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Abstract
The thesis deals with design and implementation of a tool for simulating marks of chosen
skin diseases into a synthetic Ąngerprint. The diseases selected to work with are warts
and atopic eczema. The marks of diseases are generated into a synthetic Ąngerprint image
created by the SFinGe application. Existing disesase-afected Ąngerprints from the STRaDe
database are analysed in detail. Then, methods for simulating the diseases into a synthetic
Ąngerprint are proposed, implemented, and the results are evaluated.

Abstrakt
Diplomová práce se zabývá návrhem a implementací nástroje, s jehož pomocí je možné
simulovat stopy konkrétních onemocnění kůže v umělém otisku prstu. Vybraná onemoc-
nění pro tuto práci jsou bradavice a atopický ekzém. Generování známek onemocnění
probíhá do umělého otisku vytvořeného aplikací SFinGe. Existující otisky prstů s onemoc-
něním z databáze STRaDe jsou analyzovány, následně jsou navrženy postupy pro simulaci
konkrétních onemocnění do umělého otisku prstu, ty jsou implementovány a výsledek je
vyhodnocen.
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Chapter 1

Introduction

Fingerprint recognition is one of the most often used biometric technologies all over the
world. Nowadays, users Ąnd it even on their mobile phones. It has been designed so that
everyone can use it. However, a problem rises in case of people with some kind of skin
disease, disallowing them to use Ąngerprint scanning technology in order to authenticate
themselves.

Skin diseases represent an important issue in Ąngerprint recognition. Unfortunately,
this problem is often not taken into consideration when designing such a device. Although
precise numbers are hard to calculate, it is estimated that 20Ű25% of people sufer from
some kind of skin disease [8]. With such a large number of potential users of Ąngerprint
technology, scanning techniques should be ready to deal with certain efects that the diseases
have on the ridge structure of disease-afected Ąngerprints.

This requirement leads to a larger demand on testing of the recognition algorithms.
However, large databases of Ąngerprints are required in order to perform such tests. It is
also a very time-consuming task, as many people need to participate in order to acquire
enough samples. In order to overcome these problems, a database of synthetic Ąngerprints
can be used. With already existing tools, a large quantity of synthetic Ąngerprints can be
generated in a short amount of time. However, Ąngerprint images produced by synthetic
Ąngerprint generating tools are often too perfect to be used for any meaningful testing of
existing algorithms.

Therefore, this thesis aims to alter the generated synthetic Ąngerprints, so that they
appear as Ąngerprints from people sufering from various selected skin diseases. Using a
database of altered Ąngerprint images, existing algorithms might be better prepared for
users that sufer from such diseases than they are now.

The thesis is divided into several chapters, Ąrst of them being this introduction chapter.
Chapter 2 introduces the reader to the thesis main subject and explains terms that are
required to be understood in order to fully comprehend the studied problem. The proposed
solution to the problem is presented in chapter 3 together with deeper analysis of the selected
diseases to simulate. A description of an algorithm modifying a synthetic Ąngerprint in a
similar way as the selected disease would is presented as well. Implementation details and
description of tools and libraries used can be found in chapter 4. The resulting outputs of the
implemented system can be found at the end of this chapter too. The generated Ąngerprint
images have been subjected to experiments. They have been conducted in order to verify
the degree of damage caused by the simulated disease and also to assess their quality
features before and after the simulation. The methodology of conducted experiments and
their results can be found in chapter 5. The results are concluded in the Ąnal chapter 6.
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Chapter 2

Fingerprint biometrics in relation

to skin diseases

In order to understand the topic of Ąngerprint biometrics in relation to skin diseases, several
crucial terms have to be explained and important subjects explored.

In this chapter, section 2.1 introduces reader into the Ąeld of research exploring bio-
metrics and explains the functionality of a biometric system. In section 2.2, a Ąngerprint
structure is introduced, Ąngerprint classiĄcation system explained, and singularities of a
Ąngerprint listed and described. Section 2.3 describes various methods and techniques of
Ąngerprint acquisition. Fingerprint recognition process is explained in detail in section 2.4.
An important part of this thesis deals with synthetic Ąngerprints. The ways of creating one
are described in section 2.5. Finally, section 2.6 deals with various skin diseases that afect
the way Ąngerprint acquisition works.

2.1 Biometrics

Biometrics [9] is a science of establishing the identity of an individual based on the physical,
chemical or behavioural features. The Ąrst reliable evidence of using biometric features
in order to identify a person is from the 19th century. The Ąrst pioneers in biometric
recognition technology were anthropometry, based on Ąnding measures of several physical
features that stay rather constant over the life, and Ąngerprint recognition. [9]

Biometrics plays an irreplaceable role in identiĄcation management systems that have
gained on importance in everyday life of each of us, especially in the last few decades. A
crucial task in an identiĄcation management system is the determination of an individualŠs
identity. Traditional methods of identity veriĄcation include knowledge-based (e.g., pass-
words) and token-based (e.g., ID cards) mechanisms. However, these can be easily lost,
stolen or modiĄed, therefore compromising the security of accessed system. Biometrics
provides a natural and reliable solution to overcome the deĄciencies of previously men-
tioned mechanisms by utilizing automated schemes to individual recognition based on their
biological characteristics. [12]

