” in the book). The first task would be to correctly write “interview” word, the
next task would be to repeat a phrase “I perform well under pressure”.

The user can solve tasks listed before the task with pronunciation, then he has to
wait, till previous configurations are loaded. If the configurations are loaded, then the
task segment is selected on the foreground, and the user has to wait (but it is loaded

7

almost immediately). Then the application initiates a recorder in the background. User
can meanwhile play the whole reference recording or only part using the play/stop button.
If the task allows showing transcription, then the user can play a specific word. Then the
user hit the record button and the application starts the audio recorder. The recording is
stopped by the user or when the time runs out. The application immediately fires processing
in the background. During that time, the user can listen to his recording. The application
shows the result when it is available and the user can try it again, proceed to the next task,
or finish the lesson and select the next lesson.

8

stop audio recorder
(or time runs out)

start reference player

reach speech task

launch application

Application Speech Engine

User can solve
tasks listed before the
task with speech, then
he has to wait till
previous
configurations are
loaded.

load component configuration

select lesson which
includes task with

pronunciation
load task configuration

select task segment

initiate recorder
loaded

User can play/stop
whole reference
record or play/stop
nth word (if the task
allows to show
transcription). Player
actions are
nonblocking.

recorder enabled

start audio player

stop reference player stop audio player

hit record button
start audio recorder

stop audio recorder

evaluate

results
results

stop reference player

start audio player

stop audio player

start audio player
user whole

Application shows the
result and User can:

(a) try it again, then go to A
(b) proceed to a next task,
then go to B
(c) finish the lesson and
select next lesson, then go
to C

A

B

C

User

Figure 2.4: Example of the typical use case of the module. Audio players actions are non-
blocking (white activation blocks and shadow arrows in the picture). Points A, B, C are
time points referenced in the bottom text description on the left.

9

Chapter 3

Speech processing

The application needs to extract speech features from a recording. The widely used term
speech recognition is inaccurate in this case as the goal of the application is not to obtain
a transcript of spoken words. The processing algorithm only needs to compare features of
user recordings with reference recording features.

There are more possible approaches to the issue of evaluating the user’s speech. The first
possibility is to recognize spoken words and compare a text transcript with a reference text
transcript. The success rate would be the probabilities of these words from the recognition
module. The second possibility is to compare the characteristics of audio recordings. The
first option is resistant to common user errors, like word repetition, skipping a word, wrong
order of words, or saying a different sentence. But this method is not focused on checking
intonation, speed or pronouncing accuracy well. The second one considers pronunciation,
but it cannot get over word repetition, wrong word order, totally different sentence, or over
recordings (user or reference) with background noise. This app accomplishes the goal using
the second way (comparing recordings) because it focuses on intonation and pronunciation.
The first option would require a bigger model, thus more powerful devices, but we need
fast, off-line, on-device processing (even on low-end smartphones).

The input of the processing algorithm is audio recorded from a microphone or loaded
from a WAV file (see figure 3.2). As an output, there is a JSON object containing overall
and partial global scores and scores for each word. Figure 3.1 shows the whole process.

16-bit PCM
integer samples

44 100 Hz
float samples

8 000 Hz

features

24 Mel banks
per frame

phonemes

30 desriptors
per frame

XML
Alignment JSON

Feed Forward
neural network

Mean normalization
Feed Forward NN

INCLUDES

Dynamic Time
Warping Calculating scoreMel filter

Framing
Hamming Window

Discrete Fourier transform
Mel banks

Normalization

INCLUDES

Down-sampling

Down-sampling
IIR filtering

Conversion to float
Noise addition

INCLUDES

Recording

Figure 3.1: Overview of the speech processing pipeline.

10

0 25000 50000 75000 100000 125000 150000 175000 200000

samples

−30000

−20000

−10000

0

10000

20000

30000
am

pl
itu

de

Original recording

Figure 3.2: Recorded speech (5 s) represented by 220 500 samples in PCM format before
the processing.

3.1 Recording
Audio is recorded from a microphone with a sampling frequency of 44 100 Hz. It is the only
rate that is guaranteed to work on all devices1. The recording is in one channel (mono) with
uncompressed pulse code modulation (PCM). Each sample is represented by a 16-bit signed
integer value. Thus, each sample can hold discrete value in the range -32 768 and 32 767
inclusive. This format is guaranteed to be supported by all devices. The whole recording
is stored in AudioBuffer (array of shorts). When the recording finished, the array proceeds
for further processing. There is also an option to load recording from uncompressed WAV
(RIFF) file with 16-bit PCM encoding for testing purposes2. Reference audio is stored in
this format as well.

The recorder is implemented using AudioRecord class. The audio recorder reads chunks
from AudioRecord using while cycle and copies data from AudioRecord buffer into large
AudioBuffer. The recorder stops when a user hits the stop button or when enough samples
were recorded (if the recording duration was previously set). The AudioBuffer is managed
by the app. The app manages AudioBuffer. A new larger array of shorts is created when
the large AudioBuffer gets full. Data from the current AudioBuffer are copied into this
new and this new one is set as AudioBuffer. The output of this step is AudioBuffer (array
of shorts).

1AudioRecord - Android Developers, https://developer.android.com/reference/android/media/
AudioRecord

2Audio File Format Specifications, http://www-mmsp.ece.mcgill.ca/Documents/AudioFormats/WAVE/
WAVE.html

11

https://developer.android.com/reference/android/media/AudioRecord
https://developer.android.com/reference/android/media/AudioRecord
http://www-mmsp.ece.mcgill.ca/Documents/AudioFormats/WAVE/WAVE.html
http://www-mmsp.ece.mcgill.ca/Documents/AudioFormats/WAVE/WAVE.html

3.2 Down-sampling
The input of this step is AudioBuffer (array of shorts). It is the first step of audio processing.
16-bit samples captured 44 100 times per second means a lot of data for further processing,
but not every device supports lower frequencies. Thus, the recorded signal is down-sampled
to 8 000 Hz. This frequency comes from the provided neural network, but it is possible to
retrain the model and use different frequency (e.g., 15 kHz). The usual frequency for voice
sampling is from 300 Hz to 3 400 Hz in telephony. The sampling theorem by Shannon says
that sampling frequency must be at least two times higher than the highest frequency
component. In this case, the highest frequency is 3 400 Hz, thus sampling frequency has to
be 6 800 Hz or higher, so 8 kHz for speech is enough to avoid the aliasing effect [3].

The aliasing effect in Shannon theorem is about sampling and reconstructing continuous
signals, but aliasing is also a side effect of down-sampling itself. Each input sample goes
through an IIR (infinite impulse response) filter, which behaves like LPF (low-pass filter).
Output samples are converted from short integers into float values (this will be important
for further steps). Every nth sample is kept, other samples are dropped. If the recorded
sample has zero value, it is replaced by a random value from interval < −1; 1 >, which
adds little noise to the signal. It is essential in cases when the recorder would record only
zero values (e.g., due to faulty hardware) as the algorithm of computing Mel banks includes
computing logarithm of values. The output of this step is an array of float samples. Down-
sampling can be done during recording as AudioRecorder produces the samples in smaller
parts.

3.3 Mel filter
In this step, the application gets amplitude values in time (array of float samples). But
to compare two signals, the algorithm needs frequency characteristics in time and even
better features of the signal in time. This step consists of framing input signal into sepa-
rated frames, applying Hamming window, calculating spectral analysis on each frame, and
calculating Mel filter banks from the analysis.

3.3.1 Framing

Calculating spectral analysis on input signal would return one frequency characteristics for
the whole recording. Thus, the algorithm needs to split recording into frames and calculate
spectral analysis on each frame. With this approach, the algorithm gets a sequence of
spectral analysis in time.

Input samples are divided into 200 samples width frames. That means frames of width
25 ms when using 8 kHz frequency. We need to start a new frame quite often, and at
the same time, we need the frames long enough (e.g., 25 ms). Therefore, the frames are
overlapping. The frame starts every 80 samples. So, each frame contains 120 samples
(15 ms) from the previous frame and 80 new samples (10 ms) (see figure 3.3).

3.3.2 Hamming window

But even with overlapping frames, the algorithm has to deal with values at both edges of
the frame. Clipping signal at amplitude peak would cause distortion of spectral analysis.
So each value of the frame is multiplied by weight at the corresponding position. This

12

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

samples

−1000

−750

−500

−250

0

250

500

750

1000
am

pl
itu

de

Frame 0 Frame 1 Frame 2 Frame 3

Framing

Figure 3.3: Splitting down-sampled signal into overlapping frames.

weight function is called Hamming window and it is defined by the following formula:

𝑓ℎ(𝑛) = (0.54− 0.46 cos
(︁ 2𝜋𝑛

𝑤𝑖𝑑𝑡ℎ− 1

)︁
) (3.1)

where:

• 𝑤𝑖𝑑𝑡ℎ is the width of the frame, in this case 𝑤𝑖𝑑𝑡ℎ = 200

• 𝑛 is the position of weight in the frame, in this case, an integer value from interval
< 0; 200 >

The frame has an actual width of 256 float values, last 56 values are padded by zeros (due
to FFT). The weight of the first and 200th sample is 0.08 so the values are less important
and appended constant zero values do not affect the algorithm at all (see figure 3.5). The
hamming window weights are computed only once before processing, they are the same for
all frames (see figure 3.4).

