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Abstract

This work is focused on the analysis of power-bus structures on printed circuit
boards using the solution algorithm based on 2D-integral-equation formulation in the
frequency domain. The algorithm is implemented in Matlab and is capable to analyze
the parallel-plate structure with arbitrary material parameters, polygonal shape and
number of ports. As output the program provides the frequency dependent voltage
distribution between the plates, voltage/current relations between the ports and the
radiation diagram of the structure. In order to simulate populated power-bus
structures, the resulting Z-matrix can be converted into the so-called Touchstone
Format file, which allows us to embed the power-bus structure into a network
analysis (e.g. in ANSOFT Designer). All results are validated using the existing
analytical solution for the rectangular structure, using a full-wave solver and by
practical experiment.

Key words: 2D integral equation; Green'’s functions; power-bus structure; contour
integral method (CIM); frequency domain analysis.

Abstrakt

Tato prace se zabyva analyzou power-bus struktur vyuZitim metody zalozené
na formulaci problému 2D hranicni integralni rovnici ve frekvenéni oblasti. Uvedena
metoda byla implementovana v Matlabu. Program umoZrnuje analyzovat obecné
polygonalni power-bus struktury s moznosti nastaveni parametrd substratu a
libovolného poctu a umisténi budicich portd. Vystupem programu je frekvencni
zavislost rozloZeni elektrického pole mezi deskami struktury, vztahy mezi porty
struktury vyjadfené napf. impedan¢ni matici a vyzarovaci diagram. Dale byla
implementovana moznost pfevodu vysledné impedancni matice do tzv. Touchstone
formatu, pomoci néhoz je mozné modelovat analyzované struktury jako obecné N-
porty (napf. v ANSOFT Designeru), coZz umoznuje analyzu power-bus struktur s
dalSimi obvodovymi prvky. Vysledky byly ovéfeny pomoci existujicich analytickych
vztahu pro jednoduché obdélnikové struktury, vyuzitim komeréniho simulacniho
programu a praktickym experimentem.

Klicova slova: 2D integralni rovnice; Greenovy funkce; power-bus struktury; metoda
hrani¢nich prvka (MHP); analyza ve frekvenéni oblasti



Abbreviations and symbols

CIM - Contour Integral Method, BEM - Boundary Element Method, FD - Frequency Domain,
MSE - Mean Square Error, PCB - Printed Circuit Board, IC - Integrated Circuit, PEC -
Perfect Electric Conductor, FDTD - Finite Difference-Time Domain, CEMPIE - Circuit

Extraction-Mixed Potential Integral Equation

E - electric field intensity
H - electric field intensity
B - magnetic flux density
D - electric flux density

A - vector potential

¢ - scalar potential

ig - surface current density
rg - surface charge density
k - wave vector

k - wave number

A - wavelength

o - angular frequency

f - frequency

j - imaginary unit

Co, C - speed of light (vacuum, dielectric)

G - conductivity

t - skin depth

tand -loss tangent of the material
Z - impedance matrix

Y - admittance

Bibliographic quotation:

g - electric permittivity of free space

g, - relative permittivity (dielectric const.)
Lo - magnetic permeability of free space
L, - relative permeability

N - Hamiltonian operator

Vi Laplacian operator

" - denotes spectral domain

I, Iy - position vectors (observer, source)
d - height of the substrate

1 - electric current

V - electric voltage

J.(.) - Bessel function of order n

H,(.) - Hankel function of order n

G(.) - Green's function

&(.) - delta function

C - boundary contour

D - 2D region bounded by C

n - normal vector

u;, h; - matrix elements

U, H - matrices

STUMPF, M. Implementation and Test of a 2D-integral equation MoM-Algorithm for the
Analysis of Power-Bus Structures on Printed Circuit Boards. Bro: Vysoké uceni technické
v Brnég, Fakulta elektrotechniky a komunikacnich technologii, 2008. 49 s. Vedouci diplomové
prace prof. Dr.-Ing. Marco Leone.
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1 Introduction

A power-bus structure serves as the charge storage for the integrated circuits (IC) on a
printed circuit board (PCB), reducing the switching noise, which rises from the changing
between low and high states of the digital outputs of ICs. The minimizing of the switching
noise ensures the signal integrity on the PCB and the reduction of the radiated
electromagnetic interferences (EMI). In order to reduce the electromagnetic radiation of the
power-bus structure, we are trying to avoid structural resonances, where the input impedance
increases. For these reasons it is important to compute the voltage/current relations between
the ports of the power-bus structure [1].

Recently, many papers have focused on the modeling of power-bus structures. One part
of these methods, limited to the rectangular structure, is based on an analytical resonator
model of the parallel plate structure [1]. Other classes of numerical approaches are based on
full-wave methods as finite difference time domain method (FDTD) [9], or on the circuit
extraction based on mixed-potential integral equation (CEMPIE) [10].

In the following chapters, the power-bus structure is analyzed using a numerical method
based on a solving 2D boundary integral equation [4]. The main advantage of this approach is
the high computational efficiency. All mathematical details of the numerical method will be
carried out and the results will be compared with the existing analytical solutions for the
simple shapes of power plate, with the results obtained from commercial software and with
measurements.

2 Electromagnetic Fundamentals

Before we start with the analysis of the power bus-structures, the problem has to be
mathematically described. The problem of the analysis of the parallel plate structures will be
formulated as a boundary-value problem. The boundary-value problem is then reformulated to
a 2D boundary integral equation and subsequently solved by the contour integral method
(CIM) also known as the boundary element method (BEM) [4].

2.1 The Helmholtz Equation

The main subject of this thesis is the high-frequency analysis of a double-plate
structure, as depicted in Fig. 1. The double-plate structure consists of a thin conductor of an
arbitrary shape placed above the ground plane. The periphery of the structure is open. The
circuit is excited at vertical ports by the current source /), which represents the noise current
injected in the power-bus structure by the supply pin of IC [1]. The material between power
and ground plane is assumed to be isotropic and homogeneous. Only the small dielectric and
conductor losses are considered. These losses are included in the complex wave number £ as
follows [1]:

k= k'-jk", fork'<<k"

k'=koe,

k' t
k'"=—(tand +—).
2( d)

where



where k) = w/cy is the wave number in the free space, ¢y is the speed of light in the vacuum
and o denotes the angular frequency. Next, the relative permittivity of the substrate is denoted
as &, and d denotes the distance between plates. The skin depth ¢ is given as [1]:

2
t= ,
WL,

where o is the conductivity of the plates and x the magnetic permeability.

The distance between power plate and ground plane d is usually much smaller then the
considered wavelengths, it means that condition d << 1 holds. Hence we can, under

——
- ——

X \

PWR
d I &, tand

GND

Fig. 1: Double-plate power bus structure

this condition, consider that all changes of the fields in the z-direction are zero: 0/0z = 0.
Since the power plate is assumed to be perfect electric conductor (PEC), the following
conditions must be satisfied [3]:

n,xH=ig, (1a)
n,xE=0, (1b)
n, -D=p, (1c)
n, -B=0, (1d)

where np = (0, 0, 1) denotes the unit normal vector to the region D, E and H are the electric
and magnetic field intensities, D and B denote the electric and magnetic flux densities,
respectively. Next, is and ps denote the surface current and charge densities, respectively.
Under these boundary conditions we obtain H, = Ex = Ey, = 0. When the time-harmonic regime
¢’ is adopted, Faraday’s and Ampere’s law in the appropriate form can be written as follows

[3]:
VxE=—jouH, (2a)

VxH= jocE. (2b)



After substituting above mentioned presumptions, equations (2) are simplified as [4]:

OE )
Gyz =—joul (3a)
OE )
axz = jouH ,, (3b)
oH
. e —agl" = jwekE . (3c)
X Y

From the equations (3), after straightforward modifications, the following two-dimensional
Helmholtz equation can be obtained [4]:

(V2+k*)E. =0, (4a)
where V7 =0 /0x* +0° /8y* and k denotes the wave number. The problem to be solved is

not fully defined until the boundary conditions along the periphery contour C are determined.
To find the appropriate boundary condition, let suppose first that no external ports are
connected to the periphery of the structure. In this case, there is no current flowing across the
periphery. Hence according to equation (1a) the magnetic field lines are perpendicular to the
contour C. From equations (3a) and (3b) is further clear, that the gradient of the electric field
is normal to the magnetic field H. Consequently, the gradient of the electric field is
perpendicular to the outward normal n on the contour C:
OF, =V:E. n=0 onC. (4b)
on
If the ports are connected to the periphery, then current flows into the circuit and the previous
condition is not fulfilled. The corresponding boundary condition can be obtained with the help
of equations (1a) and (3) as follows:

OE .
on
After integration of the electric field intensity £, between the power and ground planes we

obtain the high-frequency voltage V' = E, d. Using this voltage, the equations (4) can be
rewritten [4]:

=§TEz-n:—jcoyiS-n:—ja)/Jz’Sn on C, (4c)

(V2+k*)V =0 inD, (5a)
2—V =0 onC (ports absent), (5b)
n
ov . .
—=—joudiy, onC (ports present). (5¢)

on

The equations (5) represent the boundary-value problem, which can be solved by various
methods. Most widely used methods are the finite-element method and finite-differences
methods. The finite-element method is based upon the variational principles and the finite-
difference method consists in replacement of partial derivatives with the appropriate finite
differences. Both these methods are very versatile but computationally intensive. From this
reason it is more convenient to use the contour integral method, because the dimension of the
problem is reduced and the computational algorithms are more effective. This method is
based upon the approximate solving of the integral equation related to the original boundary-
value problem. To find the corresponding integral equation, Green’s theorems have to be



applied and the appropriate resolving kernel (Green’s function) has to be found. These
problems are solved in the next chapters.

