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Abstrakt

Tato diplomova prace se zabyva modernimi pfistupy detekce klicovych slov a detekce

frazi v tecovych datech. V uvodni ¢ésti je sezndmeni s problematikou a teoreticky popis

metod pro detekci. Nasleduje popis reprezentace vstupnich datovych sad pouzitych pri

experimentech a evaluaci. Daéle jsou uvedeny metody pro detekci klicovych slov defino-

vanych vzorem. Nasledné jsou popsany evaluaé¢ni metody a techniky pouzité pro skérovani.

Po provedeni experimentt na datovych saddch a po evaluaci jsou diskutovany vysledky.

V dalsim kroku jsou navrzeny a poté implementovany moderni postupy vedouci k vylepseni

systému pro detekci a opét je provedena evaluace a diskuze dosazenych vysledkia. V zavérecné
Casti je prace zhodnocena a jsou zde navrzeny dalsi sméry vyvoje naseho systému. Priloha

obsahuje manudl pro pouzivani implementovanych skriptu.

Abstract

The aim of the thesis is to get acquainted with modern approach of keyword spotting and
spoken term detection in speech data. The bases of keyword spotting are described at first.
The data representation used for experiments and evaluation are introduced. Keyword
spotting methods where query is provided as an audio example (Query-by-Example) are
presented. The scoring metrics are described and experiments follow. The results are
discussed. Further, modern approaches of keyword spotting are suggested and implemented.
The system with new techniques is evaluated and the discussion of results achieved follows.
The conclusions are drawn and the discussion of future directions of development is held.
The Appendix contains user manual for using implemented system.
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dotaz vzorem, detekce klicovych slov, DTW, dynamické borceni ¢asu, STD, detekce frazi v
feci, dynamické programovani
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Chapter 1

Introduction

The amount of speech data constantly increases every year. These data are either processed
in real time or stored for further processing. Devices utilising a speech processing are
for example cell phones, personal computers and nowadays on-board car navigations and
controls, security systems or intelligent houses. Therefore, keyword spotting has became
an important topic in speech processing field. Words of interests, such as voice commands
or suspect words in secure areas, are detected. It is challenging to investigate modern
approaches of methods for detecting words in speech.

The purpose of this thesis is to focus on audio and speech data with low-resource
conditions. The problem is defined as finding of spoken words or word phrases (or music
samples as well) in other speech (audio) data without any additional knowledge of the target
language. The sound quality of speech can be variable. Our task is to implement system
or improve an existing one to search for user specified speech cut samples. The system
should detect the segments in speech data similar to user specified speech cuts and return
useful information of these found detections. The implemented system should be based on
known algorithms for spoken term detection and further improvement adopted from the
latest approaches should be done. The performance of the system should be represented in
a form comparable to other systems dealing with the same task.

The implemented system will participate into spoken term detection task which is held
by speech processing community every year. The competition among all participants will
run. The goal is to search for hundreds of defined speech samples into thousands of speech
utterances. Different conditions to search speech samples are set. All systems will be scored
by a newly introduced scoring metric.

The thesis is structured into several essential parts. The first step will be a reflection of
input data representation. We will need to extract useful features from the raw speech data.
Further, a deep analysis of methods for described problem will follow. The aim will be to
exploit techniques for detecting similar segments in speech data using dynamic alignment of
speech samples. We will compare speech data to each other with different metrics. Further,
we will reimplement an algorithm suitable to deal with the given issue. The different data
sets will be exploited for experiments with the system. We will focus on the accuracy of the
system compared to other systems. At last, the improvement of the system will be made
and the comparison will follow.



Chapter 2

Bases of keyword spotting and
Query-by-Example

This chapter provides description of spoken term detection and keyword spotting methods
for an audio data, where query is provided as an audio example, called Query-by-Example.
The utilisation of these techniques on speech data is outlined. The decomposition of the
spoken term detection system and the description of essential parts follows. Further, the
different input data representations for the system are detailed. The data sets used in per-
formed experiments are presented. The scoring methods and evaluation metrics exploited
to score results of developed system are described. The related work containing the adopted
ideas and algorithms for further improvement of the system is presented. The theory of spo-
ken term detection, keyword spotting, Query-by-Example and scoring metrics is adopted
from [23][19][1].

2.1 Spoken Term Detection and keyword spotting

Spoken Term Detection (STD) is a technique to find a list of terms fast and accurately in
audio data. Terms are meant as single words or sequences of words and are represented
in a textual form. This method is often denoted as textual STD. It is assumed to have
enough text resources and knowledge of the target language to exploit this method. STD
systems are usually built and dependent on speech recognizers. This is the reason why
textual STD methods are not suitable for term detection with low resources. On the other
hand, a demand for development of STD systems for low resource languages or completely
missing resources (e.g. security field) rises. If it is not possible to train the target language-
specific acoustic models then the system needs to be trained in the language-independent
way. Especially in the cases where a user has no knowledge of the textual representation
of the term to search or it is required to enter the term as a voice command. Therefore,
the Query-by-Example STD technique was proposed [23]. In Figure 2.2, our term detection
system is depicted.

Keyword spotting (KWS) is a similar method to STD. The difference is that keywords
consist of a single isolated word. If a phrase containing several words occurs on the input,
it is still taken as a single object. These systems are usually based on speech recognizers
(e.g. Acoustic KWS, more in [19]) but that topic is beyond the scope of this thesis. We are
interested into KWS systems based on other systems that do not understand speech [19].
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Figure 2.1: Query-by-Example system. User-defined spoken query is searched in a database
of spoken utterances, providing the user with occurrences of the query. The query can be
defined by direct input from a microphone or by a region of speech selected in another
utterance. [1].

2.2  Query-by-Example

Query-by-Ezample (QbE) is a method to search an example of an object or at least a part of
it in some other objects. QbE has been used mostly in applications like sound classification,
music retrieval or spoken document retrieval. The example of an object to find is called
query and in our task, it consists of the spoken term to search. The spoken term is a word
or a word phrase and it is represented as a speech (or music) cut. The user can specify one
or more cut instances containing the term of interest. This query is then searched in data
pool (e.g. set of speech utterances) and segments that are similar to the searched query are
returned. The method relies only on a spoken term example as an input on the contrary
to a textual input for textual STD. Therefore, it is called Query-by-Example Spoken Term
Detection (QbE STD). QbE STD is used when not enough resources for training acoustic
models are available and so it is impossible to use large vocabulary continuous speech recog-
nition (LVCSR) system to conduct textual STD. Hence, usage of LVCSR is impossible for a
language-independent QbE STD [23]. There are three main approaches to build QbE STD
systems on: a template matching, a sequential statistical modelling and a lattice matching.
We are focused on the first approach where we compare input features between themselves.
This approach exploit the dynamic programming technique called Dynamic Time Warping.
This method is used to compare speech patterns and confront inconsistencies in time (more
details in Chapter 3).

Query
Signal Feature Features Thre;shold
extraction v
bE Scores o
Qt Normalization || Filtering [————»
system Term
Tt A detection
eature .
candidates
Signal extraction | Features
Utterance

Figure 2.2: Block diagram of spoken term detection system based on Query-by-Ezample [19].



A scheme of our spoken term detection system is shown in Figure 2.2. The whole process
of a detection can be separated into several phases. A raw signal enters the system inputs.
The extractors generate vectors of speech features. The features are then processed by
Query-by-Example system. The outputs of QbE are records containing a query-utterance
pair, a starting and ending time of the detection and a confidence score. The score is
normalized (e.g. by term length or according to scoring metric). The threshold is applied
to the scores to filter out bad detection and reduce false alarms which is important for the
scoring.

2.3 Feature extraction

An application of raw audio data as an input to our implemented algorithm would be very in-
efficient so we used phnrec! [16] tool developed at Brno University of Technology to extract
speech features. The extractor is based on Hidden Markov Model (HMM) /Artificial Neural
Network (ANN) hybrids and was trained on TIMIT?, SpeechDat-E [10] (SD) and Global-
Phone (GP) corpora. We used phoneme-state posteriors (POST) and bottlenecks (BN).

2.3.1 Phoneme-state posteriors

The input is raw audio data with speech. Speech is segmented into 25 ms long frames. Mel
filter banks energies are calculated. For each band, the temporal evolution of energy is
taken and vectors are split into right and left parts (therefore the system is called LC-RC
- Left Context/Right Context). Each part is windowed by corresponding half of Hamming
window. The linear DCT transformation is performed to decorrelate and reduce dimensions.
The next step is neural networks trained to estimate probability of phonemes for each of
vectors. The concatenation, the transformation and the normalization of vectors follows.
The last step comprises the Viterbi decoder to decode the phoneme posteriors [16][17]. Each
step of the described system is depicted in Figure 2.3.

’ Features \ # dims ‘

SD CZ POST | 138
SD HU POST | 186
SD RU POST | 159
GP CZ POST | 120
GP EN POST | 120
GP GE POST | 126
GP PO POST | 102
GP RU POST | 156
GP SP POST | 102
GP TU POST | 90

GP VI POST | 102

Table 2.1: List of phoneme-state posterior features and the number of their dimensions
depending mainly on the number of phonemes for the given language. SD stands for features
extracted using SpeechDat-E database, GP using GlobalPhone database.