3.3.3 Discrete Fourier transform (DFT)

In this part of the step, every 256 discrete samples are converted into a same-length sequence
of the discrete spectrum of the signal, see figure 3.6. An original DFT algorithm requires
𝑂(𝑁2) multiplications and additions. The application uses an efficient version of DFT
called 1D Fast Fourier transform (FFT) with 𝑂(𝑁 log𝑁) multiplications and additions [3].
This application uses the JTransforms library with its DoubleFFT_1D class3, a parallel
implementation of split-radix and mixed-radix algorithms optimized for SMP (symmetric
multiprocessing) systems.

3DoubleFFT_1D class documentation, http://incanter.org/docs/parallelcolt/api/edu/emory/
mathcs/jtransforms/fft/DoubleFFT_1D.html

13

http://incanter.org/docs/parallelcolt/api/edu/emory/mathcs/jtransforms/fft/DoubleFFT_1D.html
http://incanter.org/docs/parallelcolt/api/edu/emory/mathcs/jtransforms/fft/DoubleFFT_1D.html

0 25 50 75 100 125 150 175

index of sample

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

we
ig

ht

Hamming Window

Figure 3.4: Hamming window function, defined on interval < 0; 199 >.

0 50 100 150 200 250
samples

-1000

-750

-500

-250

0

250

500

750

1000

am
pl

itu
de

Applying hamming widow
original padded frame
applied hamming window

Figure 3.5: First 256 samples width frame before and after applying hamming window.

3.3.4 Mel banks

At this point, the algorithm has each frame represented by 256 complex numbers. Now the
algorithm separates the input signal into 24 Mel filter banks. It is not necessary to describe
the characteristic of the speech signal by 256 values as human hearing is not sensitive to all
frequency intervals equally. And this is how filter banks work. It divides frequencies into
24 overlapping banks taking speech characteristics into account. The application works on
each frame by following. All banks are initiated to zero values. Each frequency of spectrum
weights on each of output bank, the algorithm goes through all frequencies and multiplies

14

0 1 2 3 4 5

time [s]

0

2500

5000

7500

10000

12500

15000

17500

20000
fre

qu
en

cy
[H

z]

Spectrogram of original recording

Figure 3.6: Spectrogram of the original recording from figure 3.2. Frequencies from the
upper half of the spectrum occurs less frequently.

them by the corresponding vector of weights for that frequency, outcomes are added into
the banks. Weights represent the bandpass filter, and its values displays figure 3.7. The
output of this phase is a feature matrix. The matrix always has 24 columns (24 filter
banks). The number of rows is equal to the number of frames - the number of samples after
down-sampling minus length of the frame (200) divided by step (80), rounded up. So, if we
have 39 040 samples after down-sampling, the FeaturesMatrixF (containing floating-point
numbers) would be 24x486 (see figure 3.8).

Figure 3.7: Parts of the frequency spectrum with weights on each Mel bank. The upper
half of the spectrum has no effect on banks.

15

0 5000 10000 15000 20000 25000 30000 35000

samples

−20000

0

20000
am

pl
itu

de
Down-sampled recording

0 50 100 150 200 250 300 350 400 450

frames

0

5

10

15

20

ba
nk

s

Mel filter banks

Figure 3.8: Mel banks of all frames from FeaturesMatrixF with a silence at the beginning.
Note that while in the spectrum only the first half of frequencies were used, Mel banks are
used equally.

3.4 Feed forward neural network
From the beginning to this step, the process is the same as the process of speech recogni-
tion. At this point, a forward-feed neural network (FFNN) converts spectral analysis into
phonemes (the smallest units of sounds in a language). Forward-feed neural network is an
artificial neural network where connections between nodes (neurons) do not form a cycle.
The network groups into the layers, and each neuron has input from the previous layer and
output connected to the next layer. The first layer is called the input layer, and the last
layer is called the output layer. Layers between them are called hidden layers, see figure
3.9. Each neuron, sometimes called perceptron, has single output defined by the following
formula [2]:

𝑦 = 𝜙(

𝑛∑︁
𝑖=1

𝑤𝑖𝑥𝑖 + 𝑏) = 𝜙(w𝑇x + 𝑏) (3.2)

where:

• w is the vector of weights

• x is the vector of inputs

• 𝑏 is the bias

• 𝜙 is the activation function, it is a sigmoid function in this network

• 𝑛 is number of input connections, in this network 𝑛 = 1

When we look at the whole layer, the input is the same vector for all perceptrons in the
layer. But the weight can differ for each perceptron. The whole layer can be described by
a similar equation:

𝑦 = 𝜙(w𝑇x + 𝑏) (3.3)

16

p300

x1

x2

x360

Input layer

p1

p2

Hidden layer
L1

x3

p300

p1

p2

Hidden layer
L2

p30

p1

Bottleneck layer
L3

Hidden layer
L4

Output layer
L5

Figure 3.9: The whole feed-forward neural network with 5 layers. Layers to the right of
the vertical dashed line are omitted in this project and the Bottleneck layer is used as the
Output layer.

where x is still a vector of inputs, but w is a matrix of the weights. The number of weight
matrix rows corresponds to matrix length and the number of columns to the output vector
length (see figure 3.10). So, this feed-forward neural network is nothing different than
matrix multiplication, matrix addition and applying a sigmoid function to each value of
the output vector. Thinking of neural networks this way will be useful in connection to the
optimizations and usage of TensorFlow in the later chapters.

This application does not require phonemes, so it uses only the first three layers of
FFNN and uses the bottleneck layer as the output layer (the left part of the vertical dashed
line in figure 3.9). The bottleneck layer output is only 30 floating-point values width vector
[5].

The input of this FFNN is a vector of the width of 360 floating-point values. FFNN
processes chunks of 15 frames Mel banks (each frame is defined by 24 Mel banks). This
method works with the context of 7 frames before the actual frame and seven frames after
it. FFNN always computes 15 frames, so each frame computes 15 times. Using a buffer and
computing each frame only once can improve that. The output of this phase is different
FeaturesMatrixF. It has 30 columns and the width depends on the number of frames.

This part is the most expensive part of processing in terms of computing time.

3.4.1 Mean normalization

Before FFNN, the Mel bank values have to be normalized (to remove channel effects).
Normalization is usually done by subtracting mean values from input and then by dividing
by the variance. In this case, mean and variance values are precomputed and stored as
a vector of 360 values. Variance values are stored as the multiplicative inverse of values;
mean values are stored as the additive inverse of values. We described the neural network
as a sequence of matrix addition and multiplication. Then the process of normalization can
handle the first hidden layer of the neural network as well. Before applying weights of the

17

1 x 360

1 x 360
∗ var

1 x 360

L1
weights

360 x 300

1 x 300

+ mean

1 x 300
+ L1 bias

1 x 300
sigmoid

L1

L2
weights

300 x 300

1 x 300

1 x 300
+ L2 bias

1 x 300
sigmoid

L2

1 x 300

L3
weights

300 x 30

1 x 30

1 x 30
+ L3 bias

1 x 30

L3

1 x 300

L3 out

L1 out

L2 out

L1 out

L2 out

input

Mel banks

Figure 3.10: Three layers neural network displayed as a sequence of matrix operations.

first layer, the vector of mean values is added to the input vector, and then each value of
the vector is multiplied by a vector of variance values.

3.5 Dynamic time warping
Dynamic time warping (DTW) is a common technique to find a nonlinear alignment of two
time-dependent sequences of a digital signal. It is often used to compare different speech
patterns (see figure 3.11).

The objective of DTW is to find surjective function 𝑋 → 𝑌 of two sequences 𝑋 =
(𝑥1, 𝑥2, . . . , 𝑥𝑁) of length 𝑁 ∈ N and 𝑌 = (𝑦1, 𝑦2, . . . , 𝑦𝑀) of length 𝑀 ∈ N. We can define
feature space ℱ as 𝑥𝑛, 𝑦𝑚 ∈ ℱ for 𝑛 ∈ 𝑋 and 𝑦 ∈ 𝑌 . Then, it is a problem of state-space
search. The algorithm starts at (𝑥0, 𝑦0), and the goal is to a find path to (𝑥𝑁 , 𝑦𝑀) with
minimal overall cost. This algorithm needs a local distance measure (or local cost measure)
which is a function 𝑐 : ℱ × ℱ → R≥0. This cost depends on speech features similarity at
that point. The distance matrix displays figure 3.12. The cost is computed using cosine

18

meanAt the bottom it says RS V P what does it

time

Figure 3.11: DTW algorithm principle of time alignment of two speech recordings.

distance [4] from features by the following formula:

𝑐(𝑥𝑛, 𝑦𝑚) = −

𝑁∑︁
𝑖=1

𝑥𝑛[𝑖] * 𝑦𝑚[𝑖]⎯⎸⎸⎷ 𝑁∑︁
𝑖=1

𝑥𝑛[𝑖]

⎯⎸⎸⎷ 𝑁∑︁
𝑖=1

𝑦𝑚[𝑖]

+ 1; (3.4)

where:

• N is the number of descriptors of each frame (𝑁 = 30 in this case)

When the cost matrix is computed, it is time for finding a warping path. The warping
path is defined by the following definition taken from the book [3]:

Definition 3.1 A (N, M)-warping path is a sequence 𝑝 = (𝑝1, . . . , 𝑝𝐿) with 𝑝ℓ = (𝑛ℓ,𝑚ℓ) ∈
[1 : 𝑁]× [1 : 𝑀] for ℓ ∈ [1 : 𝐿] satisfying the following three conditions:

(i) Boundary condition: 𝑝1 = (1, 1) and 𝑝𝐿 = (𝑀,𝑁)

(ii) Monotonicity condition: 𝑛1 ≤ 𝑛2 ≤ . . . ≤ 𝑛𝐿 and 𝑚1 ≤ 𝑚2 ≤ . . . ≤ 𝑚𝐿

(iii) Step size condition: 𝑝ℓ+1 − 𝑝ℓ ∈ {(1, 0), (0, 1), (1, 1)}𝑓𝑜𝑟ℓ ∈ [1 : 𝐿− 1]

Before starting the finding the path, the matrix of the overall score is created and every
point has a value of Infinity (means unreachable). Then the distance (score) from 𝑝1 = (1, 1)
to each point is calculated. The third phase is finding the best path, the path with the
lowest overall price. During this phase, the algorithm notes the start and stop timestamps
of each word. The algorithm compares even first the frame with the last frame. We can
search only in the limited width from the diagonal as the speech with a path far from the
diagonal of the DTW matrix would not pass any exam.