2.2 Green’s Theorems

Let D be a simply connected region bounded by a “reasonable” closed contour C (e. g.
piecewise smooth closed contour), and let U be continuous differentiable vector field defined
in D. For this vector field we can write the divergence theorem [2]:

jjvT-UdS=§U-nds, (6)
D C
where ds is an infinitesimal element of a contour C, dS = dxdy denotes surface element and n
is the outward normal vector to the contour C. Next suppose that U =v V, where v is a scalar
function of position and V is a vector function. The divergence of U then becomes:

Vr-U=Vr-(W)=wWr-V+V-Vrv.

If V is an irrotational vector field, we can express it as the gradient of a scalar function u. The
equation (6) can be then rewritten as:

J‘J‘[V§T (€T u)+§r u-%r V]dS :§V§T u-nds.
D

C

After noting that Vr -(%ru) =Viu andV7 u-n=0u/on, we have Green’s theorem in the

first form:
au 2 p— —
fv—ds=”[vVTu+Vr u-Vr v]dS. (7a)
C an D
The scalar functions v and w can be interchanged, and then we have:
§u@ds = II[MV%V+§T V-V u]dS. (7b)
C a]’l D

After subtraction (7b) from (7a) the second form of Green’s theorem is obtained [4]:

i(v%—ugjds = i;(V§T u—-uVr v)-nds = g[vV§u—uV§v]dS. (8)

Note that u, v € C*(D u C). This presumption can be more reduced, but here is no need.

2.3 The Unit Source in the Two Dimensions

The method described here, uses the idea of Green’s functions: the field caused by a
distributed source is simply obtained by the summing of the contributions of infinitesimal
sources. In the following text, the notation G(r|r¢) denotes the field at an observation point r,
caused by an infinitesimal source at a source point ro. The crucial issue is to investigate the
behavior of Green’s function G(r|rg) in the close neighborhood of the source. Green’s
function in the immediate neighborhood of the source point will be denoted as g(p), where p
is a distance from a source point Q. The notation of the problem is depicted in Fig. 2, where
the neighborhood of the source point Q is, for the sake of clarity, extended. It is well known,
that Green’s function is not continuous at r = ry. This can be expressed, considering the
solved problem (5) and unity source, as follows [4]:



(V2 +£*)G(r|r,)=8@-r,) inD,

where J(') denotes the delta function. Integrating this over the region B surrounding the source

B

origin

Fig. 2: Definition of a unit source

point O, we obtain:

[[ViGds+i*[[Gds =1.
B B
The main contribution to the unity on the right side has the first integral on the left side, due

to “stronger” singularity. Hence, under the limit py — 0, we can write:

J[Vigpyds=1.
B
After using the Gauss theorem we arrive at the formulation of the yield g of a source:

g=§Ve(p)-n ds=1, ©)

where the orientation of the unit normal vector ng is depicted in Fig.2. It is obvious, that for

unit source ¢ = 1. Since g depends only on radial distance p from the source, the equation (9)
can be modified as [2]:

/-0
x dp
The last integral can be easily computed as follows [2]:
[4g dg
=|—=pdp=2rp—.
q I iy Pl =2m
Consequently, for a unit source in the two dimensions we obtain [2]:

dg_ dg_ 11

1
= and =—7In p+const . 10
dp  dn 271 p E=o 7 (10)

This result can be rewritten using the G(r|ro) as the limit:



l1mG(r|r0)— ! InR, (11)
R—0 7[

where source/observer distance is given as: R = |r — ro|. Green’s function with the logarithmic
singularity for a small argument will be discussed hereafter. Note that equation (11) is a
fundamental solution of the Laplace equation. As will be shown later, the fundamental
solution of the 2D Helmholtz equation, which satisfies the small-argument limit (11) are the
zero order Hankel functions.

2.4 Formulation of a Contour Integral Equation

In the previous chapters we have formulated the boundary-value problem, definition of
a unit source in the two dimensions and Green’s theorems. With the help of the second form
of Green’s theorem (8) and the definition of a unit source (10), the boundary-value problem
(5) can be reformulated to the corresponding contour integral.

If the source is outside the region D, then the both functions G and V" and derivatives
which appear are continuous throughout D, and the following equations hold:

(Vi+k*W =0 and (V;+k>)G=0 in D.
When the second form of the Green theorem is applied, the following equality, in such case,
can be written:

jj GV -V V2G)dS = §(G——Va—6)ds=o.
on on

However, this is not actually our case because the source is considered to be inside the region
D, as is depicted in Fig. 2. As was mentioned before, Green’s function G(r|ry) is not
continuous at the source point Q. To remedy this problem, we exclude an infinitesimally
small circle, which surrounds the source point, from the domain of integration. Hence,
according to Fig. 2, the domain of integration for a surface integral is D - B and the line
integral must be taken over both boundaries K and C with the orientation depicted in Fig. 3.
The extraction of the small circle K from the domain of integration is depicted in Fig. 3. The
integrals C; and C,, depicted in this figure, cancel each other. After this extraction we have:

§(Ga—V—V8—do §(G6—V—V§]ds=o. (12)
“\ On on v on on

For the first integral taken over small circle K, we make use of expressions for Green’s
functions in the immediate neighborhood of a source point (10), thus we get:

L lnpa—V+K ds. (13)
27, on p

This integral can not be computed, because we do not know the values of a voltage V" and its
derivative 0V/on on an infinitesimal circle K. Therefore we will make an estimate. For the

first term in the previous integral following estimate holds:

_i‘;l p—d <—ma{ }iflnpds—max{aal/}plnp

Since the following 11m1t holds:

limplnp=0,

p—0

10



the contribution of the first term is zero and only the second term contributes to the integral
over K [2]:

! 4@
Mipd— “$ds=r Q.

where V(Q) denotes the voltage at the source point Q. Hence, the integral (12) can be then
rewritten as:

V(Q)= §(V——G‘W]d (14)
on
From equation (14) can be computed rf voltage V" at point Q in the region D, in terms of " and
Y a
C
ds
dn
Q(X09 YO)
» X
y A
P
®y) s
ds
K dn
Q(X()’ y0) po
» X

Fig. 3: Extraction of a singularity from region D

0V/on upon the contour C. However, the CIM requires the voltage " on contour C. In the next

paragraphs, the transformation of equation (14), through the limit process Q € D —-Q’ € C, is
described.

11



The source point O’ is now set just on the contour depicted in Fig. 4. To find the rf
potential at the point Q" we must exclude this point from the integration domain, because

Q (X09y0) C

Fig. 4: Extraction of a singularity from contour C

Green’s function G(r|rp) is not continuous here. The source point can be excluded by
including a semicircular detour of infinitesimal radius. Similarly to the equation (12) we can
write the following equation:

I[Ga—V—Vﬁjd J' (Ga—V—V%jds=0 ]
on on c on on

rﬂ 7rﬂ

As in the previous case, only the second term of the first integral over the semicircle
contributes:

i ds——ﬁV(Q)——V(Q)
2 ! P 2z

We therefore get the following expression:

V(Q')=2 j (V——Gand

on

By assuming limit pp— 0, we can obtain equation for the potential at the point Q’e C:

V(0" = 2§(V——G‘3de , (15)

on

where for the Green’s function for R— 0 holds the equation (11).

