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Abstract

The master’s thesis aim is to develop a 2D numerical slice model with moving bound-
ary conditions of real geometry of caster in MATLAB environment. The model deals
with a high non-linearity of the thermo-physical properties of steel during solidification
and cooling. Not only the non-linearity of thermo-physical properties, but also the non-
linearity during phase change is handled and simulated. Phase change is modeled by
enthalpy method, effective heat capacity method and temperature recovery method. In
the end, comparison of different approaches from the perspective of accuracy, speed of
the computation and suitability of time discretization for non-stationary problems and
parallelization is derived.

Abstrakt

Ćılem diplomové práce je vytvořeńı 2D numerického modelu pohybuj́ıćıho se řezu s
proměnnými okrajovými podmı́nkami skutečné geometrie plynulého odléváńı a chlazeńı
předlitku v prostřed́ı MATLAB. Model se zabývá vysoce nelineárńımi termofyzikálńımi
podmı́nkami oceli během tuhnut́ı a chlazeńı. V práci je simulovaná nejen nelinearita
termofyzikálńıch podmı́nek, ale také nelinearita při fázové změně. Fázová změna je
modelovaná pomoćı metody entalpie, metody zdánlivé kapacity a metody teplotńıho zo-
taveńı. Všechny výsledky práce jsou porovnány z v́ıce hledisek, jako např. z hlediska
přesnosti, rychlosti výpočtu, nebo vhodnosti časového diskretizačńıho kroku pro nelineárńı
problémy, a paralelizace.

Keywords
Continuous casting, heat transfer, mold, latent heat, 2D slice model, enthalpy method,
effective heat capacity method, temperature recovery method, finite difference method,
explicit method, error.
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1 Introduction

Steel is the kind of material that we simply could not imagine our lives without. It is
so ubiquitous, an average person takes it for granted and does even not think about the
entire complicated process that the steel has to go through in order to be turned from
raw ore to final product. One of the many necessary steps on this long path is the process
of casting, which melts the material in order to mold it into a shape that can be used
further down the pipeline of different manufacturing procedures, which then turn it into
the finished product.

Although simple to define, the actual process of casting is quite difficult and sensitive
to many different interfering factors. It is a delicate act of striking the right balance
between quality, production speed, production costs and other factors.

For many decades the only option for industry innovators to improve on the cast-
ing process were physical experiments and observation, which are time consuming and
costly. Luckily, huge hardware and software advancements of the recent years coupled
with knowledge in the field of numerical modeling open up a whole array of new alterna-
tives

The goal of this thesis is to analyse several numerical methods, namely the enthalpy
method, the effective heat capacity method and the temperature recovery method and
evaluate their fit for solving the problem of continuous casting of steel from the point of ac-
curacy, suitability for different methods of time discretization in non-stationary problems
and parallelization.

The first chapter of this thesis presents a very short excursion into the history of
continuous casting along with a modest description of the process itself. Subsequent
chapter expands more on the details of the casting process and describes the key parts
involved. Next is the description of the mathematical model of casting. Theoretical
background of the modeling methods is layed down in this chapter together with the
description of the various types of boundary conditions that need to be taken into account
by these methods. The fifth chapter discusses the translation of the mathematical model
defined previously into its counterpart numerical model that can then be calculated on a
computer. And finally the last two chapters present the implementation of the numerical
methods described and the discussion of the results achieved in this work.
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2 Continuous Casting

This chapter presents to readers a short introduction of continuous casting, its history,
brief description and basic principles. Most of the historical facts, pictures and graphs
used here were found in [2], [5].

2.1 Historical background

For more than a century, the traditional method of conversion of steel from the liquid phase
to the solid phase was by use of ingot molds, where each ingot was cast independently [5].
The number of ingots from a single ladle of liquid steel depended on the ladle size and
the size of each ingot individually. After the steel within the ingot mold had solidified
the ingots were removed and charged into the soaking pits, so they could be reheated
for rolling to semi-finished or finished products. As early as the nineteenth century the
attraction of using a more continuous method was recognized and some of the methods
were applied to casting of non-ferrous metals with low melting points. But not in the case
of steel due to many technical problems related to higher temperatures involved and low
thermal conductivity of steel [5]. The first significant attempt at continuous casting was
direct strip casting by Sir Henry Bessemer in 1856, where he poured liquid metal in his
double roller apparatus, which he used to cast thin strips for brass powder manufacture
as shown in Figure 1. However, he did not pursue this technology, presumably giving
higher priority to developing the steelmaking process first [2].

Figure 1: Attempt at direct strip casting by
Henry Bessemer in 1856 [2].

Figure 2: Stoppered tundish and ingot mold
with hydraulic ram applied by H. Bessemer
[2].

Later he implemented a tundish with stopper for slag retention as shown in Figure 2.
The 10× 10 inch mold below the tundish got a hydraulic ram to push the ingot upward
for a direct rolling of the ingot without reheating. The very first apparatus resembling a
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conventional continuous casting machine was presented by Benjamin Atha in 1901. The
water-cooled mold was directly connected with the tundish, while the strand induced a
claw-shaped head and was withdrawn intermittently by a pair of driven rolls (see Fig. 3)
[2]. Further in the text, a continuous casting machine will be abbreviated as CCM.

Figure 3: First billet casting apparatus by B.
Atha [2].

Figure 4: Scheme of the first caster for steel
with a production guarantee with lip pouring
from an induction furnace into a stoppered
tundish [2].

It was discovered that with steel some considerable problems occurred. Due to sticking
of steel to the mold wall, relative motion between the metal being cast and mold wall was
required. It was not until 1933 when Siegfried Junghans developed and patented his mold
oscillation system that set the foundations for the large scale application of the process of
continuous casting of steel [5]. Due to Second World War, the semi-industrial pilot plants
began to emerge for the continuous casting of steel. One of the first constructed machines
was a vertical caster installed in 1946 for the production of steel billets at Low Moor in
Great Britain (see Fig. 4) [5]. Later on, in 1951 twelve casters of this type were operating
in the world, mostly in Germany and USA (5 machines) and in the Great Britain (2
machines). In 1968, company VOEST-ALPINE created a new type of machine focused
on a high quality of the final product. Between 1970 – 1990, more improvements on the
CCMs were made, which brought the higher quality and productivity. For instance, a
faster exchange between ladle and tundish, adjustable mold width, cooling by water-air
nozzles, electro-magnetic blending, temperature monitoring, whole covering of liquid steel
between ladle and tundish feeding, tundish and mold feeding and many others. Increasing
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the production of steel by continuous casting method brought arise of interest in research
and innovation. Worldwide production of steel by continuous casting is displayed in
graph (see Fig. 5). We can see that the worldwide production of steel by this method
is increasing because of the costs, quality, speed and overall variability in production of
specific and desirable steel.

Figure 5: Evolution of world steel production and share of continuous casting [2].

2.2 Brief description of continuous casting process

The basic principle of the continuous casting process for steel is based on teeming liquid
steel vertically into a water cooled copper mold which is open at the bottom [5]. Heat
transfer to the water-cooled copper solidifies the liquid steel and a solid skin is formed,
which increases in thickness down the length of the copper mold. Two very fundamental
principles are required to avoid sticking of the solidifying skin to the copper mold [5].

1. The mold moves downward faster than the solidifying skin for a percentage of the
oscillating cycle.

2. A lubricant has to be provided as an interface between solidifying skin and copper
mold. Before 1970, rapeseed oil had been used for almost every caster and it is still
used for smaller billet size, where a refractory submerged nozzle cannot be used.
On most of other machines a synthetic casting powder is used on a top of the metal
in the mold [5]. The powder in contact with the liquid steel melts and fills the gap
between the solidifying skin and the mold.

As soon as the skin on the liquid steel is sufficiently thick to contain the liquid steel, the
strand leaves the mold and is further cooled by water or water-air nozzles. The reason
why it is further cooled by nozzles and not by copper mold is that cooling by mold
is less efficient in heat transfer due to the air gap forming between the mold wall and
the solidified skin. Therefore, it is more efficient to use direct water spraying from high
pressure nozzles [5]. However, if the solidified skin is unconstrained or unsupported, it
cannot withstand the pressure arising from the liquid steel and would bulge outwards.
Therefore, it is necessary to support the solidifying skin by rollers or other mechanical
system (see Fig. 6) [5].
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Figure 6: Scheme of continous casting [2].

The principle of modern CCM can be briefly described in a following way. A liquid
steel is initially teemed from the steelmaking vessel into the ladle. The ladle is lifted
onto the CCM and supported by either ladle car or ladle turret. The liquid steel is than
poured from the ladle into the tundish by way of sliding valve mechanism and the stream
is protected by a refractory tube to avoid any reoxidation from the atmosphere [5]. For
modern CCMs, it is common that they operate in parallel, so the steel can be poured into
the tundish, whose main purpose is to distribute steel over a number of casting strands
and to provide more help in the control of pouring the liquid steel into the continuous
casting mold.

The tundish design and its configuration depends on a number of strands and distance
between the strands [5]. The strand becomes completely solid after passing several meters
down the machine. The exact position when strand is completely solid depends on casting
speed, cooling conditions and the product thickness. The strand is straightened by use
of rollers and at the position, where it becomes horizontal, it is withdrawn by the power
of driven rolls. To enable a fully solidified strand to be withdrawn at horizontal position,
the slab is cast on a curvature, the radius of which depends on several factors connected
with product dimension and quality requirements [5]. At the end, a fully solidified strand
is cut by torch machine which travels at the same speed as strand and cuts it transversely
to its original position.
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It has to be said that solidified shell leaving the mold is relatively weak and any
excessive friction in the mold or any decreasing in the shell thickness due to uneven
cooling can lead to breakout. The breakouts are very expensive and undesirable, because
they lead to interruption of the casting. In fact, this is time consuming, since the machine
needs to be recovered from the results of spilled molten steel. It is often required to change
the mold and top zone during the breakouts. Much work has been carried out to avoid
breakouts and to have rapid recovery time when they do occur.
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3 Parts of the casting process

This chapter details the process of continuous casting, namely the main parts of caster
and its different cooling zones. The several expressions, i.e., a heat transfer, heat flow
and heat transfer coefficient, are derived herein the chapter. These expressions will be
required later in the text, namely for a mathematical model of continuous casting. The
following text was inspired by [2], [5], [11], [14].

