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Abstract 

This work is focused on the analysis of power-bus structures on printed circuit 
boards using the solution algorithm based on 2D-integral-equation formulation in the 
frequency domain. The algorithm is implemented in Matlab and is capable to analyze 
the parallel-plate structure with arbitrary material parameters, polygonal shape and 
number of ports. As output the program provides the frequency dependent voltage 
distribution between the plates, voltage/current relations between the ports and the 
radiation diagram of the structure. In order to simulate populated power-bus 
structures, the resulting Z-matrix can be converted into the so-called Touchstone 
Format file, which allows us to embed the power-bus structure into a network 
analysis (e.g. in ANSOFT Designer). All results are validated using the existing 
analytical solution for the rectangular structure, using a full-wave solver and by 
practical experiment.   

Key words: 2D integral equation; Green’s functions; power-bus structure; contour 
integral method (CIM); frequency domain analysis.  

Abstrakt 

Tato práce se zabývá analýzou power-bus struktur využitím metody založené 
na formulaci problému 2D hraniční integrální rovnicí ve frekvenční oblasti. Uvedená 
metoda byla implementována v Matlabu. Program umožňuje analyzovat obecné 
polygonální power-bus struktury s možností nastavení parametrů substrátu a 
libovolného počtu a umístění budících portů. Výstupem programu je frekvenční 
závislost rozložení elektrického pole mezi deskami struktury, vztahy mezi porty 
struktury vyjádřené např. impedanční maticí a vyzařovací diagram. Dále byla 
implementována možnost převodu výsledné impedanční matice do tzv. Touchstone 
formátu, pomocí něhož je možné modelovat analyzované struktury jako obecné N-
porty (např. v ANSOFT Designeru), což umožňuje analýzu power-bus struktur s 
dalšími obvodovými prvky. Výsledky byly ověřeny pomocí existujících analytických 
vztahů pro jednoduché obdélníkové struktury, využitím komerčního simulačního 
programu a praktickým experimentem. 

Klíčová slova: 2D integrální rovnice; Greenovy funkce; power-bus struktury; metoda 
hraničních prvků (MHP); analýza ve frekvenční oblasti           
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Abbreviations and symbols 
 

E - electric field intensity ε0 - electric permittivity of free space
H - electric field intensity εr - relative permittivity (dielectric const.)
B - magnetic flux density μ0 - magnetic permeability of free space
D - electric flux density μr - relative permeability
A - vector potential  - Hamiltonian operator
φ - scalar potential 2 - Laplacian operator
iS - surface  current density ~ - denotes spectral domain
rS - surface charge density r, r0 - position vectors (observer, source)
k - wave vector d - height of the substrate
k - wave number I  - electric current
λ - wavelength V  - electric voltage
ω - angular frequency Jn(.) - Bessel function of order n
f  - frequency Hn(.) - Hankel function of order n
j - imaginary unit G(.) - Green's function
c0, c - speed of light (vacuum, dielectric) δ(.) - delta function
σ - conductivity C  - boundary contour
t - skin depth D  - 2D region bounded by C
tanδ -loss tangent of the material n - normal vector
Z - impedance matrix u ij , h ij  - matrix elements
Y - admittance U, H - matrices

CIM - Contour Integral Method, BEM - Boundary Element Method, FD - Frequency Domain, 
MSE - Mean Square Error, PCB - Printed Circuit Board, IC - Integrated Circuit, PEC - 
Perfect Electric Conductor, FDTD - Finite Difference-Time Domain, CEMPIE - Circuit 
Extraction-Mixed Potential Integral Equation
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1 Introduction 

A power-bus structure serves as the charge storage for the integrated circuits (IC) on a 
printed circuit board (PCB), reducing the switching noise, which rises from the changing 
between low and high states of the digital outputs of ICs. The minimizing of the switching 
noise ensures the signal integrity on the PCB and the reduction of the radiated 
electromagnetic interferences (EMI). In order to reduce the electromagnetic radiation of the 
power-bus structure, we are trying to avoid structural resonances, where the input impedance 
increases. For these reasons it is important to compute the voltage/current relations between 
the ports of the power-bus structure [1].  

Recently, many papers have focused on the modeling of power-bus structures. One part 
of these methods, limited to the rectangular structure, is based on an analytical resonator 
model of the parallel plate structure [1]. Other classes of numerical approaches are based on 
full-wave methods as finite difference time domain method (FDTD) [9], or on the circuit 
extraction based on mixed-potential integral equation (CEMPIE) [10]. 

In the following chapters, the power-bus structure is analyzed using a numerical method 
based on a solving 2D boundary integral equation [4]. The main advantage of this approach is 
the high computational efficiency. All mathematical details of the numerical method will be 
carried out and the results will be compared with the existing analytical solutions for the 
simple shapes of power plate, with the results obtained from commercial software and with 
measurements.              

2 Electromagnetic Fundamentals 

Before we start with the analysis of the power bus-structures, the problem has to be 
mathematically described. The problem of the analysis of the parallel plate structures will be 
formulated as a boundary-value problem. The boundary-value problem is then reformulated to 
a 2D boundary integral equation and subsequently solved by the contour integral method 
(CIM) also known as the boundary element method (BEM) [4]. 

2.1 The Helmholtz Equation 

The main subject of this thesis is the high-frequency analysis of a double-plate 
structure, as depicted in Fig. 1. The double-plate structure consists of a thin conductor of an 
arbitrary shape placed above the ground plane. The periphery of the structure is open. The 
circuit is excited at vertical ports by the current source I0, which represents the noise current 
injected in the power-bus structure by the supply pin of IC [1]. The material between power 
and ground plane is assumed to be isotropic and homogeneous. Only the small dielectric and 
conductor losses are considered. These losses are included in the complex wave number k as 
follows [1]: 

''',''' kkforjkkk <<−≈  
where 

rkk ε0'= , 

)(tan
2
'''

d
tkk += δ . 
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where k0 = ω/c0 is the wave number in the free space, c0 is the speed of light in the vacuum 
and ω denotes the angular frequency. Next, the relative permittivity of the substrate is denoted 
as εr, and d denotes the distance between plates. The skin depth t is given as [1]: 

σωμ0

2
=t , 

where σ is the conductivity of the plates and μ0 the magnetic permeability.  

The distance between power plate and ground plane d is usually much smaller then the 
considered wavelengths, it means that condition d << λ holds. Hence we can, under 

this condition, consider that all changes of the fields in the z-direction are zero: ∂/∂z = 0. 
Since the power plate is assumed to be perfect electric conductor (PEC), the following 
conditions must be satisfied [3]: 

D

C

n

x 

y 

z 

d εr, tanδ
GND

Fig. 1: Double-plate power bus structure  

PWR

I0

(x0, y0)

nD

 SD iHn =× ,  (1a) 

 0En =×D ,  (1b) 

 SD ρ=⋅ Dn ,  (1c) 

 0=⋅ Bn D ,  (1d) 
where nD = (0, 0, 1) denotes the unit normal vector to the region D, E and H are the electric 
and magnetic field intensities, D and B denote the electric and magnetic flux densities, 
respectively. Next, iS and ρS denote the surface current and charge densities, respectively. 
Under these boundary conditions we obtain Hz = Ex = Ey = 0. When the time-harmonic regime 
ejωt is adopted, Faraday’s and Ampere’s law in the appropriate form can be written as follows 
[3]: 

 HE ωμj−=×∇ ,  (2a) 

 EH ωεj=×∇ .  (2b) 
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After substituting above mentioned presumptions, equations (2) are simplified as [4]: 

 x
z Hj

y
E

ωμ−=
∂

∂
,  (3a) 

 y
z Hj

x
E

ωμ=
∂

∂ ,  (3b) 

 z
xy Ej

y
H

x
H

ωε=
∂

∂
−

∂

∂
.  (3c) 

From the equations (3), after straightforward modifications, the following two-dimensional 
Helmholtz equation can be obtained [4]: 

 ( ) 022 =+∇ zT Ek ,  (4a) 
where  and k denotes the wave number. The problem to be solved is 
not fully defined until the boundary conditions along the periphery contour C are determined. 
To find the appropriate boundary condition, let suppose first that no external ports are 
connected to the periphery of the structure. In this case, there is no current flowing across the 
periphery. Hence according to equation (1a) the magnetic field lines are perpendicular to the 
contour C. From equations (3a) and (3b) is further clear, that the gradient of the electric field 
is normal to the magnetic field H. Consequently, the gradient of the electric field is 
perpendicular to the outward normal n on the contour C: 