2.5 Green’s Function

As was mentioned before, Green’s function must satisfy the solved equation and in the
source point O must be singular as given in equation (11). Since the immediate neighborhood
of the source depends only on the distance p from the source point, the Helmholtz equation
for a desired Green’s function is given as [5]:

12



—— p—] +k°G=0. (16)

The corresponding solution of equation (16) is the general cylindrical function of zero order
Zo(kR). Because of the choice of the time harmonic regime ¢’ , the appropriate Green’s
function is the second Hankel function Ho® (kR). This solution of equation (16) then
represents an outgoing cylindrical wave. The further step is to investigate the singularity of
the second Hankel function at the origin. The value of the second Hankel function for a small
argument is also useful in a numerical analysis of a problem discussed in the next chapters.

Following Sommerfeld [2], the second Hankel function of zero order can be written in
the integral form written as:

H® (kR) = 1 j eI RO gy (17a)

Ty
where the integration path is depicted in Fig. 5. For the sake of completeness, there are also
depicted the integration paths for the Bessel function J,() (W) and for the first Hankel

1
i w - plane
: ‘\
; e \.NO
T 7)) 3n2 i2n

Fig. 5: Integration paths for the Bessel and Hankel functions

function H,\"(") (W,). The shaded areas represent the convergent regions of the integral (17a).
After following transformation of the previous integral [2]:

x = jkRcosw,

the integration path W, is transformed into the path depicted in Fig. 6 and the integral (17a)
then becomes:

_]P

@) (kRy = -=L
(k) J.\/x +k R2

where we use the change of the sign after integrating around the branch-point —jkR. After a
few steps we obtain the following expression:

(17b)

13



. . 0
mH? (kR) = — 2 In(= jkR)+ 2L [e* n2x)dx
R—0 T V4 b

2 Sm(x)
x - plane

He(x)

Branch point
.} JkR

Fig. 6: Transformed integration path W,

The previous expression can be rewritten in the following form:
. 2j. vkR
2 =1-"LInt—
,},%%HO (kR) =1 - In 5 (18)

where C = In y = 0.5772... is Euler’s constant. To make conformity between equations (11)
and (18), Okoshi used the following expression [4]:

H? (kR) ~ —%Jm%R for kR <<1. (19)

Green’s function for a unity source G(r|ry) can be then written, with the help of the second
Hankel function, as follows:

G(r|r,) =§H$f><kR>. (20)

When equation (20) is substituted into (14), the voltage at the source point Q in the region D
is given as:

V(Q) = 4%§(ng> (kR)g—: - V—aHi)n(kR)st : 1)

For the voltage at the source point at the point Q’, which lies on contour C, we get from
equations (15) and (16):
V()= §| B (kr) 2~y 22)
2j on

C

OHY (kR
des .
on
The derivative of a voltage on periphery C is given by equation (5¢) and for a derivative of
the second Hankel function holds the following expression:

OHY (kR) _

5 ~kHP (kR)cos @,
n
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where the angle 6 is depicted in Fig. 4. Equation (22) then gives the voltage at the point upon
the periphery using the rf-voltage V(s) and rf-current is,(s) along this periphery [4]:

V(Q) = 2i §le HE (kR (5) cos 6~ jeoud HY (kR)i, (5)]ds . (23)
Jc
where ds is the infinitesimal element of the contour C, R is the source/observer distance and
is, denotes the surface current density flowing outwards along the periphery C. It is important
to note, that contour C in the equation (23) can be multiply connected [4]. The equation (23)
is usually called as Weber’s solution for cylindrical waves and will be solved numerically in
the following chapters.

3 Numerical Approach

The major task of this chapter is a numerical solution of the integral equation (23)
derived in the previous chapter. The numerical method adopted here is applicable to an
arbitrary circuit pattern. The first step in numerical solution of equation (23) is a division of
the circuit periphery into N small segments depicted in Fig. 7. The center of each segment is
represented as dot and called sampling point. The W; denotes the width of i-th segment (i = 1,
2,...,Nand N =m + n + M) and m, n denote the number of elements of the inner circles. If
we assume that rf voltage and current are constant over each segment, we can rewrite the
equation (23), for the i-th segment (/ <i < N), as follows:

2755

where V; and i; denote the rf voltage at the j-th sampling point and surface current density
flowing outwards from the j-th port, respectively. Now we separate the voltage and current
and we obtain:

N N
14 1—i_jH§2>(kR)cos9ds —iz v, [HP (kR)cos 0 ds __opmd i, [HY (kR)ds |.
2] w, 2] W, 2 Jj=1 W,

N
V= Lz[ij j H (kR)cosds — joudi, ng2> (kR)ds} ,
w; w

J

J=1
J# !

Next we introduce the total current flowing into j-port as /; = -i;;. Then we can rewrite the
solved integral equation to the system of linear equations in compact form [4]:

N N
Zlul.jVj =Zlhl.j1j (i=12,.,N), (24)
j= Jj=
where
=0 k H® (kR)cos @ d. 25
u; = ”_2_-[ 7 (kR)cos @ ds , (25a)
W/
oud 1 .
—/— — |HY (kR)d. #
2 WJ- V'V'- 0 ( ) S (l ])
h; = ‘ ) (25b)
% 1_2_J IHM—I (in)
2 T 4
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where ¢; denotes Kronecker delta. The expressions for self-coupling terms (i = j) were
obtained from the asymptotic expression (18). When the equation (24) is solved, the voltage

Fig. 7: Elements on the contour C

along the periphery of a circuit at each sampling point is obtained. The crucial issue is solving
of the line integrals in (25) containing the Hankel functions along the segments. In the next
chapters, we introduce the methods of solving these integrals. This problem should be solved
with regard to accuracy and efficiency of resulting algorithm.

3.1 Line Integrals

The matrix elements u; and h; can be easily obtained from equations (25) without
computing integrals as [4]:

u; =0, —%H?) (kr, )W cos6,, (26a)
hy = %Hgﬂ (kr,) , (26b)

where 6; is an angle between the line connecting the centers of the i-th and j-th segments and
the normal to the j-th segment. The matrix elements u; and A; are, in this simplest case,
computed at the centre of i-th target element as the contribution of the j-th source element,
under assumption of constant integrands in equations (25). However, the integrals can be
computed more precisely by computing u; (or h; ) at the centre of the i-th element by
integrating the contributions of j-th element along ;. Note that the most accurate procedure
is the integrating the contributions from j-th elements along the target i-th element (not only at
the centre of i-th element). In this thesis, we will take into account with regard the accuracy
and the computational demands, the approximate expressions (26) and the more accurate
ones, obtained by the integration along the j-th source element. Firstly, we will focus on
expressions (26).
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In Fig. 8 are depicted arbitrarily placed i-th and j-th segments limited by the points [.X;
Yil, [Xi+1, Yi+s] and [X;, Yj], [Xj+1, Yj+1], respectively. The distance between the corresponding

v

Fig. 8: Symbols used in the integration along the segments

sampling points at the centers of segments S; = [SX;, SY;] and S; = [SX;, §Y;] is denoted as r;;.
Obviously, the width of i-th segment is given as:

W= (X, =X, +(-Y,)" (i=12,.,N).

Similarly, the distance between the depicted sampling points is given as:

r; =(SX, = SX )" +(SY, - SY,)*  (i=12...N). 27)
Since we can write the relation between angles depicted in Fig. 8 as:
/4
¢9l.j —-a+ Hj = 5 ,
the following expression holds:
cosf, =cosasinf, —sinacosb,, (28)
with
X..—X. =Y.
cos 6, =" T and sin 6, =
j W,
SX, - SX, , SY, - 87,
cosqg =—— and sinag=———.
v.. r..

y y

These expressions can be substituted to the equations (26), and the matrix equation (24) can
be solved.
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For the more accurate computation of the matrix elements, we have to execute the
integration along the j-th source elements. It is convenient to describe the j-th segment
parametrically as I'(7) = xj(t)ex + yj(t)ey , with:

x;0)=X;+t(X,, - X))
v, (O=Y,+1(¥,, -Y)
where e, and ey are the basis vectors for two-dimensional Cartesian coordinates. The
infinitesimal element of the parametrically described segment I;(?) can be written as:

dr . (¢) dr.(t
ds = 1l;()ﬁdt =W.dt.
dt dt /

As a consequence of implementation of the parameter & <0,1>, the distance between the
target and the source points (27) can be rewritten as:

7y (1) = (SX, =x, () +(SY, = y,(1)* (i =12,....N). (29)
Similarly, the equation (28) in the parametric form is given as:

} te<0,1>,

cos @, (1) = cosa(t)sin@, —sina(f)cos b, , (30)
with
x.(t)-SX, (t)—SY,
cosa(ty= 207t sinaqn = 205 31
r; (1) 7y (1)
For the matrix elements u;; and 4;; the following expressions can be obtained:
k 1
U, =0, —— IHfz) (kry(t))cos O, () W;dt (i #j), (32a)
t=0
1
10) .
= [ o )t % ). (32b)
t=0

The integrals (32) can be evaluated using some of the numerical methods, e.g. Gauss-
Legendre method.