"http://speech.fit.vutbr.cz/software/phoneme-recognizer-based-long-temporal-context
Zhttps://catalog.ldc.upenn.edu/LDC93S1
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Figure 2.3: Block diagram of the Split Temporal Context system [10].
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The final representation of phoneme state features is a sequence of N-dimensional vectors
containing phoneme-state posterior probabilities. We generated 3-state phoneme posteriors
(POST) based on different databases and languages. The vectors dimensionality for each
database and language is listed in Table 2.1. In Figure 2.4, an example of 3-state phoneme
posterior is depicted.

2.3.2 Bottlenecks

The bottleneck (BN) features were extracted by hierarchical neural network. BNs are linear
outputs (compressed information) of neurons in bottleneck area of ANN topology. It was
proved that BN features represents the underlying information better than the probabilistic
features.

As for phoneme-state posteriors, speech is segmented into frames. Fourier spectrum is
calculated for each frame. Band limited triangular functions called Mel filter banks are
applied to get energies. The logarithm of the energies is calculated which corresponds to a
human ear perception. The sentence mean normalization follows. Five consecutive frames
are used to add information about a temporal evolution. Hamming window is applied
followed by linear DCT transformation. The outputs of contextual ANN are stacked on
each other and this is taken as an input for the second (merging) ANN for every fifth frame.
The size of BN layer in the second ANN is 30 neurons [21][5]. Hence, all BN features used
in this thesis are 30 dimensional vectors. In Figure 2.5, the whole process is depicted.

Critical bands Speech
Segmentation
length: 25ms
Log
Log-critical band
l, spectrogram
i sentence based |
mean }_>
. =’ Output:
normalization

phone
posteriors

Output:
Bottle-neck features

Figure 2.5: Block diagram of Bottleneck features extraction [5].

2.4 Evaluation and development datasets

We define four different data sets to test and evaluate implemented spoken term detection
system. The first data set is GlobalPhone corpus developed with collaboration of Karlsruhe
Institute of Technology (KIT) to provide real read speech data. The second data set was
used in MediaEval benchmark in Spoken Web Search (SWS) task in 2012. The third data
set was used in the same benchmark in SWS task one year later in 2013. The last data
set was used at MediaEval benchmark where SWS task was renamed to Query-by-Example
Search on Speech Task in 2014.



2.4.1 GlobalPhone

GlobalPhone (GP) database is a multilingual speech and text database developed at Karl-
sruhe University at Institute of Technology. This database contains high-quality read speech
in a large variety of languages which is suitable for the development of speech recognition
systems in many languages. GP consists of 20 languages® and was designed to be uniform
across languages with respect to the amount of data and speech quality. The read text
for each language was selected from local newspapers and was read by about 100 speakers.
The text was read by both genders with a variety of age. The speech was microphone
recorded with the same conditions for all languages and spontaneous effects like stuttering,
false starts, breathing, hesitation and laughing are included [14][15].

languages CZ |[EN [GE [PO [RU [SP [TU |[VI
audio format WAV

sampling rate 8kHz

bit depth 16 bit

channel mono, linear

queries 59 26 36 42 72 81 66 66
dev. data 656 503 | 1071 | 481 | 868 | 510 | 664 | 1161
test. data 687 546 | 804 | 480 | 1179 | 472 | 627 | 1404
train. data 10994 | 7138 | 7959 | 6854 | 8877 | 4713 | 5319 | 16270

Table 2.2: Summary of used languages from GlobalPhone database.

This database was used to train bottlenecks decoders. Only 8 of 20 languages contained
in this database was used: namely it is Czech, English, German, Portuguese, Russian,
Spanish, Turkish and Vietnamese language. The queries and audio content are separated
for each language. The summary for languages used for evaluation from GP database is in
Table 2.2.

2.4.2 Spoken Web Search 2012

The Spoken Web Search* (SWS) task is held every year at MediaEval workshop. The task
involves searching for audio content within audio content using an audio query. This task
is interesting especially for speech researchers in area of spoken term detection and speech
processing with low-resource audio. The task requires to build language-independent audio
search system.

The 2012 data set consists of two languages. Each language is divided into two parts:
the first is the set of audio queries, the second is set of audio content. Both sets are
separated to development and evaluation subsets, which are from the same language. Some
of the queries overlap partially. Audio ground through files were generated following the
format defined by NIST STD in 2006.

The two represented languages are Indian and African. Let us focus on African language
since Indian one is not used for our evaluation. The African audio data were extracted
from Lwazi ASR corpus and contains speech from four of eleven different African languages

3 Arabic, Bulgarian, Chinese, Croatian, Czech, French, German, Hausa, Japanese, Korean, Portuguese,
Polish, Russian, Spanish, Swedish, Tamil, Thai, Turkish, Ukrainian, Vietnamese
‘http://multimediaeval.org/mediaeval2012/sws2012/


http://multimediaeval.org/mediaeval2012/sws2012/

language African

audio format | WAV

sampling rate || 8kHz

bit depth 16 bit

channel mono, linear

dev. queries 100 (25 per language)
dev. data 1580 (395 per language)
eval. queries 100

eval. data 1660

Table 2.3: Spoken Web Search 2012 data set for African language.

(isiNdebele, Siswati, Tshivenda, Xitsonga). Audio consists of a combination of read and
elicited speech collected over a telephone channel. Audio recording artifacts can be found
in the data [7]. The language summary is in Table 2.3.

2.4.3 Spoken Web Search 2013

The Spoken Web Search 2013° task was held in the similar way. The difference is in the
data sets. The data were expanded on Mediakval 2011 and 2012 SWS tasks by increasing
the size of data sets and the number of languages (non-native English, Albanian, Czech,
Basque, Romanian and four African). These languages were recorded in different acoustic
conditions. The data set is composed of 20 hours of speech and is over 5 times the size of
2012 database [1].

The 2013 data set consists of two parts again: set of queries content and set of audio
content. The development and evaluation data has each own query content set but audio
content is the same for both. A basic sets of queries consist of about 500 files each and
in addition, for some of the queries there are alternative spoken instances to be used in
extended runs. Both the queries and audio content were scrambled and randomized. The
summary of SWS 2013 dataset is in Table 3.1.

languages 9 (combined)

audio format || WAV

sampling rate || 8 kHz

bit depth 16 bit

channel mono, linear

dev. queries 505 (1551 including ext. queries)
dev. data 10762 (same data as for eval)
eval. queries || 503 (1540 including ext. queries)
eval. data 10762 (same data as for dev)

Table 2.4: Spoken Web Search 2013 data set summary.

"http://multimediaeval.org/mediaeval2013/sws2013/
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2.4.4 Query-by-Example Search on Speech Task 2014

The Query-by-Ezample Search on Speech Task® (QUESST) data set consists of speech data
were collected at several institutions. The corpus is composed of 23 hours of speech in 6
languages (Albanian, Basque, Czech, non-native English, Romanian, Slovak) with various
number if audio per language. The search utterances were automatically extracted from
longer recordings and checked manually for unwanted qualities. The queries to be searched
were recorded manually to avoid previous problems developed from cutting queries from
utterances. Speakers maintained a normal speech and a clear speaking style. All data
have PCM encoding at 8kHz, 16bits/sample and WAV format. The database has one set
of utterances for both development and evaluation. The queries are split into two sets for

each part of the task [2]. The summary of database can be seen in Table 2.5.
languages 6
audio format || WAV
sampling rate || 8kHz
bit depth 16 bit
channel mono, linear
dev. queries 560
dev. data 12492
eval. queries 555
eval. data 12492

Table 2.5: Query-by-Ezample Search on Speech Task 2014 data set summary.

Unlike the other presented data sets, this database contains three different types of
queries denoted as Type 1, Type 2 and Type 3. Type 1 of query consists of a spoken term
that matches exactly a term in an utterance. Type 2 of query is a query with variant
matching. The query can slightly differ either at the beginning or at the end of the match.
The minimum length of a query to match was set to 250 ms and non-matching part was
required to be smaller than the matching part. As an example, the query containing the
term ,,researcher would match the term ,,research® or ,searcher® in an utterance. Type 3
of query contains a phrase of several terms. To consider a query match, all terms in the
phrase have to match but not necessarily in the same order as stored in a query or there
can be a filler (a silence or extraneous terms) between terms of the phrase. For example,
the phrase ,, curious researcher* would match an utterance with the phrase ,,this researcher
1s really curious® or ,,the curiousest research“. Note that there are no silences or marks
between the terms of a phrase in a query Type 3 [2].

2.5 Scoring metrics

The proposed system was evaluated for its accuracy. There are two different approaches
to evaluate the performance of the system. The first one evaluates the position and the
score of the detection while the other one takes into account only the score regardless the
position of the detection. The score represents a confidence. The main aspect of the system
performance is a type and a quality of an input source.