3.1 Steel supply and tundish operation

To ensure a suitable return of initial investment, the CCM is required to operate at high
production rates while achieving high surface and internal quality standards for steel
semi-products. To achieve high production rates, it is necessary to cast a large number
of ladles in sequence without stopping the casting process. The sequence ratio can vary
with respect to the circumstances, which are influenced by product size and quality mix.

If the product grade and size mix allow a sequence ratio of at least 10 ladles, the
tundish may become a limiting factor in achieving the sequence level [5]. The tundish
is limited mostly by erosion, or blockage of submerged entry nozzle, or stopper rod to
the mold. To achieve a high productivity and high quality of the steel, it is essential
that ladles of steel are supplied to the CCMs with the exact temperature at precise time.
Usually in a practice, a ladle drain time is equal to the time of steel making furnace.

From a ladle to a tundish liquid steel, teeming is controlled by the use of sliding gate
valve consisting of three refractory plates, where one of them can be moved by hydraulic
ram. By continuously weighting and measuring the tundish, steel level in tundish and
its whole operation can be controlled automatically. Automatic control along with other
automatic process control systems can lead to reduced manning requirements [5]. Control
in tundish and protection from oxidation of the teeming stream was neglected and their
importance underestimated. However, during the 1970s, it was discovered that the key
to maintain clean and quality products depends on them. Hence, they are important to
maintain specific limits for quality reasons and to enhance mold metal level control.

Due to the low pressure generated in the sliding gate nozzle and the refractory tube,
there is a great risk of sucking in air between them. To solve this problem, various
systems (considering the inert gas is utilized as a sort of gas shroud protection) are used.
In addition to reoxidation protection, the prevention of a slag flow from ladle to tundish
on emptying the ladle is of great importance too (especially for sequence casting). During
the casting process, the systems for a slag detection are used, and as soon as the slag
appears, they should close the ladle gate (to ensure the slags will not build up in the
tundish) [5].

As was mentioned before, one of the main purposes of tundish is to distribute the
liquid steel over the appropriate number of continuous casting strands. Another ones
are, e.g., supporting the removal of inclusions from the steel and acting as a reservoir
during the ladle changing, while enabling the casting under the required conditions. To
accomplish the above purposes, an adequate volume and depth of the tundish must be
ensured. Additionally, an internal arrangement of weirs and dams is used to facilitate
inclusion removal and increase the residence time of steel in tundish [5].

There is used a cover powder on the top of liquid steel in tundish to insulate and
reduce the radiative heat loss and to absorb the inclusions, which float out of steel

18



[5]. For a further reduction of heat losses, a refractory lined lids are used on both la-
dles and tundishes [5].

Figure 7: Scheme of the ladle and tundish [2].

Figure 8: Scheme of the tundish [2].
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Flow of the liquid steel from tundish to the mold and meniscus level in the mold
are controlled either by sliding gate mechanism (similar to the one between ladle and
tundish) or by a stopper rod. With slide gate mechanism we may have to flood the whole
system with inert gas in order to prevent any air penetration (to prevent any undesirable
reoxidation of the steel). Also, it is necessary to maintain the variation of level of the
liquid steel in the mold at minimum, since high variation of meniscus level in the mold
has a significant effect on strand surface quality.

3.2 Mold

A mold (or the first cooling zone) is the only mechanical part of three cooling zones of
caster, which is in direct contact with molten steel. It is probably the most important
part of the machine and it has to operate under several conditions. Particularly, it needs
to create a homogeneous shell by efficient uniform heat transfer [5]. The mold is a part
that has to be long lasting, capable of quick change of section size and it has to require
minimum maintenance effort.

Figure 9: Mold scheme and phenomenas of first cooling zone [2].

Molds are cooled by a high quality water, usually demineralized and supplied for a
recirculating system [5]. The fail systems and design are usually arranged to provide
minimum water flow velocity in the cooling chase of 8m/s. Normal mold length was
(until recently) 700 mm, but the range expands from 500 to 1200 mm [5]. The most
recent trend has been towards 900 mm mold, which provide increased solidified skin at
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the mold outlet, where the casting speeds are higher. Appropriate rate between length
and casting speed is depicted in figure below (see Fig. 10).

Figure 10: Appropriate length over a speed ratio (depicted as grey area) [2].

In the past, it was believed that the heat transfer is enhanced by close mold to shell
contact of a fixed nonmoving mold. Even with the Junghans type mold oscillation, no
relative movement was imparted during a downward motion, extending over three quarters
of total cycle [2]. As this impeded lubricant infiltration, negative strip mold oscillation
was introduced. Negative strip oscillation means moving the mold slightly faster than
the strand during the downstroke of the cycle. This has been vital to minimize shell
sticking under the conditions of imperfect mold level control prevailing at that time,
since any shell defect may easily lead to shell tearing under the effect of mold friction
[2]. Much more safety is anticipated from a meniscus free mold technology, which would
permit strand withdrawal without lubrication and without oscillation, however practically
feasible solutions are still to be developed [2].

A control of mold friction by rapeseed oil was found to be quite effective, provided
that oil losses due to burning were retarded by an oil flash point exceeding the mold wall
temperature. This has favored the development of tabular molds with relatively thin wall.
Nevertheless, when mold powders were invented in the 1960, they immediately became
more popular. They proved to be more effective and stable technology to keep mold
friction low and strand surface quality high. However, in the transition to mold powders
usage, it had been overlooked that convectional mold level sensors were not compatible
and only steel level detection by electromagnetic sensing were viable [2]. Also mold powder
performance is assured only by continuous powder feeding in order to maintain a stable
layer of liquid slag on the top of steel level. Today, the fully automatic powder feeders are
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still exemption clause, even though the process has been simplified by gravity feeding of
granular powders (see Fig. 11). Thus, the surface defects, as well as breakouts, are still
to a large extent manmade by manual mold powder feeding at irregular intervals.

Figure 11: Scheme of gravity-type feeder for granular powder with powder consumption
control [2].

Heat transfer in a mold is the combination of convection, conduction and radiation,
and proportionally to the rest of cooling zones (more about them later), we get that
the biggest heat transfer occurs in the mold. Namely, around 10% - 30% of total heat is
drained from the strand. In fact, the heat transfer from a strand surface is a multivariable
function depending mostly on casting speed, chemical composition and mold design [11].
We can consider it as a serial connection of thermal resistors, where the biggest branch
lies in the gap (see Fig. 12).

Let us denote a density of heat flow as q̇ and let us introduce it by

q̇ =
Tsurf − Tw

R
, (1)

where Tsurf is the temperature on a surface of the strand, Tw is the temperature of cooling
water and R is a total heat resistance. We can express the total heat resistance as

R =
1

htcw
+

LCu
kCu

+
Lsteel
ksteel

+
Lp
kp
, (2)

where Li is an appropriate thickness of mold areas, depicted in Figure 12, and kx is an
appropriate thermal conductivity. Namely, by i we consider either steel (mold covering),
Cu (mold copper wall) or p (mold powder). A coefficient htcw is a heat transfer coefficient
for cooling water. We can derive htcw from Nusselt number for a pipe flow

Nu =
htcwD

k
= 0, 026 Re0,8 Pr1/3

(
η

ηl

)0,14

, (3)

where D is a hydraulic diameter, k is thermal conductivity,
(
η
ηl

)
is a viscosity term and

Re, Pr are Reynolds number and Prandtl number, respectively. For more about these
parameters and numbers, see [3].
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For more accurate result we have to include also a radiant part of density of heat flow
in the gas gap. Let q̇r be a flow of radiant part, given by

q̇r =
σ (T 4

surf − T 4
m)

ε−1
surf + ε−1

m − 1
, (4)

where σ is Stefan–Boltzmann constant, εm and εsurf are emissivities of mold and strand’s
surface, respectively. Then, by adding (1) to (4), we get a total dencity of heat flow q̇total
given by

q̇total = q̇ + q̇r =
Tsurf − Tw

R
+
σ (T 4

surf − T 4
m)

ε−1
surf + ε−1

m − 1
. (5)

Hence, the heat flow Q̇ through one side of the mold may be obtained by integration of
total density of heat flow through this side. In other words, we get

Q̇ =

∫ Lx

0

∫ Lz

0

q̇total dzdx, (6)

where Lx and Lz denotes width and length of the mold, respectively.

Figure 12: Temperature evolution between surface of the strand and cooling water of the
mold [2].

Another way of calculating the heat flow from the mold is to measure inflow and
outflow water temperature. Heat flow from the strand is than expressed by

Q̇ = Q̇w + Q̇Cu + Q̇lp, (7)

where Q̇w is the heat flow for cooling water, Q̇Cu is the heat flow for mold copper wall and
Q̇lp is the heat flow by mold powders. Usually, the percentage distribution of heat flows
are 5% by copper mold walls, 8% by mold powders. Moreover, the heat flow by cooling
water is explicitly given by:

Q̇w = V̇w [ρw (Tout) cw (Tout)Tout − ρw (Tin) cw (Tin)Tin] , (8)
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where ρw is a water density, cw is a specific heat capacity of water, Tout and Tin are
temperatures in outflow and inflow, respectively. However, the total heat flow in the
mold is not distributed equally. In fact, it is a function of position and casting speed.