19

Figure 3.12: Distance (cost) matrix of two similar speech recordings. Dark blue means
lower cost, which is better. The white line is drawn according to the best path matrix.
This matrix does not have a rectangle shape, as the users recording Y is longer (5 s) than
reference recording X (3 s).

3.6 Calculating the score
Overall Score consists of Acoustic Similarity and Speed Ratio. Acoustic Similarity is com-
puted as a ratio of the total distance between all connected reference and recorded words.
The best ratio is 1. The Speed Ratio is the ratio of the sum of lengths of all words in user
and reference recording (silence is not included), the ratio 1 is the best score.

3.7 Conclusion
It is essential to understand what is behind the processing algorithm and divide the algo-
rithm into independent parts. In the following chapters, we will improve the time complexity
of those parts. Complexity depends on the number of samples, which depends on recording
length and sampling frequency. Down-sampling can reduce the sampling frequency. We
are using a widely used speech processing algorithm used for extracting phonemes and text
from speech recording. We are only using the first part of the feed-forward neural network.
Values from the bottleneck layer are the output of the algorithm as we are not decoding
phonemes into transcription. To compare phonemes of reference and user audio recording
we use DTW. The final score consists of acoustic similarity and speed ratio (for each word
and as an overall score). The score is provided to the application as JSON.

20

Chapter 4

Refactoring

The original solution of SpeechEngine had shortcomings. It was necessary to fix all bugs
causing application crashes. The engine contained an error in the filter, which pre-processes
the input, decreasing evaluation accuracy. Now the application can work with multiple
threads; asynchronous tasks are submitted into queues and dynamically assigned to the
threads (using Kotlin coroutines1). In the previous solution, there was one thread shared
for all background tasks.

4.1 Code readability and maintainability
The previous solution was based on sending messages between synchronous and asyn-
chronous threads. The class diagram of the old solution displays figure 4.1, the new
solution is in figure 4.2. From React Native, the requests come as asynchronous call-
backs to the ISpeechEngine interface implementation. The main thread handles those
callbacks. Requests are transmitted to the background thread by sending messages from
the main thread in SpeechWorkerThread to the handlerThread in the same class. The
handlerThread listens for incoming messages in a loop. It can handle only one background
task at the same time. For communication from handlerThread of SpeechWorkerThread
to the SpeechEngine (e.g., to report progress), the messages are sent to the handlerThread
of SpeechEngine which scope allows calling React Native callbacks. The example commu-
nication that follows starting audio recorder shows the blue arrows.

The disadvantage of this solution is mainly only one task at the foreground thread, only
one task at the background (processing) thread and one task at the state reporting thread
(calling callbacks). The readability for programmers is difficult because of thread switching
using messages. Simple task includes multiple call and messages to be sent. Jumping
through code does not provide even advanced IDE like Android Studio, it is necessary to
find usages of exact message through the project. The first idea was to move to AsyncTasks,
which is perfect for the needs of this project, but it is now deprecated2. The solution is to
extend the Thread object or to use Kotlin coroutines. Because Android is going forward to
Kotlin first approach3, we decided to rewrite the module controller into Kotlin and Kotlin
coroutines.

1Kotlin coroutines on Android - Android Developers, https://developer.android.com/kotlin/
coroutines

2AsyncTask is Deprecated, Now What? - TechYourChance, https://www.techyourchance.com/
asynctask-deprecated

3Android’s Kotlin-first approach - Android Developers, https://developer.android.com/kotlin/first

21

https://developer.android.com/kotlin/coroutines
https://developer.android.com/kotlin/coroutines
https://www.techyourchance.com/asynctask-deprecated
https://www.techyourchance.com/asynctask-deprecated
https://developer.android.com/kotlin/first

5.ar_StartRecorder()

RNSpeechEngine
WrapperModule

RNSpeechEngine
WrapperPackage

SpeechWorker
Thread

SpeechEngine_v1

interface
ISpeechEngine

use

implements

use useReact callback

AlignmentXML
AudioBuffer
AudioPlayer
AudioRecorder

...

use use

messages

messages

me
ss
ag
es

use

handlerThread handlerThread

1.startAudioRecorder() 2.startAudioRecorder() 3.startRecorder()

4.MSG_SE_AUDIO_REC_START

use

 6.MSG_WR_AUDIO_REC_STARTED

callback

7.onStatus(msg)

Figure 4.1: Class diagram of the old solution. The bold orange arrow represents messages,
and orange blocks represent message receivers. Dashed arrows mean non-blocking commu-
nication considering the main thread. Blue arrows are an example of calls required to start
the recorder.

Figure 4.2: Simplified class diagram, after refactoring, without communication using mes-
sages. Dashed arrows mean non-blocking communication considering the main thread.

22

4.2 Kotlin with Java code
New parts of code are written in Kotlin and all classes except those from separated modules
are ported into Kotlin. I refactored and ported them only when I needed to use new features
like Coroutines or Channels. Some of the previous modules are still implemented in Java
(e.g., AlignmentXML or AudioBuffer). Those two languages are mutually compatible, that
allows the code written in one of this language to be used in the second of these languages4.
The biggest change is the nullable types. When not explicitly stated, the objects may be
null (type T?), or of the provided data type T. This ambiguity is represented as T! type in
Kotlin. If we are aware that the value can be null, we should add @Nullable annotation
to the Java code. If the null cases of value are handled in the code, we can add @NotNull
annotation. Then it is not necessary to do null checks when using the value in Kotlin code.

4.3 Kotlin coroutines
Kotlin coroutines are design pattern and library to simplify code that executes asyn-
chronously. Coroutines are an idea of suspendable computations. A suspendable function
can suspend its execution at some point and resumes later. Launching an asynchronous
block of code is like submitting it into the pool of manually created thread. Threads and
pools are created and managed by the system. The number of threads depends on the
number of CPU cores and the amount of concurrency work, but it is guaranteed to have
at least two threads. The following code shows how to launch heavy execution and print
info before and after execution. Specified default dispatcher (the targeted pool) determines
coroutine context and on which thread(s) will be this code executed (it can be for example
UI thread or thread designed for IO operations)5.

1 private val scope: CoroutineScope = CoroutineScope(Dispatchers.Default)
2 fun speechEngineExecute() {
3 onStatus("RNWP − Starting speech engine")
4 scope.launch {
5 speechController.speechEngineExecute()
6 onStatus("RNWP − Speech engine finished")
7 }
8 }

The widely propagated benefit of coroutines is that when the job of scope is cancelled,
it cancels all coroutines started in that scope, which brings more control over background
tasks. Also, the function speechEngineExecute() can return value, or throw exceptions
that can be caught and handled like in synchronous code.

4Mixing Java and Kotlin in one project, https://kotlinlang.org/docs/mixing-java-kotlin-
intellij.html

5Coroutine context and dispatchers, https://kotlinlang.org/docs/coroutine-context-and-
dispatchers.html

23

https://kotlinlang.org/docs/mixing-java-kotlin-intellij.html
https://kotlinlang.org/docs/mixing-java-kotlin-intellij.html
https://kotlinlang.org/docs/coroutine-context-and-dispatchers.html
https://kotlinlang.org/docs/coroutine-context-and-dispatchers.html

Chapter 5

Optimizing

In this chapter, I will propose possible improvements to decrease processing time with
respect to the accuracy, implement them, compare and evaluate them. The chapter is
divided into applied techniques or tools in chronological order as they were implemented.

To speed up the application, we can move computation closer to HW, use paralleliza-
tion or optimize used algorithms. To use the HW features, we can rewrite the code to a
low-level programming language (use Android NDK 1), use compiler directives in already
implemented code, or use a high-level library (e.g., TensorFlow).

5.1 Measurement methodology
In the following sections, this methodology of measuring computing time is used. First
run means loading and running the program ten times and taking the median of the result.
Side effects between invocations are not eliminated. Multiple evaluation means running
the program and then running evaluation ten times and taking the median of the results.

Taking the median of values comes from my previous experience with measuring the
time complexity of algorithms. If we take an algorithm with complexity described by an
equation, then the average is impacted by peaks in multiple measurements, thus, it is
not applicable. Median follows the expected values better, and taking the lowest value
almost follows the equation. The lowest value is best for comparing different algorithms or
methods isolated from OS or other applications. Median is best for speed up measurement
and comparing before/after, as some algorithm may be prone to random interruptions or
actual load of a device (e.g., algorithms using multiple cores). We decided to consider the
runtime environment, as Android users usually have no control over running processes in
the background, so we are using the median.