Shttp://multimediaeval.org/mediaeval2014/quesst2014/
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As one of measurements for our evaluation, we used the metrics defined by NIST STD”
in 2006. Each query match detection has a start time, a end time and a confidence which
is a value a score) saying sureness of the spoken term detector about the detection of the
query. All detections were scored in the same manner, the higher value of confidence the
higher probability of correct term detection. The detections are compared with a reference
transcription and marked as a hit, a miss or a false alarm (see Figure 2.6). The good system
has maximum number of hits and minimum number of FAs and misses.

| Reference | | Reference | | Reference |
I 1 I T 1 I 1

FA

time

Figure 2.6: Ezamples of HIT, FA (False Alarm) and MISS [19].

2.5.1 Term Weighted Value

Term-weighted Value (TWV) was defined as the primary metric for NIST STD 2006 eval-
uations and was used to measure overall system detection performance. TWYV is scalar
metric designed for comparison of different spoken term detection systems. It assigns pos-
itive value for every correct output and negative value for every incorrect output. The
requirement a query to be called a hit is relaxed within 0.5s range from the reference time
span. If other overlapping detections occur, they are considered as false alarms so only one
detection to one reference counts. An interesting fact about TWYV is that a miss is much
more expensive (meant that term score is worse) for less occurring terms than for more
frequently occurred terms but contrary, false alarm is equally expensive for both more or
less occurring terms. [19].

| 0.55 4 Reference 1 0.55
I A 1 A I 1
HIT
FA
time

Figure 2.7: Examples of HIT and reference overlap defined by NIST for STD evaluation
and TWYV metric. If two or more detections overlap one reference, only one is considered
as HIT and the other is considered as FA [19].

Miss and false alarm probabilities are calculated for each query, the query specific value
over all queries are computed and then, by averaging these values, an overall system score
is obtained.

The miss error rate (probability of miss) ppss for a query ¢ and a threshold 6 is defined
by [11]:
N, miss(Qa 0)

Nact(Q) ’ (21)

pmiss(‘]a 0) =

"http://www.itl.nist.gov/iad/mig/tests/std/
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pmiss(a) = average{pmiss(% 9)}5 (2'2)
q

where Np,iss(q,0) is the number of miss errors corresponding to query ¢ and threshold 6,
Nact(q) is the amount of actual occurrences of query gq.

The false alarm error rate (probability of false alarm) py, for query ¢ and threshold 6
is defined as [11]:

. 0) = 40D (2.
pra(0) = avezage{pfa(q,ﬁ)}7 (2.4)

where N¢,(q,0) is the amount of false alarm errors corresponding to query ¢ and threshold
0, Npnt(q) is the number of non-target trials. Finally, TWV is defined by [I1]:

TWV(H) =1- (pmiss(e) + /8 'pfa<9)>v (2.5)
where (3 is a weight factor defined by [11]:

_ Cfa . (1 - ptarget)
Cmiss " Ptarget

B : (2.6)

where Cipiss > 0 is the cost of miss and C'y, > 0 is the cost of false alarm, piorger € [0, 1] is
the prior probability of a target trial. TWV (0) range falls into the interval [—f, 1] where
1 stands for a perfect system, O for a system rejecting all the trials and —3 for the worst
possible system.

2.5.2 Actual TWV
Actual TWV (ATWYV) is calculated by hard decision for each detection given by a system.

ATWYV can be an extremely unstable performance measure [1]. The best system score is
ATWYV = 1. Lower value of ATWYV means worse accuracy of the system. Note that a score
can even be a negative number [22][2]. Formally [11]:

ATWV =TWV (04et), (2.7)

where 6, is a specified hard threshold.

2.5.3 Maximum TWYV
Mazimum TWV (MTWYV) defines the global upper bound for ATWYV, formally [4]:

MTWV =TWV (Oopt), (2.8)

where 0,,; is the global optimal threshold for all queries:

Oopt = arg gnax{TWV(Q)} (2.9)
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2.5.4 Upper Bound TWV

Upper Bound TWV (UBTWYV) has individual threshold for each query. The ideal term
threshold value is found to get maximum TWYV for each term by the following equation [22]:

UBTWV =1— average{pmiss(% aopt(Q)) + /8 : pfa(Qa Hopt(Q))}v (210)
q
where 6,,¢(q) is the optimal threshold for each query:
Oopt (q) = argmax{TWV (q,0)} (2.11)
[%

2.5.5 Normalized cross entropy C,,..

Normalized cross entropy cost (Cpge) measures the fraction of information, with regard
to the ground truth, that is not provided by system scores, assuming that they can be
interpreted as log-likelihood ratios. The best system score is Cpze &~ 0 and a non-informative
(random) system returns Cy,;. = 1. System scores Cp,e > 1 indicate severe miscalibration
of the log-likelihood ratio scores. Cjze is computed on system scores for a reduced subset
of all the possible set of trials. Each trial consists of a query ¢ and a segment z. For each
trial, the ground truth is a True or False depending on whether ¢ actually appears in x or
ot [2[14].
More formally, the empirical cross entropy [11]:

1 Ptarget - DPtarget

Cre = E Crog(llry) + ———= E Clog (Ur , 2.12

10g2 ‘ﬂrue(S)‘ I g( t) ’Tfalse(sﬂ It g( t) ( )
tGTtrue(S) teTfalse(S)

where Tje(S) is the set of target trials, Trqse(S) is the set of non-target trials, Ciog(llry)
the logarithmic cost function.
The empirical cross entropy called the prior entropy is defined by [11]:

. 1 1 1
CPror = -1 1-— ‘log ———— 2.13
xe 10g 9 <ptarget og ptarget + ( ptarget) og 1 ptargat) ( )
Last, the normalized cross entropy defined by [11]:
Oxe
Cnace = Cg;’ior (214)

2.5.6 Minumum C,.

The cross entropy measures both the discrimination between target and non-target trial and
the calibration. To estimate the calibration loss, a system can be optimally recalibrated
using a simple reversible transformation, such as [11]:

lir =~ - llr 46, (2.15)

where llr are log-likelihood ratios, v and ¢ are calibration parameters that can be used to
minimize the normalized cross entropy [11]:

C™m — min{Chze}, (2.16)
7,0

nre

and the calibration loss is Cize — Cﬁig.
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2.6 Related work

We provide a survey of papers and other literary sources the ideas for the system improve-
ment have been taken from. Procedures, methods or algorithms, that are interesting for
our work, are pointed out. Following sources are considered as the related work:

Meinard Miiller: Information Retrieval for Music as Motion (2007) [8]. In
this book, the author describes concepts and algorithms for robust and efficient information
retrieval using two different types of multimedia: waveform-based music data and human
motion data. Several approaches in music information retrieval are discussed. The author
focuses on efficient strategies for music synchronization, audio matching, audio structure
analysis, motion analysis, retrieval and classification. We studied Chapter 4 of this book
where the well-known method called Dynamic Time Warping (DTW) is described in detail.
This dynamic programming method is fundamental of our implemented algorithm.

Javier Tejedor et al.: Comparison of Methods for Language-dependent and
Language-independent Query-by-Example Spoken Term Detection (2012) [23].
In this article, the Query-by-Example (QbE) Spoken Term Detection (STD) is investigated.
The query is entered as speech data or is spoken by a user. Two different features are used
for experiments: the phoneme-state posteriors and the bottlenecks. Three QbE systems are
described: the first one is based on Gaussian Mixture Model/Hidden Markov Model, the
second is based on DTW and the last on Weighted Finite-State Transducers. The results
are shown on four different languages. The evaluation shows that DTW system performs
the best with a language-dependent setup whereas GMM/HMM works the best with a
language-independent setup which is interesting for cases with a lack of standard resources
to build ASR system.

Igor Szoke et al.: BUT SWS 2013 - Massive Parallel Approach (2013) [20].
This paper describes QbE system composed of a set of subsystems (called atomic systems)
where a half of them is based on Acoustic Keyword Spotting (AKWS) and another half
on DTW. The system is using the phoneme-state posterior features. The unsupervised
adaptation of the artificial neural network is performed on the target data and features
are regenerated then. Voice Activity Detection (VAD) is applied on these features which
rapidly increases the system accuracy. The system results are calibrated by mode nor-
malization (m-norm) to deal with different score distributions. The single atomic system
exploiting DTW was fundamental for our implemented algorithm and its modification is
referred as the baseline system in this thesis.

Luis J. Rodriguez-Fuentes et al.: High-performance Query-by-Example Spo-
ken Term Detection on the SWS 2013 Evaluation (2014) [12]. In this paper, QbE
system using an iterative DTW with heuristic pruning is presented. The system achieved
the best performance and was the winning one in Spoken Web Search (SWS) task in Medi-
aEval 2013. The phoneme-state posteriors are used as input features and a distance matrix
normalization follows. VAD is performed by discarding speech frames where non-speech
posterior has the highest value. The score is calibrated exploiting a zero-mean and a unit-
variance for each query followed by a majority voting. The results show that the usage of
multiple examples per query improves the performance of the system. In this thesis, we
experimented with Voice Activity Detection, the distance matrix normalization, the sum-
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ming of phoneme-states and a concatenation of input features.