3.3 Secondary cooling zone

After the strand leaves the mold, it enters the secondary cooling zone. The strand with
partially solidified shell requires both mechanical support and continual cooling. Mechan-
ical support is required because of the ferrostatic pressure of the liquid steel and without
it the strand would quickly bulge outwards. For the cooling control of the strand, high
pressure water-air nozzles (or water nozzles) are used, but also water cooled mechanical
support extract heat from the strand as well. Radiation also contributes to the total heat
transfer [5]. The design and operation of secondary cooling system highly depends on the
shape of the strand that being cast, section size and overall configuration of the whole
CCM.

The number of support rolls vary for billet, bloom or slab casters and it also depends
on casting speed. Billets are small square sections, usually up to 150 mm square or with
a diameter up to 150 mm. Blooms are square or rectangular sections greater than 150
mm up to 800 mm x 400 mm with aspect ratio usually less than 2. Slabs are anything
larger than blooms with aspect ratio bigger than 2. For illustration, see Figure 13.

Figure 13: Scheme of the strand types.

For higher casting speeds, more support rolls may be required. For the larger billet
and bloom casters (or casters with higher casting speed), there is an increased propensity
of bulging, since the shell is still not so strong, and the support rolls have to be extended
further down the strand.

Figure 14: Support rolls for billet or bloom casting [5].

24



For slab machines, the bulging of the broad faces extends to the point, where solidifica-
tion is complete and invariably strand support of the wide faces extends the full length of
the machines [5]. For slab casters, support systems are arranged into the segments, where
each segment consists of three to six pairs of rolls and has the ability to rapidly exchange
the whole segment. The segment frames are clamped together by hydraulic cylinders and
the roll gaps are preset using chocks and shims [5]. Water nozzles are attached and aligned
on the headers, so they can spray water in between rolls and therefore, cool the strand.

All the segments are fixed to the frame of the caster, where the inner radius of rolls
can be adjusted by the hydraulic cylinders to enable a change of casting thickness (or for
full opening). Full opening is required in the case of an overcooled slab in the machine,
which has to be removed by cutting or for scheduled maintenance of the segments in the
original place [5].

In fact, obtaining the total heat transfer in secondary cooling zone is a quite difficult
task. The main processes, which contribute to total cooling are:

1. Cooling due to radiation.
2. Cooling due to water nozzles by evaporating of the water droplets and water accu-

mulated under the roller.
3. Cooling due to the rolls conduction.

Figure 15: Scheme of the heat transfer in the secondary cooling zone: (1) Rolls conduction
(2) natural convection and radiation (3) forced convection under the nozzle (4) water
interflow and water accumulation [14].

Before the 1980, only water nozzles were used for continuous casting of steel. However,
in the early 1980, the water-air nozzles were introduced. They consist of both the water
and air supply to a nozzle at high pressure resulting in much finer water particles whilst
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also having a wide angle [5]. The smaller particle size has the advantage of increasing the
heat transfer coefficient and more uniform application of water.

Figure 16: Sketch of the water and water-air nozzle.

To set a density of heat flow under the nozzle can be quite a difficult process. Here,
an important role plays a Leidenfrost effect. We can express it by

q̇ = htc (Tsurf − Tw) + εsurfσ
(
T 4

surf − T 4
w

)
, (9)

where htc denotes heat transfer coefficient under the nozzles, εsurf emissivity, the Ste-
fan–Boltzmann constant is set as σ = 5.67051 ·10−8, Tsurf and Tw is again the temperature
on the strand surface and temperature of cooling water, respectively. The density of heat
flow outside of the nozzles is the sum of natural convection and radiation:

q̇ = htcnat (Tsurf − T∞) + εsurfσ
(
T 4

surf − T 4
∞
)
, (10)

where T∞ denotes ambient temperature and htcnat is natural heat transfer coefficient.
In the point, where strand touches the supporting rolls, we observe the heat flow

density, which is described by

q̇ =
π l

2
d (htcrol (Trol − T∞) + εrolσ (T 4

rol − T 4
∞))

S
+ q̇ak, (11)

where S is the area of strand/roll contact, q̇ak is the density of heat flow from water
interflow and water accumulation. Note that for all of the above equations, we can
express the emissivity by empiric relation

ε = 0, 78828571429 + 0, 0003375 (Tsurf)− 40, 17857143 · 10−8
(
T 2

surf

)
,

or

ε =
0, 85[

1 + exp (42, 68− 0, 02682Tsurf)
0,0115] .
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For determining the heat transfer coefficient for the rollers, we can omit its rotation
due to its small angular speed and use the formula for turbulent runaround of horizontal
roll [11]. Hence, we get

htcrol =
Nu kair
D

, (12)

where Nu = 0, 1 (Prair Gr)1/3 is Nusselt number, Prair is Prandtl number and

Gr =
gβair (Tsurf − T∞)D3

ν2
air

is Grashof number (for more about this numbers, see [3]).

The heat transfer coefficient htcnat (for natural convection) can be expressed by

htcnat = 0, 84 (Tsurf − T∞)1/3 . (13)

As we suggested before, the hardest part is a determination of the heat transfer co-
efficient under the nozzles. Its value depends on a density of water flow, temperature of
the strand etc. In particular,

htc = 708W 0,75T−1,2
surf + 0, 116, (14)

where W denotes density of water flow and Tsurf is a surface temperature. More relations
can be found in [2], [3], [4].

In general, the heat transfer coefficients stated above are sufficient only for a number of
nozzles, temperatures and water flows. Therefore, if we want to obtain a suitable results
of our mathematical model, the knowledge of experimental data is required.

3.4 Third cooling zone

The last part of CCM is the so-called third cooling zone. The strand is carried by transport
rolls to the cutting machine. The cutting machine can be mechanical or oxygen powered
torch machine. The machine moves with the same speed as strand and cuts it transversely.

In the third cooling zone, there is no further cooling by nozzles, and heat transfer
occurs only in the form of natural convection and radiation given by (10), considering the
natural heat transfer coefficient (13). Nevertheless, the computation is not so simple and
the heat transfer is pretty complex in reality. For instance, during a parallel casting, a
heat from the other strands has to be considered.
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4 Mathematical model of continuous casting

Herein the chapter, a mathematical model of continuous casting is derived. The following
text is supported by [2], [3], [6], [11], [12].

In recent years, decreasing computational costs and the increasing power of commercial
modelling packages and numerical methods allow application of mathematical models as
an additional tool to physical models to understand and to model complex phenomena
in continuous casting. Nevertheless, because of the enormous complexity of this process,
it is impossible to simulate all the phenomena at once. We need to make a reasonable
assumptions and neglect less important processes, which does not affect the model in a
significant way. Because the mechanical and structural properties of the steel depend on
a temperature field, we will assume that heat and mass transfer play the main role in our
model. We will take a closer look at modelling of the temperature field, which from the
point of view of thermodynamics is a 3D heat, mass transfer with phase and structural
changes.

A general 3D heat transfer equation that describes the temperature distribution inside
of the solidifying body is based on the solution of the Fourier-Kirchhoff equation

∂

∂t
[ρ(T )c(T )T ] = ∇[k(T )∇T ] + v∇[ρ(T )c(T )T ] +Q∗, (15)

where ∇ =
(
∂
∂x
, ∂
∂y
, ∂
∂z

)
is the nabla operator, v = [vx, vy, vz] is the velocity vector and

Q∗ is the term combining all internal heat sources during phase or structural changes.
Therefore, a temperature depending on time and position T (x, y, z, t) is obtained as a
result of the equation (15). Since the main heat transfer is due to conduction, we can
assume that the velocity vector has only part expressing the velocity of the strand down
the machine vz. Hence, we have

∂

∂t
[ρ(T )c(T )T ] = ∇[k(T )∇T ] +

∂

∂z
[vzρ(T )c(T )T ] +Q∗. (16)

In general, the thermal conductivity k(T ) varies in each direction. In our case, let us
assume that we have a homogeneous material. Therefore, we can rewrite the equation
(16) as

∂

∂t
[ρ(T )c(T )T ] = k(T )∆T +

∂

∂z
[vzρ(T )c(T )T ] +Q∗, (17)

where ∆ =
(
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

)
is the Laplace operator. Equation (17) is in Cartesian

coordinates, where for radial part it is more convenient to transform it to cylindrical
coordinates r and ϕ. After transformation, the equation (17) has the form

∂

∂t
[ρ(T )c(T )T ] = k(T )∆T +

∂

∂ϕ

[
1

r
vzρ(T )c(T )T

]
+Q∗, (18)

where ∆T = 1
r
∂
∂r

(
r ∂T
∂r

)
+ 1

r2
∂2T
∂ϕ2 + ∂2T

∂x2
. In all of the above equations, one may obtain Q∗

expressed by

Q∗ = ρ(T )L
∂fs
∂t

, (19)

where L is latent heat and fs denotes the ratio between solid and liquid phase in the
mushy zone. Let us assume that in the mushy zone, fs depends only on the temperature.
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Therefore, we get

Q∗ = ρ(T )L
∂fs
∂T

∂T

∂t
. (20)

If there is no explicit relation between the solid fraction and the temperature (or the
solid fraction cannot be easily evaluated as a function of temperature), the linear model
is generally used, which yields (see [12]) to

fS = 1 T ≤ TS

fS =
TL − T
TL − TS

TS ≤ T ≤ TL

fS = 0 T ≥ TL

(21)

From the all of above equations (15) – (20), we can see that results are directly
connected to thermophysical properties of certain material. These properties depend on
the temperature, which complicates calculations and whole problem.