22222 // yxT ∂∂+∂∂=∇

 ConE
n

E
zT

z 0=⋅∇=
∂

∂
n .  (4b) 

If the ports are connected to the periphery, then current flows into the circuit and the previous 
condition is not fulfilled. The corresponding boundary condition can be obtained with the help 
of equations (1a) and (3) as follows: 

 ConijjE
n

E
SnSzT

z ωμωμ −=⋅−=⋅∇=
∂

∂
nin ,  (4c) 

After integration of the electric field intensity Ez between the power and ground planes we 
obtain the high-frequency voltage V = Ez d. Using this voltage, the equations (4) can be 
rewritten [4]: 

 ( ) DinVkT 022 =+∇ ,  (5a) 

 )(0 absentportsCon
n
V

=
∂
∂ ,  (5b) 

 )( presentportsConidj
n
V

Snωμ−=
∂
∂ .  (5c) 

The equations (5) represent the boundary-value problem, which can be solved by various 
methods. Most widely used methods are the finite-element method and finite-differences 
methods. The finite-element method is based upon the variational principles and the finite-
difference method consists in replacement of partial derivatives with the appropriate finite 
differences. Both these methods are very versatile but computationally intensive. From this 
reason it is more convenient to use the contour integral method, because the dimension of the 
problem is reduced and the computational algorithms are more effective. This method is 
based upon the approximate solving of the integral equation related to the original boundary-
value problem. To find the corresponding integral equation, Green’s theorems have to be 
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applied and the appropriate resolving kernel (Green’s function) has to be found. These 
problems are solved in the next chapters. 
  

2.2 Green’s Theorems 

Let D be a simply connected region bounded by a “reasonable” closed contour C (e. g. 
piecewise smooth closed contour), and let U be continuous differentiable vector field defined 
in D. For this vector field we can write the divergence theorem [2]: 

 ∫∫∫ ⋅=⋅∇
CD

T dsdS nUU ,  (6) 

where ds is an infinitesimal element of a contour C, dS = dxdy denotes surface element and n 
is the outward normal vector to the contour C. Next suppose that U = v V, where v is a scalar 
function of position and V is a vector function. The divergence of U then becomes: 

 vvv TTTT ∇⋅+⋅∇=⋅∇=⋅∇ VVVU )( . 

If V is an irrotational vector field, we can express it as the gradient of a scalar function u. The 
equation (6) can be then rewritten as: 

 [ ] ∫∫∫ ⋅∇=∇⋅∇+∇⋅∇
C

T

D

TTTT dsuvdSvuuv n)( . 

After noting that uu TTT
2)( ∇=∇⋅∇  and nuuT ∂∂=⋅∇ /n , we have Green’s theorem in the 

first form: 

 [ ]∫∫∫ ∇⋅∇+∇=
∂
∂

D

TTT
C

dSvuuvds
n
uv 2 .  (7a) 

The scalar functions v and w can be interchanged, and then we have: 

 [ ]∫∫∫ ∇⋅∇+∇=
∂
∂

D

TTT
C

dSuvvuds
n
vu 2 .  (7b) 

 
After subtraction (7b) from (7a) the second form of Green’s theorem is obtained [4]: 

 ( ) [ ]∫∫∫∫ ∇−∇=⋅∇−∇=⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

−
∂
∂

D
TT

C

TT

C

dSvuuvdsvuuvds
n
vu

n
uv 22n .  (8) 

Note that u, v ∈ C2(D υ C). This presumption can be more reduced, but here is no need.  

2.3 The Unit Source in the Two Dimensions 

The method described here, uses the idea of Green’s functions: the field caused by a 
distributed source is simply obtained by the summing of the contributions of infinitesimal 
sources. In the following text, the notation G(r|r0) denotes the field at an observation point r, 
caused by an infinitesimal source at a source point r0. The crucial issue is to investigate the 
behavior of Green’s function G(r|r0) in the close neighborhood of the source. Green’s 
function in the immediate neighborhood of the source point will be denoted as g(ρ), where ρ 
is a distance from a source point Q. The notation of the problem is depicted in Fig. 2, where 
the neighborhood of the source point Q is, for the sake of clarity, extended. It is well known, 
that Green’s function is not continuous at r = r0. This can be expressed, considering the 
solved problem (5) and unity source, as follows [4]: 
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 ( ) DinGk oT )()|( 0
22 rrrr −=+∇ δ , 

where δ(.) denotes the delta function. Integrating this over the region B surrounding the source 

point Q, we obtain:  

K

B

C 
D

P(x, y) 
Q(x0, y0) 

origin 

n 

n 
ns

r0
r 

ρ0

R

Fig. 2: Definition of a unit source 

 . ∫∫∫∫ =+∇
BB

T GdSkdSG 122

The main contribution to the unity on the right side has the first integral on the left side, due 
to “stronger” singularity. Hence, under the limit ρ0 → 0, we can write: 

1)(2 =∇∫∫
B

T dSg ρ . 

After using the Gauss theorem we arrive at the formulation of the yield q of a source: 

  1)( =⋅∇= ∫ dsgq s
K

nρ ,  (9) 

where the orientation of the unit normal vector ns is depicted in Fig.2. It is obvious, that for 
unit source q = 1. Since g depends only on radial distance ρ from the source, the equation (9) 
can be modified as [2]: 

  ds
d

dgq
K
∫=

ρ
ρ)(  

The last integral can be easily computed as follows [2]: 

 
ρ

πρϕρ
ρ

π

π d
dgd

d
dgq 2== ∫

−

. 

Consequently, for a unit source in the two dimensions we obtain [2]: 

 constgand
dn
dg

d
dg

+==−= ρ
πρπρ

ln
2
11

2
1 .  (10) 

This result can be rewritten using the G(r|r0) as the limit:  
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 RG
R

ln
2
1)|(lim 00 π

=
→

rr ,  (11) 

where source/observer distance is given as: R = |r – r0|. Green’s function with the logarithmic 
singularity for a small argument will be discussed hereafter. Note that equation (11) is a 
fundamental solution of the Laplace equation. As will be shown later, the fundamental 
solution of the 2D Helmholtz equation, which satisfies the small-argument limit (11) are the 
zero order Hankel functions.   

2.4 Formulation of a Contour Integral Equation 

In the previous chapters we have formulated the boundary-value problem, definition of 
a unit source in the two dimensions and Green’s theorems. With the help of the second form 
of Green’s theorem (8) and the definition of a unit source (10), the boundary-value problem 
(5) can be reformulated to the corresponding contour integral.  

If the source is outside the region D, then the both functions G and V and derivatives 
which appear are continuous throughout D, and the following equations hold: 

 . DinGkandVk TT 0)(0)( 2222 =+∇=+∇
When the second form of the Green theorem is applied, the following equality, in such case, 
can be written:    

 ( )∫∫ ∫ =⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

−
∂
∂

=∇−∇
D C

TT ds
n
GV

n
VGdSGVVG 022 . 

However, this is not actually our case because the source is considered to be inside the region 
D, as is depicted in Fig. 2. As was mentioned before, Green’s function G(r|r0) is not 
continuous at the source point Q. To remedy this problem, we exclude an infinitesimally 
small circle, which surrounds the source point, from the domain of integration. Hence, 
according to Fig. 2, the domain of integration for a surface integral is D - B and the line 
integral must be taken over both boundaries K and C with the orientation depicted in Fig. 3. 
The extraction of the small circle K from the domain of integration is depicted in Fig. 3. The 
integrals C1 and C2, depicted in this figure, cancel each other. After this extraction we have: 

 .0=⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

−
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

−
∂
∂

∫∫
CK

ds
n
GV

n
VGds

n
GV

n
VG   (12) 

For the first integral taken over small circle K, we make use of expressions for Green’s 
functions in the immediate neighborhood of a source point (10), thus we get: 

 ∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

∂
∂

K

dsV
n
V

ρ
ρ

π
ln

2
1 .  (13) 

This integral can not be computed, because we do not know the values of a voltage V and its 
derivative ∂V/∂n on an infinitesimal circle K. Therefore we will make an estimate. For the 
first term in the previous integral following estimate holds: 

 ρρρ
π

ρ
π

lnmaxlnmax
2
1ln

2
1

⎭
⎬
⎫

⎩
⎨
⎧

∂
∂

=
⎭
⎬
⎫

⎩
⎨
⎧

∂
∂

≤
∂
∂

∫∫ n
Vds

n
Vds

n
V

KK

. 