Time of invocation was measured using the most precise available system timer
System.nanoTime() as a difference between time before invocation a function and time after
returning from the function. Measured time using custom code can be logged or printed
into the user interface with no need to install development tools, which was necessary, as
measurements on other devices could not be performed in person due to the pandemic.
Another option is to use a profiler bundled with Android Studio. A usable result was
achieved with Java Method Sample Recording configuration by composing the time from
multiple threads, and from times before and after suspending. But some functions were
missing in the profiler output, and some of the times did not correspond to reality. Trace

1Android NDK - Android Developers, https://developer.android.com/ndk

24

https://developer.android.com/ndk

Java Methods configuration did not provide good results. Thus, custom implementation
fits better this project.

5.2 Profiling before optimization
Before proposing any speed up it is necessary to analyse the existing solution and focus on
parts with a big impact on processing time. The profiled code is the original code with
rewritten controllers, fixed bugs, handled exceptions and some small improvements. The
original code before factorization would be hardly profiled. Some parts would be impossible
to measure (e.g., Load engine config).

𝑚𝑠 %
Load Engine Config 7 687.6 74.7
Load Task Config 629.7 6.1
Select Task Segment 812.7 7.9
Init AudioRecorder 33.0 0.3
Execute 1 123.3 10.9∑︀

10 253.2

Table 5.1: Profiling by comparing elapsed time. The recording is not included as it is
almost the same as the recording duration. The evaluation was executed as first run on
5 s recording.

Execute 𝑚𝑠 %
first run

Prepare Static Data 4.5 0.5
Down-sampling 19.2 2.1
Mel banks 223.2 24.2
FFNN 611.1 66.2
DTW 53.9 5.8
Calculate Score 0.9 0.1
Print JSON 10.6 1.2∑︀

923.4

Execute 𝑚𝑠 %
multiple evaluation

Prepare Static Data 1.7 0.2
Down-sampling 14.4 1.6
Mel banks 221.8 24.1
FFNN 619.3 67.3
DTW 53.2 5.8
Calculate Score 0.6 0.1
Print JSON 9.1 1.0∑︀

920.0

Table 5.2: Profiling detail of Execute. The evaluation was executed on the 5 s recording.
The sum of times in the left table is less than time in 5.1, and it is caused by Execute
function overhead.

The most expensive is Load Engine Config, specifically loading neural network. Pars-
ing neural network is implemented using RandomAccessFile, which is slow, and it is a
known issue2. The second most expensive part is Execute. If we investigate Execute
part, we can see that the most expensive part is computing FFNN (feed-forward neural
network). It takes about 0.6 seconds. And if we add loading of neural network from Load
Engine Config part, it takes 7 seconds to load and compute the neural network. To im-
prove that, we used TensorFlow Lite, which describes the next section. If we compare first
run with the following multiple evaluation, the percentages of each phase are almost

2JDK-4056207 Add a buffered version, https://bugs.openjdk.java.net/browse/JDK-4056207

25

https://bugs.openjdk.java.net/browse/JDK-4056207

the same. The time is saved for example by already allocated memory, but the time of the
heaviest parts (FFNN and Mel banks) are not significant.

5.3 TensorFlow Lite
TensorFlow Lite is an open-source high-level deep learning framework for mobile and IoT
devices developed by Google, presented during Google I/O in 20173. It is a simplified
version of TensorFlow, an open-source deep-learning software library for defining, training
and deploying machine learning models, that was open-sourced in November 2015 by Google
[1]. It provides hardware acceleration or parallelization. The same code can be used for
example on GPU or multi-core CPU.

TensorFlow Lite consists of two main components - converter and interpreter. TF Lite
works with compressed models as displayed in figure 5.1. First, it is necessary to pick an
existing model or create own. Trained models are available through the TensorFlow Hub
repository4, but it is possible to create a custom model using supported operations.

output
tensor

TF Lite model
static data + operations

input
tensor

Figure 5.1: TensorFlow Lite interpreter works as a filter with one input and one output
tensor.

5.3.1 Creating custom model

The custom model can be any model that can benefit from HW acceleration or paral-
lelization, not just a model based on machine learning. TF Lite operations support 32-bit
floating-point and quantized (uint8, int8) values. Strings or 16-bit floats are not sup-
ported yet. We are using 32-bit floating-point values obtained from AudioRecorder. As
2021 the TF Lite model supports 123 operations, but even if the operation does not have
a direct equivalent, it can be fused into a more complex operator, replaced by tensors, or
removed from the computation graph5.

TensorFlow Lite model can be converted from TensorFlow SavedModel using the Ten-
sorFlow Lite converter. TF Lite model is an optimized FlatBuffer format identified by
the .tflite file extension. The recommended way, with more features, is converting TF
SavedModel or Keras model using Python API (see figure 5.2). A simple way, how to set
up the TensorFlow environment with Python API, is to use a Docker image containing
configured TensorFlow and Jupyter server6.

The feed-forward neural network, displayed in figure 3.10, can be implemented in Ten-
sorFlow as tf.Module. The Module class describes a sequence of operations, as shows
the listing 5.1. Static values (e.g., variables like NN_layer1_mean) are NumPy arrays, and

3Google’s new machine learning framework is going to put more AI on your phone - The Verge, https:
//www.theverge.com/2017/5/17/15645908

4TensorFlow Hub - a repository of trained TF models, https://tfhub.dev
5TF Lite and TF operator compatibility, https://www.tensorflow.org/lite/guide/ops_compatibility
6Install TensorFlow using Docker, https://www.tensorflow.org/install/docker

26

https://www.theverge.com/2017/5/17/15645908
https://www.theverge.com/2017/5/17/15645908
https://tfhub.dev
https://www.tensorflow.org/lite/guide/ops_compatibility
https://www.tensorflow.org/install/docker

CustomModule
class

TensorFlow Python API TF Lite Converter

SavedModel
file

TF Lite model
compressed file

Figure 5.2: Process of converting CustomModule class into compressed TF Lite model.

they are stored in SavedModel as well. Those arrays are loaded from a file, reshaped or
transposed, but the loading and pre-processing is not part of the model. The model stores
constant data, which makes interpreting the model faster (but sometimes with the cost of
a bigger model).

1 class CustomModule(tf.Module):
2 # Init defines and loads static values, their shape and used data types, stored inside the model
3 def __init__(self):
4 super(CustomModule, self).__init__()
5 self.nn_layer1_mean = tf.constant(NN_layer1_mean, shape=(1,360), dtype=tf.float32)
6 self.nn_layer1_var = tf.constant(NN_layer1_var, shape=(1,360), dtype=tf.float32)
7 self.nn_layer1_weights = tf.constant(NN_layer1_weights, shape=(360,300), dtype=tf.float32)
8 self.nn_layer1_bias = tf.constant(NN_layer1_bias, shape=(1,300), dtype=tf.float32)
9 self.nn_layer2_weights = tf.constant(NN_layer2_weights, shape=(300,300), dtype=tf.float32)

10 self.nn_layer2_bias = tf.constant(NN_layer2_bias, shape=(1,300), dtype=tf.float32)
11 self.nn_layer3_weights = tf.constant(NN_layer3_weights, shape=(300,30), dtype=tf.float32)
12 self.nn_layer3_bias = tf.constant(NN_layer3_bias, shape=(1,30), dtype=tf.float32)
13
14 # Function ‘call‘ describes a sequence of operation applied to the input tensor
15 @tf.function(input_signature=[tf.TensorSpec((1,360), tf.float32)])
16 def __call__(self, x):
17 # Layer1 (first hidden layer with normalization)
18 tensor = tf.add(x, self.nn_layer1_mean)
19 tensor = tf.multiply(tensor, self.nn_layer1_var)
20 tensor = tf.matmul(tensor, self.nn_layer1_weights)
21 tensor = tf.add(tensor, self.nn_layer1_bias)
22 tensor = tf.sigmoid(tensor)
23 # Layer2 (hidden layer)
24 tensor = tf.matmul(tensor, self.nn_layer2_weights)
25 tensor = tf.add(tensor, self.nn_layer2_bias)
26 tensor = tf.sigmoid(tensor)
27 # Layer3 (bottleneck layer and the output layer at the same time)
28 tensor = tf.matmul(tensor, self.nn_layer3_weights)
29 tensor = tf.add(tensor, self.nn_layer3_bias)
30
31 return tensor

Listing 5.1: FFNN implemented using TensorFlow Python API as TensorFlow Module.

TensorFlow Module is then saved into the custom_module file in the SavedModel file
format. The SavedModel file can be loaded back into TensorFlow and can be interpreted.
It is useful to check the output of this model before and after exporting using sample input
(see listing 5.2).

1 # Save custom model
2 module = CustomModule()
3 tf.saved_model.save(module, ’custom_module’)
4 # Load custom model
5 loaded = tf.saved_model.load(’custom_module’)
6 # Run models

27

7 module(test_tensor).numpy().round(6)
8 loaded(test_tensor).numpy().round(6)

Listing 5.2: Save and load the custom TensorFlow Module as SavedModel.

If the model outputs meet expected results, the model can be converted into TensorFlow
Lite binary file using listing 5.3. The TF Lite model cannot be loaded and run under Python
API, so it is necessary to verify the correctness of the TensorFlow model.

1 converter = tf.lite.TFLiteConverter.from_saved_model(’custom_module’)
2 tflite_model = converter.convert()
3 with open(’model.tflite’, ’wb’) as f:
4 f.write(tflite_model)

Listing 5.3: Convert the TensorFlow model into the TensorFlow Lite model.

The same code can be implemented using Keras7. Keras is a deep learning API written
in Python running on top of the machine learning platform TensorFlow. It can combine
matrix multiplying, bias, and activation function (sigmoid) into a Dense layer, see figure
5.4. Layers of the Keras model are defined inside the init function, normalization is applied
in the call function (before the invocation of the Keras model).