The first of the thermophysical properties is a thermal conductivity k(T ). It expresses
how a certain material is able to conduct heat. It reaches the high values for metals and
usually lowers down with increasing temperature. In computations, it is always advantage
to have the experimental data of steel compound. However, if the data are not available,
there is a possibility to get them from a regression relation

k(T ) = 58.676491 + T [−0.051443 + T (2.320847 · 10−5 + T (−9.405061 · 10−11))] . (22)

The next thermophysical property is a density ρ(T ), which actually describe a fraction

of mass and size of a certain object. The density is given by ρ = m
V

, or ρ =
∑
Mixi
Vm

for
compound materials, where Mi is a molar mass, Vm is a molar volume and xi is a volume
fraction of the i-th component. Again, if the experimental data are not available, we are
possible to get them from a regression relation of steel

ρ(T ) = 7.870498 · 103 + T [−0.448171 + T (2.642733 · 10−4 + T (−1.550589 · 10−7))] . (23)

The last, but the most important property is a specific heat capacity c(T ), which
describes the amount of heat required for heating up of one kilogram of material by one
kelvin. We can express it by c = Q

m∆T
, or by c = m1c1+m2c2+...+mncn∑

mi
, if we have consider

a material compound of more substances with masses m1,m2, . . . ,mn and special heat
capacities c1, c2, . . . , cn. Note that every substance with decreasing temperature reduces
specific heat capacity. Therefore, we have to include temperature dependency to our
model. Either we can use experimental data, or we can compute them from regression
relation of steel

c(T ) = 392.035678 + T [1.12188 + T (−1.163574 · 10−3 + T (3.785874 · 10−7))] . (24)

4.1 IDS program

The equations (22), (23), (24) stated above in preceding section are specifying some of
the basic regression relations of thermophysical properties of the steels. However, these
relations are providing just approximate results. In fact, their match with real properties
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depends on a chemical compound of the specific steel. Therefore, the usage of preceding
relations is very unfortunate for general computations of temperature field. However,
there is another way how to get the right data for a specific steel compound. It is based
on the usage of experimental detection of every property we need. Nevertheless, such an
approach is very expensive and time consuming due to vast selection of steel compounds.

Nowadays, the most common tool used for obtaining the thermal properties of steels
is the IDS program, which numerically computes segregating, structural and chemical
processes. IDS was developed in 1984 in Helsinki. It operates on a combination of em-
piric and physical approaches. It computes properties such as density, enthalpy, thermal
conductivity, specific heat capacity, viscosity, solid and liquid temperature etc. Results
of this program were experimentally tested for many steels with different chemical com-
pounds and satisfactory results were obtained. We will use this program to get the data
required for the numerical computations. More about this program can be found in [13].

4.2 Initial and boundary conditions

Notice that solution of the equations (15) – (20) is highly dependent on initial and bound-
ary conditions. To obtain a unique solution to such a problem, we need to specify more
than just the governing differential equation [3]. We have to specify these boundary con-
ditions and by forcing the solution to satisfy them we would obtain the unique solution.
Since the model’s differential equation has no room for other information, we need to
supply them as separate conditions. In general, an initial condition can be characterized
in following way:

T (x, y, z, t = 0) = Tinitial(x, y, z) = Tcasting. (25)

Usually, Tcasting is setted as a constant for the whole domain, for continuous casting
its value is equal to the value of casting temperature or, more precisely, the temperature
of liquid metal, which goes from tundish to mold.

To describe a heat transfer problem completely, two boundary conditions must be given
for each direction of the coordinate system along which the heat transfer is significant [3].
Thus, we need two initial conditions for 1D problem, four of them for 2D problem etc.
Next, the most typical boundary conditions are going to be described.

4.2.1 Specified temperature boundary condition

As a first type of boundary conditions, let us introduce a so-called Dirichlet boundary
condition. It prescribes a temperature condition on boundary (see Fig. 17). A tempera-
ture on the exposed side can be easily and directly measured. Therefore, one of the easiest
ways to define a thermal condition on the surface is to specify the temperature [3]. For
instance, to specify heat transfer through 1D wall of length L, the conditions will look
like:

T (0, t) = T1

T (L, t) = T2

(26)

where T1 and T2 are our prescribed temperatures. These can also vary in time.
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Figure 17: Dirichlet boundary conditions on both sides [3].

4.2.2 Specified heat flux boundary condition

The next introduced boundary condition is so-called Neumann’s condition. It prescribes a
condition when we have the information about energy interactions at a surface (Fig. 18 ) .
This information may be used to determine the heat flux and therefore, the boundary
condition using Fourier’s law of heat conduction:

q̇ = −k∂T
∂x

. (27)

Figure 18: Neumann boundary
condition on both surfaces of a plane wall [3].

Figure 19: Wall with insulated and Dirichlet
boundary condition [3].

Such an boundary condition is obtained, when the specific heat flux is setted to
−k(∂T/∂x). We have to keep in mind that the sign of specific heat flux is very im-
portant. If the sign is positive, then the heat flux and coordinate axis have the same
direction. On contrary, if it is a negative value, the converse of preceding sentence is
considered to be true. Moreover, if there occurs a mix of these signs, the boundary will
interpret heat gain as heat loss and vice versa.
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We will suggest some special cases of boundary condition. Firstly, the one with insu-
lated boundary (see Fig. 19). In fact, the insulation does not eliminate a heat transfer
totally, unless it is infinitely thick, but proper insulated wall. If it is so, it will reduce
the heat transfer through itself to negligible values. Therefore, such an condition can be
modeled as:

Figure 20: Thermal symmetry at x = L/2 [3].

−k∂T (0, t)

∂x
= 0. (28)

As the next special case we can consider a so-called thermal symmetry (see Fig. 20).
For example, two surfaces of a large hot plate of thickness L suspended vertically in air
will be subjected to the same thermal conditions, and thus the temperature distribution
in one half of the plate will be the same as that in the other half [3]. Hence, the heat
transfer problem in the plate contains thermal symmetry at x = L/2. We can express
this situation by

∂T (L/2, t)

∂x
= 0. (29)

4.2.3 Convection boundary condition

Another type of boundary condition is called as Newton’s condition. In fact, it is one
of the most common conditions used in practice, since a heat transfer surfaces are in
the environment together with a specified temperature. It is based on a surface energy
balance, where heat conduction at a surface in specific selected direction is equal to the
heat convection at that surface in the same direction. For 1D heat transfer through the
plate of length L, we can express convection boundary condition in following way.

−k∂T (0, t)

∂x
= htc1 [T∞1 − T (0, t)] , (30)

and

−k∂T (L, t)

∂x
= htc2 [T (L, t)− T∞2] , (31)

where htc1 and htc2 are the heat transfer coefficients and T∞1, T∞2 are the ambient
temperatures on each side of the plate.
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Figure 21: Convection boundary condition
on both surfaces of a wall [3].

Figure 22: Direction of heat transfer at a
boundary has no effect on boundary condi-
tion expression [3].

In the equation (30) and (31) we have selected positive x axis as direction of heat
transfer (see Fig. 21). In that case, they remain the same and, in fact, the only equally
applicable, when we choose an opposite direction. Both equations remains the same,
where the only difference will be in the signs of convection and conduction term as shown
in Figure 22. It is very pleasant to be able to choose both directions as direction of heat
transfer because we often don’t know the surface temperature and thus the heat transfer
in advance. We should remind that surface has no thickness therefore no mass so it cannot
store any energy. Thus, whole heat coming from one side must leave surface from the
other side. So, basically convection boundary condition states that heat continuous to
flow from body to the surroundings and vice versa.

4.2.4 Radiation boundary condition

Next introduced boundary condition is not in fact a typical one, but rather more inter-
esting one. This boundary has its own usage in space and cryogenic applications. In this
case, the heat transfer surface is surrounded by an evacuated space and thus, there is no
convection heat transfer between a surface and the surrounding medium [3]. In this cases
radiation is the only mechanism of heat transfer (see Fig. 23). Again using energy bal-
ance, radiation boundary condition is expressed as heat conduction at surface in selected
direction is equal to radiation exchange at the surface in the same direction. On 1D wall
of thickness L radiation boundary condition is:

−k∂T (0, t)

∂x
= ε1σ

[
T 4

surr,1 − T(0, t)4
]

(32)

and

−k∂T (L, t)

∂x
= ε2σ

[
T (L, t)4 − T 4

surr,2

]
(33)

where ε1, ε2 are emissivities of boundary surfaces σ is the Stefan-Boltzman constant and
Tsurr,1 and Tsurr,2 are average temperatures of ambient of two sides of the wall.
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Figure 23: Radiation boundary condi-
tion on both sides of the wall [3].

We can see that the radiation boundary con-
dition involves forth power of the tempera-
ture and so it is nonlinear therefore they are
sometimes difficult to determine. In some
applications where radiation is strongly sup-
pressed by convection we can omit the radia-
tion and avoid complications associated whit
nonlinearity.

4.2.5 Interface boundary condition

The last boundary condition introduced here is usually used for bodies made of multiple
materials. The solution of heat transfer through such a body requires a solution of heat
transfer through its every layer. This problem will require some specific conditions on
every interface of two materials. First one is that temperature at the contact area must
be same for different materials and the second one is that interface cannot store any
energy therefore heat flux on both sides must be same. The Figure 24 can be expressed
as:

Figure 24: Boundary condition at the in-
terface of two material with perfect con-
tact [3].