Haipeng Wang et al.: Using Parallel Tokenizers with DTW Matrix Combi-
nation for Low-resource Spoken Term Detection (2013) [26]. This paper presents
QDbE system exploiting parallel subsystems (tokenizers) where each subsystem extracts fea-
tures from raw speech and calculates a distance matrix for input pair query-utterance then.
Those matrices are derived into a combined distance matrix. DTW is applied to this
combined matrix. Besides phoneme-state posteriors, GMM and Acoustic Segment Model
(ASR) are used as input features. The score normalization is performed. The experiments
show that combining parallel subsystems with different tokenizers outperformed the best
single subsystem and a derived distance matrix works better when more than 3 subsystems
are involved. We used the idea of parallel subsystems generating a distance matrix and a
combination of them described in this paper.

Haipeng Wang and Tan Lee: The CUHK Spoken Web Search System for
MediaEval 2013 (2013) [25]. In this paper, an improvement of the QbE system from
previously mentioned paper are described. The different subsystems based on Gaussian
Component Clustering (GCC) are presented. The second update is a query expansion
based on the technique called Pitch Synchronous OverLap and Add (PSOLA). For our
work, an interesting update is a score normalization employing scaling, exponential func-
tion, mean and variance normalization.

2.7 Conclusion

We defined the task of this thesis as searching of a user-defined spoken query in a database
of spoken utterances. The approaches for detection of a spoken term/keyword based on
QbE were presented. Our baseline QbE STD system we will use for further evaluations
was described. We will run several experiments with various setups to evaluate system
using different speech features described above and findings will be discussed. Since one
of the databases defines the task where a searched query can contain several words, we
should focus on this problem during the improvement of the system. The baseline system
can detect the exact match only. The other improvements from various authors should
increase the accuracy of the system performing several normalizations, a fusion of an input
data to derive more information, an elimination of non-speech frames to discard needless
information, etc.
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Chapter 3
Dynamic Time Warping

Dynamic Time Warping (DTW) is a technique for comparing and finding an optimal align-
ment between two time-dependent sequences of vectors. These sequences are warped in
time or in speed to match each other. The goal is to find best mapping between these
sequences by warping one or both of them using dynamic programming approach. DTW
has been originally used for comparison of speech patterns in automatic speech recogni-
tion systems and applied to confront with time-dependent data with time deformation or
different speed [3][9].

8000

frequency [Hz]

15
time [s]

Figure 3.1: Ezample of spectrograms for two spoken utterances: “D abord il y a eu une
reunion des ambassadeurs du G8.” and “Oui, les ambassadeurs sont dans le starting
block.”. The red rectangles mark occurrences of the word “ambassadeurs” [9].

Besides spoken term detection, DTW has been successfully used in other areas such as
data mining, DNA analysis, financial analysis, music and motion analysis and classification
or hand-written text recognition [8][9]. In Figure 3.1, two spectrograms of spoken utter-
ances are depicted. The similar areas are marked by red rectangles. The task is to detect
these similar areas automatically with a usage of DTW. Figure 3.2 shows alignment of two
different one-dimensional signals. Each point is aligned to the closest coincident point from
the other sequence.

As mentioned, the objective of DTW is to compare two sequences, find an optimal
alignment (Figure 3.2) and return useful information (score value, location of the match,
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Figure 3.2: Warping between two different time series. The blue and the green horizontal
lines represent two different time series. Each point from one series is optimally aligned
with one or more points from the other one and vice versa which allow us to compare even

time series with different duration. The warping is shown by the orange dash-dotted vertical
lines. Ewidently, the warping of series to each other is a non-linear operation [13][18].

warping path shape, etc.) of this alignment. To describe presented warping more formally,
let us consider an utterance U = {uy,...,unx} as a time-dependent sequence of N vectors
and a query Q = {qi,...,qun} as a time-dependent sequence of M vectors. All vectors
u € U and q € Q have the same dimensionality K. To compare two different sequences
of vectors, we need a metric to measure distance between single vectors of these sequences.
Let us define the distance metric to compare two vectors u and q in general as:

d:uxq—R (3.1)

The distance metrics used in the baseline system were a log-likelihood based on the
cosine distance and a log-likelihood based on the dot product.
The log-likelihood based on the cosine distance djogcos is defined by [23]:

dlogcos(u7q) = IOg <lu|]q\> ) (32)

where the expression in parentheses is the cosine similarity. The range of the djygcos is given
by the interval [0, 4+00) where 0 denotes identical vectors.

The log-likelihood based on the dot product djgdot, is defined as:

dlogdot(ua Q) = log (ll : q) ’ (33)

where - represents the dot product. The range of the djgcos lies in the interval [0, +o00)
where 0 denotes identical vectors. For both distances, the value of the distance between
vectors is lower if vectors are similar to each other and higher if vectors are variant.

3.1 Distance matrix

By calculating distances between all possible query-utterance vectors u € U and q € Q,
we obtain distance matriz D € RV*M where each cell D(n,m) of the matrix is defined
by d(un,qm) [3]. Figure 3.3 (on the left) depicts the distance matrix for two real-valued
one-dimensional time series (sequences of real numbers) shown in Figure 3.2.
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Figure 3.3: Distance matriz (on the left) for two real-valued sequences from Figure 3.2.
The Euclidean distance (4.3) was used to measure distances. The darker colors denote
areas where given vectors are similar to each other and the lighter colors symbolize regions
of a difference. A cumulative matriz (on the right) corresponds to the distance matriz.
The white line represents the optimal warping path [13][18].

test [frame]

Figure 3.4: Distance matrixz for utterance “—in his presentation—” and for query “present”.

The cosine distance (4.1) was used to measure vector distances. The dark blue area between
black dotted lines is the match of the query.

3.2 Cumulative matrix

Cumulative matriz C accumulates distance values from a distance matrix. Each cell value
depends on its predecessor cells (horizontal, vertical and diagonal). The predecessor cell
with the lowest value is taken and accumulated with the current cell. The weight factors
(wq, wp,w,) € R3 serve to favour one of the directions. The standard setup is (1,v/2,1) to
treat all directions equally. We used the classical setup (1,1,1) to prefer diagonal steps.
Formally, cell predecessor pred and cumulative matrix C [8]:

C(n—1,m—1)+wq -D(n,m)
pred(n,m) = argmin ¢ C(n — 1,m) + wy, - D(n,m) (3.4)
o C(n,m —1) 4+ w, - D(n,m)
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D(n,m) ,ifm=0
C(n,m) = ¢ C(n,m —1) +D(n,m) Jifn=20 (3.5)
C(pred(n,m)) + D(n,m) ,otherwise

m—+2

n+1

Figure 3.5: Generation of a cumulative matriz. Possible predecessor cells for the current
cell in coordinates (n,m) lie in horizontal (n — 1,m), wvertical (n,m — 1) and diagonal
(n—1,m — 1) direction.

¥

Figure 3.6: Cumulative matriz for the distance matriz in Figure 3.4. The dark blue area
between red dotted lines marks the match of the query. The white line represents the optimal
warping path.

324
test [frame]

Since the query can appear anywhere in the utterance, the accumulation starts from
the origin point (0, 0) of distance matrix D and can reset in the first row (n,0) which lies
in time-dependent axis of the utterance. This is performed by simple copying of the first
row from distance matrix D to cumulative matrix C.

In Figure 3.3, a simple cumulative matrix is depicted (on the right). Figure 3.6 shows
the cumulative matrix for the previous distance matrix. Last, the cumulative matrix is
usually normalized by length.
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3.3 Length matrix

Length matriz L stores a path length for each cell and is used for the length normalization.
During each step of a cumulative matrix calculation, the path length is extended by 1. All
cells in the first row (n,0) are set to 1 due to the fact that a query can start anywhere in
the utterance (see Figure 3.7). Formally:

L( ) 1 Jiftm =20 (3.6)
n,m) = .
L(pred(n,m)) +1 ,otherwise

105
90
75
60
45
30
15
] 324 374

query [frame]

224 274

test [frame

Figure 3.7: Length matrix for the cumulative matriz in Figure 3.6. FEach cell stores the
length of a path ending in the cell.

3.4 Starting-point matrix

Starting-point matriz S saves starting points of paths in each cell to avoid further exhaustive
computation of paths using a back-tracking. The original starting-point is kept during the
computation of a cumulative matrix. Except the first row (n,0) where the frame number
(a matrix column number) is stored. In case a path starts at some point in the first row of
the matrix, the frame number (the starting point) is kept and propagated further.