Since the following limit holds: 

 0lnlim
0

=
→

ρρ
ρ

, 
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the contribution of the first term is zero and only the second term contributes to the integral 
over K [2]: 

  )(
2

)(
2
1

0

QVdsQVdsV

KK

== ∫∫ πρρπ
, 

where V(Q) denotes the voltage at the source point Q. Hence, the integral (12) can be then 
rewritten as: 

 ∫ ⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

−
∂
∂

=
C

ds
n
VG

n
GVQV )( .  (14) 

From equation (14) can be computed rf voltage V at point Q in the region D, in terms of V and 

∂V/∂n upon the contour C. However, the CIM requires the voltage V on contour C. In the next 
paragraphs, the transformation of equation (14), through the limit process Q ∈ D →Q’ ∈ C, is 
described.  

y 

x 

ρ0

C 

D 

Q(x0, y0) 

K 

ds 

dn C1

C2

ρ0

D 

C 

y 

x 

K 

ds 

dn 

Q(x0, y0) 

P(x, y) 

Fig. 3: Extraction of a singularity from region D 
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The source point Q’ is now set just on the contour depicted in Fig. 4. To find the rf 
potential at the point Q’ we must exclude this point from the integration domain, because 

Green’s function G(r|r0) is not continuous here. The source point can be excluded by 
including a semicircular detour of infinitesimal radius. Similarly to the equation (12) we can 
write the following equation: 

C

D 

n 

Q‘(x0,y0)

Γρ
ρ0

P(x,y)

R
θ 

Fig. 4: Extraction of a singularity from contour  C 

 ∫∫
Γ−Γ

=⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

−
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

−
∂
∂

ρρ C

ds
n
GV

n
VGds

n
GV

n
VG 0  . 

As in the previous case, only the second term of the first integral over the semicircle 
contributes: 

 
2

)'()'(
2
1

2
1 QVQVdsV

==∫
Γ

π
πρπ

ρ

. 

We therefore get the following expression: 

 ∫
Γ−

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

−
∂
∂

=
ρC

ds
n
VG

n
GVQV 2)'( . 

By assuming limit ρ0→ 0, we can obtain equation for the potential at the point Q’∈ C:  

 ∫ ⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

−
∂
∂

=
C

ds
n
VG

n
GVQV 2)'( ,  (15) 

where for the Green’s function for R→ 0 holds the equation (11). 

2.5 Green’s Function 

As was mentioned before, Green’s function must satisfy the solved equation and in the 
source point Q must be singular as given in equation (11). Since the immediate neighborhood 
of the source depends only on the distance ρ from the source point, the Helmholtz equation 
for a desired Green’s function is given as [5]: 
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  01 2 =+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Gk
d
dG

d
d

ρ
ρ

ρρ
.  (16) 

The corresponding solution of equation (16) is the general cylindrical function of zero order 
Z0(kR). Because of the choice of the time harmonic regime ejωt , the appropriate Green’s 
function is the second Hankel function H0

(2) (kR). This solution of equation (16) then 
represents an outgoing cylindrical wave. The further step is to investigate the singularity of 
the second Hankel function at the origin. The value of the second Hankel function for a small 
argument is also useful in a numerical analysis of a problem discussed in the next chapters.    

Following Sommerfeld [2], the second Hankel function of zero order can be written in 
the integral form written as: 

 ∫=
2

cos(2)
0

1)(H
W

wjkR dwekR
π

,  (17a) 

where the integration path is depicted in Fig. 5. For the sake of completeness, there are also 
depicted the integration paths for the Bessel function Jn(.) (W0) and for the first Hankel 

function Hn
(1)(.) (W1). The shaded areas represent the convergent regions of the integral (17a). 

After following transformation of the previous integral [2]: 

0 π/2 
π 3π/2 2π 

ℜe(w) 

-π/2 -π 

W0
W2W1

w - plane 

Fig. 5: Integration paths for the Bessel and Hankel functions 

ℑm(w) 

 wjkRx cos= , 
the integration path W2 is transformed into the path depicted in Fig. 6 and the integral (17a) 
then becomes: 

 ( ) ∫
−

∞− +
−=

ρ

π

j x

Rkx
dxejkR

222

2
0

2)(H ,  (17b) 

where we use the change of the sign after integrating around the branch-point –jkR. After a 
few steps we obtain the following expression: 
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 ( ) ∫
∞−

→
+−−=

0
(2)
00

)2ln(2ln2)(Hlim dxxejjkRjkR x

R ππ
. 

 

-jkR 

ℜe(x) 

ℑm(x) 
x - plane 

Branch point 

-∞ 

Fig. 6: Transformed integration path W2

The previous expression can be rewritten in the following form: 

 
2

ln21)(Hlim (2)
00

kRjkR
kR

γ
π

−=
→

,  (18) 

where C = ln γ = 0.5772… is Euler’s constant. To make conformity between equations (11) 
and (18), Okoshi used the following expression [4]: 

 1
2

ln2)(H(2)
0 <<−≈ kRforkRjkR

π
.  (19) 

Green’s function for a unity source G(r|r0) can be then written, with the help of the second 
Hankel function, as follows: 

 )(H
4

)|( (2)
00 kRjG =rr .  (20) 

When equation (20) is substituted into (14), the voltage at the source point Q in the region D 
is given as: 

 ∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
−

∂
∂

=
C

ds
n

kR
V

n
VkR

j
QV

)(H
)(H

4
1)(

(2)
0(2)

0 .  (21) 

For the voltage at the source point at the point Q’, which lies on contour C, we get from 
equations (15) and (16): 

 ∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
−

∂
∂

=
C

ds
n

kR
V

n
VkR

j
QV

)(H
)(H

2
1)'(

(2)
0(2)

0 . (22) 

The derivative of a voltage on periphery C is given by equation (5c) and for a derivative of 
the second Hankel function holds the following expression: 

 θcos)(H
)(H (2)

1

(2)
0 kRk

n
kR

−=
∂

∂
, 
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where the angle θ is depicted in Fig. 4. Equation (22) then gives the voltage at the point upon 
the periphery using the rf-voltage V(s) and rf-current iSn(s) along this periphery [4]:  

 [ ]∫ −=
C

Sn dssikRdjsVkRk
j

QV )()(Hcos)()(H
2
1)'( (2)

0
(2)
1 ωμθ ,  (23) 

where ds is the infinitesimal element of the contour C, R is the source/observer distance and 
iSn denotes the surface current density flowing outwards along the periphery C. It is important 
to note, that contour C in the equation (23) can be multiply connected [4]. The equation (23) 
is usually called as Weber’s solution for cylindrical waves and will be solved numerically in 
the following chapters.  

3 Numerical Approach 

The major task of this chapter is a numerical solution of the integral equation (23) 
derived in the previous chapter. The numerical method adopted here is applicable to an 
arbitrary circuit pattern. The first step in numerical solution of equation (23) is a division of 
the circuit periphery into N small segments depicted in Fig. 7. The center of each segment is 
represented as dot and called sampling point. The Wi denotes the width of i-th segment (i = 1, 
2, …, N and N = m + n + M) and m, n denote the number of elements of the inner circles. If 
we assume that rf voltage and current are constant over each segment, we can rewrite the 
equation (23), for the i-th segment (1 ≤ i ≤ N), as follows: 

 ∑ ∫∫
= ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
−=

N

j W
j

W
ji

jj

dskRidjdskRkV
j

V
1

(2)
0

(2)
1 )(Hcos)(H

2
1 ωμθ , 

where Vj and ij denote the rf voltage at the j-th sampling point and surface current density 
flowing outwards from the j-th port, respectively. Now we separate the voltage and current 
and we obtain: 

  ∑ ∫∑ ∫∫
=

≠
= ⎟
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⎟
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⎝

⎛
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

N

j W
j

N

ij
j W

j
W

i

jji

dskRiddskRV
j

kdskR
j

kV
1

(2)
0

1

(2)
1

(2)
1 )(H

2
cos)(H

2
cos)(H

2
1 ωμθθ . 