TA (x0, t) = TB (x0, t) (34)

and

−kA
∂TA (x0, t)

∂x
= −kB

∂TB (x0, t)

∂x
. (35)

where kA and kA are thermal conductivities
of two material.
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4.3 Modeling of latent heat

There are two main approaches of modeling phase change considering the treatment of the
phases interface. Methods based on interface capturing and methods based on interface
tracking. In the interface capturing methods, the temperature distribution is solved as
a major quantity and only little effort is devoted to the location and translation of the
interface between the phases [6]. Usually in these methods we assume that the interface is
a near isothermal surface corresponding to the phase change temperatures. On the other
hand interface tracking methods also include techniques that explicitly track interface.
They do it by use of finite number of points called markers which represent the interface
and are precisely tracked. Even though interface tracking methods outperform interface
capturing methods they are still less popular, probably due to limited information about
efficiency, accuracy and requirements. Therefore we will consider only interface capturing
methods especially the enthalpy method, the effective heat capacity method and the
temperature recovery method. They are easy to implement in code, relatively fast to
compute without the need for additional treatment, their mathematical formulation is
relatively simple but they suffer from lower accuracy than interface tracking methods.

Modelling methods which use interface capturing are primarily focused on solution
of heat transfer equation and obtaining temperature distribution. If we would need to
determine interface position we could do that from temperature distribution using the
assumption that interface lies somewhere between grid points where temperature is below
and above phase change temperature.

4.3.1 Enthalpy method

Enthalpy method is one of the most frequently used methods for modeling heat transfer
problems with phase change since it incorporates the term Q̇, combining all internal heat
sources. In this method we work with volume enthalpy H(T ) [J/m3] which can be defined
as a functional:

H(T ) =

∫ T

0

[
ρ(ξ)c(ξ)− ρ(ξ)L

∂fs
∂T

]
dξ. (36)

From where we can derive:

H(T ) =

∫ T

0

ρ(ξ)c(ξ)dξ + ρ(T ) (1− fs)L. (37)

For each phase the volume enthalpy will be:

H =


ρ(T )c(T )T, T ≤ TS
ρ(T ) (c(T )T + (1− fs)L) , TS < T < TL
ρ(T )(c(T )T + L), T ≥ TL

(38)

where TS denotes solid temperature, where the whole volume is in solid phase and TL
expresses liquid temperature, where the material is in liquid phase. So in the equations
(15) - (18) we will substitute enthalpy and get:

∂H

∂t
= k(T )(∆T ) + vz

∂H

∂z
, (39)
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∂H

∂t
= k(T )(∆T ) + vz

1

r

∂H

∂ϕ
. (40)

In this method enthalpy is the main variable and equation (39) or (40) is considered
to be mathematically complete, therefore they can be numerically solved by an appro-
priate computational method. Enthalpy based formulation of the heat transfer equation
contains two unknowns. These two unknowns are coupled with the equation (36) and
computational solution is carried out in two steps. First, enthalpy is determined from
equations (39), (40) and then temperature from (38), where a typical enthalpy temper-
ature relation can be seen in Figure 25. This two-step technique makes the numerical
procedure more demanding [6]. We will discuss numerical solution and implementation
later in the text.

Figure 25: Typical temperature-enthalpy relationship for the non-isothermal phase
change. [6].

4.3.2 Effective heat capacity method

Effective heat capacity method, in some literature also called apparent heat capacity, is
another interface capturing method where latent heat is included in ceff (T ) [J/m3K]. We
can define it as:

ceff (T ) =
∂H

∂T
= ρ(T )c(T )− ρ(T )L

∂fs
∂T

. (41)

If we assume linear release of the latent heat, than effective heat capacity for each
phase results in expression:

ceff =


c(T )ρ(T ), T < TS
c(T )ρ(T ) + Lρ(T )

(TL−TS)
, TS ≤ T ≤ TL

c(T )ρ(T ). T > TL

(42)

We can rewrite (17), (18) with effective heat capacity and we will obtain:

ceff (T )
∂T

∂t
= k(T )(∆T ) + ceff (T )vz

∂T

∂z
, (43)
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ceff (T )
∂T

∂t
= k(T )(∆T ) + ceff (T )vz

1

r

∂T

∂ϕ
. (44)

Effective heat capacity method differs from enthalpy method in a way that the pri-
mary variable is directly computed from (43), (44) which eliminates variations caused by
two steps in the enthalpy method. Moreover we can use implicit Euleur method which
guarantees stability for arbitrary time step and shortens the total computational time.
Figure 26 depicts characteristic bell shaped temperature-effective heat capacity relation.

Figure 26: Characteristic bell-shaped effective heat capacity [6].

On the other hand effective heat capacity method has some drawbacks. The main one
is that it is hard to ensure energy conservation. What can happen is, that if we compute
node temperature in the first time step and temperature of the same node in the next
time step, we can completely skip latent heat addition if the temperature difference is too
big. Therefore effective heat capacity method needs some correction for example like the
one used in [12]:

ceff =

{
(H2−H1)
(T2−T1)

, (T2 − T1) ≥ ε

ceff (T2) , (T2 − T1) < ε
(45)

where ε is a small temperature difference in node (for example ε ≤ 0.1 K), H2−H1 denotes
enthalpy difference in two adjacent time steps T2, T1. We will discuss the correction later
in the text.

4.3.3 Temperature recovery method

Another useful variant of enthalpy techniques is temperature recovery method. In this
method, the temperature at which phase change occurs is computed in two steps. In the
first step, the temperature is calculated with absence of latent heat. In the second step
temperature is set back to the phase change temperature and the equivalent amount of
heat is added to the enthalpy budget for a node. We can compute released latent heat
as a function of corresponding increment of solid segment over a time step. Once the
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enthalpy budget equals the latent heat for the volume associated with that node, the
temperature is allowed to fall according to the heat diffusion [12]. Scheme of the principle
of the temperature recovery method can be seen in Figure below (27).

Figure 27: Principle of the temperature recovery method [6].

So with this method,heat transfer model:

ρ(T )c(T )
∂T

∂t
= k(T )∆T, (46)

is corrected according to:

T =


T, T < TS
TL − (H2 −H1) (T2 − T1) 1

L
, TS ≤ T ≤ TL

T, T > TL

(47)

where again H2 −H1 expresses enthalpy difference of the two adjacent time steps T2, T1

and TS, TL is solid and liquid temperature.
Main advantage of the temperature recovery method is that the conservation of energy

is ensured, it is easy to implement and computationally not very demanding. Another
big advantage of this approach is the fact that it decouples enthalpy, temperature and
phase transformation calculations, which is used for solidification models where enthalpy-
temperature relation is not known beforehand. As a disadvantage can be seen its sen-
sitivity to the size of the time step and that errors in the approximation are larger in
neighborhood of the mushy zone than in the single phase area.
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5 Numerical model

Numerical analysis is in fact a very useful tool of mathematics, particularly to problems of
unsolvable matter. In other words, if we are not able to get analytical solution, we use an
appropriate numerical method. There are two main categories of numerical approaches.
Namely, mesh and mesh free methods.

Mesh methods have defined points that create mesh structure, while mesh free are
based on interaction of each node with all its neighbors. As a consequence, original ex-
tensive properties such as mass or kinetic energy are no longer assigned to mesh elements,
but rather to single nodes.

One of the popular mesh free methods is moving particle method, which allows better
local refinement of the mesh. The most common mesh methods are the finite difference
method, the finite element method, the boundary element method, and the energy balance
(or control volume) method. Every method has some advantages and disadvantages for
different applications, but we will focus more on the finite difference method. Following
text was inspired by [3], [7],[9], [15], [19].

5.1 Finite difference method

Finite difference method is one of the oldest and the easiest methods to apply to simple
geometry. This method is based on the principle of replacing differential equations by
algebraic ones. It is done by replacing derivations by finite differences, where also the
name of the method comes from. We can approximate derivations by use of Taylor series
expansion or by polynomial fitting. First derivative of a function f(x) at a point is
equivalent to the slope of a line tangent to the curve at that point and is defined as [3]:

df(x)

dx
= lim

∆x→0

∆f

∆x
= lim

∆x→0

f(x+ ∆x)− f(x)

∆x
, (48)

Figure 28: The derivative of a function at a
point represents the slope of the function at
that point [3].

Figure 29: Local and global discretization
errors of the finite difference method at the
third time step at a specified nodal point [3].

where ∆f
∆x

is the ratio which denotes increment of the function relative to ∆x. So for ∆x
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sufficiently small we can write:

df(x)

dx
∼=
f(x+ ∆x)− f(x)

∆x
. (49)

We can obtain the same equation by writing Taylor expansion of a function f about
a point x and neglecting all terms of the expansion except for the first two:

f(x+ ∆x) = f(x) + ∆x
df(x)

dx
+

1

2
∆x2d

2f(x)

dx2
+ · · · . (50)

Because in our problem second derivative of a temperature in a specific direction
occurs, we need to introduce the second derivative. Firstly we need to show the first
derivative:

∂T

∂x

∣∣∣∣
i− 1

2

∼=
Ti − Ti−1

∆xi−1

,
∂T

∂x

∣∣∣∣
i+ 1

2

∼=
Ti+1 − Ti

∆xi
. (51)

And now the second derivative:

∂2T

∂x2

∣∣∣∣
i

∼=
∂T
∂x

∣∣
i+ 1

2

− ∂T
∂x

∣∣
i− 1

2

∆xi+∆xi−1

2

=

Ti+1−Ti
∆xi

− Ti−Ti−1

∆xi−1

∆xi+∆xi−1

2

. (52)

In case of equidistant distribution of points ∆x = ∆xi = ∆xi−1 , second derivative
can be approximated by second central difference:

∂2T

∂x2

∣∣∣∣
i

∼=
Ti−1 − 2Ti + Ti+1

(∆x)2
. (53)

Time discretization of the temperature looks like:

∂T

∂t
∼=
T n+1
i,j − T ni,j

∆t
, (54)

where n denotes actual time step and n+ 1 following time step.