1 self.model = tf.keras.Sequential([
2 tf.keras.layers.Dense(300, activation="sigmoid", name="layer1",
3 weights=[self.nn_layer1_weights, self.nn_layer1_bias]),
4 tf.keras.layers.Dense(300, activation="sigmoid", name="layer2",
5 weights=[self.nn_layer2_weights, self.nn_layer2_bias]),
6 tf.keras.layers.Dense(30, activation=None, name="layer3",
7 weights=[self.nn_layer3_weights, self.nn_layer3_bias])
8])

Listing 5.4: The neural network defined as a Keras model inside the init function.

5.3.2 Deploying model

The TensorFlow Lite interpreter is a library that loads a model file, then takes input data,
executes the operations defined by the model on input data, and produces the output data,
see figure 5.1. The interpreter works across multiple platforms and provides a simple API
for running TensorFlow Lite models from Java or Kotlin, Swift, Objective-C, C++, and
Python. It can be used on Android, iOS or Linux platform8.

Running TF Lite interpreter works in the following steps - loading a .tflite model
into memory, transforming input data, running inference (executing model), interpreting
the output. Input and output tensors are primitive type arrays (float, int, long, byte,
or String). Complex data types like Integer or Float are not supported. Using primitive
types as input makes the invoking slow. The interpreter always checks the shape of the
input array and tries to reshape it, which causes a slowdown. The API is more efficient
if a direct ByteBuffer (or FloatBuffer, IntBuffer, LongBuffer) is used as the input
data type of interpreter. The input primitive type array can be wrapped into a buffer
using ByteBuffer.wrap() function. Wrapping data is fast enough to do not affect the
model execution time. It is not clear whether buffer should be preferred for output as well.
According to my experiments, using primitive type arrays as output is as fast as using
ByteBuffer.

7Keras - a deep learning API, https://keras.io
8TensorFlow Lite inference, https://www.tensorflow.org/lite/guide/inference

28

https://keras.io
https://www.tensorflow.org/lite/guide/inference

Invocation is done by the interpreter.run(input, output) command. The applica-
tion cannot change the behaviour of the binary model. But the same model can be invoked
with different environment configurations, which can be changed dynamically during the
run. TensorFlow Lite allows running accelerated computation. Those accelerators are called
delegates. Using the right delegate for a specific model and device can have a big impact
on execution time.

By default, TensorFlow Lite uses CPU kernels optimized for the ARM Neon instruction
set. However, the CPU is a multi-purpose processor that may not be suitable for the heavy
arithmetic typical in machine learning models9. Or even when there is no suitable delegate,
the model can use parallel computation on multiple CPU cores. Available delegates depend
on the platform, and in the case of Android, even on the Android version. Some delegates
support only certain types of model, as shows the table 5.3.

Model Type GPU NNAPI Hexagon CoreML
Supported platforms Android, iOS Android 8.1+ Android iOS
Floating-point (32 bit) Yes Yes No Yes
Post-training float16 quanti-
zation

Yes No No Yes

Post-training dynamic
range quantization

Yes Yes No No

Post-training integer quan-
tization

Yes Yes Yes No

Quantization-aware training Yes Yes Yes No

Table 5.3: TF Lite delegates platform and model type support. Delegates suitable for this
project are bold.

5.3.3 Profiling

Finding the best delegate and its configuration, like the number of threads or number of
inputs values, maximises the benefit of the TensorFlow. The achieved results may also
depend on used devices.

Delegates and models

In figure 5.3 you can see the time of different delegates during loading and execution.
Each delegate is with the model implemented using TF functions and using Keras model.
Initialization of GPU variants costs significantly more time (GPU 277 ms, NNAPI 5 ms,
and CPU variant only 3 ms). CPU is also slower in the execution of these models. NNAPI
and CPU variants have similar time. The CPU variant is the winner as this variant can be
run on any device with the same speed as NNAPI.

We can take into account the times of multiple evaluation. These times are dis-
played in table 5.4. The table compares only times of FFNN. There is no significant speed
improvement with the next execution.

9TensorFlow Lite Delegates, https://www.tensorflow.org/lite/performance/delegates

29

https://www.tensorflow.org/lite/performance/delegates

Load Engine Config Load Task Config Select Task Segment Execute
0

250

500

750

1000

1250

1500

1750

2000

TF Lite Delegates

GPU
GPU (Keras)
NNAPI
NNAPI (Keras)
CPU 1 core
CPU 1 core (Keras)

ti
m

e
[m

s]

Figure 5.3: Execution times of TF Lite delegates on 10 seconds recording.

TF Lite Delegate first run [𝑚𝑠] multiple evaluation [𝑚𝑠]
GPU 1 157 1 157
GPU (Keras) 1 185 1 104
NNAPI 362 353
NNAPI (Keras) 385 361
CPU 1 core 362 363
CPU 1 core (Keras) 359 351

Table 5.4: Execute times of FFNN on 10 s recording using different delegates.

The reason why TF Lite delegates are slower than CPU is the small size of the model.
We have a small model, which is not worth delegating to either the NNAPI or the GPU.
Accelerators are better for large models with high arithmetic intensity10.

In the case of GPU, the TensorFlow Lite Interpreter needs to copy data into CPU
before execution and copy output from GPU into CPU memory. The other reason is that
tensor data is sliced into 4-channels for GPU delegate. But we have an input vector (1D
data), eventually a 2D matrix (in case of processing multiple frames at once). Input has to
be transformed into 4-channel values, which will affect the final speed11.

Delegates can be also slowed down by operator incompatibility. Delegates do not support
all operators as TF Lite. If the model uses not supported operator, the operation has to be
computed on the CPU. This will require synchronization of HW or copy-in/copy-out in the
case of GPU, which will reduce the speed. As this behaviour is undesirable, it is disabled
by default, and the delegate would throw an exception instead of execution. Our models
are compatible with all these delegates.

The results also depend on the used chipset (CPU, GPU, and various coprocessors).
The following experiment explains when it is better to use GPU or NNAPI than CPU. We

10TF Lite performance best practices, https://www.tensorflow.org/lite/performance/best_practice
11TensorFlow Lite on GPU, https://www.tensorflow.org/lite/performance/gpu_advanced

30

https://www.tensorflow.org/lite/performance/best_practice
https://www.tensorflow.org/lite/performance/gpu_advanced

tried different models of different size and on different chipsets. In all experiments, we use
Samsung Galaxy A40. In this comparison, we use different devices listed in table 5.5.

Device Samsung Galaxy A40 Samsung Galaxy Tab S6 Lite
Released 2019 2020
Chipset Exynos 7904 (14 nm) Exynos 9611 (10nm)

CPU
8 cores:
2x1.77 GHz Cortex-A73
6x1.59 GHz Cortex-A53

8 cores:
4x2.3 GHz Cortex-A73
4x1.7 GHz Cortex-A53

GPU Mali-G71 MP2 Mali-G72 MP3
Device Xiaomi Mi 9 LG G8S ThinQ
Released 2019 2019

Chipset Qualcomm SM8150
Snapdragon 855 (7 nm)

Qualcomm SM8150
Snapdragon 855 (7 nm)

CPU

8 cores:
1x2.84 GHz Kryo 485
3x2.42 GHz Kryo 485
4x1.78 GHz Kryo 485

8 cores:
1x2.84 GHz Kryo 485
3x2.42 GHz Kryo 485
4x1.78 GHz Kryo 485

GPU Adreno 640 Adreno 640

Table 5.5: Devices used in the experiments with bigger models.

The first model in figure 5.4 is a neural network with 6 624 630 parameters (input ma-
trix enlarged from 1x360 to 32x360, hidden and bottleneck layers contain 32 times more
perceptrons). This model produces valid outputs; it computes 32 frames at once. The file
of the compressed TF Lite model increased from 0.8 MB to 1 MB. On all devices, the CPU
variant was still slightly faster than the NNAPI variant. There is notable that only pre-
viously used Samsung Galaxy A40 has similar performance with NNAPI and CPU. GPU
variant is missing as the TF Lite was crashing during the execution of this model. GPU
delegate is still marked as experimental, similar bug reports to this problem can be found
on the TF Lite GitHub repository. This model does not have sufficient arithmetic intensity
to run using NNAPI.

The second model is a neural network with three duplicated inner layers. The network
has 388 230 parameters, input and output layers are the same. The output is not valid.
This model is used only to compare delegates. Dimensions of static data (like weights) are
the same, so the size of the model remained 0.8 MB. This model works on the GPU but is
six times to 10 times slower than the CPU variant. Three inner layers are not still enough
to use the GPU or the NNAPI, which is still slightly slower.

The third model has 1 928 628 000 parameters (input layer is 1200x360, the hidden layer
has 1 440 000 perceptrons, and the output layer has 36 000 perceptrons). Even this model is
not valid, but model size increased from 0.8 MB to 7.6 MB. In this model, we can see that
GPU speed up is 1.3 to 1.7 against CPU variant. The GPU is the best option in this case,
and with even bigger models, GPU will be more efficient. NNAPI is probably not suitable
for these models (without reinforcement learning and other advanced NN features).