Next we introduce the total current flowing into j-port as Ij = -ijWj. Then we can rewrite the 
solved integral equation to the system of linear equations in compact form [4]: 

 ,  (24) )...,,2,1(
1 1

NiIhVu
N

j

N

j
jijjij ==∑ ∑

= =

where  
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ijij dskR
j

ku θδ cos)(H
2

(2)
1 ,  (25a) 
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2
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.  (25b) 
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where δij denotes Kronecker delta. The expressions for self-coupling terms (i = j) were 
obtained from the asymptotic expression (18). When the equation (24) is solved, the voltage 

along the periphery of a circuit at each sampling point is obtained. The crucial issue is solving 
of the line integrals in (25) containing the Hankel functions along the segments. In the next 
chapters, we introduce the methods of solving these integrals. This problem should be solved 
with regard to accuracy and efficiency of resulting algorithm. 

Fig. 7: Elements on the contour C 

n 

Wj

θij

Wi

1 

2 

… 

Wk

rij

m

m + 1

m + 2

m + n - 1

m + n + 1
m + n + 2 

m + n + N

… 

…

3.1 Line Integrals 

The matrix elements uij and hij can be easily obtained from equations (25) without 
computing integrals as [4]:  

 ijjijijij Wkr
j

ku θδ cos)(H
2

(2)
1−= ,  (26a) 

 )(H
2

(2)
0 ijij krdh ωμ

= ,  (26b) 

where θij is an angle between the line connecting the centers of the i-th and j-th segments and 
the normal to the j-th segment. The matrix elements uij and hij are, in this simplest case, 
computed at the centre of i-th target element as the contribution of the j-th source element, 
under assumption of constant integrands in equations (25). However, the integrals can be 
computed more precisely by computing uij (or hij ) at the centre of the i-th element by 
integrating the contributions of j-th element along Wj. Note that the most accurate procedure 
is the integrating the contributions from j-th elements along the target i-th element (not only at 
the centre of i-th element). In this thesis, we will take into account with regard the accuracy 
and the computational demands, the approximate expressions (26) and the more accurate 
ones, obtained by the integration along the j-th source element. Firstly, we will focus on 
expressions (26). 
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In Fig. 8 are depicted arbitrarily placed i-th and j-th segments limited by the points [Xi, 
Yi], [Xi+1, Yi+1] and [Xj, Yj], [Xj+1, Yj+1], respectively. The distance between the corresponding 

sampling points at the centers of segments Si = [SXi, SYi] and Sj = [SXj, SYj] is denoted as rij. 
Obviously, the width of i-th segment is given as:  

y 

x 

n

α

αWi

Wj

rij

θj

θij

θj

Fig. 8: Symbols used in the integration along the segments 

Si

Sj

π/2

[Xj, Yj]

[Xj+1, Yj+1] 

[Xi, Yi] 

[Xi+1, Yi+1] 

 ( )NiYYXXW iiiii ,...,2,1)()( 2
1

2
1 =−+−= ++ . 

Similarly, the distance between the depicted sampling points is given as: 

 ( )NiSYSYSXSXr jijiij ,...,2,1)()( 22 =−+−= .  (27) 
Since we can write the relation between angles depicted in Fig. 8 as: 

 
2
πθαθ =+− jij , 

the following expression holds: 

  jjij θαθαθ cossinsincoscos −= ,  (28) 

with 

 
j

jj
j

j

jj
j W

YY
and

W
XX −

=
−

= ++ 11 sincos θθ  , 

 
ij

ij

ij

ij

r
SYSY

and
r

SXSX −
=

−
= αα sincos . 

These expressions can be substituted to the equations (26), and the matrix equation (24) can 
be solved. 
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For the more accurate computation of the matrix elements, we have to execute the 
integration along the j-th source elements. It is convenient to describe the j-th segment 
parametrically as rj(t) = xj(t)ex + yj(t)ey , with: 

 , >∈<
⎭
⎬
⎫

−+=
−+=

+

+ 1,0
)()(

)()(

1

1 t
YYtYty
XXtXtx

jjjj

jjjj

where ex and ey are the basis vectors for two-dimensional Cartesian coordinates. The 
infinitesimal element of the parametrically described segment rj(t) can be written as: 

 dtWdt
dt

td
dt

td
ds j

jj ==
)()( rr

. 

As a consequence of implementation of the parameter t∈ <0,1>, the distance between the 
target and the source points (27) can be rewritten as: 

   ( )NitySYtxSXtr jijiij ,...,2,1))(())(()( 22 =−+−= .  (29) 
Similarly, the equation (28) in the parametric form is given as: 

 jjij ttt θαθαθ cos)(sinsin)(cos)(cos −= ,  (30) 
with 

 
)(

)(
)(sin

)(
)(

)(cos
tr

SYty
tand

tr
SXtx

t
ij

ij

ij

ij −
=

−
= αα .  (31) 

For the matrix elements uij and hij the following expressions can be obtained: 

 ∫
=

≠−=
1

0

(2)
1 )()(cos))((H

2 t
jijijijij jidtWttkr

j
ku θδ ,  (32a) 

 ∫
=

≠=
1

0

(2)
0 )())((H

2 t
ijij jidttkrdh ωμ .  (32b) 

The integrals (32) can be evaluated using some of the numerical methods, e.g. Gauss-
Legendre method. 

3.2 Derivation of Transfer Parameters 

Once the matrix elements uij and hij are computed, the transfer voltage/current 
parameters can be derived. In the next subsections, the transfer parameters are derived for the 
one-port, two-port and multi-port power-bus structure. In the case of one-port and two-port 
structures, the transfer parameters are derived without the inversion of the matrix. Further, we 
will derive the matrix equations used for the evaluation of the voltages along and inside of the 
circuit periphery.    

3.2.1 One-Port Circuit 
In this section, the one port double-plate circuit with arbitrarily shaped power plate will 

be considered. As was mentioned before, the circuit is excited by the current source I0. Due 
this excitation at the position (x0,y0), the voltage distribution V(x,y) within the power-bus 
exists. We are interested in the input impedance Zinp = V(x0, y0)/I0. Another parameter which 
can be computed by the presented method is the voltage distribution along the periphery of 
the circuit. As is shown in [1], this distribution can be used to obtain the radiated fields of the 
power-bus structure. 
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We will start with the equation (24) in the appropriate form: 

  [ ]
T

T
N m

I
m
I

VVVVV ⎥⎦
⎤

⎢⎣
⎡⋅=⋅ 000|| 00

2100 LLLL HU ,  (33) 

where the elements of matrices U and H are given by the equations (26) or (32) and (.)T 
denotes the transposition. Next, the injected current I0 is uniformly divided into the m 
segments of the port, V(x0, y0) is denoted as V0 and the V1, V2,…,VN denote the N voltages at 
the sampling points along the periphery of the circuit. The matrix equation (33) represents a 
system of (m + N) scalar equations with (N + 1) unknowns, therefore the matrices U and H 
should be reduced. The corresponding reduction is depicted in Fig. 9. The elements of the 
matrix bounded by the dotted rectangle are added together generating one element in the 

reduced matrix1. After this reduction the following matrix equation can be obtained:       

Fig. 9: Matrix reduction (one port circuit)
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where the subscript (.)R denotes the reduced matrix. From the equation (34) we can obtain the 
desired parameters of the one port circuit. After substitution I0 = -Y0 V0 to the equation (34), 
following system of the equations is obtained: 

 0HU =

⎥
⎥
⎥
⎥

⎦

⎤

⎢
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⎣

⎡
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V
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m
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1

0

0 .  (34b) 

The system of algebraic equations (34b) has the nontrivial solution only if the determinant of 
the corresponding matrix is zero: 

 0det 0 =
⎭
⎬
⎫

⎩
⎨
⎧ + RR m

Y
HU .  (35) 

                                                 
1 Suppose that the port is divided into the 3 segments, then the relation between the port and the 4th segment on C 

is given as: V , which explains the reduction depicted in 

Fig. 9. 
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The equation (35) can be rewritten in the extended form as follows: 

 0
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This equation gives, after a few steps of algebra [11], the voltage/current relation at the 
position of the port (x0, y0) : 
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where the parameters are dependent on the geometry of the power bus-structure and on the 
operational frequency.  