5.1.1 Accuracy and controlling of numerical error

Accuracy is without a doubt connected to the errors occurring in numerical computations.
When we compare our numerical results with exact solutions we may or may not have
sufficiently approximate numerical solutions. The difference between numerical and exact
solution is called error and it is generated primarily by discretization error and round-off
error.

Discretization error also called truncation or formulation error occurs when we
replace derivatives by finite differences in each step or the actual temperature distribution
between two adjacent nodes by a straight line. When we look at Figure 29, we can see that
in the beginning numerical and exact solutions coincides as expected, but with increasing
time numerical solution deviates more and more. The difference between the two solutions
in ti and ti+1 is called local discretization error. One can predict that the situation will
only get worse after n time steps since the numerical solution in ti+1 is computed from
previous time step which already has some numerical error. The accumulation of local
errors after n time steps is called global discretization error. Note that local and global
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discretization errors are identical for the first time step [3]. Global discretization error
usually increases with increasing number of steps, but the opposite may occur when the
solution function changes direction frequently, giving rise to local discretization errors of
opposite signs, which tend to cancel each other out [3].

Local discretization error gives us the first idea about accuracy of the method, how-
ever as we stated before, after each time step the error accumulates, so what we are
really looking for, is the global discretization error. When we look at equation (50)
the first neglected term is (∆x)2, so the approximation error of one step is equal to
(∆x)2. However cumulative error after M steps on distance L is adequate to ∆x since
M∆x2 = (L/∆x)∆x2 = L∆x. Therefore smaller ∆x means smaller global error and thus
better approximation.

Round-off error is the error which occurs due to limited number of digits per number
in computer. Typically computers use 7 digits per number, which is called single precision,
however we may perform calculations using 15 digits, referred to as double precision. But
we have to keep in mind that double precision uses more memory and requires more
computational time. This error is very hard to predict because it is random. It depends
on the number of calculations, the method of rounding off, the type of computer, and even
the sequence of calculations [3]. It is proportional to the number of calculations executed
during computation of the solution.

Figure 30: As the mesh or time step size decreases, the discretization error decreases but
the round-off error increases.[3].

Total error present in the numerical method is sum of discretization error, which
decreases with decreasing step size and round-off error, which increases with decreasing
step size. Therefore reducing the step size in order to achieve better solution form point
of view of discretization may result in complete opposite effect. So we should be always
careful not to let round-off error get out of ”control” by avoiding working with too small
or too large numbers.
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In practice most of the times we don’t know the exact solution, thus we cannot fully
determine the magnitude of error present in numerical method. Even knowing global
discretization error is meaningless without a good estimate of round-off error. Therefore
to assess the accuracy of the results obtained by numerical method we should:

1. Start the calculation with reasonable mesh size ∆x based on our experience and then
repeat the calculation with ∆x

2
. When results do not differ from previous ones in

any significant way, we can conclude that the discretization error is at an acceptable
level. If the difference between the results is bigger than we can accept, we continue
halving mesh size until the results are sufficient.

2. Calculate the problem with double precision holding the mesh size constant. If
changes are not significant we may conclude that the round-off error is not a problem,
but if they are too large we can try to increase mesh size and thus reduce the number
of calculations, or to change the order of computations. With increasing mesh size
we have to find suitable compromise for both errors.

5.1.2 Stability criterion for explicit method

Explicit method is easier to implement but it has a major disadvantage compared to the
implicit method. Time step ∆t is limited by its size, method is not unconditionally stable.
Big time step may cause oscillations or even divergence of the method. To prevent this
from happening, stability criterion must be satisfied. For computation of all temperatures
in the next time step at all nodes i, j we can write:

T n+1
i,j = ai,jT

n
i,j + . . .

T n+1
i+1,j = ai+1,jT

n
i+1,j + . . .

...

T n+1
i,j+1 = ai,j+1T

n
i,j+1 + . . .

...

ai,j ≥ 0. ∀i, j

(55)

For stability condition to be satisfied, all coefficients ai,j before T ni,j must be greater
or equal to zero for all nodes, which also satisfies second law of thermodynamic.

For 2D case of heat transfer inside of a body, stability criterion will be obtained from:

T n+1
i,j =

(
1− 2∆tk

(∆x)2ρc
− 2∆tk

(∆y)2ρc

)
T ni,j + . . . (56)

where form equation (55) we get:(
1− 2∆tk

(∆x)2ρc
− 2∆tk

(∆y)2ρc

)
≥ 0,

1 ≥ ∆t

(
2k

(∆x)2ρc
+

2k

(∆y)2ρc

)
,

∆t ≤ ρc(∆x)2(∆y)2

2k(∆y)2 + 2k(∆x)2
,

(57)

so for ∆tinside we have:

∆tinside ≤
(∆x)2(∆y)2

2α(∆y)2 + 2α(∆x)2
, (58)
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where α = k
cρ

[m2/s] is thermal diffusivity. Situation gets even more complicated because
thermophysical properties depend on temperature and we can have non-equidistant mesh.
Thus computation of time step for every iteration is unnecessarily complicated. Usually
the worst case scenario is utilized for time step which gives us:

∆tinside ≤
min
T
{ρ(T )c(T )}min

i
{(∆x)2}min

j
{(∆y)2}

2max
T
{k(T )}max

j
{(∆y)2}+ 2max

T
{k(T )}max

i
{(∆x)2}

(59)

Criteria for 1D or 3D are analogical. However criterion for boundary nodes depends
on boundary condition. For Dirichlet or Neumann condition criterion stays the same, but
for radiation or Newton condition for example, criterion will also become the function of
heat transfer coefficient in a particular direction:

∆tboundary ≤
1

2htc
cρ∆x

+ 2k
cρ(∆x)2

+ 2k
cρ(∆y)2

(60)

Note that the node with the strictest criterion is the corner point. With all this in
mind we can set the final criterion, which will be the smallest time step of all possible
ones:

∆t = min {∆tinside,∆tboundary} . (61)

5.2 2D Slice model

In this thesis we are using 2D slice model rather than fully 3D model to simulate contin-
uous casting of steel.

Slice models were successfully implemented by Lally [9], Šarler [15], Klimeš [7], Zhang
[19] etc. Lally showed that thermal profiles computed by slice models agree with those
predicted by 3D models. He also found that they significantly increase efficiency and
reduce computational requirements. For example usage of 2D slice model for several
finite difference methods resulted in a reduction of computation time from 338 minutes to
just 2 minutes without sacrificing accuracy. Since they are so fast, they can be used for fast
optimization or online simulations. Even Šarler suggested slice models for heat transfer,
but he also pointed out their significant drawbacks in predicting realistic turbulent fluid
flow effects [15].

Principle is similar to 3D model with radial casting, but in 2D slice model casting
process occurs in the horizontal direction. We neglect all interactions in the casting
direction and take into account only those perpendicular to the casting in form of a
traveling slice. Is was well reported that this assumption leads to only small inaccuracies
since interactions perpendicular to the casting speed are way more significant.
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Figure 31: Schematic of horizontal continu-
ous casting [7]. Figure 32: Slice model principle [7].

Temperature field of the slice is computed from known time dependent boundary
conditions, where slice time is connected to the position in the strand. Since we can
neglect all interactions in the casting direction, temperature fields at a given coordinate
z depend only on slice history, including its cooling intensity. To calculate the cooling
intensity of the slice as a function of time, a connection between the z coordinate of the
casting machine and the slice history t is needed, which in general is [15]:

z(t) =

∫ t

tstart

vz (ξ) · dξ + zstart, (62)

where tstart is the initial time of the slice and vz is a casting speed. We may obtain
simple connection between z coordinate and slice history, when casting speed and other
parameters are steady:

t(z) = tstart +
z − zstart

vz
. (63)

After the computation, when slice arrives at the end, 3D model can be reconstructed
as a temperature history of 2D slices.

5.3 Numerical formulation of the methods

Further we will show how to discretize partial differential equation (16) as well as boundary
conditions. Since we are working with slice model and assume equidistant mesh, (16) we
will get even simpler problem discretized as follows:

ρi,jci,j
T n+1
i,j − T ni,j

∆t
= ki,j

(
Ti−1,j − 2Ti,j + Ti+1,j

(∆x)2
+
Ti,j−1 − 2Ti,j + Ti,j+1

(∆y)2

)
+ Q̇ (64)

To keep the equation more neat we ignored dependence on temperature
(
T ni,j
)

for param-
eters where the dependency is obvious.
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Figure 33: Example of discretization of edge nodes [11].

Equation (64) can only be used for internal nodes, because for boundary nodes i = 0
and i = n, where n denotes the number of nodes in x direction, we need to know values
of nodes i = −1 and i = n + 1 which we don’t have right now (see Fig. 33). Similarly
for j nodes in y direction. Temperatures in imaginary nodes i = −1 and i = n + 1 can
be obtained from boundary conditions. To keep the text simple and well-arranged, we
will show to compute edge node i = −1, because for other imaginary edge nodes it is
analogical. To obtain its value we use boundary conditions:

1. Dirichlet boundary condition:
T n0,j = Tsurf. (65)

2. Radiation boundary condition:

−k
T n−1,j − T n1,j

2∆x
= εσ

((
T n0,j
)4 − T 4

∞

)
=⇒

=⇒ T n−1,j = −
εσ
((
T n0,j
)4 − T 4

∞

)
2∆x

k
+ T n1,j.