3.2 Derivation of Transfer Parameters

Once the matrix elements u; and h; are computed, the transfer voltage/current
parameters can be derived. In the next subsections, the transfer parameters are derived for the
one-port, two-port and multi-port power-bus structure. In the case of one-port and two-port
structures, the transfer parameters are derived without the inversion of the matrix. Further, we
will derive the matrix equations used for the evaluation of the voltages along and inside of the
circuit periphery.

3.2.1 One-Port Circuit

In this section, the one port double-plate circuit with arbitrarily shaped power plate will
be considered. As was mentioned before, the circuit is excited by the current source /y. Due
this excitation at the position (xy,y9), the voltage distribution V(x,) within the power-bus
exists. We are interested in the input impedance Z;,, = V(xy, y9)/Ip. Another parameter which
can be computed by the presented method is the voltage distribution along the periphery of
the circuit. As is shown in [1], this distribution can be used to obtain the radiated fields of the
power-bus structure.

18



We will start with the equation (24) in the appropriate form:

I, 1 '
U'[Vo"'Vo v, Vz"'VN]T :H.{_O..._O“)()...()} , (33)
m m

where the elements of matrices U and H are given by the equations (26) or (32) and ()"

denotes the transposition. Next, the injected current [ is uniformly divided into the m
segments of the port, V(xy, yy) is denoted as Vj and the V;, V,...,Vxy denote the N voltages at
the sampling points along the periphery of the circuit. The matrix equation (33) represents a
system of (m + N) scalar equations with (N + 1) unknowns, therefore the matrices U and H
should be reduced. The corresponding reduction is depicted in Fig. 9. The elements of the
matrix bounded by the dotted rectangle are added together generating one element in the

"y Loy
r N ( \
[I:IEINOI:\I Ir:l . EI\‘\ / 1\
DD.‘.DDOOQD m vee
Egoooggooog ~
EE!..'..:.!..;...'.;.E!EC.)'"O\N C——10---07,
ooooo.°..3>- : :o.:

Fig. 9: Matrix reduction (one port circuit)

reduced matrix'. After this reduction the following matrix equation can be obtained:

Vs 1y /m
" 0

Upg| o |[=Hyo| o |, (34a)
v, 0

where the subscript (.)z denotes the reduced matrix. From the equation (34) we can obtain the
desired parameters of the one port circuit. After substitution /) = -Y, Vj to the equation (34),
following system of the equations is obtained:

.
(UR+5HRJ- rl=0. (34b)
m

The system of algebraic equations (34b) has the nontrivial solution only if the determinant of
the corresponding matrix is zero:

Y,
det{UR +—°HR} =0. (35)
m

' Suppose that the port is divided into the 3 segments, then the relation between the port and the 4™ segment on C
3 3 3 3
is given as: V/ u, +V (u, +u,, +u, +u,)=0U,/m) h, , which explains the reduction depicted in
0 Z ; i 1 14 24 34 44 0 z Z i

=l j=1

Fig. 9.
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The equation (35) can be rewritten in the extended form as follows:

u,+ ¥, /m)hl,l U, o Uiya
Uy, + Yy I m)hy, Uyp 0 Upna | 0
Uy T Y, /m)hN+1,l Uniio oo Unpna

This equation gives, after a few steps of algebra [11], the voltage/current relation at the
position of the port (xy, yy) :

C'
ho=mmy
with
Uy, U, o U vy
u u e u
| U2 2,2 2,N+1
Cc'=| ° ) . )
Unag Uyaz oo Uygns
and
h1,1 U, o Uy
Y, A= hz,l Uyy 0 Uy nn
- - . . . . Iy
m
hN+1,1 Unio oo Uynina

where the parameters are dependent on the geometry of the power bus-structure and on the
operational frequency.

The input impedance of the power bus structure can be also simply derived from the equation
(34a), by noting that impedance matrix of the circuit is given as:

Z=U, -H,. (36)
Thus, equation (34) can be rewritten as:

Vo Zy Zip vt Zina 1,/m
4 | F2 Zop T 2N 0 3
Vy Zyag Zna2 e ZNsLNH 0

where z;; are the elements of the impedance matrix Z. The input impedance can be easily
obtained from this system of scalar equations as follows:
Vo _ 20

_ o _Fu (38a)

"I, m

The second approach of calculation of the input impedance of the power-bus structure
demands the computation of the inverse matrix Ug', which is usually more time consuming
then the computation of two determinants in the first approach.
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Once the input impedance of the power-bus structure is computed, the voltage at each
sampling point along the periphery of the circuit can be evaluated. The voltage V) is suitably
chosen, and the voltages V;, V>,...,Vy along the periphery are obtained by solving the system
of scalar equations (37) or (34b) (without requirement of matrix inversion). From the system
of equations (37) we obtain following system:

" 2y
V, Iy| Z3,
=20 ; 38b
- (38b)
Vy Z N4

The number of elements of the port m must be greater than 3 to make the contour closed.
Obviously, as m increases the approximation of the circular port is more accurate, whereas the
computational demands increase.

3.2.2 Two-Port Circuit

This section is focused on the analysis of the power-bus structures, which are excited by
the two current sources /y; and I, at the positions (xy;,y02) and (xg2,v02), respectively. As in the
previous section, we are interested in the current/voltages relations between the ports.

The matrix equation (24) for the two port circuit has the following:

Ly Ay lo !

T
..ﬁ,oo...o} , (39)

T
U'[V01"'V01 Vor == Vs ”/1 Vz"'VN] :H'{
m m n n

where the elements of the matrices U and H can be computed using the expressions (26) or
(32) and superscript (.)” denotes the transposition. In general, the injected current of the first
port Iy;, is uniformly distributed among the m segments and the current /;; of the second port
is uniformly distributed among the n segments. The voltages V;, V>,...,Vy denote the voltages

m n N

A A A
A AR Mo, A,

/IIEI-"EIEEI-"EI o O \

A LA L N L R
OO eeoDeee it Ll
E..D:..@...............ﬁ..g...g g; égé'\ )
HERH HIE H i H e
Ooo-.-o-:-0j0; 0
D00 Oifeee0iO0 e O 7

T L
Hees OiflessliO e O //

Fig. 10: Matrix reduction (two port circuit)

along the periphery of the circuit and Vy; and V), are the voltages at positions of the first and
the second port, respectively. The system of (m + n + N) equations (39) contains (N + 2)
variables and should be reduced. The matrix reduction for the two port circuit is depicted in
Fig. 10. As in the previous section, the elements of the matrix U or H bounded by the
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rectangles are added together and this sum generates a new element in the reduced matrix Ug
or Hr. After execution denoted operations, we obtain the system of (V + 2) scalar equations:

UR' Vl

_Vm -
VOZ

VN

=H,-

(1, /m]
Iy, /n
0

0

(40a)

If we substitute Iy; = -Yy; Vo; and Iy, = -Yy2 Vp, to the matrix equation (40a), the following
expression can be obtained:

(UR +&Hg) +ﬁng2)j.
m

Y,

n

VO 1
V02
Vv

1

VN

where the superscript denote nonzero column of the Hr matrix:

0 A,

M _
H}, =

hl,l
h2,1

hN+2,l

0
0

0

0
0

0

2 _
R =

0 &

2

O hN+2,2

(40b)

The system of (N+2) scalar equations has the nontrivial solution only if the determinant of the
corresponding matrix is zero:

Y,
det{UR +ﬁH§” +

Lop] o
n

After simple algebraic operations we obtain the bilinear expression for the input impedance:

m-n-C4+m-D"Y,,

with

and

_Yo1 =

Ui ni2

Uy ni2

Upnio e

Uy yi2

Uy N2

uN+2,N+2

. B'=

, D'=

2

n-A+B"Y,,
hy, hl,z
hz,l hz,z
h3,1 ha,z
hyo, hy.sn
Uy, h1,2
Uy, hz,z
Uy h3,2
Uniog hN+2,2
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Ui N