The input impedance of the power bus structure can be also simply derived from the equation 
(34a), by noting that impedance matrix of the circuit is given as: 

 .  (36) RR HUZ ⋅= −1

Thus, equation (34) can be rewritten as: 

 ,  (37) 
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where zi,j are the elements of the impedance matrix Z. The input impedance can be easily 
obtained from this system of scalar equations as follows: 

 
m
z

I
V

Zinp
1,1

0

0 ==   .  (38a) 

The second approach of calculation of the input impedance of the power-bus structure 
demands the computation of the inverse matrix UR

-1, which is usually more time consuming 
then the computation of two determinants in the first approach. 
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Once the input impedance of the power-bus structure is computed, the voltage at each 
sampling point along the periphery of the circuit can be evaluated. The voltage V0 is suitably 
chosen, and the voltages V1, V2,…,VN along the periphery are obtained by solving the system 
of scalar equations (37) or (34b) (without requirement of matrix inversion). From the system 
of equations (37) we obtain following system: 
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The number of elements of the port m must be greater than 3 to make the contour closed. 
Obviously, as m increases the approximation of the circular port is more accurate, whereas the 
computational demands increase.   

3.2.2 Two-Port Circuit 
This section is focused on the analysis of the power-bus structures, which are excited by 

the two current sources I01 and I02 at the positions (x01,y02) and (x02,y02), respectively. As in the 
previous section, we are interested in the current/voltages relations between the ports.  

The matrix equation (24) for the two port circuit has the following: 

 [ ]
T

T
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I
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I
m
I

m
I

VVVVVVV ⎥⎦
⎤

⎢⎣
⎡⋅=⋅ 000|| 02020101

2102020101 LLLLLL HU ,  (39) 

where the elements of the matrices U and H can be computed using the expressions (26) or 
(32) and superscript (.)T denotes the transposition. In general, the injected current of the first 
port I01, is uniformly distributed among the m segments and the current I02 of the second port 
is uniformly distributed among the n segments. The voltages V1, V2,…,VN denote the voltages 

along the periphery of the circuit and V01 and V02 are the voltages at positions of the first and 
the second port, respectively. The system of (m + n + N) equations (39) contains (N + 2) 
variables and should be reduced. The matrix reduction for the two port circuit is depicted in 

Fig. 10: Matrix reduction (two port circuit) 

m Nn

m

n

N

Fig. 10. As in the previous section, the elements of the matrix U or H bounded by the 

21 



 

rectangles are added together and this sum generates a new element in the reduced matrix UR 
or HR. After execution denoted operations, we obtain the system of (N + 2) scalar equations: 
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If we substitute I01 = -Y01 V01 and I02 = -Y02 V02 to the matrix equation (40a), the following 
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where the superscript denote nonzero column of the HR matrix: 
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The system of (N+2) scalar equations has the nontrivial solution only if the determinant of the 
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After simple algebraic operations we obtain the bilinear expression for the input impedance: 
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The ABCD parameters are easy to obtain by the following substitutions: 

 ''',''',''',''' mDDmnCCBBnAA ==== , 
and regarding the reciprocity cond on [4]: 
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As in the previous section, another way of computing transfer parameters through the 
atrix Z is computed according to (36), and the 
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Thus, the voltage/current relations between ports can be written as: 

.  (

Analogous to the previous section, the voltages along the periphery of the circuit can be 
computed from the matrix equation (40b) or (42). From the matrix equation (42) we obtain 

he circuit periphery: 
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rs of 
the two-port power-bus structure. In the next section, we will derive the Z-matrix for the 
general multi-port power-bus structure.          

.2.3 Multi-Port Circuit 
In this chapter, the multi-port power-bus structure with arbitrarily shaped power plate is 

considered. We suppose, that analyz

matrix inversion exists. The impedance m
equation (40a) can be rewritten as: 
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We have derived the expressions for the ABCD parameters and the Z-paramete

3

ed structure is excited by the P current sources I01,…,I0P. 
Each of these ports is divided into m segments. Along the periphery of the circuit is N 
sampling points. Thus, the matrix equation (24) has the following form: 
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T denotes the transposition and the elements of matrices U and H are 
given by the expressions (26) or (32). The matrix equation (44) consists of the (PP

.m + N) 
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P x m N

P x m

N

Fig. 11: Matrix reduction (multi port circuit) 

scalar equations with the (P + N) variables. Therefore, the matrices U and H should be 
reduced as is depicted in Fig. 11. The elements of matrix U or H bounded by the rectangles 
are added together, that way we obtain one element in reduced matrix UR or HR. The matrix 
equation (44) can be after reduction of matrices written as: 
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Further step is a calculation of the impedance matrix Z according to the equation (36). 
Reduced matrix equation (45) can be rewritten in extended form as follows: 
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The previous matrix equation gives the desired relations between the ports of the multi-port 
ower bus structure: 
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The voltages at the sampling points around the periphery of the circuit can be evaluated from 
the matrix equation (46) as follows: 

 
⎥
⎥

⎢
⎢⋅

⎥
⎥

⎢
⎢
⎢=

⎥
⎥
⎥

⎢
⎢
⎢

+++++ 0,1,12,11,11

MMMMMM

LL

M

zzzzV NPPPPPP

. (46) 

⎢
I

⎥
⎥
⎥

p

⎥
⎦

⎢
⎣

⎥
⎦

⎢
⎣

⎥
⎦

⎢
⎣ PPPPPP ImzmzmzV 0,2,1,0 /// L

⎥
⎥
⎥

24 



 

  
⎥
⎥02 (47b) 

⎥

⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⋅

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+++

+++

+++

PPNPNPNP

PPPP

PPPP

N I

I
I

mzmzmz

mzmzmz
mzmzmz

V

V
V

0

01

,2,1,

,22,21,2

,12,11,1

2

1

///

///
///

M

L

MOMM

L

L

M
.  

oper choice of positions of critical ICs can eliminate 
structural resonances and radiated electromagnetic interferences. The voltage distribution 

For practical reasons is important to know the voltage distribution between the plates 
of the power-bus structure. The pr

between the plates of the parallel-plate structure can be computed according to the integral 
equation (21). The region between the plates of the structure is uniformly covered by the 
points, where contributions from the boundary are summed (see Fig. 12). These points must 
not lie at the boundary contour C. Then we specify the positions, where the structure will be 
excited by the current sources. The loops depicted in Fig. 12 are considered infinitesimally 
small and voltages at the centers of these loops are then given as:  
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Here, index i denotes the position (x , y ), where the power-bus struct

i
ii zI

V
,10

i i ure is excited. In this 
case, when the voltages are evaluated at singles points, parameter m is set to 1 and the lengths 
of corresponding segments approach to zero. The factor 1/2 arises from the different half- and 

 the singularity described in section 2.4.      

 

 

full-circuit extractions of

Fig. 12: Evaluation of the voltage distribution between the plates of 
the 

C 

parallel-plate structure
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3.3 Computation of the Radiation Diagram 

As was mentioned before, radiated electromagnetic interferences (EMI) are radiated as 
a consequence of switching noise and nonzero impedance of the power bus structure. These 

terferences can be suppressed by the proper design of the power-bus structure. The radiated 
nces of a rectangular power-bus structure were analytically 

 located along the periphery of the 

in
fields at the structural resona

described in [1] using the field equivalence principle. At this chapter, we adopt the 
methodology from [1], to numerically compute the radiated fields of the power-bus structure 
with an arbitrary shape of power plate. 

In the following text we suppose, that the lateral dielectric sides of the power-bus 
structure serve as the radiating apertures, where only tangential electric field Ez exists. This 
tangential aperture field is responsible for the radiated fields by the power-bus structure. 
According to the equivalence principle, the aperture tangential electric field Ez may be 
replaced by the equivalent magnetic surface current MS
power bus structure. As is described in [1], the voltage V between the plates of the parallel 
plate structure is given as: 

 dEdMV zS ⋅=⋅= ,  (48) 
where d denotes the height of the substrate. Thus, the radiated far field can be computed using 
the equivalence principle as [1]:  

 ( )∫ ×= ⋅
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π
,  (49) 

where r and r’ are the position vectors of the observation and source points, respectively. 
ext, the r denotes the distance of the observation point from the origin and er , es denote the 

lved analytically only for the simple shapes of the 
arallel plate structure, e.g. for the rectangular power bus structure in [1]. For the arbitrarily 
haped parallel plate structure, the integral (49) has to be solved num ally. Suppose th

N
unit vectors having the directions of the observation point from the origin and of the 
equivalent magnetic current along C, respectively.  