A calculation of starting-point matrix S is defined by:

S( ) n ,ifm =0 (3.7)
n,m) = .
S(pred(n,m)) ,otherwise

i i 160
140
120
100
80
60
40
20

I24 374 0

test [frame] ’

query [frame]

Figure 3.8: Starting-point matrix for the cumulative matriz in Figure 3.6. FEach cell stores
the starting point of a path ending in the cell.
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3.5 Optimal path search

Warping path p is defined as a sequence of points (n, m) following a set of constraints and
has a characteristic shape, a length L and a cumulated distortion (score) dist. Formally [3]:

p={pi,...,pr} ={(n1,m1),...,(np,mp)}, (3.8)

where (n;,m;) € [0 : N] x [0 : M] forl € [1 : L]. A warping path has to satisfy three
following conditions [8][9]:

(i) Boundary condition:
p1 = (n1,1) and pr, = (n2, M), where ny,ng € [0: N (3.9)
Each path starts in the first row and ends in the last row of matrix C.
(ii) Monotonicity condition:

{(n1,m1), (n2,ma),...,(np,mr)} = n1 <ng <...np and my <mg < ...mp,
(3.10)
Each path is a monotonic function.

(iii) Continuity (step size) condition:

pr — pr+1 € {(0,1),(1,0),(1,1)} forle[1:L—1] (3.11)
The step is set to adjacent cells only. A skipping of rows or columns is not allowed.

The boundary condition warrants that each path crosses the whole cumulative matrix
so the query is enforced to match full-length. The monotonicity condition does not allow
the path to get back in time. It is a reflection of the requirement of faithful timing. At last,
the step size condition says no vector in sequences U and V can be skipped or omitted and
there is no possible replication in the alignment. All three conditions are complied during
a calculation of a cumulative matrix.

(a) (b) (c) (d)

9 9 9 9
8 s 8 o8 t
7 ol oo 7 ol oo 7 P> 7 ol ole
6 p 6 p 6 L 6 4

5 P 5 p 5 5

4 4 4 4

3 3 3 3

2 2 2?==$ 2

173 1 173 178
1234567 1234567 1234567 1234567

Figure 3.9: [llustration of paths of index pairs for some sequence U of length N = 7 and
some sequence V of length N = 9. (a) Admissible warping path satisfying the conditions
(1),(it), and (iii). (b) Boundary condition (i) is violated. (c) Monotonicity condition (ii)
is violated. (d) Step size condition (iii) is violated [3].
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The total scorep(U, V) of warping path p between sequences U and V with respect to
distance metric d is defined as [3]:

L

scorep(U, V) = Z d(up,, Vim,) (3.12)
=1

The length normalization of path p with the total cost scorep and length Ly is defined as:
5COTenorm, (U, V) = scorep(U, V) /Ly (3.13)

The optimal warping path p,,: between sequences U and V is a warping path with minimal
total cost within the cumulate matrix C. Formally [9]:

Popt = arg min{score,orm, (U, V)} (3.14)
P

Note that all distance metrics used in this work have the same meaning: the lower the
value, the closer the vectors (the score is better). That is the reason for searching paths
with the lowest score.

To lower the complexity of finding an optimal path p,,:, we avoid testing every possible
warping path p between sequences U and V in every possible ending point. We used
methods based on dynamic programming to construct matrices presented above which
allow us to make a searching of paths much simpler. To get several top paths, a distortion
profile can be used.

The profiley;s; stands for the distortion profile of cumulative matrix C represents the
last row of C and is defined by:

profilegiste (n) = C(n, M) (3.15)

cumulated dist.

24‘14 264 2é4 364 3‘24 31‘14 3‘64 3‘84
test [frame]

N
N
kN

Figure 3.10: Distortion profile displays values of the last row (n, M) from the cumulative
matriz in Figure 3.6. The intersection of the blue curve and the right red dotted line marks
the local minimum of distortion profile therefore the path with the best score ends at this
frame.

A distortion profile (see Figure 3.10) stores a cumulated distance of the best possible
path for every frame of an utterance. This cumulated distance equals to the normalized
score of the optimal warping path ending in given frame (cell of matrix C). As mentioned,
the lower value of cumulated distance in distortion profile, the better score of the path.
When searching for paths using a distortion profile, we avoid searching for a path in each
frame since the location of the best paths is obvious. The end-point of a path is selected from
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the distortion profile where the local minimum occurs and the starting point corresponds
to the value of the same cell in the starting-point matrix. Note that we lost the information
of the path shape, we keep where it starts and ends only. The shape of a path is necessary
to set global constraints and to control the route of a path. We did not implemented a path
shape control in our algorithm. The simple solution was to filter out warping paths with
a slope above half of or below double the query duration. It is a simplification of Itakura
parallelogram [6]. The last step is a negation of detection scores so the file containing all
detections for a given data sets has the opposite scoring manner: the higher score of the
path, the higher confidence of the detection.

3.6 Online length normalization

To normalize accumulated distances according to their length, there are two approaches.
The offline normalization computes all previously mentioned matrices. During the cumu-
lated matrix computation, it takes into account raw values of the distance matrix in the
step of predecessor selection. Last, the cumulate matrix is divided by the length matrix.
An optimal path search follows. The other approach, the online normalization, performs
the division by current path length on-the-fly for every matrix cell calculation to decide
which preceding cell is the best to choose. The division is not saved during the calculation,
it is performed only to decide the next step. The length normalization is done after all
matrices are fully computed as for the offline approach. This leads to prefer longer paths
over shorter ones.

The normalized matrices slightly vary for each approach and path shapes are variant
as well. We used the online method for normalizing paths by length in our system. In
Figure 3.11, the difference between the offline and the online normalized path is depicted.

l'x‘f /.

500 300

300
Figure 3.11: Comparison of the offline (on the left) and the online (on the right) normal-

ization. The online way returns smoother cumulative matriz. The white line represents the
back-tracked path. Minor differences between path shapes are visible.
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3.7 Mode normalization of score

The mode normalization is performed to normalize score for each query. The different
queries have variant score distributions depending on the ability of the query to be searched.
Longer queries are easier to be searched while the shorter ones cause a lot of false alarms.
The normalization for each query allows us to use a single threshold maximizing given
scoring metrics. The shape of the distribution has a longer tail with bad matching scores
and shorter head with good scores. The standard zero mean and unit normalization (4.9)
does not take into account this information. The mode is the most appearing value in the
set (the peak of a histogram). We subtract the score value in the mode of a histogram from
all query scores. The mods of all query histograms are aligned to 0 then. The division by
standard deviation for scores larger then the mode follows.

0.07 T T T T 0.035

0.06 0.03-

0.051 b 0.025-
0.041 9 0.021
0.031 r ] 0.015-
0.02f 1 0.01-
0.01F g 0.005-
i , ¥ =

0 -8 6 -4 2

=1

0 -10 -5 0 5

Figure 3.12: Score distribution histograms for several queries (on the left). The distribution
histograms for the same queries after performing the m-normalization (on the right) [20].

3.8 Baseline experiments

The evaluation of the baseline system was done with the data sets described above. The
log-likelihood based on the dot product djogq0t and the log-likelihood based on the cosine
distance djogcos Were used for measuring distances.

Features ‘ dlogeos ‘ 1ogdot ‘
SD CZ POST | 0.1319/0.1915 | 0.1009/0.1788
SD HU POST | 0.1196/0.1821 | 0.0800/0.1557
SD RU POST | 0.1571/0.2250 | 0.1129/0.1985
GP RU POST | 0.0268/0.0864 | 0.0118/0.0603
GP RU BN 0.0799/0.1578 -

Table 3.1: Results for SWS 2013 development data set. Several features were evaluated with
the baseline system. The scoring metric was TWV/UBTWYV. The complete tables can be
found in appendices.
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3.9 Conclusion

The pattern matching method based on dynamic programming was introduced and de-
scribed formally. The construction of necessary matrices was presented. The standard
DTW includes a computation of a distance and a cumulative matrices followed by back-
tracking of an optimal path. In our implementation of the baseline system, we modified the
standard approach. A length and a starting-point matrices were added to relive a computa-
tionally complex back-tracking at the cost of higher memory consumption. A detection of
an optimal path is much simpler using this approach. On-the-fly normalization that prefers
longer paths over shorter ones was described. A few experiments were run to get the refer-
ence for a comparison with the improved system later. Note that the result for bottleneck
features using djogdor is missing. This metric always returns 0.000 and is inadequate for
bottleneck features. The baseline system was built by Lukas Burget.
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Chapter 4

My experiments

Several improvements of the baseline system based on literary sources listed in Chapter 2
were made. The most experiments were run on SWS 2013 data set using TWV/UBTWV
as the scoring metric. In other cases, the data set and scoring metric is notified.

4.1 Voice Activity Detection

To deal with frames (feature vectors) containing a non-speech signal like silence, a breathing
or a noise, Voice Activity Detection (VAD) is applied. VAD is performed by discarding
vectors where the non-speech posterior is the highest. The remaining feature vectors holding
speech are merged together. If the number of remaining vectors is too small, the whole
signal is discarded. The threshold was set to 10 speech frames. Shorter queries are harder
to detect and cause a lot of false alarms devaluing an overall system performance. We
applied VAD on queries only to eliminate silences at the beginning and at the end of speech
incurred during manual recording of queries [12].