5.3.4 Batch processing

The model can compute multiple frames at once. That was used in the second model in
figure 5.4. It was not good to delegate this model to the GPU or NNAPI, but it can still

31

NNAPI CPU GPU
0

100

200

300

400

500

600

700

800

900

1 000
TF Lite model 1 MB

LG G8S ThinQ
Xiaomi Mi 9
Samsung Galaxy Tab S6 Lite
Samsung Galaxy A40

ti
m

e
[m

s]

NA

NNAPI CPU GPU
0

500

1 000

1 500

2 000

2 500

3 000

3 500

4 000

4 500

5 000
TF Lite model 3x inner layer (0.8 MB)

LG G8S ThinQ
Xiaomi Mi 9
Samsung Galaxy Tab S6 Lite
Samsung Galaxy A40ti

m
e

[m
s]

CPU GPU
0

500

1 000

1 500

2 000

2 500

3 000

3 500

4 000

4 500

5 000

TF Lite model 1200x1200 inner layer (7.6 MB)

LG G8S ThinQ
Xiaomi Mi 9
Samsung Galaxy Tab S6 Lite
Samsung Galaxy A40ti

m
e

[m
s]

NNAPI

Figure 5.4: Execution times of TF Lite delegates on bigger models.

32

bring some improvement to the CPU. Before execution, the data has to be prepared and
copied into the input buffer. After the execution, TF Lite copies the output into the output
array. Computing multiple frames at once (batch processing) can reduce this overhead, but
it will require a bigger model and more operation memory for computing. The batch size
cannot be changed in runtime as changing the input and output shape of the model requires
creating and converting a new model. The workaround would be storing multiple models,
but it increases the size of the app.

Figure 5.5 displays dependency of Execute time on the number of frames computed
in one invocation of the TF Lite model. We also tried four models on the NNAPI (but
there is still no benefit of the NNAPI). There is a notable increase when computing two
frames in a batch. It requires more array copies, and the handling of model input/output
is complicated. Starting from 4 frames per batch, there are significant time savings. From
12 frames per batch, the savings are smaller, and from 24 frames the time is not decreasing
at all but slightly increasing. We chose the model with 16 frames per batch. The size of
this model is 895 kB which is acceptable.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

500

600

700

800

900

1 000

1 100

1 200

1 300

1 400

Number of frames per batch

CPU

NNAPI

ti
m

e
[m

s]

frames per batch

Figure 5.5: Number of frames in one batch and the time of Execute processing.

5.3.5 Number of threads

By default, the TF Lite CPU delegate uses only a single thread, as only some operators
can be parallelized. Multi-threading may speed up execution, but it will consume more
resources and power. The speedup is device-dependent and depends on the actual usage of
the CPU by other apps.

As it is clear in figure 5.6, using multi-threading does not come with speed up for a
simple model without computing in batches, and it does not matter whether Keras version
is used or not. All provided devices have only eight cores. Thus it is pointless to try

33

more than eight threads. We also tried to use multi-threading in combination with batch
processing. Figure 5.7 compares the time of different batch size computed using a single
thread and using eight threads. The single thread variant is slightly faster, as running a
single thread is easier for the scheduler.

Figure 5.6: Using multiple threads does not speed up Execute processing.

5.3.6 Conclusion

CPU delegate best suits our model, but using multi-threading is useless in our case. Using
batch computing is a good improvement and computing 16 frames at once seems like a
good choice. Previous charts, and graphs, were measured on 10 seconds recording. Longer
recording means bigger differences. Table 5.6 compares the median of times before and
after implementing TF Lite both on 10 seconds and 5 seconds recording. With 5 seconds
recording, the Execute time was reduced from 1.1 seconds to 0.3 seconds, and Load
Engine Config (loading of neural network model) was reduced from 7.6 seconds to 0.8
seconds. Execute done under a second means sufficient time from the user’s point.

5.4 Parallelization
Speech processing time can be more improved. For example, Prepare static data, and
Down-sampling can be done during recording. That would save 12 ms, which is only 3.1 %
of processing time. We need to identify parallelizable code and find those parts that prevent
code from parallelization. Those problematic parts are: using the number of samples, using
the sum of samples, or using samples “from future”.

34

Figure 5.7: Time of Execute processing is slightly faster when using a single thread.

5 s recording before TF Lite [𝑚𝑠] % with TF Lite [𝑚𝑠] %
Load Engine Config 7 687.6 74.7 7.9 0.4
Load Task Config 629.7 6.1 658.2 36.1
Select Task Segment 812.7 7.9 808.9 44.3
Init AudioRecorder 33.0 0.3 33.0 1.8
Execute 1 123.3 10.9 316.3 17.3∑︀

10 253.2 1 791.3
10 s recording before TF Lite [𝑚𝑠] % with TF Lite [𝑚𝑠] %

Load Engine Config 7 677.3 54.7 7.6 0.2
Load Task Config 1 415.5 10.1 1 424.0 34.7
Select Task Segment 2 191.8 15.6 1 635.1 39.9
Init AudioRecorder 33.0 0.2 33.0 0.8
Execute 2 714.6 19.3 1 000.8 24.4∑︀

13 999.2 4 067.5

Table 5.6: Profiling by comparing elapsed time without and with implemented TF Lite.
The evaluation was executed as the first run. The recording is not included as it is almost
the same as the recording duration.

5.4.1 Identify parallelizable code

Static data has to be prepared when the recording starts and before the first data are
produced by AudioRecorder. The Prepare Static Data block can be split into two parts
and make the maximum of preparing (e.g., initiating Hamming window) in previous loading

35

Execute 𝑚𝑠 %
multiple evaluation

Prepare Static Data 2.7 0.7
Down-sampling 8.8 2.4
Mel banks 219.5 59.3
FFNN 56.0 15.1
DTW 46.9 12.7
Calculate Score 1.1 0.3
Print JSON 34.9 9.4∑︀

369.9

Table 5.7: Profiling with TF Lite by comparing elapsed time. The evaluation was executed
on a 5 s recording. The sum of times in this table does not match the time in Execute in
the above table 5.6 as those tables come from different measurement.

phases and minimum before each processing. All global variables have to be checked for
R/W conflicts.

Down-sampling can be parallelized as it simply takes every nth sample and drops others.
The first challenge comes with framing. AudioRecorder produces chunks of samples, that
has to be framed. The last frames will overlap into “future” samples, see figure 3.3. Original
code would handle this like end of recording and pad samples by zeros. That would make
the speech regularly interrupted by silence, and it would worsen the final score. The number
of frames has to be rounded down, and samples starting from the first omitted frame has
to be copied into the beginning of the next chunk from AudioRecorder, see figure 5.8. The
recording is not distorted during recording, but up to 199 last samples of recording are
dropped (as they are not padded by zeros). That means up to 25 ms. Considering the
recorder stops recording ±200 ms against the required length, a deviation of 25 ms does not
introduce much inaccuracy into the evaluation.

Hamming window and Discrete Fourier transform can be parallelized as well. Mel banks
can be computed except the final normalization. The normalization computes the difference
of the banks mean and actual value. That requires knowing the sum of the bank and number
of frames, as this module uses normalization over all frames, so 𝑁 = 𝑛𝑢𝑚_𝑓𝑟𝑎𝑚𝑒𝑠. We can
use Uniform last-N normalization, a floating window of width 𝑁 < 𝑛𝑢𝑚_𝑓𝑟𝑎𝑚𝑒𝑠. But the
accuracy grows with 𝑁 so the best result will be with 𝑁 = 𝑛𝑢𝑚_𝑓𝑟𝑎𝑚𝑒𝑠. Another option is
exponential normalization [5]. In the following experiments, I will keep 𝑁 = 𝑛𝑢𝑚_𝑓𝑟𝑎𝑚𝑒𝑠
and exclude normalization from Mel banks as normalization itself takes only 3.7 ms.

The feed-forward neural network will not be parallelized at this time, as I decided to use
normalization through all frames, which stop the parallel part. But it can be parallelized.
The only difference is that the neural network uses previous frames as input and works like
multiple shift registers. Thus, this step (the controller of FFNN) has to preserve the inner
state between each invocation. We can store input data and pointers into the input vector
as a global variable that is reset only at the beginning at Prepare static data phase.

Some parts of Dynamic time warping could be parallelized as well. The cost matrix can
be computed piecewise for just computed frames, and the matrix of the overall score can
be initiated to Infinity.

Another thing to consider is the approach to parallelization. We can use pipelining
known from CPUs or use linear processing on a background thread (see figure 5.9). The
first approach is effective when each phase takes the approximately same time. Otherwise,

36

Figure 5.8: A chunk of 320 samples. Frame 2 (samples 160 to 299) will be copied into the
next chunk and the current chunk will process samples from 0 to 159 (frame 0 and 1).

the time will depend on the slowest part. In our case, the whole processing is faster than
recording (to process 5 seconds of recording, it takes 0.3 s), so threads 2, 3 and 4 would not
be fully utilized (resource wasting). The second approach can be used, as the whole linear
process of thread 2 is faster than recording. The advantage of this approach is using only
two threads, instead of 4. That means one queue and mutex between threads instead of 3.
We will use the second approach and check whether the second thread finishes processing
before new data comes from the recorder.

5.4.2 Implementation

Background thread (task) is implemented as Kotlin Coroutine (see chapter 4.3). The record-
ing thread creates a new asynchronous task and then continues to start recording. It
is a simple “producer-consumer problem”. The recording thread is a producer, and the
new asynchronous processing task is a consumer. That can be easily implemented using
Kotlin Channels12. Channels are like queues. It provides two interfaces, SendChannel and
ReceiveChannel. The channel capacity can be 0, which is called the rendezvous queue, and
the sender has to meet with the receiver to transfer value. Or the capacity can be limited,
and more values are dropped or the sender is suspended until the queue is free13. The
capacity can be unlimited, which is used in this case. The sender is then never suspended.
If there are no values inside the queue, the receiver is suspended. If the sender has no

12Kotlin Channels, https://kotlinlang.org/docs/channels.html
13Kotlin Channels API documentation, https://kotlin.github.io/kotlinx.coroutines/kotlinx-

coroutines-core/kotlinx.coroutines.channels/-channel

37

https://kotlinlang.org/docs/channels.html
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.channels/-channel
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.channels/-channel

Linear single-threaded:

Downsampl.