 The radiation integral (49) can be so
p
s eric at the 

C

esi
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y

z

r’i

er

r

Wk

Fig. 13: Symbols used in the equation (50)  
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voltage evaluated at the i-th sampling point is constant along the i-th segment of the width Wi. 
Then the radiation integral can be rewritten as:        

 ( )∑
−

≈
N

jk
i

rjk

eV
ejk '0 '0

)()( rrE
=

⋅ × isr W
i

rio eeer ,  (50) 

) at each observation point, the magnitude 
of computed electric intensity can be plotted as 3D radiation diagram. 

3.4 Implementation and the Program Structure 

ntour integral method was implemented in Matlab. The program is 
comp

ity, dielectric loss tangent) and 

f the sampling points on the contour C. The number of the segments is 

calculated according to minimum wavelength λmin in the dielectric layer. The maximum width 
of the segment along the periphery is implicitly set to 0.1 λmin. The value of the multiple of 
λmin can be also set manually. The structure is excited by the unit current sources I0k = 1A. The 
radius of the ports should be much less than the wavelength in the dielectric layer and the 
shortest distance of the ports to the sampling points along the periphery should be much 

ir 14π
where V(ri) denotes the voltage at the i-th sampling point and Wi is the width of the i-th 
element (see Fig. 13).  

The analyzed power bus structure is surrounded by a sphere, where the observation 
points are placed. After evaluation of expression (50

The described co
ound of several m-files. In the main m-file, the following input parameters of an analysis 

can be entered: 
• Frequency range and frequency step of an analysis 
• Coordinates of an M-polygon 
• Substrate parameters (height, relative permittiv

conductivity of the plates 
• Number of ports, radius of the ports and coordinates of the ports 

After entering input data, the main m-file executes the calculation of coordinates of the 
segments and o

Input data 

Segmentation 
of the structure

Matrix elements 
uij, hij

FREQUENCY LOOP 

Transfer 
parameters 

Voltage 
distribution 

3D radiation 
diagrams 

Fig. 14: Structure of the program 

(Unit current sources (1A))
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longer than the radius of the ports. The simple graphical user interface of the Matlab program 
is depicted in Fig. 39 (Appendix). Note that the checkboxes for the voltage distribution and 
3D radiation diagram are active only if the start and stop frequencies are equal. 

The second part of the program is the frequency loop. In this loop, the matrix 
coefficients and transfer parameters are calculated. It is possible to choose the way of 
computing of the matrix elements after equations (26) or (32). The integration in (32) is 
implemented using the Gauss-Legendre method. Further, the frequency loop contains the m-
file, which executes the matrix reductions and the part of the evaluation of the voltages along 
the periphery of the circuit. The voltages at the sampling points along the periphery are the 
input data for the calculation of the 3D radiation diagrams. The transfer parameters, voltages 
or the radiation diagrams can be subsequently displayed. The structure of the program is 
shown in Fig. 14. 

3.5 Circuit Level Simulation 

A further step in the analysis of the power-bus structures is the inclusion of lumped 
elements connected to the ports of the structure. Mainly we are interested in the behavior of 
the structure with decoupling capacitors. Decoupling capacitors are connected between the 
power and ground planes to reduce the high-frequency impedance. These capacitors usually 
exhibit capacitance values about a few tens of nano-Farads and the parasitic inductance and 
resistance represented by the equivalence series inductance (ESL) and by the equivalence 
series resistance (ESR), respectively.   

In the previous sections, we have shown how to compute the voltage/current relations 
between the ports of the arbitrarily shaped N-port structure. These relations in the form of Z-
matrix will be used to simulation of the power-bus structures populated by the lumped 
elements.  

At first, the Z-matrix of an analyzed structure is computed in Matlab and saved as the 
data *.mat file. This data file is consequently in Matlab converted into the standardized Touch 
stone f

-bus structure described using analytical expressions. The analysis of a 
polygonal structure is verified by a commercial 3D full-wave solver. 

4.1 One-Port Rectangular Power-Bus Structure  

ormat2, which is compatible for the most of CAD circuit analyzing programs. In the 
last step, the N-port model of the structure is, in the appropriate computer circuit analyzer, 
used to simulate the populated power-bus structure.                

4 Results 

The techniques described above, are first validated by the simulation of the simple 
rectangular power

The input impedance of a power bus structure, the voltage distribution between the 
plates and 3-D radiation diagrams can be compared with the analytical results from [1]. In the 
case of a rectangular power-bus structure, Green’s function for the Helmholtz equation (5) 

                                                 
2 A Touchstone® file (also known as an SnP file) is an ASCII text file used for documenting the n-port network 
parameter data of an active device or passive interconnect network. While Touchstone files have been accepted 
as a de-facto standard for the transfer of frequency dependent n-port network data [6].  
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can be expanded into the complete set of the familiar trigonometric eigenfunctions, thus we 
get [1]: 

 ∑∑
∞ ∞ )cos()cos(),( ykxkdjyxV ωμ

= = −+0 0000 ),( m n ynxm kkkWLyxI
where W and L denote the width and length of the rectangular power-bus structure and the 
discrete wave numbers are given as: 

 

= 222
00

,
0 )cos()cos( ynxm

ynxm
nm ykxkK ,  (51) 

W
nk

L
mk ynxm

ππ
== , , 

The normalizing constant Kmn is defined as:    
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account. Therefore the equation (51) is multiplied by the sinc factors and the transfer 

is given as [7]: 
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For the computation of the input impedance, the finite size of po
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here dx, dx0, dy, dy0 are the dimensions of the rectangular ports. Since the real ports have the 
ircular cross-section, the equivalent radius is considered [8]: 

w
c

 ,59.0 are =  

where a = dx = dx0 = dy = dy0.  

Fig. 15 shows the analyzed one-port rectangular power bus structure with the 
 15. The port with radius r = 1 

0) mm. At this position, the structure is excited 
by the unit current source, which represents the noise source. The analysis was carried out at 

e range of frequencies f = (10 ÷1000) MHz with the frequency step 5 MHz. The maximum 
ngth of segments was 0.1 λmin. The height of the substrate is d = 1.5748 mm (62 mils), 

relative permittivity is εr = 4.35, dielectric loss tangent is set to tan δ = 0.02 and conductivity 
7

dimensions L = 300 mm and W = 200 mm is depicted in Fig.
mm was placed at the position (x0, y0) = (50, 5

th
le

of the plates is σ = 5.8 10  S/m. The same parameters of the substrate and the geometry of the 
ports are considered throughout the chapter 4.  
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Fig. 16 shows the calculated magnitude of the input impedance Zinp =  

|V(x0, y0)/I0 (x0, y0)| using the analytical expression (52), our program in Matlab and ANSOFT 

denoted as the 1st approximation and using the expressions (32) denoted as the 2nd 
approximation. In the analytical expression (52) 1000 terms were considered in each of the 
sums. The model of the structure in ANSOFT Designer was covered by the 631 triangles. As 
can be seen, the analytical and the numerical results are in good agreement. Further, the first 

Designer. The matrix elements uij and hij were computed using the simple expressions (26) 

Fig. 16: Absolute value of the input impedance of an analyzed rectangular  
power-bus structure
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Fig. 15: Analyzed one-port rectangular power-bus structure 
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five structural resonances are labeled in Fig. 16. Maximum differences between the analytical 
and numerical results (2nd approximation and ANSOFT Designer) appear at the frequencies 
higher than 500 MHz.   

In Fig. 17 are depicted voltage distributions V(x,y) between the plates of the 
rectangular power-bus structure at the resonant frequency f1,1. The voltage distribution in the 

first figure from the left was computed according to analytical expression (51). The second 
figure shows the numerically computed voltage distribution between the plates and at the 
sampling points along the periphery of the structure.  

Fig. 18 shows numerically computed voltage distribution V(x,y) of the first resonant 
frequency f1,0. The lowest resonant mode is usually operating mode for the microstrip 
antennas. In Fig. 19 are depicted 3D radiation diagrams of power-bus structure at the f1,0. The 

Fig. 17: Voltage distribution V(x,y) for the resonant mode (1,1). 
a) Analytically computed, b) numerically computed 

b)  a)  b)  

Fig. 18: Voltage distribution for the first resonant mode (1,0) 
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b)  a)  

Fig. 19: 3D radiation diagrams for the resonant mode (1,0).  
a) analytically computed, b) numerically computed 

first one from the left was computing using the analytical expression introduced in [1]. This 
expression is obtained after integration of a radiation integral (49) along the rectangle, with
using the field equivalence principle. The radiation diagram in Fig. 19b was obtained from the
voltages along the periphery of the structure (see Fig. 18) using the expression (50). The

 
 
 

pedance, voltage distributions and the  
3D rad

differences are especially due to the errors in computing of the voltage distribution and due to 
the presumptions for the validity of expression (50).    