T

|
0 5000 10000 15000 20000 25000 30000

sample [#]
Figure 4.1: Example of a query audio signal. The grey area marks samples corresponding
to feature vectors that were recognized as non-speech and these are discarded after applying
of VAD.

To detect non-speech frames, we extracted 3 sets of phoneme posteriors with phnrec [16]
phoneme recognizer using Czech, Hungarian and Russian systems. We experimented with a
combination of these 3 VADs. The median and the average were performed. In Figure 4.1,
an example of VAD applying to speech is shown.
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Features ‘ d1ogcos ‘ djogeos + VAD ‘
SD CZ POST | 0.1319/0.1915 | 0.2246/0.2744
SD HU POST | 0.1196/0.1821 | 0.2125/0.2995
SD RU POST | 0.1371/0.2050 | 0.2315/0.2765
GP RU POST | 0.0268/0.0864 | 0.1030/0.1906
GP RU BN 0.0799/0.1578 | 0.1493/0.2519

Table 4.1: Results shows that the application of VAD rapidly increases the performance for
all features. VAD almost doubles the score in most cases.

Experiments shows that non-speech frames cause a lot of false detections. A query
containing segments with silence (or noise) matches to silent (noise) segments in an utter-
ance generating needless detections. The application of VAD reduces the number of false
detections and boosts the score (see Table 4.1).

| Features \ deorr | deorr + CZ VAD | deorr + HU VAD | deorr + RU VAD |
SD HU POST [ 0.2202/0.2941 | 0.4577/0.5417 [ 0.4635/0.5426 | 0.4567/0.5400
SD RU POST | 0.1742/0.2494 | 0.4348/0.5149 [ 0.4285/0.5114 | 0.4361/0.5233
| Features | deorr + avg VAD | deorr + med VAD |
SD CZ POST | 0.4398/0.5212 [ 0.4398/0.5212
SD HU POST | 0.4577/0.5417 | 0.4577/0.5417
SD RU POST | 0.4341/0.5185 | 0.4341/0.5185

Table 4.2: Comparison of VADs generated for different languages. The score enhancement
slightly differs but is still significant for all Czech, Hungarian and Russian VADs. The
average and the median of these 3 VADs are the same and do not improve the score much.

After the investigation of different setups for VAD, we found out that VADs based on
various languages give us almost the same results. The average and the median of these 3
VADs do not affect the score. From now on, we select Hungarian VAD as the default one

and it is applied to all of the following experiments. Complete results for all features can
be found in Table A.1 for SWS 2012 and in Table A.2 for SWS 2013.
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4.2 Distance metrics

Different metrics® for measuring distances between query-utterance vectors were used.
The goal was to investigate which distance is the most efficient for different input fea-
ture vectors.

The cosine distance d..s is defined as:

deos(u,q) =1 — | v4q (4.1)

ul-q’
where - represents the dot product and |u| stands for the magnitude of vector u. The range
of the deos is given by the interval [0, 2] where 0 denotes identical vectors.

The Pearson product-moment correlation distance dcy is defined by:
(u—1u)-(q—q)
(u—1a)| [(a—a)|’
where @ represents the mean value of vector u. The range of the d.,. distance falls into

the interval [0,2] where 0 means identical vectors. Evidently, the only difference between
the deorr and the dgs is that the input vectors are mean normalized within the d.op.

deorr(1,q) =1 — | (4.2)

The Euclidean distance dg,. is defined as:

> (u(i) —a(d))?,

i=1

deuc(u7 q) = (43)

where u(i) is the i-th element of vector u. The range of the dey. lies in the interval [0, 4+00)
where 0 stands for identical vectors.

In addition to these distance metrics, several others were used in experiments without
significant results (Bray-Curtis, Canberra, Chebyshev, Mahalanobis, Minkowski and the
squared Euclidean).

’ Features ‘ dcorr ‘ dcos ‘ deuc ‘ dlogcos ‘ dlogcos ‘
SD CZ POST | 0.4398/0.5212 | 0.3739/0.4583 | 0.1748/0.2506 | 0.2975/0.3704 | 0.2923/0.3862
SD HU POST | 0.4577/0.5417 | 0.4079/0.4922 | 0.2056,/0.2899 | 0.3081,/0.3905 | 0.2916/0.3913
GP RU POST | 0.3662/0.4450 | 0.3336,/0.4203 | 0.1270/0.2063 | 0.1030/0.1906 | 0.1087/0.1996
GP RU BN 0.4193/0.5044 | 0.4208/0.5050 | 0.1062/0.1732 | 0.1522/0.2372 -

Table 4.3:  Comparison of different distance metrics. The scoring metric was

TWV/UBTWYV and SWS 2013 dev database.

The Pearson correlation was considered as the most robust distance metric regardless
the input features as it gave us good results for all types of features (see Table 4.3). Later
experiments show that the cosine distance worked better for bottleneck in general and
the log-likelihood based on the cosine distance gave us the best results for posteriors (in
QUESST 2014 database, see Table A.3).

8http://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.spatial.distance.
cdist.html

29


http://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.spatial.distance.cdist.html
http://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.spatial.distance.cdist.html

4.3 Principle Component Analysis

Principle Component Analysis (PCA) is a method converting the data with a correlation
into a set of linearly uncorrelated data. A covariance matrix stores the covariance between
vector elements of the input data. Eigenvectors of a covariance matrix defines the coordi-
nate bases where the data are decorrelated. Eigenvalues of a covariance matrix represents
the variability in each dimension. The decorrelated data have a diagonal covariance matrix.
A projection of several bases with a high variability can be performed to decrease dimen-
sionality of the data with a low information loss. The transformed data can be optimally
reconstructed with a low mean square error [3][10].

We analysed all input features and performed PCA on each of the sets to decorrelate
feature vectors elements. The results can be found on attached DVD. An example of an
investigation of adapted bottleneck features is in Figure 4.2.

nent [#]

r compo

vector component [#]

Figure 4.2: Histograms for the first 4 out of 30 elements of bottleneck feature vectors with
adaptation (on the top). The correlation between the first vector element and the following
ones (in the middle). The covariance matriz for adapted bottleneck features (in the bottom).
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Features deorr deorr + PCA
GP RU BN | 0.3998/0.4829 | 0.3696/0.4519

Features deorr deorr + PCA
SD HU POST | 55.08/0.518 | 46.48/0.611
GP RU BN 51.90/0.539 | 43.03/0.618

Table 4.4: PCA transformation of input features does not improve the overall score. Top
table: SWS 2013 dev set and TWV/UBTWYV. Bottom table: QUESST 201 dev set and
MTWYV /O™ for T1 query type.

nre

Since PCA transformation does not bring any interesting results, we do not apply it in
further experiments.

4.4 0/1 matrix normalization

The 0/1 normalization is performed on the distance matrix. This matrix is normalized
with regard to utterance U. Cell values of the matrix are comprised between 0 and 1.
Distance matrices have the same range regardless the acoustic condition or the speaker in
the utterance. Therefore, an optimal path should have a score close to zero. Formally [12]:

dw(ua Q) - dmzn(q)

d u,q) = , 4.4
ol D = ) = dan(a) 4
where d;(u,q) is one of the presented distance metrics and:
dmm(q) = min dm(ua q) (4'5)
uelU
dmaz(q) = max dy(u, q) (4.6)
ucU
1.0
1.35 0.9
1.20 0.8
1.05 0.7
0.90 g‘g
0-75 0.4
0.60 0.3
0.45 0.2
0.30 0.1
0.0

274

Figure 4.3: Distance matriz calculated using the correlation distance 4.2 (on the left).
The same distance matriz after 0/1 normalization (on the right). The color contrast shows
that all cell values are comprised between value 0 and 1.
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’ Features ‘ deos ‘ deos + 0/1 n. ‘ deye ‘ dewe + 0/1 n. ‘
| GP RU BN | 0.4208/0.5050 | 0.3272/0.4116 [ 0.1062/0.1732 [ 0.0678,/0.1427 |

’ Features ‘ deorr ‘ deorr + 0/1 n. ‘
| SD HU POST | 0.4577/0.5417 | 0.3770/0.4598 |

Table 4.5: 0/1 transformation of input features does not improve the overall score. SWS
2013 dev set and TWV/UBTWYV were used.

No improvements were achieved by 0/1 normalizing the distance matrix. We do not
normalize this way in later experiments.

4.5 Fusion using concatenation of features

The concatenation of extracted phoneme posteriors or bottlenecks was used as features. The
vectors were simply stacked on each other to create a large feature vector. In particular, we
created a concatenation of features from Czech, Hungarian and Czech phoneme decoders
and all 7 languages for GP decoders. We tried several combinations and ended up fusing
Czech, Portuguese, Russian and Spanish bottlenecks for QUESST database.

’ Features ‘ deorr ‘
SD HU POST (best single) 0.4577/0.5417
SD fusion POST (CZ+HU+RU) | 0.4599/0.5439
GP RU POST 0.3662/0.4450
GP fusion POST (7langs) 0.4049/0.4896
GP RU BN 0.4193/0.5044
GP fusion BN (7langs) 0.5122/0.5946

Table 4.6: Fusion of input features improves score in all cases. The scoring metric was
TWV/UBTWYV and SWS 2013 dev database.