(66)

3. Neumann boundary condition utilizes first central difference:

−k
T n−1,j − T n1,j

2∆x
= q̇ =⇒ T n−1,j = −2∆xq̇

k
+ T n1,j. (67)

• For special case of heat flux boundary, when edge is insulated, we get:

−k
T n−1,j − T n1,j

2∆x
= 0 =⇒ T n−1,j = T n1,j. (68)

4. Newton boundary condition:

−k
T n−1,j − T n1,j

2∆x
= htc

(
T n0,j − T∞

)
=⇒

=⇒ T n−1,j = −
htc
(
T n0,j − T∞

)
2∆x

k
+ T n1,j.

(69)
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• Combined convection radiation contition:

−k
T n−1,j − T n1,j

2∆x
= htc

(
T n0,j − T∞

)
+ σε

((
T n0,j
)4 − T 4

∞

)
=⇒

=⇒ T n−1,j = −
2∆x

[
htc
(
T n0,j − T∞

)
+ σε

((
T n0,j
)4 − T 4

∞

)]
k

+ T n1,j.

(70)

When we know the values of imaginary nodes, we can execute (64) on boundary nodes
i = 0 as well. Note that in all of the above equations k and htc depends on surface
temperature, k

(
T n0,j
)
, htc

(
T n0,j
)
.
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6 Implementation of numerical model

In this section we will show discretization of the methods modeling latent heat and de-
scribe how they were implemented. To keep the equations more neat, we will omit the
explicit notation of dependency on temperature in time step n, for all thermophysical
properties, for example ki,j

(
T ni,j
)

will be denoted as ki,j, unless it is specified otherwise.

6.1 Numerical formulation of enthalpy method

Modeling of latent heat via enthalpy method is thanks to experimental and IDS pro-
gram data very pleasant to implement. We start , as in all methods, by setting initial
temperature for the whole slice:

T n=0
i,j = Tcasting ∀i, j (71)

Subsequently depending on the boundary condition we recompute edge temperatures.
Knowing when to use what type of boundary is essential for good prediction of the con-
tinuous casting behavior. Since we have the relation between time, casting velocity and z
position (62),(63), this doesn’t have to bother us. We solve simplified, thanks to the slice
model, equation (39) for every node where its numerical discretization looks:

Hn+1
i,j −Hn

i,j

∆t
= ki,j

(
Ti−1,j − 2Ti,j + Ti+1,j

(∆x)2
+
Ti,j−1 − 2Ti,j + Ti,j+1

(∆y)2

)
Hn+1
i,j = Hi,j + ki,j∆t

(
Ti−1,j − 2Ti,j + Ti+1,j

(∆x)2
+
Ti,j−1 − 2Ti,j + Ti,j+1

(∆y)2

) (72)

Now we convert enthalpy back to temperature by known enthalpy-temperature relation
(see Figure 34) for specific steel.
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Figure 34: Known enthalpy-temperature relation for steel 17243.
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Since enthalpy is a non-decreasing function, we have temperature and enthalpy vectors
arranged from lowest to highest value. Therefore we can apply binary search algorithm
for finding position i of the computed enthalpy H, thus the corresponding temperature.
The algorithm works as follows:

1. Set lower = 1 and upper = n.
2. Check if upper < lower than break with unsuccessful result, else set i = upper+lower

2
.

3. Now compare computed H with enthalpy on i-th position, Hi. If H < Hi than go
to 4. If H > Hi than go to 5. If H = Hi than break with successful result and
assign temperature on i-th position to computed enthalpy H.

4. Set upper = i− 1 and return to 2.
5. Set lower = i+ 1 and return to 2.

Disadvantage of the whole approach is frequent using of binary search algorithm. We
have to call it not only for every time step, but also for every node. This consumes the
most of the computing time. One way of speeding up this process is to parallelize it on
multiple processors.

After we obtain all temperatures T n+1
i,j , we start again repeating the entire process for

another time step.

6.2 Numerical formulation of effective heat capacity method

Although effective heat capacity is straightforward from the viewpoint of coding, because
we work directly with temperature and there is no need for converting, it might get a bit
trickier when we implement correction. Correction is necessary because of large numerical
errors occurring due to reasons mentioned in (4.3.2).

Since we know that ceff = ∂H
∂T

, we compute the ceff from the known enthalpy before-
hand.
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Effective heat capacity

Figure 35: Effective heat capacity for steel 17243.
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Again we calculate boundary temperatures using edge conditions and the process
to compute temperatures in the following time step utilizing effective heat capacity is
discretized as follows:

ceffi,j
T n+1
i,j − T ni,j

∆t
= ki,j

(
Ti−1,j − 2Ti,j + Ti+1,j

(∆x)2
+
Ti,j−1 − 2Ti,j + Ti,j+1

(∆y)2

)
T n+1
i,j =

ki,j∆t

ceffi,j

(
Ti−1,j − 2Ti,j + Ti+1,j

(∆x)2
+
Ti,j−1 − 2Ti,j + Ti,j+1

(∆y)2

)
+ T ni,j

(73)

Now we have to correct the results. First we will show correction proposed by Chia
Liu and Sun Chao [10]. They suggested to correct specific heat as follows:

ceffi,j =



c1 Tf −∆T > T n+1 and Tf −∆T > T n

c2 Tf −∆T > T n+1 and Tf + ∆T ≥ T n ≥ Tf −∆T
c3 Tf −∆T > T n+1 and Tf + ∆T < T n

c4 Tf −∆T ≤ T n+1 ≤ Tf + ∆T and Tf −∆T ≤ T n ≤ Tf + ∆T
c5 Tf −∆T ≤ T n+1 ≤ Tf + ∆T and Tf + ∆T < T n

c6 Tf + ∆T < T n+1 and Tf + ∆T < T n

(74)
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Figure 38: Areas of equation (74) depicted more clearly.

where

c1 = cs

c2 = cs +
(c4 − cs) (T n − Tf + ∆T )

T n − T n+1

c3 = cs +
2∆T (c4 − cs)− (cs − cl) (T n − Tf −∆T )

T n − T n+1

c4 =
1

2

(
L

∆T
+ cl + cs

)
c5 = c4 −

(c4 − cl) (T n − Tf −∆T )

T n − T n+1

c6 = cl

(75)

where Tf = TL+TS
2

is temperature as depicted in Figure 38; TL, TS are liquid and solid
temperatures; ∆T = TL−Tf ; cs, cl are effective heat capacities for solid, liquid phase and
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L denotes latent heat.

Another way of correcting effective heat capacity method was shown in [12] equation,
(45), which written numerically is:

ceffi,j =

 (Hn+1
i,j −H

n
i,j)

(Tn+1
i,j −Tn

i,j)

(
T n+1
i,j − T ni,j

)
≥ ε

ceffi,j
(
T n+1
i,j

) (
T n+1
i,j − T ni,j

)
< ε

(76)

where ceffi,j
(
T n+1
i,j

)
means that specific heat depends on temperature.

After the correction is set we have to again recompute the temperature in future time,
now with correct specific heat and we repeat the process to the end.

6.3 Numerical formulation of temperature recovery method

Last method studied in this thesis is the temperature recovery method. As mentioned in
4.3.3, it operates in two steps. To get to the first step, we have to prepare our temperature
field of the first slice by using initial condition and we have to recompute our edge nodes
using boundary condition. After we are done, we proceed to solve (46), which is discretized
as follows:

ρi,jci,j
T n+1
i,j − T ni,j

∆t
= ki,j

(
Ti−1,j − 2Ti,j + Ti+1,j

(∆x)2
+
Ti,j−1 − 2Ti,j + Ti,j+1

(∆y)2

)
T n+1
i,j =

ki,j∆t

ρi,jci,j

(
Ti−1,j − 2Ti,j + Ti+1,j

(∆x)2
+
Ti,j−1 − 2Ti,j + Ti,j+1

(∆y)2

)
+ T ni,j

(77)

When the temperature T n+1
i,j gets to the mushy area, we need to correct it due to

the latent heat generation. According to [17] there are five situations which can be
encountered in numerical calculations and every one needs to be handled individually.

(a) Case 1 (b) Case 2
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(a) Case 3 (b) Case 4

(c) Case 5

Figure 40: Five situations of temperature correction.

Corrections for the cases 1-5 as follows:

Case 1: T n+1
i,j =

ci,jT
n+1
i,j + L

∆T
TL

ci,j + L
∆T

Case 2: T n+1
i,j =

ci,jT
n+1
i,j + L

∆T
T ni,j

ci,j + L
∆T

Case 3: T n+1
i,j = T n+1

i,j +
L
(
T ni,j − TS

)
ci,j∆T

Case 4: T n+1
i,j =

ci,jT
n+1
i,j + L

∆T
T ni,j

ci,j + L
∆T

Case 5: T n+1
i,j = T n+1

i,j +
L

ci,j

(78)

where T n+1
i,j is the temperature in future time step n + 1 computed without latent heat

52



addition; ∆T here means the difference between liquid (TL) and solid (TS) temperatures;
ci,j depends on temperature T n+1

i,j , ci,j ≡ ci,j
(
T n+1
i,j

)
and T n+1

i,j is our aimed future corrected
temperature.

We can implement this method another way, when we have the enthalpy-temperature
relation. By subtracting latent heat generated in structural and phase changes, we find
a different enthalpy-temperature dependence. Then we will use both of them to compute
and correct T n+1

i,j .
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enthalpy
enthalpy without latent heat

Figure 41: Known enthalpy-temperature relation with and without latent heat for steel
17243.