In this section we have computed the input im
iation diagrams for the simple rectangular power-bus structure. The presented 

numerical approach was verified using existing analytical expressions.    

4.2 One-Port Arbitrarily Shaped Power-Bus Structure   

As an example for an arbitrarily shaped power-bus structure, the geometry shown in 
Fig. 20 was chosen. The substrate has the same parameters as in the previous section. The 
structure is excited at the position (x0, y0) = (100 mm, 100 mm). Because of the complicated 

Fig. 20: Analyzed one-port polygonal shaped power-bus structure 
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shape of the structure, we have increased the number of the segments by setting the condition 
Wmax = 0.05 λmin, where Wmax denotes the maximum width of the segments, considering the 
non-uniform segmentation of an arbitrarily shaped structure.   

Fig. 21 shows the computed magnitude of the input impedance using the ANSOFT 
Designer and our program in Matlab. The matrix elements uij and hij were computed 
according to the first and the second approximations (26) and (32), respectively. The mesh in 

Fig. 22: Voltage distribution at the second resonance frequency 
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ANSOFT Designer included 310 triangles. As can be seen, the computed input impedance is 
in good agreement with the results from ANSOFT Designer.  

Fig. 22 shows the voltage distribution V(x,y) between the plates of the power-bus 
structure depicted in Fig. 20. The voltage distribution was computed at the second resonance 
frequency f = 730 MHz. The radiation diagrams depicted in Fig. 23a and in Fig. 23b were 
computed at the same frequency in ANSOFT Designer and in Matlab, respectively. In both 

. 25. Fig. 24 shows the voltage 
distribu

the frequency range (10÷1000) MHz with the step 10 MHz. 

As can be seen from Fig. 25, at the first and at the third position of the port, the input 
impedance steeply increases around the frequency f = 340 MHz. This is the first mode 
resonance frequency. The corresponding voltage distributions are depicted in Fig. 24b and 
Fig. 24c. In contrast to these cases, the input impedance for the second position of the port, in 
the center of the power plate, exhibits no resonance at this frequency. The corresponding 
magnitude of the voltage distribution between the plates is depicted in Fig. 24c. Since the 
structure is not in resonance at this frequency, the magnitude of the voltage between the plates 
is much lower compared to the first and the second cases. The first resonance at this point 
occurs around f = 560 MHz.  

In conclusion, the excitation of the structural resonances strongly depends on the 
position of the port. At an analyzed range of frequencies, the port at the first position excites 
the three structural resonances and the ports at the second and the third positions excite two 
and five structural resonances, respectively. In general, the ports near the corners of the PCB 
excite more resonances than the ports placed in the middle of the power planes.                       

 
  

a)  b)  

Fig. 23: 3D radiation diagrams at the second resonance frequency.  
a) ANSOFT Designer, b) Matlab 

diagrams are apparent the two bold side-lobes. 

The structural resonances can be effectively eliminated by a proper placement of the 
critical ICs [1]. This fact can be illustrated in Fig. 24 and Fig

tions V(x,y) for three different positions of the ports: (xp1, yp1) = (50, 50) mm,  
(xp2, yp2) = (100, 100) mm and  (xp3, yp3) = (180, 160) mm and in Fig. 25 are depicted the 
magnitudes of the input impedances for these different positions. Analyses were carried out at 
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Fig. 24: Voltage distributions at  f = 340 MHz for different positions of  the ports. 
a) Positions of the ports, b) Position 1: (50, 50) mm, c) Position 2: (100,100) mm, 

d) Position 3: (180, 160) mm 
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Fig. 25: Absolute value of the input impedance for the different port positions 
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Accuracy and Computational Demands of the Implemented Algorithm 

In this section, the simple rectangular power-bus structure depicted in Fig. 15 is 
 to obtain the information about the accuracy and computational demands of 

mented algorithm. As a reference, the truncated analytical expression (52) with 1000 
s in each of sums is considered. All analyses were performed with a 1.6-GHz CPU and 

emory.  

Analyses were carried out for the three ratios λmin/ Wmax = {5, 10, 20} at the frequency 
 ÷ 1000) MHz with a frequency step 5 MHz. The port of radius r = 1 mm had 4 

ents around the periphery. The input impedances |Zinp| computed by the first 
ations (26) and the second approximations (32) are depicted in Fig. 26a and Fig.26b, 

respectively. As can be seen, the maximum errors occur at the resonance frequencies. 
Obviously, the errors decrease when the number of elements increases or alternatively, the 

λmin/ Wmax increases. For determination of a total error over the frequency range, the 

mean square error (MSE) was computed. The calculated mean square errors in dependence on 
the ratio λmin/ Wmax and the integration method are listed in Tab.1. We can observe, that the 
second approximations (32) gives in terms of MSE, except the first case, more accurate 
results then the first approximations (26). However, the application of the second 
approximations is more time consuming. From given results we can state, that the CIM 
algorithm is not very much sensitive with respect to the change of λmin/ Wmax ratio. A 
satisfactory insight in the behavior of the structure can be obtained already with only 5 
segments per minimum wavelength. Since the maximum length of the segment Wmax is related 
to the minimum wavelength in the dielectric layer λmin, we can expect better simulation results 
accuracy at low frequencies, where the relative segment length W/λ is small.               

A high efficiency of the boundary element methods consists in the dimension reduction 
of the problem. Consequently, the mesh of the numerical model is simpler and the 

Fig. 26: Input impedance |Zinp|. a) 1st approximation, b) 2nd approximation  
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Analytic eq. (52)
min(lambda)/max(W) = 5
min(lambda)/max(W) = 10
min(lambda)/max(W) = 20

method
λmin/Wmax [-] 5 10 20 5 10 20
N [elements] 33 61 117 33 61 117
MSE [Ω2] 1.6138 1.1143 0.4406 2.0799 0.66792 0.2483

1st approximation 2nd approximation

Tab. 1: Mean square errors 
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implementation of these methods is easier. In Fig. 27 is depicted the number of discretization 
elements in dependence on the ratio λ / l  for the 2D mesh in ANSOFT Designer and for 
the 1D

 

 

min max
 mesh in our Matlab program. We can observe the linear and quadratic dependence of 

the number of elements on the ratio λmin/ lmax for the 1D and 2D mesh, respectively. 

Obviously, the number of the discretization elements is directly related to the number of 
unknowns in the resulting system of linear equations. Considering, for example, the common 
Gauss elimination method, which for solving the N linear equations requires approximately 
(N 3/3) of arithmetic operations. Then the computational demands of the boundary element 
methods are, for the fixed ratio λmin/ lmax, 3 exponent orders lower. Another reduction of the 
computational demands is usually achieved using the symmetry of the impedance matrix Z. 
This reduction cannot be used in the presented numerical approach, since the impedance 
matrix is unsymmetrical, because of the angle θij, which is not, in general, equal to θji (see 
Fig. 8).     
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Fig. 28: Computational time in dependence on the number of elements  
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Fig. 28 shows the computational times of an aforementioned CIM analysis of the 
rectangular power-bus structure depending on the number of discretization elements. As can 
be seen, the computational times of both analyses using the first and second approximate 
expressions increase with the O(N 2). This dependence is steeper for the second 
approximations (32). If the system of linear algebraic equations is solved using the common 
Gauss elimination, we can expect O(N3) dependence for high N. The choice between the first 
and the second approximations should be make with regard to accuracy and computational 
demands.            

4.4 Matlab Program vs. ANSOFT Designer 

Since ANSOFT Designer is based on the 3D full-wave method of moments (MoM) and 
our program uses the 2D contour integral method (CIM), it is not possible to set the same 
input parameters for the exact comparison of both approaches. However, the methods can be 
compared when we set the same maximum lengths of the discretization elements. In case of 
the MoM we set the maximum length of the sides of the triangles and in case of CIM we set 
the same rule for the maximum length of the boundary segments. The maximum length of the 
discretization elements is based on the minimum wavelength in the dielectric layer.  