9 ms
2.4 %

Mel banks

220 ms
59.3 %

FFNN

56 ms
15.1 %

DTW

47 ms
12.7 %

Score

1 ms
0.3 %

Print

35 ms
9.4 %

Pipeline:

Static Data

3 ms
0.7 %

Recorder

short []

float []
Downsampl.

9 ms
2.4 %

float [] []
Mel banks

220 ms
59.3 %

Static Data

3 ms
0.7 %

Recorder

B
uf

fe
r

Linear with two threads:

short []

Downsampl.

9 ms
2.4 %

Mel banks

220 ms
59.3 %

Static Data

3 ms
0.7 %

Recorder

B
uf

fe
r

th1

th1

th1

th2

th3

th2

FFNN

56 ms
15.1 %

FFNN

56 ms
15.1 %

th4

Figure 5.9: Baseline and two approaches to parallelization - pipelining or linear processing
on background thread.

samples to send, the sender can close the channel, the receiver is resumed and can check
whether the isClosedForReceive is set.

AudioRecorder is filling the internal buffer, and when the buffer is full, it provides an ar-
ray of short samples. The buffer size depends on the sampling frequency, the number of au-
dio channels and bit depth. This value can be obtained from AudioRecord.getMinBufferSize()
function, and it can be for example 3 528 samples. The recorder puts the values one by one
from the full buffer into the channel. The receiver takes values and fills its buffer. This
buffer should have the same width as AudioRecorder or its multiples. In that case, the
processing covers the time during which the next samples are recorded.

5.4.3 Profiling

What multiple of the buffer size to choose, is part of experiments. Whether the background
thread finishes processing in time and the sum of processing times are the values included
in table 5.8.

38

buffer size execution time sum blocks not finished in time
3 528 1 805 986 0-1
7 056 1 772 244 0-1
10 584 1 795 072 0

Table 5.8: Sum of parallel execution times (Execute part) using multiple evaluation on
10 s recording. Buffer size means the number of received samples from the recorder before
invocation Execute in the background. It can be considered as a delay.

Based on the table, the size does not impact the sum of execution time and the number
of blocks not finished in time. Not finished blocks were in the middle of processing, both
in the case of 3 528 and 7 056 block size, and the following blocks were processed in time.
Bigger blocks mean a longer time of processing the last block when the recording is finished.
Thus, a smaller block size means faster processing from the user’s point. The block size
of 10 584 samples represent 0.24 ms of recording, and in the case of sampling frequency
44 100 Hz, so 5 s recording would be divided only into 21 blocks. We chose the block size
to the buffer size. Bigger size requires more operation memory for computing, which is a
limiting factor for smartphones.

Conclusion and comparison are in the following tables 5.9 and 5.10. The recording is
not included as it is almost the same as the recording duration. The right table is from
the user’s point of view, Prepare Static Data is done during recording. Time of Down-
sampling is computed as the time of processing the data left in the buffer after finishing
the recording. Mel banks time consists of the time of normalization and time of computing
Mel banks for the data left in the buffer after finishing the recording.

5 s recording after TF Lite [𝑚𝑠] % with parallelization [𝑚𝑠] %
Load Engine Config 7.9 0.4 8.1 0.9
Load Task Config 658.2 36.1 57.9 6.1
Select Task Segment 808.9 44.3 659.6 69.7
Init AudioRecorder 33.0 1.8 34.4 3.6
Execute 316.3 17.3 186.1 19.7∑︀

1 824.3 946.0
10 s recording after TF Lite [𝑚𝑠] % with parallelization [𝑚𝑠] %

Load Engine Config 7.6 0.2 7.5 0.3
Load Task Config 1 424.0 34.7 61.2 2.8
Select Task Segment 1 635.1 39.9 1 553.1 70.4
Init AudioRecorder 33.0 0.8 37.1 1.7
Execute 1 000.8 24.4 546.1 24.8∑︀

4 100.5 2 205.0

Table 5.9: Profiling by comparing elapsed time without and with implemented paralleliza-
tion. The evaluation was executed as the first run.

For lack of time, the parallelization was not finished whole. Mel banks normalization
and FFNN can be still parallelized, which would save another 90 ms. But even this solution
reduced processing time by 45 % in the case of 5 s recording and by 55 % in 10 s recording.

39

Execute 5 s 𝑚𝑠 %
first run

Prepare Static Data - 0.0
Down-sampling 0.02 0.0
Mel banks 2.81 1.4
FFNN 104.49 52.8
DTW 62.68 31.7
Calculate Score 1.01 0.5
Print JSON 26.91 13.6∑︀

197.92

Execute 10 s 𝑚𝑠 %
first run

Prepare Static Data - 0.0
Down-sampling 0.01 0.0
Mel banks 3.71 0.7
FFNN 178.11 31.5
DTW 329.67 58.4
Calculate Score 1.66 0.3
Print JSON 51.55 9.1∑︀

564.72

Table 5.10: Profiling with parallelization by comparing elapsed time. The time of all
phases was computed after the recording was stopped and the user was waiting for results.
Prepare static data is computed during recording. Thus, it does not affect processing
time.

5.5 Improving the UI response time
The speech module was speedup in previous sections, but those changes did affect the client
site. The user interface displayed the results still after 3 seconds, although the results were
available in Logcat14 much earlier.

It was caused by flooding the bottleneck of React Native called React Native bridge15,
visualized in figure 5.10. The bridge manages communication between JavaScript app
controller and native modules (e.g., OS callbacks and API, SpeechEngine module).

React community is aware of this limitation, and they are currently working on the new
architecture of a native module system called TurboModules16.

Bridge
JavaScript
Thread

Native
Thread

OS events and API
Native modules

1. event

2. serialized payload3. process event

4. serialized response 5. update UI

Figure 5.10: React native bridge with visualized event handling.

The actual problem was with the frequency of onProgressChange events sent from
the SpeechEngine module into the React Native. The bridge was flooded by those events.
Redrawing and responding to the user’s touches became more and more delayed, and the
response to the onResults event was processed and passed for rendering several seconds
after the event occurred.

The frequency of reporting was reduced. The onProgressChange events were sent after
processing 500 ms of data, then it was reduced to each 2 560 ms. After parallelization, the

14Logcat command-line tool - Android Developers, https://developer.android.com/studio/command-
line/logcat

15Android Native Modules, https://reactnative.dev/docs/native-modules-android
16TurboModules proposal, https://github.com/react-native-community/discussions-and-

proposals/issues/40

40

https://developer.android.com/studio/command-line/logcat
https://developer.android.com/studio/command-line/logcat
https://reactnative.dev/docs/native-modules-android
https://github.com/react-native-community/discussions-and-proposals/issues/40
https://github.com/react-native-community/discussions-and-proposals/issues/40

reporting was removed from background parallel parts and remained only in FFNN and
later phases.

But still, when the recording and player are active at the same time, the UI is slow and
delayed as both of the activities produces events for the UI.

I would not recommend React Native for real-time visualisations that need to be accurate
and up-to-date.

5.6 Conclusion
In previous sections, we applied two main optimizations of the processing pipeline (compu-
tation closer to HW and parallelization) and one optimization of GUI rendering response.
The processing pipeline of Execute phase summarizes along with processing times figure
5.11.

16-bit PCM
integer samples

44 100 Hz
float samples

8 000 Hz

features

24 Mel banks
per frame

phonemes

30 desriptors
per frame

XML
Alignment JSON

Feed Forward
neural network

104.5 ms

611.1 ms

Dynamic Time
Warping Calculating scoreMel filter

2.8 ms

223.2 ms

Down-sampling

0.02 ms

19.2 ms

Recording

62.7 ms 1.01 ms

53.9 ms 0.9 ms
AFTER AFTER AFTER AFTER AFTER

BEFORE BEFORE BEFORE BEFOREBEFORE

Figure 5.11: Comparison of profiling Execute pipeline before and after optimizations (from
tables 5.1 and 5.10) on 5 s recording using the first run methodology.

The first optimization reduced loading and computing feed-forward neural network using
high-level library TensorFlow Lite. This reduced Load Engine Config time and FFNN
time in Execute phase (see tables 5.11 and 5.12). TF Lite uses CPU kernels optimized
for the ARM Neon instruction set. Even better performance is achieved by computing 16
frames at once. It means that the input and output of this NN are 16 times bigger, but the
NN model is executed 16 times less often.

The second optimization reduced Prepare Static Data, Down-sampling, and Mel
banks times in Execute phase. Parallelization is implemented using Kotlin Coroutines
and Channels from the Kotlin Coroutines library. Execute phase is invoked each time
when AudioRecorder produces new samples on a background thread. The application
needs only two threads for recording and processing, as processing is faster than recording.
Figure 5.12 displays the implementation of the second approach (Linear with two threads).

The last optimization is not related to the evaluation module. It reduces the delay of
the UI renderer. The number of state and progress updates sent by the evaluation module
to the React Native UI was reduced more than five times. If progress updates come too
often, React Native queues them, and the results are displayed after all previous progress
updates are processed and displayed. With further optimizations, it will be necessary to
further reduce, or even remove, reporting of processing progress.

The final architecture of the evaluation module is displayed in figure 4.2.

41

Linear with two threads:

short []

Downsampl.