The concatenation of input features works well. A fusion of the best single system with
some other worse ones improves the score only a little in general. However, fusing several
average systems enhances the score significantly.

4.6 Fusion using parallel tokenizers

The parallel tokenizer system includes several different tokenizers which are expected to
complement each other. Each tokenizer extract features for input query and utterance and
computes the distance matrix. Output matrices from all tokenizers are merged into one
distance matrix then and DTW is performed [26]. The system is depicted in Figure 4.4.
In our implementation, we used already extracted features from decoders to compute dis-
tance matrices and then these were merged together.
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Figure 4.4: Parallel tokenizer system [20].

dCO’f"f' ‘
0.5122/0.5946
0.5120/0.5924

Features ‘

GP fusion BN (concat)
GP fusion BN (parallel)

Table 4.7: Fusion using parallel tokenizers yields results similar to the previous approach
with the concatenation.

Experiments showed that the concatenation of features and parallel systems returns
similar score. The concatenation consumes more memory as all feature vectors are read
simultaneously. The parallel tokenizers are more computationally complex as matrices are
computed in parallel. We decided to use the concatenation for further evaluations as the
default one.

4.7 Summing of phoneme-states

The decoders returns phoneme-state probabilities of 3 states for each of phoneme units at
each frame. Adding the probabilities for each unit can be defined formally as [12]:

pit) = pis(t), (4.7)
Vs

where p; s(t) is the probability of state s of unit ¢ at frame ¢.

’ Features ‘ deorr ‘ deorr + SUM ‘
SD CZ POST | 0.4398/0.5212 | 0.3757/0.4568
SD HU POST | 0.4577/0.5417 | 0.4248/0.5068

Table 4.8: Summing of states used for phoneme-state posteriors.

Reducing the size of input feature vectors by summing the states probably leads to
information loss and thus the score decreases. The summing was not used during later
experiments.
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4.8 Scaling of score

Each query match score is normalized by the following formula [25]:

SCOT €norm = e<75%m>, (4.8)

where score corresponds to cumulated distance from the distance profile and S is the scaling
factor. To calibrate the score distribution for each query, the standard zero mean and unit
normalization was used:

5COTCnorm — fq
b

Oq

SCOT Ecqlib —

(4.9)

where pq stands for mean and o4 is a variance of all (or top) scores for query q.

3 3 4 5 6 7
GP CZ POST | 0.3540 | 0.3543 | 0.3537 | 0.3532 | 0.3531

Table 4.9: Results for different scaling factor 5 and the number of top scores = 400. The
score is MTWYV.

# of top scores || 50 100 200 400 800 1600 3200 6400
GP CZ POST | 0.3132 | 0.3423 | 0.3525 | 0.3537 | 0.3544 | 0.3538 | 0.3532 | 0.3524

Table 4.10: Results for different number of top scores and scaling factor 8 = 5. The score
is MTWYV.

Experiments shows the highest score was achieved for 5 = 4 and 800 top scores. How-
ever, the scaling does not outperformed the mode normalization so we left the mode as the
default score normalization.

4.9 Type 3 of query

To deal with Type 3 query defined in QUESST database, we divided the matrices into sub-
bands. The searching for a query match was done in each sub-band separately. The number
of sub-bands we experimented with was set to 2, 3 and 4 and this number follows possible
number of words in a term. The width of sub-bands is equal and uniform. We expect
that 2 words in a term are separated somewhere in the middle (which is not guaranteed by
definition). We search for the single word in each sub-band then. The best detection from
each sub-band is taken and scores are summed up. If the query contains only one word, the
best detections from all sub-bands are linked to each other (see Figure 4.5). If the query
consists of 2 words, each word is found elsewhere but the term is detected successfully. In
the similar way, the detection works for more than 2 sub-bands.
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Figure 4.5: Cumulative matriz is split in half and contains two sub-bands.

Features deorr + 1 band deorr + 2 bands deorr + 3 bands
SD CZ POST || 33.16(51.44/26.88/9.07) | 28.89(38.04/19.34/20.58) | 23.05(31.41/13.74/18.04)

Table 4.11: Results for splitting of matrices into sub-bands to enhance search of query Type
3. The scoring metric is MTWYV. The numbers stand for overall score and Type 1/Type
2/Type 3 scores in parentheses.

As can be seen in Table 4.11, the overall score is decreasing with the growing number
of sub-bands. On the other hand, the score for query Type 3 doubles for more than 1
sub-bands which was our goal of this improvement. The problem is the degradation of
scores for Type 1 and Type 2 queries. Since this upgrade causes worse score in general, this
division of matrices was not used during final evaluations.

4.10 Conclusion

We described all investigated improvements or upgrades of the baseline system in detail.
The first was the application of VAD. After experimenting with combinations of different
VADs, the single VAD based on Hungarian language was chosen. We tried various dis-
tances. The cosine distance was the best for bottleneck features. The log-likelihood of the
cosine distance worked the best with phoneme posteriors. However, the Pearson correlation
provided good results for all used features so it was considered the most robust distance
metric regardless the input. Next upgrade, PCA transformation, did not improve the score.
Neither worked the normalization of a distance matrix. Both the concatenation and par-
allel tokenizers returned very similar and impressive results. The sum of phoneme states
provided worse score. The scaling did not outperformed the baseline mode normalization.
Last, we experimented with Type 3 of query. We improved the score for the given type but
the overall score decreased. An investigation of this phenomenon could be a part of future
research and experiments.
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Chapter 5

Evaluation system

In this chapter, we present the system participating in QUESST task in MediaEval 2014.
This system was build by Igor Szoke and Lukas Burget and subsystems based on DTW
were modified by the author of this thesis. The datasets and scoring metrics for evaluation
are presented. The description of the system follows. The normalization and fusion of score
is outlined. Last, the results are discussed. This chapter is adopted from [22].

5.1 Dataset and scoring metrics

The QUESST 2014 data set is described in detail in Chapter 2. The primary scoring metric
used for evaluation was normalized cross entropy Cj,.e, the secondary metric was MTWYV,
both presented in Chapter 2.

Data Query Utterance
) % m l
éf,‘s’{‘;'ncq SD CZ Post |--+-| SD RU Post | |GP CZ BN |---GP SP BN|| || 4fusion
I T
R e e e T
Subsystem| DTW | |AKWS DTW | |AKWS DTW DTW DTW
¥ ¥ ¥ ¥ ] (] ¥
Normalization|norm | |norm norm| |norm norm norm norm
Y Y Y Y ] ] ]
Calibration| calib | | calib calib | | calib calib calib calib
Fusion Fusion

Output detections

Figure 5.1: BUT® Query-by-Example system. Q means queries as an input, U stands for
utterances as an input SD means SpeechDat atomic systems where the output are phoneme-
state posteriors, GP stands for GlobalPhone atomic systems where the output are bottleneck

features [22].

9Brno University of Technology
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5.2 System overview

BUT QbE system is depicted in Figure 5.1. The system consists of POST and BN ex-
tractors called atomic system. The extraction is outlined in Chapter 2. We used 7 atomic
systems: 3x using phoneme-state posteriors, 4x bottleneck features. The phoneme posteri-
ors extractors were trained on SD database using Czech, Hungarian and Russian languages.
The bottlenecks extractors were trained on GP database using Czech, Portuguese, Russian
and Spanish languages.

Two types of subsystems were exploited: first is based on AKWS (more in [19]) and
the other on DTW. The input of each subsystem is feature vectors and the output is a set
of detections.

5.3 Score normalization and calibration

The mode normalization was applied to normalize scores per query. The very best detection
was selected for each query-utterance pair. The calibration was performed using the binary
logistic regression. We used additional information (sideinfo) for the calibration. In addition
to mode normalized score, the number of phonemes, the log of number of phonemes, the
number of speech frames, the log of the number of speech frames, the average of log-posterior
of speech frames obtained from VAD and the LID i-vector score (for more details see [22]).

5.4 Fusion

The fusion (concatenation) of features (denoted as 4fusion) is described in Chapter 4. We
concatenated bottlenecks of 4 GP extractors.

The other fusion using subsystems output fuses normalized and calibrated scores with
the binary logistic regression linear classifier.

5.5 Results

In Table A.3, a comparison of presented distance metrics on the development dataset is
shown. The 7 atomic systems for fusion were selected during experiments and adding extra
systems does not improve overall score significantly. The best single system using features
from a recognizer trained on Czech language matches Czech and Slovak part of the database
which explains its highest accuracy. The overall evaluation results are shown in Table 5.1.
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’ System \ Chze | CTV1 ‘

nre

BUT 4fusion 0.473 / 0.466
BUT GP CZ BN | 0.536 / 0.528
NTU-NPU-I2R 0.602 / 0.598
EHU 0.621 / 0.599
SPL-IT 0.659 / 0.508
CUHK 0.683 / 0.659
IITT-H 0.921 / 0.812

Table 5.1: QUESST 2014 results for the evaluation dataset. The best systems for 6 out of
15 registered participants are listed. Cpge and CTU score for each system is presented. The

winning system was BUT 4fusion system. The single system based on DTW and developed
by the author (shown in bold) outperformed other participants according to Cpze metric.
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Chapter 6

Conclusions and contribution

The aim of this thesis was to investigate keyword spotting methods where the query is pro-
vided as an audio example. The requirement was to suggest and implement new techniques
to improve the QbE system.