Uy Ni2

-

Us nio
Unione2
Uy nio

Uy N2

Us N2

Unione2



The ABCD parameters are easy to obtain by the following substitutions:
A"=nA', B"=B',C"=mnC',D"=mD",
and regarding the reciprocity condition [4]:

A B B 1 An Bn
C D - /AHDH_BHCH C” D” ’

As in the previous section, another way of computing transfer parameters through the
matrix inversion exists. The impedance matrix Z is computed according to (36), and the
equation (40a) can be rewritten as:

Vi 211 21 213 ZIN+2 Iy /m

Vs 2y 25 23 Zy N+2 Iy, /n

V= Z3 239 Z33 e Z3 N2 " 0 . (42)
2 | Zn+211 ZN+2.2 ZN+23 Znsan+2 | | 0 |

Thus, the voltage/current relations between ports can be written as:

Vo _| % Im  z,/n ' Iy, . (43a)
Voo Zylm o zy,/n| |1y,
Analogous to the previous section, the voltages along the periphery of the circuit can be

computed from the matrix equation (40b) or (42). From the matrix equation (42) we obtain
following expressions for the voltages at the sampling points along the circuit periphery:

4 zy,/m zy,/n

v, _| Za /m Z,,/n .{101} (43b)
: : : Iy, ’

Vy ZNi2 /m ZN42,2 /n

We have derived the expressions for the ABCD parameters and the Z-parameters of
the two-port power-bus structure. In the next section, we will derive the Z-matrix for the
general multi-port power-bus structure.

3.2.3 Multi-Port Circuit

In this chapter, the multi-port power-bus structure with arbitrarily shaped power plate is
considered. We suppose, that analyzed structure is excited by the P current sources Iy,,...,Jop.
Each of these ports is divided into m segments. Along the periphery of the circuit is N
sampling points. Thus, the matrix equation (24) has the following form:

T
U'[Vm Vo Vo Vo Vop = Vop [V V5 "'VN] =

0.

T
:H.{&...ﬁ[ﬁ...lﬁ...i...£|00...0} ’ 9
m m m m m m

where superscript (.)” denotes the transposition and the elements of matrices U and H are
given by the expressions (26) or (32). The matrix equation (44) consists of the (Pm + N)
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Fig. 11: Matrix reduction (multi port circuit)

scalar equations with the (P + N) variables. Therefore, the matrices U and H should be
reduced as is depicted in Fig. 11. The elements of matrix U or H bounded by the rectangles
are added together, that way we obtain one element in reduced matrix Ur or Hg. The matrix
equation (44) can be after reduction of matrices written as:

I ’
UR'[Vm VOZ".V0P|I/1VZ'”VN]T:HR.[ﬁﬁ'”f“)o'“O} ) (45)
Further step is a calculation of the impedance matrix Z according to the equation (36).

Reduced matrix equation (45) can be rewritten in extended form as follows:

m

Vor 211 212 Zyp Z1,p+N Lo /m
VOP Zp1 Zp, Zpp ZppiN [OP/m (46)
4 Zps1l Zpi12 ZpsL,p Zpi1,P+N 0

Vvl | Zeewa ZpiN2 Zpin.p Zpovpsn | |0

The previous matrix equation gives the desired relations between the ports of the multi-port
power bus structure:

Vo zy/m oz, /m ziplm| | I,
Vo, Zy,/m o zy,/m Zyp/m| | 1,

= . . . 1, (47a)
Vip Zpy/m zZp,/m Zpplm| |1,

The voltages at the sampling points around the periphery of the circuit can be evaluated from
the matrix equation (46) as follows:
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" Zpaa /M Zpgplme oz pim|

Va | ZpoilM  Zpo,/m e Zp,plm |,

(47b)
Vy Zpan,1 /'m ZpiN,2 Im - Zpin,pP Im| (1p

For practical reasons is important to know the voltage distribution between the plates
of the power-bus structure. The proper choice of positions of critical ICs can eliminate
structural resonances and radiated electromagnetic interferences. The voltage distribution

Fig. 12: Evaluation of the voltage distribution between the plates of
the parallel-plate structure

between the plates of the parallel-plate structure can be computed according to the integral
equation (21). The region between the plates of the structure is uniformly covered by the
points, where contributions from the boundary are summed (see Fig. 12). These points must
not lie at the boundary contour C. Then we specify the positions, where the structure will be
excited by the current sources. The loops depicted in Fig. 12 are considered infinitesimally
small and voltages at the centers of these loops are then given as:

v _2101' 2y, |

o1 !

v 1 Zlm Zy
Zl==. (47¢)
: 2 :

Vo Zlm Zp,

Here, index i denotes the position (x; y;), where the power-bus structure is excited. In this
case, when the voltages are evaluated at singles points, parameter m is set to 1 and the lengths
of corresponding segments approach to zero. The factor 1/2 arises from the different half- and
full-circuit extractions of the singularity described in section 2.4.
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3.3 Computation of the Radiation Diagram

As was mentioned before, radiated electromagnetic interferences (EMI) are radiated as
a consequence of switching noise and nonzero impedance of the power bus structure. These
interferences can be suppressed by the proper design of the power-bus structure. The radiated
fields at the structural resonances of a rectangular power-bus structure were analytically

A V4 €

$ !
Q/ y
‘YQ >
r’; .
Foieqaferete’
i €si

Fig. 13: Symbols used in the equation (50)

described in [1] using the field equivalence principle. At this chapter, we adopt the
methodology from [1], to numerically compute the radiated fields of the power-bus structure
with an arbitrary shape of power plate.

In the following text we suppose, that the lateral dielectric sides of the power-bus
structure serve as the radiating apertures, where only tangential electric field E. exists. This
tangential aperture field is responsible for the radiated fields by the power-bus structure.
According to the equivalence principle, the aperture tangential electric field E. may be
replaced by the equivalent magnetic surface current Mg located along the periphery of the
power bus structure. As is described in [1], the voltage V" between the plates of the parallel
plate structure is given as:

V=M;-d=E.-d, (48)

where d denotes the height of the substrate. Thus, the radiated far field can be computed using
the equivalence principle as [1]:

jkod e

E(r) = 4 r

[M@)e™ e (e, xe,)ds, (49)
C

where r and r’ are the position vectors of the observation and source points, respectively.
Next, the » denotes the distance of the observation point from the origin and e;, e; denote the
unit vectors having the directions of the observation point from the origin and of the
equivalent magnetic current along C, respectively.

The radiation integral (49) can be solved analytically only for the simple shapes of the
parallel plate structure, e.g. for the rectangular power bus structure in [1]. For the arbitrarily
shaped parallel plate structure, the integral (49) has to be solved numerically. Suppose that the
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voltage evaluated at the i-th sampling point is constant along the i-th segment of the width ;.
Then the radiation integral can be rewritten as:

—jkor N

E(r) = Jkoe ZV(r;)ef"uf*er (e, xe, )W , (50)
i=1

4rr =
where V(r;j) denotes the voltage at the i-th sampling point and W; is the width of the i-th
element (see Fig. 13).

The analyzed power bus structure is surrounded by a sphere, where the observation
points are placed. After evaluation of expression (50) at each observation point, the magnitude
of computed electric intensity can be plotted as 3D radiation diagram.

3.4 Implementation and the Program Structure

The described contour integral method was implemented in Matlab. The program is
compound of several m-files. In the main m-file, the following input parameters of an analysis
can be entered:

e Frequency range and frequency step of an analysis

e Coordinates of an M-polygon

e Substrate parameters (height, relative permittivity, dielectric loss tangent) and
conductivity of the plates

e Number of ports, radius of the ports and coordinates of the ports

After entering input data, the main m-file executes the calculation of coordinates of the
segments and of the sampling points on the contour C. The number of the segments is

Input data

4

Segmentation
of the structure

4

FREQUENCY LOOP Matrix elements
uij, hjj
Transfer Voltage 3D radiation
parameters = distribution = diagrams
(Unit current sources (1A))

Fig. 14: Structure of the program

calculated according to minimum wavelength 4,,;, in the dielectric layer. The maximum width
of the segment along the periphery is implicitly set to 0.1 A4,;,. The value of the multiple of
Amin can be also set manually. The structure is excited by the unit current sources Iy; = 1A. The
radius of the ports should be much less than the wavelength in the dielectric layer and the
shortest distance of the ports to the sampling points along the periphery should be much
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longer than the radius of the ports. The simple graphical user interface of the Matlab program
is depicted in Fig. 39 (Appendix). Note that the checkboxes for the voltage distribution and
3D radiation diagram are active only if the start and stop frequencies are equal.