0.02 ms
0.0 %

Mel banks

0.3 ms
0.2 %

Static Data

- ms
0.0 %

closeChannel()

Recorder

B
uf

fe
r

th1

th2

FFNN

104.5 ms
52.7 %

DTW

62.7 ms
31.7 %

Score

1.0 ms
0.5 %

Print

26.9 ms
13.6 %

Normalize

2.5 ms
1.2 %

Stop recording

Figure 5.12: The final scheme of implemented parallelization. Unlike to 5.9, the Mel banks
block was split into computing Mel banks and normalizing them. Due to this change, the
FFNN block was not parallelized.

5 s recording before optimizations [𝑚𝑠] after optimizations [𝑚𝑠]
Load Engine Config 7 687.6 8.1
Load Task Config 629.7 57.9
Select Task Segment 812.7 659.6
Init AudioRecorder 33.0 34.4
Execute 1 123.3 186.1∑︀

10 253.2 946.0
10 s recording before optimizations [𝑚𝑠] after optimizations [𝑚𝑠]

Load Engine Config 7 677.3 7.5
Load Task Config 1 415.5 61.2
Select Task Segment 2 191.8 1 553.1
Init AudioRecorder 33.0 37.1
Execute 2 714.6 546.1∑︀

13 999.2 2 205.0

Table 5.11: Profiling by comparing elapsed time before and after implementing optimiza-
tions (from tables 5.7 and 5.10). The evaluation was executed using the first run method-
ology. The recording is not included as it is almost the same as the recording duration.

42

Execute 5 s before optimizations [𝑚𝑠] after optimizations [𝑚𝑠]
first run

Prepare Static Data 4.5 -
Down-sampling 19.2 0.02
Mel banks 223.2 2.81
FFNN 611.1 104.49
DTW 53.9 62.68
Calculate Score 0.9 1.01
Print JSON 10.6 26.91∑︀

923.4 197.92
Execute 10 s before optimizations [𝑚𝑠] after optimizations [𝑚𝑠]
first run

Prepare Static Data 8.3 -
Down-sampling 56.1 0.01
Mel banks 525.7 3.71
FFNN 1 451.9 178.11
DTW 329.2 329.67
Calculate Score 3.1 1.66
Print JSON 90.7 51.55∑︀

2 465.0 564.72

Table 5.12: Profiling by comparing elapsed time before and after implementing optimiza-
tions (from tables 5.2 and 5.10). Prepare static data is after the optimizations computed
during recording. Thus, it does not affect the processing time.

43

Chapter 6

Conclusion

As part of this work, we explained the process of speech processing and comparing two
speech recordings. We introduced, how the processing is used in the application and what
is the expected functionality of the application. The largest part and contribution of this
work is identifying parts that can be refactored and optimized. Those techniques can be
used in similar applications as the presented processing pipeline is quite common in speech
processing.

We used a high-level library TensorFlow Lite to access low-level functionalities provided
by the hardware of today’s smartphones. We tried different accelerators but finally, we stick
to the single thread CPU variant as we do not have so complex neural network. We showed
an example of a complex network and speed up achieved by delegating to the device GPU.
Then we gained more speed up by computing more data at once and found the optimal
data size.

As a second technique, we chose parallelization. We identified problematic blocks for
parallelization and proposed two ways of parallelization. Implemented parallelization pre-
serves the original accuracy and still brings 45 % speed up.

The last thing considered is the user interface. Processing may speed up, but if the user
interface and the rendering is slow, the user cannot feel the acceleration techniques. After
applying the techniques above, there is still needed 174 ms for processing. We can trickly
hide this time into transitions or short animation, so the user cannot note any delay before
the results.

We were able to reduce speech processing of 5 s recording from 928 ms to 174 ms at
the same accuracy. Longer (10 seconds) recording originally takes 2.5 seconds, and at the
end of the work, it takes only 0.5 seconds. Loading of neural network was reduced from 6
seconds to 8 milliseconds.

However, there are still opportunities to speed up the program. We can continue with
parallelization and use uniform-n normalization (floating window with initial value or value
from previous processing) and experiment with the size of windows and initial value in
the context of accuracy. Dynamic time warping uses an algorithm that computes the
whole graph. We can choose windows of limited width where we are looking for the best
path. React Native can be still slowed down when there is multiple progress reported at
the same time. We could try to compute the progress on the React side and send only
start/stop/change events. The other option is discovering alternative solutions like Flutter,
Apache Cordova or Fuse.

We are going to integrate this module into a real application and then try to apply the
same methods on the different app (speech recognizer).

44

45

Bibliography

[1] Goldsborough, P. A Tour of TensorFlow. CoRR. 2016, abs/1610.01178. Available
at: http://arxiv.org/abs/1610.01178.

[2] Honkela, A. Multilayer perceptrons. Nonlinear Switching State-Space Models. 2001.
[cit. 2021-01-15]. Available at:
https://users.ics.aalto.fi/ahonkela/dippa/node41.html.

[3] Müller, M. Information Retrieval for Music and Motion. Springer, 2007. ISBN
9783540740476.

[4] Szőke, I., Skácel, M., Černocký, J. and Burget, L. Coping with Channel
Mismatch in Query-By-Example - BUT QUESST 2014. In: Proceedings of 2015 IEEE
International Conference on Acoustics, Speech and Signal Processing [electronic,
physical medium]. IEEE Signal Processing Society, April 2015, chap. 119899,
p. 5838–5842. DOI: 10.1109/ICASSP.2015.7179091.

[5] Čuba, E. Implementation of Simple Speech Recognizer in Android. Brno, 2018.
Bachelor’s thesis. Brno University of Technology, Faculty of Information Technology.
Supervisor Ing. Igor Szöke, Ph.D.

46

http://arxiv.org/abs/1610.01178
https://users.ics.aalto.fi/ahonkela/dippa/node41.html

Appendix A

API Documentation

The following list contains functions and properties which can be used from the application
and messages that are sent to the React Native application.

• Config options:

– LogVerbosity logVerbosity

• Interface methods:

– loadTaskJSONConfig(jsonData: String)

– initAudioRecorder(length: Int)

– startAudioRecorder()

– stopAudioRecorder()

– selectTaskSegment(taskSegment: String)

– startAudioPlayerRef(wrdId: Int)

– stopAudioPlayerRef()

– startAudioPlayerUsr(wrdId: Int)

– stopAudioPlayerUsr()

– speechEngineExecute()

– saveAudioUsrAsWAV(filename: String)

• Interface events (differs from Interface methods):

– onError(WritableMap payload)

∗ String payload.error
∗ Int payload.state

– onProgressChanged(WritableMap payload)

∗ Double payload.progress
∗ Int payload.state

– onStateChanged(WritableMap payload)

∗ Int payload.state

– onStatus(WritableMap payload)

47

∗ String payload.status
∗ LogLevel payload.logLevel

– onResults(WritableMap payload)

∗ String payload.results

– onAudioEnergy(WritableMap payload)

∗ Double payload.audioEnergy
∗ Double payload.progress

48

Appendix B

Configuration files

The module can be configured through configuration files SpeechEngineConfig.json and
task specific configuration is stored in TaskConfig.json of each task. Those files are de-
scribed by JSON Schema Schema_SpeechEngineConfig.json and Schema_TaskConfig.json.
JSON schemas are not included here, as they are too long for a single page.

B.1 SpeechEngineConfig.json

1 {
2 "SpeechEngine_StatusLevel": "INFO",
3 "AudioRecorder_AudioEnergy_Refresh": 0.1,
4 "AudioRecorder_AudioSamplingFrequency": 44100,
5 "AudioRecorder_AudioChannels": "MONO",
6 "AudioRecorder_AudioSource": "MIC",
7 "AudioRecorder_AudioEncoding": "PCM_16BIT",
8 "FeatureExtraction_Use": "default",
9 "FeatureExtraction_List": [

10 {
11 "Version": "default",
12 "NeuralNet_BinFile": "/storage/emulated/0/sewrapperdemo/SpeechEngine/model16x.tflite"
13 }
14]
15 }

B.2 Task1Config.json

1 {
2 "Task_Transcript_XML": "/storage/emulated/0/sewrapperdemo/Task1/0000000audio.xml",
3 "Task_Audio_Reference_WAV": "/storage/emulated/0/sewrapperdemo/Task1/0000000audio.wav",
4 "Task_Audio_User_WAV": "/storage/emulated/0/sewrapperdemo/Task1/user_audio.wav",
5 "Task_Features_List": [
6 {
7 "Version": "default",
8 "FileName": "/storage/emulated/0/sewrapperdemo/Task1/0000000audio.bnfea"
9 }

10]
11 }

49

	Introduction
	Mobile application
	React Native UI
	Speech Engine module
	Program functions
	Use case

	Speech processing
	Recording
	Down-sampling
	Mel filter
	Framing
	Hamming window
	Discrete Fourier transform (DFT)
	Mel banks

	Feed forward neural network
	Mean normalization

	Dynamic time warping
	Calculating the score
	Conclusion

	Refactoring
	Code readability and maintainability
	Kotlin with Java code
	Kotlin coroutines

	Optimizing
	Measurement methodology
	Profiling before optimization
	TensorFlow Lite
	Creating custom model
	Deploying model
	Profiling
	Batch processing
	Number of threads
	Conclusion

	Parallelization
	Identify parallelizable code
	Implementation
	Profiling

	Improving the UI response time
	Conclusion

	Conclusion
	Bibliography
	API Documentation
	Configuration files
	SpeechEngineConfig.json
	Task1Config.json