We compute T n+1
i,j according to (77) and by utilizing the enthalpy-temperature relation

depicted in figure 41 we obtain enthalpies Hn+1
i,j , Hn

i,j and Hn
i,j where H are enthalpies,

where we don’t consider latent heat generation. From those three, we can evaluate future
time step enthalpy Hn+1

i,j accordingly:

Hn+1
i,j = Hn

i,j −
(
Hn
i,j −Hn+1

i,j

)
, (79)

where from Hn+1
i,j we obtain future time step T n+1

i,j using enthalpy-temperature relation
and then we repeat the process for every time step till the end.
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7 Results

Let us now introduce the results, concerning the numerical model of continuous casting
of steel with slab design. Throughout this thesis, various methods of modeling latent
heat have been presented. Therefore we will create a summarizing tables comparing these
methods.

Dimensions of the slab slice were 1530x250 mm. Since the slab is axially symmetric,
we modeled only the second half of it using adiabatic boundary condition on a symmetry
axis. Model represents casting of the steel ČSN 17243 (AISI 303, DIN 1.4305). All thermal
properties were either experimental from VÍTKOVICE STEEL, a.s. or computed by IDS
program for steel compound identical to ČSN 17243. Model was computed for different
mesh sizes (Table 1), with same casting speed v = 0.8m/min using MATLAB environment.

Temperature field in representative points for various phase modeling methods with
different grid size resulted in the following:
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Figure 42: Effective heat capacity method on coarse mesh.
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Figure 43: Enthalpy method on the coarse mesh.
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Figure 44: Temperature recovery method on coarse mesh.
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Figure 45: Effective heat capacity method on regular mesh.
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Figure 46: Enthalpy method on regular the mesh.
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Figure 47: Temperature recovery method on regular mesh.
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Figure 48: Effective heat capacity method on fine mesh.
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Figure 49: Enthalpy method on fine the mesh.
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Figure 50: Temperature recovery method on fine mesh.
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Figure 51: Effective heat capacity method on the finest mesh.
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Figure 52: Enthalpy method on finest the mesh.
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Figure 53: Temperature recovery method on the finest mesh.

Types of mesh:

Number of points for half slice (765x250): Resulting dimensions (x,y):
Fine: 75x50 10.2x5 [mm]

Finest: 100x60 7.65x4.17 [mm]
Regular: 50x33 15.3x7.58 [mm]
Coarse: 30x15 25.5x16.67 [mm]

Table 1

Table of average computational time [s]

Method: Effective heat capacity Enthalpy Temperature recovery
Coarse mesh 3.8604 2.1283 3.3160
Regular mesh 29.6298 9.7002 28.8311

Fine mesh 129.2818 31.9168 106.8216
Finest mesh 255.1200 59.3835 208.1280

Table 2

Results presented in (Table 2) were obtained on Intel(R)Core(TM) i7-4702MQ CPU
@2.20 GHz.

To present results connected to the error of metallurgical length of the strand applying
various methods, we have to know the exact solution. Unfortunately, no such solution
exists due to the complexity of the whole problem. However, we will assume the solution
on the enthalpy method as the exact one, because the method was previously reported
[6], [12] to be the most precise of all three. Authors applied various interface capturing as
well as interface tracking phase change modeling methods on one and two phase Stefan’s
problems where the 1D solution is known. Utilizing their results and our assumption
about the exact solution we get (Table 3):
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Error in metallurgical length of the strand [m]

Enthalpy method Effective heat capacity Temperature recovery
Coarse mesh: 2.3820 2.3830 2.350
Regular mesh: 1.5150 1.5230 1.3550

Fine mesh: 0 0.0270 0.3970
Finest mesh: 0.9570 0.9220 1.5190

Table 3

We also derived the evaluation of the temperature error when slice leaves the mold on
y symmetry axis (Table 4).

Average temperature error on symmetry axis y [◦C]

Enthalpy method Effective heat capacity Temperature recovery
Coarse mesh: 16.5432 10.3397 14.3134
Regular mesh: 4.80407 1.7155 0.6417

Fine mesh: 0 2.3317 5.8963
Finest mesh: 1.0446 2.2085 7.2814

Table 4

Results for the continuous casting of steel ČSN 17243 show that the enthalpy and
effective heat capacity method are comparable. Different results for temperature recovery
method may be caused by its higher sensitivity to time step. Equations (58 - 61), are used
for correct determination of time step size for linear problems. For the non-linear ones it
is hard to find correct analytical constraint preserving the numerical stability. Despite of
the fact, that linear stability conditions are not sufficient for non-linear problems shown
by [8], they are still used, at least as an initial guess of the time step.

One possibility of avoiding this problem is to use a different discretization method,
for example the implicit method or the Crank-Nicolson method, which were proven to
maintain stability with arbitrary time step. Advantage of these methods is redeemed in
increasing number of total iterations necessary to preserve the stability. Short overview
is in the table (Table 5), where more information can be found in [16].

Discretization methods
Explicit method Implicit method Crank-Nicolson method

Stability not always allways allways
Truncation error O(∆t) O(∆t) O((∆t)2)

Pros
Straightforward
implementation,
less CPU cost

Unconditional
stability

Smaller Truncation error,
unconditional stability

Cons Conditional stability Time consuming
Equations needs to
be solved simultaneously
which is time consuming

Table 5

Another possible reason of bigger error appearance is the fact, that we did not have
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exact temperatures for the beginning and end of the structural changes. Therefore the
recalculation of properties during structural changes was not correct.

For further application of the slice model for continuous casting, implicit or semi-
implicit discretization would be more suitable, if we wanted to be sure about stability. In
this case stability would be preserved and the potentially higher number of steps needed
for the convergence of the calculation would not affect the overall computation time as
much as in the case of a 3D model. Furthermore, additional reduction of computational
time may be achieved by utilizing parallel computation.

Requirements nowadays usually demand the shortest possible computation times and
the finest possible grid resolutions. These two parameters are the two key driving factors in
the contemporary online optimization of the continuous casting of steel and the regulation
of this process. Hence the prediction of temperature field by numerical models is necessary
for the control of casting parameters. Following are a few possible ways of parallelization:

• Enthalpy method:
1. Computing thermophysical parameters for specific temperatures.
2. Computing new enthalpies in time ti + ∆t from the enthalpies in time ti.
3. Converting enthalpy in ti + ∆t to temperature in ti + ∆t.

• Effective heat capacity method:
1. Preparing thermophysical properties in corresponding temperatures.
2. Computing the temperature in imaginary nodes i = 0 and i = n + 1 via

boundary conditions.
3. Evaluating the temperatures in new time step ti + ∆t.

• Temperature recovery method:
1. Computing thermophysical properties in corresponding time.
2. Determine the temperature of imaginary nodes i = 0 and i = n + 1 using

boundary conditions.
3. Transforming temperatures to enthalpies without latent heat using temperature-

enthalpy relation.
4. Computing temperature T in ti + ∆t.
5. Evaluate corresponding enthalpy with latent heat in T .
6. Obtain temperatures in next time step Ti + ∆t.

When we want to compute the process in parallel, it is usually better to work with simple
explicit method, because the scheme is parallel in nature. Meaning that the temperature
field is calculated only from previous results, hence space dimensions can be distributed
over an arbitrary number of processors. More about parallelization can be found in [12],
[6], [18].

Note that significant portion of time during parallel execution is consumed by data
transfer between CPU workers. For small problems, this time may be even bigger than
the time of a corresponding to sequential solution, making parallelization inadequate.
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8 Conclusion

The goal of the thesis was to develop a 2D nonlinear phase change heat transfer model
with moving boundary conditions, using several different approaches for modeling of the
phase change and compare the results.

These goals were accomplished in the implementation of enthalpy method, effective
heat capacity method and temperature recovery method. Subsequent evaluation of these
methods concluded that enthalpy and effective heat capacity methods provide comparable
results, while slightly different results for temperature recovery method were attributed
to its higher sensitivity to a size of a time step around mushy area.

Also the 2D slice model with moving boundary conditions studied in this thesis reflect
a real geometry of caster used by VÍTKOVICE STEEL, a.s. This model set a foundations
for more robust future slice models for VÍTKOVICE STEEL, a.s. For example for models
concerning also tightness in steel.

This work was able to present a practical working solution to the problem of continuous
casting of steel ČSN 17243. However, only by changing of entry data we can obtain results
for different steel.

The thesis led to an deeper understanding of problems connected with phase change,
numerical implementation of the mathematical models, working with real world data and
overall better understanding of continuous casting process.

One of the possible future extensions of this work may be implementation of implicit
or semi-implicit discretization methods, or comparison od 2D slice model to the fully 3D
model.
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List of Symbols

ceff [J/m3] Effective heat capacity
cw [J/kgK] Specific heat capacity of water
fs Ratio between liquid and solid phase
htcw [W/m2K] Heat transfer coefficient for cooling water
k [W/mK] Thermal conductivity
L [J/kg] Latent heat
L [m] Thickness of mold areas
Mi [kg/mol] Molar mass
q̇ [W/m2] Density of heat flow

Q̇ [W/m3] Heat flux
Q∗ [W/m3] Rate at which energy is generated per unit volume of the medium
R [m2K/W] Total heat resistance
S [m2] Area of strand/roll contact
T [K] Temperature
Vm [m3/mol] Molar volume
W [l/m2s] Density of water flow
xi Volume fraction of the i-th component
ε Emissivity
η Viscosity
ρw [kg/m3] Density of water
σ [W/m2K4] Stefan–Boltzmann constant
Gr Grashof number
Nu Nusselt number
Pr Prandtl number
Re Reynolds number

Abbreviation

CCM Continuous casting machine
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Attachment

Code.rar contains:
1. Diplomka-run.m
2. Enthalpy-run.m
3. Temperature-recovery-run.m
4. Effective-heat-capacity-run.m
5. Diplomka-run.m
6. temperatures.m
7. progressbar.m
8. entry data
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