The second part of the program is the frequency loop. In this loop, the matrix
coefficients and transfer parameters are calculated. It is possible to choose the way of
computing of the matrix elements after equations (26) or (32). The integration in (32) is
implemented using the Gauss-Legendre method. Further, the frequency loop contains the m-
file, which executes the matrix reductions and the part of the evaluation of the voltages along
the periphery of the circuit. The voltages at the sampling points along the periphery are the
input data for the calculation of the 3D radiation diagrams. The transfer parameters, voltages
or the radiation diagrams can be subsequently displayed. The structure of the program is
shown in Fig. 14.

3.5 Circuit Level Simulation

A further step in the analysis of the power-bus structures is the inclusion of lumped
elements connected to the ports of the structure. Mainly we are interested in the behavior of
the structure with decoupling capacitors. Decoupling capacitors are connected between the
power and ground planes to reduce the high-frequency impedance. These capacitors usually
exhibit capacitance values about a few tens of nano-Farads and the parasitic inductance and
resistance represented by the equivalence series inductance (ESL) and by the equivalence
series resistance (ESR), respectively.

In the previous sections, we have shown how to compute the voltage/current relations
between the ports of the arbitrarily shaped N-port structure. These relations in the form of Z-
matrix will be used to simulation of the power-bus structures populated by the lumped
elements.

At first, the Z-matrix of an analyzed structure is computed in Matlab and saved as the
data *.mat file. This data file is consequently in Matlab converted into the standardized Touch
stone format’, which is compatible for the most of CAD circuit analyzing programs. In the
last step, the N-port model of the structure is, in the appropriate computer circuit analyzer,
used to simulate the populated power-bus structure.

4 Results

The techniques described above, are first validated by the simulation of the simple
rectangular power-bus structure described using analytical expressions. The analysis of a
polygonal structure is verified by a commercial 3D full-wave solver.

4.1 One-Port Rectangular Power-Bus Structure

The input impedance of a power bus structure, the voltage distribution between the
plates and 3-D radiation diagrams can be compared with the analytical results from [1]. In the
case of a rectangular power-bus structure, Green’s function for the Helmholtz equation (5)

% A Touchstone® file (also known as an SnP file) is an ASCII text file used for documenting the n-port network

parameter data of an active device or passive interconnect network. While Touchstone files have been accepted
as a de-facto standard for the transfer of frequency dependent n-port network data [6].
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can be expanded into the complete set of the familiar trigonometric eigenfunctions, thus we
get [1]:
cos(k,,x,)cos(k,,,)

Vi(x,y) Jwﬂo
Io(anyo) mz(:)nz(; k2 k2 —k?

yn

cos(k,,¥)cos(k,y),  (51)

where W and L denote the width and length of the rectangular power-bus structure and the
discrete wave numbers are given as:

pooME o _nT
L

xm

The normalizing constant K,,, is defined as:

1, form=n=0
K =12, form=0vn=0.

mn

4, form#=0An+0

For the computation of the input impedance, the finite size of port has to be taken into
account. Therefore the equation (51) is multiplied by the sinc factors and the transfer
impedance between the ports at the positions (x, y) and (xy, yy) is given as [7]:

]0)/10 mn
Z(x,v|x,, =
(X, ¥ x0,0) = ;)nz(;kz R

yn

x cos(k,,x)cos(k,,y) cos(k,,x,)cos(k,,y,) , (52
xsinc(k_d_/2)sinc(k d /2)sinc(k_d_,/2)sinc(k, d ,/2)

xm" x "y xm " x0

yn y0

where d., dy, d,, d,y are the dimensions of the rectangular ports. Since the real ports have the
circular cross-section, the equivalent radius is considered [8]:

r, =0.59a,
where a = d, = d.y = d, = d,y.

Fig. 15 shows the analyzed one-port rectangular power bus structure with the
dimensions L = 300 mm and W = 200 mm is depicted in Fig. 15. The port with radius » = 1
mm was placed at the position (xy, yp) = (50, 50) mm. At this position, the structure is excited
by the unit current source, which represents the noise source. The analysis was carried out at
the range of frequencies /= (10 +1000) MHz with the frequency step 5 MHz. The maximum
length of segments was 0.1 A,;,. The height of the substrate is d = 1.5748 mm (62 mils),
relative permittivity is &, = 4.35, dielectric loss tangent is set to tan 0 = 0.02 and conductivity
of the plates is o = 5.8 10’ S/m. The same parameters of the substrate and the geometry of the
ports are considered throughout the chapter 4.

29



z [mm]

y [m] 0 o xm]
Fig. 15: Analyzed one-port rectangular power-bus structure

Fig. 16 shows the calculated magnitude of the input impedance Z;,,
|V(xo, yo)/Io (xo, yo)| using the analytical expression (52), our program in Matlab and ANSOFT
Designer. The matrix elements u; and A; were computed using the simple expressions (26)

10°

10

10°

|Zinp| [Ohm]

f[MHz]
Fig. 16: Absolute value of the input impedance of an analyzed rectangular
power-bus structure

denoted as the 1% approximation and using the expressions (32) denoted as the 2
approximation. In the analytical expression (52) 1000 terms were considered in each of the
sums. The model of the structure in ANSOFT Designer was covered by the 631 triangles. As
can be seen, the analytical and the numerical results are in good agreement. Further, the first
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fI1 = 432 1624MHz

11 = 432.18MHz

y [m] oo x[m]

Fig. 17: Voltage distribution V(x,y) for the resonant mode (1,1).
a) Analytically computed, b) numerically computed

five structural resonances are labeled in Fig. 16. Maximum differences between the analytical
and numerical results (2™ approximation and ANSOFT Designer) appear at the frequencies
higher than 500 MHz.

In Fig. 17 are depicted voltage distributions F(x,y) between the plates of the
rectangular power-bus structure at the resonant frequency f; ;. The voltage distribution in the
11 = 239 73MHz

x [rr]

Fig. 18: Voltage distribution for the first resonant mode (1,0)

first figure from the left was computed according to analytical expression (51). The second
figure shows the numerically computed voltage distribution between the plates and at the
sampling points along the periphery of the structure.

Fig. 18 shows numerically computed voltage distribution V(x,y) of the first resonant
frequency f1o. The lowest resonant mode is usually operating mode for the microstrip
antennas. In Fig. 19 are depicted 3D radiation diagrams of power-bus structure at the f; o. The
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Fig. 19: 3D radiation diagrams for the resonant mode (1,0).
a) analytically computed, b) numerically computed

first one from the left was computing using the analytical expression introduced in [1]. This
expression is obtained after integration of a radiation integral (49) along the rectangle, with
using the field equivalence principle. The radiation diagram in Fig. 19b was obtained from the
voltages along the periphery of the structure (see Fig. 18) using the expression (50). The
differences are especially due to the errors in computing of the voltage distribution and due to
the presumptions for the validity of expression (50).

In this section we have computed the input impedance, voltage distributions and the
3D radiation diagrams for the simple rectangular power-bus structure. The presented
numerical approach was verified using existing analytical expressions.

4.2 One-Port Arbitrarily Shaped Power-Bus Structure

As an example for an arbitrarily shaped power-bus structure, the geometry shown in
Fig. 20 was chosen. The substrate has the same parameters as in the previous section. The
structure is excited at the position (xy, y9) = (100 mm, 100 mm). Because of the complicated

y [m]

0.1

0 0.05
x [m]

Fig. 20: Analyzed one-port polygonal shaped power-bus structure
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Fig. 21: Absolute value of the input impedance of an analyzed
arbitrary shaped power-bus structure

shape of the structure, we have increased the number of the segments by setting the condition
Winax = 0.05 Ay, where W, denotes the maximum width of the segments, considering the
non-uniform segmentation of an arbitrarily shaped structure.

Fig. 21 shows the computed magnitude of the input impedance using the ANSOFT
Designer and our program in Matlab. The matrix elements u; and A; were computed
according to the first and the second approximations (26) and (32), respectively. The mesh in

f11 = 730MHz

y [rm] [ % [m]

Fig. 22: Voltage distribution at the second resonance frequency
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ANSOFT Designer included 310 triangles. As can be seen, the computed input impedance is
in good agreement with the results from ANSOFT Designer.

... | [Erad}|Emax]|

Fig. 23: 3D radiation diagrams at the second resonance frequency.
a) ANSOFT Designer, b) Matlab

Fig. 22 shows the voltage distribution V(x,y) between the plates of the power-bus
structure depicted in Fig. 20. The voltage distribution was computed at the second resonance
frequency f = 730 MHz. The radiation diagrams depicted in Fig. 23a and in Fig. 23b were
computed at the same frequency in ANSOFT Designer and in Matlab, respectively. In both
diagrams are apparent the two bold side-lobes.