The theoretical part of this thesis focused on outlining the bases of spoken term detection
and keyword spotting methods. The textual STD was presented and the reasons for usage
of QbE where the query is entered as a speech sample were explained. The QbE STD
procedure was split into basic blocks and each block was detailed.

The data sets used as an input for implemented system were presented. The extractors
based on artificial neural networks exploited to generate speech features were described.
We used the phoneme-state posterior probabilities and the bottleneck features.

The definition of scoring metrics followed. The well-known TWYV metric and associated
ATWV, UBTWYV and MTWYV were used. The newly introduced metric called normalized
cross entropy was defined. We found out that MTWYV and cross entropy are corresponding
metrics to each other: both rise or fall in similar rate for different experiments.

The pattern matching method DTW was described. The algorithm consists of necessary
matrices used for the standard DTW approach. In addition to these matrices, we used other
ones to simplify the searching of detections at the cost of higher memory consumption.
We also modified the way of the length normalization. We run experiments to set the
reference for further improvement and upgrade of the baseline system. We found out
that the logarithm based on the dot product did not work for bottleneck features in any
experiment.

The practical part of this thesis consists of several modifications of the baseline system
followed by experimental testing. These modifications were based on the related work. One
of the best improvements was achieved by applying VAD to discard non-speech fragments
from speech features. We chose the VAD based on Hungarian language as it gave us the
best results during experiments in long term. The different distance metric were tested.
The best score for bottleneck features provided the cosine distance. The best results for
phoneme-state posteriors yielded the log-likelihood of the cosine distance. The general
metric was considered the Pearson correlation distance as it provided good results regardless
the input features. To assess the best features, the posteriors extracted on SD database and
Hungarian language returned very good results. The bottlenecks extracted on GP database
and Czech languages performed well. The PCA transformation lead to decrease of score
as well as the normalization of a distance matrix. The next impressive improvement was
achieved by the concatenation of input features. We concluded a superiority of bottleneck
features for this fusion. The other method using parallel tokenizers returns similar results.
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We chose the first method due to its simple implementation. Several experiments were run
to deal with the query Type 3 but with no applicable results. From the baseline to the final
improved system, we achieved big increase of the system performance.

The implemented system was a part (subsystem) of more complex system participating
in QUESST evaluations in MediaEval 2014. The whole system using the fusion outper-
formed all the other participants. The single best system designed by the author achieved
also excellent results and scored the second.

6.1 Publications

The results of this work have been presented at Excel@FIT'Y 2015 Student conference of
innovations, technologies and science in I'T held by Faculty of Information Technology, Brno
University of Technology [18]. A printed version of the presented poster (Al size, in Czech
language) is attached to this thesis. The overall system description has been published in
BUT QUESST 201/ System Description paper [21] in MediaEval QUESST!! 2014 and a
bit more detailed version is in Coping with Channel Mismatch in Query-by-Ezample - BUT
QUESST 2014 paper [22] in ICASSP'? 2015.

6.2 Future work

The future work could include the investigation of Type 2 and Type 3 of query. The task
is to build a general system which could detect all three types in one run or search for each
type separately and then combine the results in some clever way. Our approach was not
adequate.

The features are the next thing to focus on in the future since the DTW relies on the
quality of its input. The generation of better features could lead to increase of the system
performance.

Ohttp:/ /excel fit.vutbr.cz/
Yhttp:/ /www.multimediaeval.org/mediaeval2014/quesst2014/
2http:/ /icassp2015.org/
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Appendix A

Appendices

A.1 DVD contents

The enclosed DVD contains pdf version of this thesis, latex source files for this thesis, all
figures used in this thesis, the poster (all in doc folder), results for the input features analysis
(histograms folder), PCA images (PCA folder), python and shell scripts (scripts folder).
The directory structure of the DVD is following:

+- doc

| +- src_latex/
|1+ fig/

| +- thesis.pdf
+- histograms

+- pca

+- scripts

A.2 Scripts

The attached scripts are used for DT'W search, score normalization and calibration, plotting
of histograms, matrices, covariance matrices, combination of VAD and many others. Scripts
have the instructions for use in the header of the file.
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SWS 2012 dev
TWV UBTWV

GP CZ BN + adapt + logcos + vad | 0.1794 0.1187
GP CZ BN + logcos + vad 0.1905 0.1262
GP CZ POST + logdot + vad 0.1644 0.0894
GP EN BN + adapt + logcos + vad | 0.0701 0.0468
GP EN BN + logcos + vad 0.0878 0.0353
GP EN POST + logdot + vad 0.0417 0.0299
GP GE BN + adapt + logcos + vad | 0.0526 0.0224
GP GE BN + logcos + vad 0.1169 0.0670
GP GE POST + logdot + vad 0.0253 0.0076
GP PO BN + adapt + logcos + vad | 0.1859 0.1161
GP PO BN + logcos + vad 0.1829 0.1349
GP PO POST + logdot + vad 0.0794 0.0509
GP RU BN + adapt + logcos + vad | 0.1584 0.0889
GP RU BN + logcos + vad 0.1611 0.1255
GP RU POST + logdot + vad 0.0372 0.0171
GP SP BN + adapt + logcos + vad | 0.1691 0.1216
GP SP BN + logcos + vad 0.1552 0.1195
GP SP POST + logdot + vad 0.0944 0.0454
GP TU BN + adapt + logcos + vad | 0.1304 0.0776
GP TU BN + logcos + vad 0.1089 0.0659
GP TU POST + logdot + vad 0.0536 0.0256
GP VI BN + adapt + logcos + vad | 0.1349 0.0930
GP VI BN + logcos + vad 0.0875 0.0713
GP VI POST + logdot + vad 0.0776 0.0465

Table A.1: Results of the baseline system for SWS 2012 data set.
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SWS 2013 dev

SWS 2013 eval

TWV UBTWV | TWV UBTWV

SD CZ POST + logcos + vad 0.2246 0.2744 - -

SD CZ POST + logdot + vad 0.2038 0.2946 - -

SD HU POST + logcos + vad 0.2125 0.2995 - -

SD HU POST + logdot + vad 0.1675 0.2790 - -

SD RU POST + logcos + vad 0.2315 0.2765 - -

SD RU POST + logdot + vad 0.2500 0.3379 - -

GP CZ BN + adapt + logcos + vad | 0.1898 0.2858 0.1250 0.2234
GP CZ BN + logcos + vad 0.2705 0.3724 0.2099 0.3166
GP CZ POST + logdot + vad 0.3154 0.4170 0.2474 0.3719
GP EN BN + adapt + logcos + vad | 0.0787 0.1905 0.0383 0.1496
GP EN BN + logcos + vad 0.1164 0.2262 0.0885 0.1928
GP EN POST + logdot + vad 0.1041 0.2212 0.0767 0.1831
GP GE BN + adapt + logcos + vad | 0.0557 0.1623 0.0339 0.1337
GP GE BN + logcos + vad 0.1179 0.2252 0.0919 0.1839
GP GE POST + logdot + vad 0.0850 0.2081 0.0593 0.1667
GP PO BN + adapt + logcos + vad | 0.2100 0.3094 0.1527 0.2507
GP PO BN + logcos + vad 0.1770 0.2681 0.1011 0.1908
GP PO POST + logdot + vad 0.1039 0.2259 0.0609 0.1822
GP RU BN + adapt + logcos + vad | 0.1514 0.2507 0.1079 0.2058
GP RU BN + logcos + vad 0.1493 0.2519 0.0884 0.1943
GP RU POST + logdot + vad 0.0369 0.1442 0.0215 0.1241
GP SP BN + adapt + logcos + vad | 0.1995 0.2980 0.1286 0.2259
GP SP BN + logcos + vad 0.1508 0.2666 0.0935 0.1941
GP SP POST + logdot + vad 0.1521 0.2697 0.1033 0.2155
GP TU BN + adapt + logcos + vad | 0.1364 0.2413 0.1131 0.2147
GP TU BN + logcos + vad 0.0971 0.1924 0.0642 0.1573
GP TU POST + logdot + vad 0.0676 0.1680 0.0353 0.1456
GP VI BN + adapt + logcos + vad | 0.1460 0.2404 0.1138 0.2157
GP VI BN + logcos + vad 0.0854 0.1941 0.0423 0.1402
GP VI POST + logdot + vad 0.1326 0.2299 0.0811 0.1894

Table A.2: Results of the baseline system for SWS 2013 data set.
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Figure A.1: Split matrices in half were used to search for Type 3 of query.
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