The simple one-port rectangular power-bus structure of the dimensions (300mm x 200 
mm) was chosen as a benchmark sample. For a comparison of the results from both programs, 
the following ratios were used: 

 { }10,7,5
max

min =
l
λ , 

where lmax denotes the maximum length of the discretization element and λmin is the minimum 
wavelength in the dielectric layer. The position of the excitation port is (x0, y0) = (50, 50) mm 
and the parameters of the substrate are the same as in the previous sections. All computations 
in this section were carried out for the range (20÷800) MHz with the step 10 MHz.  

and in ANSOFT Designer, respectively. For the calculation of the matrix elements uij a hij in 
Matlab, the first approximations (26) and the second approximations (32) were used. Fig. 30 
shows the computed absolute value of the input impedance versus frequency. As can be seen, 

 The geometry of the first tested structure for the ratio λmin/ lmax = 10 is depicted in Fig. 
29. The structure was discretized into 61 boundary elements and 997 triangles in Matlab 
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Fig. 29: Geometry of an analyzed power-bus structure for λmin/ lmax = 10 
a) Matlab b) ANSOFT Designer 
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the results computed in Matlab and in ANSOFT Designer are almost identical. Obvious 
differences between the 1st approximation results from Matlab and results from ANSOFT 

 are summarized all computational 
parameters of the Matlab and ANSOFT Designer simulation. The analysis using our program 
in Ma

 
Further we have executed the same analyses for the smaller ratios λmin/ lmax. The 

conclusions of these analyses are similar to the previous one. Again, differences between the 

Designer occur only at higher frequencies. In Tab. 2

tlab is much less time consuming. 

results computed using Matlab program and ANSOFT Designer are apparent only at the 
higher frequencies. The computational time of our Matlab program is much shorter than the 
computational time of ANSOFT Designer. The geometries and input impedances of analyzed 
structures for different ratios λmin/ lmax are shown in the following figures. The computational 
times and the numbers of discretization elements are summarized in the Tab. 3 and Tab. 4.     

 

Fig. 30: Absolute value of the input impedance of the tested structure 
for λmin/ lmax = 10 
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Tab. 2: Parameters of analyses for λmin/ lmax = 10
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Fig. 31: Geometry of an analyzed power-bus structure for λmin/ lmax = 7  
a) Matlab b) ANSOFT Designer 
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Tab. 3: Parameters of analyses for λmin/ lmax = 7
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Fig. 32: Absolute value of the input impedance of the tested 
structure for λmin/ lmax = 7
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Fig. 33: Geometry of an analyzed power-bus structure for λmin/ lmax = 5.  
a) Matlab b) ANSOFT Designer 
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Tab. 4: Parameters of analyses for λmin/ lmax = 5
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Fig. 34: Absolute value of the input impedance of the tested 
structure for λmin/ lmax = 5 



 

5 Experimental Validation  

The first tested power-bus structure was simple rectangular of the dimensions (160 mm x 
100 mm) with the one port at the position (20, 80) mm. The test port was constructed using a 
SMA connector soldered to the PCB. The substrate was FR4 with a relative permittivity of 
εr = 4.2, dissipation factor of tanδ = 0.02 and thickness of d = 1.6 mm. The input impedance 
was measured with the R&S ZVL (9 kHz to 6 GHz) network analyzer.   

In the simulations, the SMA connector was modeled using a simple LC model of the 
transmission line. Corresponding values of the capacity and inductance were computed 
according to the expressions derived for a coaxial cable [12]:  
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where l = 7.5 mm is the length of the modeled part of SMA connector, r1 = 0.635 mm and r2 = 
2.25 mm are the corresponding inner and outer radii, respectively. The dielectric constant of 
the teflon is approximately εr = 2.2. 

The measurement was performed, as well as simulation, at the frequency range (20 ÷ 
2000) MHz with the frequency step 5 MHz. Fig. 35 shows the measured and computed 
absolute value of an input impedance.  As can be seen from the simulation results with and 
without the model of SMA connector, the influence of the SMA connector cannot be 

neglected. The correspondence with the measurement is acceptable. The deviation at higher 
frequencies is certainly due to the frequency independent modeling of loss mechanism and the 

Fig. 35: Absolute value of the input impedance of the tested structure 
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simple modeling of the SMA connector. Additionally, radiation loss is not considered. For 
circuit-simulation purposes the accuracy is totally sufficient. 

The second tested power-bus structure, populated by 13 decoupling capacitors is depicted 
in Fig. 36. The material was again FR4 with a dielectric constant εr = 4.35, dissipation factor 
of tanδ = 0.035 and thickness of d = 1.6 mm. One end of each SMT capacitor was soldered 

directly to the top power plane and the second end was connected to the ground plane by via 
with the radius 0.8 mm. Two test ports were constructed using two SMA connectors. The 
tested power-bus structure was connected by two semi-rigid coaxial cables to the network 
analyzer and two-port measurement was performed.    

Further, the bare multi-port structure was analyzed in Matlab to obtain the voltage-
current relations between the ports. All ports modeled in Matlab had the same radius r = 0.8 
mm. The additive inductance due to the geometry of the port is included in the numerical 
method. The resulting Z-matrix was converted into the Touch Stone format to include the 
power-bus structure as N-port in ANSOFT Designer. In the last step, the models of the 
decoupling capacitors and SMA connectors were connected to the pins of the N-port. 

Fig. 37 shows the model of a populated power-bus structure with SMA connectors in 
ANSOFT Designer. All capacitors have the same nominal value C = 10 nF. Parasitic 
inductance ESL and resistance ESR were measured for one capacitor using HIOKI 3535 LCR 
HiTester with the SMT fixture: ESL = 640 pH and ESR = 120 mΩ. In ANSOFT Designer, the 
parasitic inductance is included in the resonance frequency of the capacitor model (fres ≈ 62.9 
MHz). 
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Fig. 36: Power-bus structure including decoupling capacitors 
(dimensions in millimeters) 
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Fig. 38a-c show the |z11| and |z22| parameters for the SMA ports 1 and 2, respectively, 
and the transfer impedance |z12| between the ports 1 and 2. As can be seen, simulated and 
measured data are in very good agreement. In conclusion, in Fig. 38d is depicted the transfer 
impedance |z12| for the bare and decoupled power-bus structure computed in the frequency 
range (10÷5000) MHz with the step 10 MHz. As can be seen, the decoupling capacitors are 
effective only at low frequencies. 

 
Fig. 38a: Absolute value of z11 of the populated power-bus structure 
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Fig. 37: Model of populated power-bus structure in ANSOFT Designer 
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Fig. 38b: Absolute value of z12 of the populated power-bus structure 

102

Fig. 38c: Absolute value of z22 of the populated power-bus structure 
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6 Conclusion 

ed power-bus structures with arbitrary 
mate

first and 
compar

ments of two power-bus structures. At first, the input impedance of a simple bare 
rectang

measurement data over the considered frequency range.   

A boundary 2D integral equation was used for analysis of the power-bus structures on 
printed circuit boards. All mathematical details from the general theory were carried out and 
numerical solution algorithm was implemented in Matlab.  

The program is capable to simulate arbitrarily shap
rial parameters and number of ports.  As output the program provides the 

voltage/currents relations between the ports in Z-matrix transfer form, voltage distribution 
between the plates and 3D radiation diagrams. Moreover, the resulting Z-matrix can be 
converted into the Touch Stone format, which can be used to simulate populated power-bus 
structure in some of the CAD circuit analyzers, e.g. ANSOFT Designer. 

In order to validate the Matlab program, the rectangular structure was analyzed 
ed with the analytical solutions. The results of more complex structures were validated 

using commercial software based on 3D full-wave solver. We have shown that the developed 
2D contour integral equation method provides comparable results in a much shorter time than 
3D full-wave method of moments as implemented in ANSOFT Designer. 

In the last chapter, the numerical approach applied in this thesis was validated by 
measure

ular power-bus structure was analyzed and measured. Further the impedance 
parameters of two-port polygonal power-bus structure populated by a number of decoupling 
capacitors were simulated and measured. For the SMA connectors, simple LC transmission 
line model was used. As was found, the calculated results agree quite well with the 
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Fig. 38d: Decoupling effect 
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8 Appendix 

 

 

Fig. 39: Graphical user interface of the Matlab program 

 

Fig. 40a: One-port rectangular power-bus structure 
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Fig. 40b: Polygonal two-port power-bus structure loaded with 13 SMT 
capacitors
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