The structural resonances can be effectively eliminated by a proper placement of the
critical ICs [1]. This fact can be illustrated in Fig. 24 and Fig. 25. Fig. 24 shows the voltage
distributions ¥(x,y) for three different positions of the ports: (x,7, ¥,;) = (50, 50) mm,
(%2, ¥p2) = (100, 100) mm and (x,3, ¥»3) = (180, 160) mm and in Fig. 25 are depicted the
magnitudes of the input impedances for these different positions. Analyses were carried out at
the frequency range (10+-1000) MHz with the step 10 MHz.

As can be seen from Fig. 25, at the first and at the third position of the port, the input
impedance steeply increases around the frequency f = 340 MHz. This is the first mode
resonance frequency. The corresponding voltage distributions are depicted in Fig. 24b and
Fig. 24c¢. In contrast to these cases, the input impedance for the second position of the port, in
the center of the power plate, exhibits no resonance at this frequency. The corresponding
magnitude of the voltage distribution between the plates is depicted in Fig. 24c. Since the
structure is not in resonance at this frequency, the magnitude of the voltage between the plates
is much lower compared to the first and the second cases. The first resonance at this point
occurs around /= 560 MHz.

In conclusion, the excitation of the structural resonances strongly depends on the
position of the port. At an analyzed range of frequencies, the port at the first position excites
the three structural resonances and the ports at the second and the third positions excite two
and five structural resonances, respectively. In general, the ports near the corners of the PCB
excite more resonances than the ports placed in the middle of the power planes.
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Fig. 24: Voltage distributions at = 340 MHz for different positions of the ports.
a) Positions of the ports, b) Position 1: (50, 50) mm, c) Position 2: (100,100) mm,
d) Position 3: (180, 160) mm

|Zinp| [Ohm]

Position1 : (50,50)mm
----- Position2 : (100,100)mm
TI| meeeennas Position3 : (180,160)mm

Fig. 25: Absolute value of the input impedance for the different port positions
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4.3 Accuracy and Computational Demands of the Implemented Algorithm

In this section, the simple rectangular power-bus structure depicted in Fig. 15 is
analyzed to obtain the information about the accuracy and computational demands of
implemented algorithm. As a reference, the truncated analytical expression (52) with 1000
terms in each of sums is considered. All analyses were performed with a 1.6-GHz CPU and
512-MB memory.

Analyses were carried out for the three ratios A/ Winax = {5, 10, 20} at the frequency
range (10 + 1000) MHz with a frequency step 5 MHz. The port of radius » = 1 mm had 4
segments around the periphery. The input impedances |Z;,| computed by the first
approximations (26) and the second approximations (32) are depicted in Fig. 26a and Fig.26b,
respectively. As can be seen, the maximum errors occur at the resonance frequencies.
Obviously, the errors decrease when the number of elements increases or alternatively, the
ratio Amin/ Wmax increases. For determination of a total error over the frequency range, the

|Zinp| [Ohm]
6‘@
|
|
|
|
|
|
i
|
|
f
|
|
|1Zinp| [Ohm]
S
T

Analytic eq. (52)
min(lambda)/max(W) = 5
1 | m— min(lambda)/max(W) = 10 | | -1

-+ Analytic eq. (52)
min(lambda)/max(W) =5 | -

min(lambda)/max(W) = 10

10 E=-=f¢==tt==d==d== 10 o= -ft=-=2F==d2== .
e e e e R I min(lambdaymax(W)=20F3 = E- - F--F--3:-°= min(lambda)/max(W) = 20
F-—-ft—-—t-—4--—4--—F-—-—a--—-I—=—-—--F - —

Fig. 26: Input impedance |Z,,|. a) I* approximation, b) 2" approximation

mean square error (MSE) was computed. The calculated mean square errors in dependence on
the ratio A/ Wnae and the integration method are listed in Tab.1. We can observe, that the
second approximations (32) gives in terms of MSE, except the first case, more accurate
results then the first approximations (26). However, the application of the second
approximations is more time consuming. From given results we can state, that the CIM
algorithm is not very much sensitive with respect to the change of A/ W ratio. A
satisfactory insight in the behavior of the structure can be obtained already with only 5
segments per minimum wavelength. Since the maximum length of the segment W,,,, is related
to the minimum wavelength in the dielectric layer A,,;,, we can expect better simulation results
accuracy at low frequencies, where the relative segment length W/A4 is small.

A high efficiency of the boundary element methods consists in the dimension reduction
of the problem. Consequently, the mesh of the numerical model is simpler and the

Tab. 1: Mean square errors

method 1st approximation 2nd approximation
Amin/ Winax [-] 5 10 20 5 10 20
N [elements] 33 61 117 33 61 117
MSE [7] 1.6138 | 1.1143 | 0.4406 | 2.0799 [ 0.66792 | 0.2483
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implementation of these methods is easier. In Fig. 27 is depicted the number of discretization
elements in dependence on the ratio A/ lnax for the 2D mesh in ANSOFT Designer and for
the 1D mesh in our Matlab program. We can observe the linear and quadratic dependence of
the number of elements on the ratio A,/ ln. for the 1D and 2D mesh, respectively.
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1D mesh (Matlab program)
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1000

500

min(lambda) / max(W) [-]
Fig. 27: Number of the discretization elements in dependence on the ratio Lya/Amin

Obviously, the number of the discretization elements is directly related to the number of
unknowns in the resulting system of linear equations. Considering, for example, the common
Gauss elimination method, which for solving the N linear equations requires approximately
(N %/3) of arithmetic operations. Then the computational demands of the boundary element
methods are, for the fixed ratio A,/ luax, 3 €xponent orders lower. Another reduction of the
computational demands is usually achieved using the symmetry of the impedance matrix Z.
This reduction cannot be used in the presented numerical approach, since the impedance
matrix is unsymmetrical, because of the angle 6;, which is not, in general, equal to 6;; (see

Fig. 8).

1st approximation

2500

2000

1500

1000

computational time [s]

500

number of elements: N [-]

Fig. 28: Computational time in dependence on the number of elements
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Fig. 28 shows the computational times of an aforementioned CIM analysis of the
rectangular power-bus structure depending on the number of discretization elements. As can
be seen, the computational times of both analyses using the first and second approximate
expressions increase with the O(N ?). This dependence is steeper for the second
approximations (32). If the system of linear algebraic equations is solved using the common
Gauss elimination, we can expect O(N°) dependence for high N. The choice between the first
and the second approximations should be make with regard to accuracy and computational
demands.

4.4 Matlab Program vs. ANSOFT Designer

Since ANSOFT Designer is based on the 3D full-wave method of moments (MoM) and
our program uses the 2D contour integral method (CIM), it is not possible to set the same
input parameters for the exact comparison of both approaches. However, the methods can be
compared when we set the same maximum lengths of the discretization elements. In case of
the MoM we set the maximum length of the sides of the triangles and in case of CIM we set
the same rule for the maximum length of the boundary segments. The maximum length of the
discretization elements is based on the minimum wavelength in the dielectric layer.

The simple one-port rectangular power-bus structure of the dimensions (300mm x 200

mm) was chosen as a benchmark sample. For a comparison of the results from both programs,
the following ratios were used:

A

Zmin _ {57,104,

lmax
where /., denotes the maximum length of the discretization element and 4,,;, is the minimum
wavelength in the dielectric layer. The position of the excitation port is (xg, yp) = (50, 50) mm
and the parameters of the substrate are the same as in the previous sections. All computations
in this section were carried out for the range (20+800) MHz with the step 10 MHz.

The geometry of the first tested structure for the ratio A/ [nax = 10 is depicted in Fig.
29. The structure was discretized into 61 boundary elements and 997 triangles in Matlab

0294 o= o= o f o= o—f- o o= o= oo o o o o o—f- o—f— 04—
1 2,
0.18
AR A

0.1

0.14

0.12
E 0.1
>

0.08

0.0

+

0.04

0.02

Oo—f—e—f—of—o—f—o oo f—o o fofofofot o b ootk

0 0.05 0.1 0.15 0.2 0.25
a) x [m] b)

Fig. 29: Geometry of an analyzed power-bus structure for Apin/ lyax = 10
a) Matlab b) ANSOFT Designer

and in ANSOFT Designer, respectively. For the calculation of the matrix elements u; a /;; in
Matlab, the first approximations (26) and the second approximations (32) were used. Fig. 30
shows the computed absolute value of the input impedance versus frequency. As can be seen,
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the results computed in Matlab and in ANSOFT Designer are almost identical. Obvious
differences between the 1% approximation results from Matlab and results from ANSOFT

102:::::::E::::::E::::::E::::::i:::::** ****** oo o - —--1
e el el S ub ANSOFT Designer | -
I T T T SRS 1st approximation |
A S S T R S ————— 2nd approximation | |
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Fig. 30: Absolute value of the input impedance of the tested structure
for Awin/ Ipax = 10

Designer occur only at higher frequencies. In Tab. 2 are summarized all computational
parameters of the Matlab and ANSOFT Designer simulation. The analysis using our program
in Matlab is much less time consuming.

Tab. 2: Parameters of analyses for Apin/ Lyax = 10

Amin/lmax = 10 ( 79 frequency steps )
MATLAB
P ANSOFT Desi
rogram Tt appr. | 2nd appr. SO esigner
Number of Elements 61 elements 997 triangles
Computational Time | o 1.4 | 0.10:00 0:41:07
[h:mm:ss]

Further we have executed the same analyses for the smaller ratios A/ lna. The
conclusions of these analyses are similar to the previous one. Again, differences between the
results computed using Matlab program and ANSOFT Designer are apparent only at the
higher frequencies. The computational time of our Matlab program is much shorter than the
computational time of ANSOFT Designer. The geometries and input impedances of analyzed
structures for different ratios A/ [nay are shown in the following figures. The computational
times and the numbers of discretization elements are summarized in the Tab. 3 and Tab. 4.
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Fig. 31: Geometry of an analyzed power-bus structure for Apin/ lnax = 7
a) Matlab b) ANSOFT Designer
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Fig. 32: Absolute value of the input impedance of the tested
structure for Apin/ lyax = 7

Tab. 3: Parameters of analyses for Apin/ byax = 7

Amin/lmax = 7 ( 79 frequency steps)
MATLAB .
P ANSOFT D
rogram Tt appr. | 2nd appr. SO esigner
Number of Elements 43 elements 565 triangles
ional Ti
Computational Time o 00,31 | 0:04:58 0:12:32
[h:mm:ss]
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Fig. 33: Geometry of an analyzed power-bus structure for Apin/ lnax = 3.
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Fig. 34: Absolute value of the input impedance of the tested
structure for Amin/ bpax = 35

Tab. 4: Parameters of analyses for Amin/ lyax = 35

Amin/lmax = 5 ( 79 frequency steps)
MATLAB .
Program Tstappr, | 2nd appr ANSOFT Designer
Number of Elements 33 elements 346 triangles
Computational Time | ;19 | 0.02:56 0:06:12
[h:mm:ss]
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S5 Experimental Validation

The first tested power-bus structure was simple rectangular of the dimensions (160 mm x
100 mm) with the one port at the position (20, 80) mm. The test port was constructed using a
SMA connector soldered to the PCB. The substrate was FR4 with a relative permittivity of
& = 4.2, dissipation factor of tand = 0.02 and thickness of d = 1.6 mm. The input impedance
was measured with the R&S ZVL (9 kHz to 6 GHz) network analyzer.

In the simulations, the SMA connector was modeled using a simple LC model of the
transmission line. Corresponding values of the capacity and inductance were computed
according to the expressions derived for a coaxial cable [12]:

2 [
C:&z725ﬂ7 and L="1n"2 <1901 ,
r 2 r
In—= !
n

where / = 7.5 mm is the length of the modeled part of SMA connector, 7; = 0.635 mm and r, =
2.25 mm are the corresponding inner and outer radii, respectively. The dielectric constant of
the teflon is approximately . = 2.2.

The measurement was performed, as well as simulation, at the frequency range (20 +
2000) MHz with the frequency step 5 MHz. Fig. 35 shows the measured and computed
absolute value of an input impedance. As can be seen from the simulation results with and
without the model of SMA connector, the influence of the SMA connector cannot be

2

10 —— —
A
101 C ::::‘:::* g'.*:
E ) 7”‘7,74’1 :
= K | |
e Yy g5 WS |
= l l
S - bd - t |
ﬂ ! |
100 C-Z ::‘é::::‘z 1
R | S R
B Er i Lo b . Measurement SRR
I T T | === CIM with SMA (LC model) |
o 4.”; ***** [ S T e CIM without SMA T
10 § 1 1 1 1 1 1 1 1
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
f [GHz]

Fig. 35: Absolute value of the input impedance of the tested structure

neglected. The correspondence with the measurement is acceptable. The deviation at higher
frequencies is certainly due to the frequency independent modeling of loss mechanism and the
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simple modeling of the SMA connector. Additionally, radiation loss is not considered. For
circuit-simulation purposes the accuracy is totally sufficient.

The second tested power-bus structure, populated by 13 decoupling capacitors is depicted
in Fig. 36. The material was again FR4 with a dielectric constant €, = 4.35, dissipation factor
of tano = 0.035 and thickness of d = 1.6 mm. One end of each SMT capacitor was soldered
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Fig. 36: Power-bus structure including decoupling capacitors
(dimensions in millimeters)

directly to the top power plane and the second end was connected to the ground plane by via
with the radius 0.8 mm. Two test ports were constructed using two SMA connectors. The
tested power-bus structure was connected by two semi-rigid coaxial cables to the network
analyzer and two-port measurement was performed.

Further, the bare multi-port structure was analyzed in Matlab to obtain the voltage-
current relations between the ports. All ports modeled in Matlab had the same radius » = 0.8
mm. The additive inductance due to the geometry of the port is included in the numerical
method. The resulting Z-matrix was converted into the Touch Stone format to include the
power-bus structure as N-port in ANSOFT Designer. In the last step, the models of the
decoupling capacitors and SMA connectors were connected to the pins of the N-port.

Fig. 37 shows the model of a populated power-bus structure with SMA connectors in
ANSOFT Designer. All capacitors have the same nominal value C = 10 nF. Parasitic
inductance ESL and resistance ESR were measured for one capacitor using HIOKI 3535 LCR
HiTester with the SMT fixture: ESL = 640 pH and ESR = 120 mQ. In ANSOFT Designer, the
parasitic inductance is included in the resonance frequency of the capacitor model (f.; = 62.9
MHz).
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Fig. 38a-c show the |z;| and |z;,| parameters for the SMA ports 1 and 2, respectively,
and the transfer impedance |z),| between the ports 1 and 2. As can be seen, simulated and
measured data are in very good agreement. In conclusion, in Fig. 38d is depicted the transfer
impedance |z;5| for the bare and decoupled power-bus structure computed in the frequency
range (10+5000) MHz with the step 10 MHz. As can be seen, the decoupling capacitors are
effective only at low frequencies.
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Fig. 37: Model of populated power-bus structure in ANSOFT Designer
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Fig. 38a: Absolute value of z;; of the populated power-bus structure
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Measurement
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Fig. 38b: Absolute value of z;, of the populated power-bus structure
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6 Conclusion

A boundary 2D integral equation was used for analysis of the power-bus structures on
printed circuit boards. All mathematical details from the general theory were carried out and
numerical solution algorithm was implemented in Matlab.

The program is capable to simulate arbitrarily shaped power-bus structures with arbitrary
material parameters and number of ports. As output the program provides the
voltage/currents relations between the ports in Z-matrix transfer form, voltage distribution
between the plates and 3D radiation diagrams. Moreover, the resulting Z-matrix can be
converted into the Touch Stone format, which can be used to simulate populated power-bus
structure in some of the CAD circuit analyzers, e.g. ANSOFT Designer.

In order to validate the Matlab program, the rectangular structure was analyzed first and
compared with the analytical solutions. The results of more complex structures were validated
using commercial software based on 3D full-wave solver. We have shown that the developed
2D contour integral equation method provides comparable results in a much shorter time than
3D full-wave method of moments as implemented in ANSOFT Designer.

In the last chapter, the numerical approach applied in this thesis was validated by
measurements of two power-bus structures. At first, the input impedance of a simple bare
rectangular power-bus structure was analyzed and measured. Further the impedance
parameters of two-port polygonal power-bus structure populated by a number of decoupling
capacitors were simulated and measured. For the SMA connectors, simple LC transmission
line model was used. As was found, the calculated results agree quite well with the
measurement data over the considered frequency range.
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8 Appendix
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Fig. 39: Graphical user interface of the Matlab program

Fig. 40a: One-port rectangular power-bus structure
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Fig. 40b: Polygonal two-port power-bus structure loaded with 13 SMT
capacitors
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