Biometric systems [13] utilize a large variety of physical and behavioural features, in-
cluding Ąngerprint, hand geometry and vain, face, iris, retina, voice pattern, signature or
the DNA information of individual in order to establish their identity. While biometric
systems have their own limitations, they often outperform traditional security methods by
not being possible to steal them or share them with other system users. Besides increasing
security levels, biometric systems also provide users with higher comfort and convenience.
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2.1.1 Biometric system

A biometric system is basically a pattern recognition system [13]. Its task is to recognise a
person based on the authenticity of a speciĄc physiological or behavioural feature possessed
by that person. The recognition process includes biometric data acquisition, extracting a
salient feature set from the data, comparison of the extracted feature set against the one(s)
stored in the database of the biometric system, and execution of an action based on the
result of comparison. [13]

Enrollment

Verification

Identification

User interface Database

Quality

checker

Feature

extractor

Name + PIN

Template

User interface Database

Feature

extractor
Matcher

Name + PIN

Claimed

identity

True/false

User interface Database

Feature

extractor
Matcher

User's

identity

Figure 2.1: Enrolment, veriĄcation, and identiĄcation in a biometric system [18].
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Depending on the application context, a biometric system may be called either a veriĄca-
tion system or an identiĄcation system (see Ągure 2.1) [12]. A veriĄcation system validates
a personŠs identity by comparing the captured biometric data with their own template al-
ready existing in the system database. In this case of recognition, a user claims an identity
(e.g., by user name or ID) and the system makes a comparison in order to determine if the
claim is true or not.

In the identiĄcation system mode, the biometric system recognises an individual by look-
ing them up in its database of templates of all the users enrolled in the system. Therefore,
in order to establish an individualŠs identity, the system conducts one-to-many comparison.
This kind of recognition does not require a user to claim an identity. [12]

2.1.2 Biometric characteristics

Any human biometric characteristic can be used as a biometric identiĄer to recognise an
individual as long as it satisĄes the requirements deĄned by Jain et al. [13]. The require-
ments specify the suitability of a physical or a behavioural trait to be used in a biometric
application. They include:

∙ universality: every individual using the system should possess the trait;
∙ uniqueness: the given trait should suiciently difer among population;
∙ permanence: the biometric trait should be suiciently invariant over a period of time.

A trait that changes signiĄcantly over an individualŠs lifetime is not considered a
useful biometric;

∙ measurability: it should be possible to acquire the biometric trait and store it in digital;
form using suitable devices. Furthermore, the acquired raw data should be amendable
to processing in order to extract feature sets from them;

∙ performance: the recognition accuracy and the resources required should meet the con-
straints for given application;

∙ acceptability: individuals that will use the application should be willing to present their
biometric traits to the system;

∙ circumvention: this describes the ease with which the trait can be imitated by an
imposter.

2.2 Fingerprint biometrics

Fingerprints have been used for personal identiĄcation for many decades and their matching
accuracy has been found to be very high. It has been empirically determined that the
Ąngerprints of identical twins are diferent and so are the prints on each Ąnger of the same
person [22]. However, Ąngerprints of a small fraction of population might be unsuitable for
automatic identiĄcation because of genetic factors, ageing, diseases or environmental and
occupational reasons (cuts and bruises on Ąngerprints of manual workers).

2.2.1 Fingerprint

A Ąngerprint is a representation of a pattern created by epidermis consisting of interleaved
ridges and valleys. Epidermis is the topmost layer constituting skin, together with dermis
(true skin) and subcutaneous (fat) layer (see Ągure 2.2) [8].

Fingerprint ridges form through a combination of genetic and environmental factors in
a process similar to the growth of capillaries and blood vessels in angiogenesis. The genetic
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Figure 2.2: Skin structure [15].

code gives general instructions on the way skin should be formed, however the speciĄc way
it forms is a result of random efects on the child during its development in womb. This
is why Ąngerprints of identical twins are always diferent too. The Ąngerprint formation
Ąnishes at about seventh month of unborn child development and the ridge conĄgurations
are permanent throughout the life of an individual [12, 22]. This makes Ąngerprints an
ideal biometric feature for recognition.

In a typical case, in a Ąngerprint image, ridges are dark lines whereas valleys are bright
(see Ągure 2.3). Width of ridges varies from 100 µm to 300 µm. The period of ridge/valley
cycle is around 500 µm. Injuries usually do not afect the underlying ridge structure, thus
the original pattern often emerges once new skin regrows. [13]

Figure 2.3: Ridges and valleys on a Ąngerprint image.

2.2.2 Fingerprint classiĄcation

Ridges and valleys usually run in parallel. However, sometimes they terminate or bifurcate,
and by doing so, speciĄc Ąngerprint structures are created. From a global point of view, the
Ąngerprint pattern consists of one or more regions of distinctive shape with high frequency
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of terminations or particular curvature. These regions are called singularities. [19]
Some Ąngerprint matching techniques recognise a centre point called core and a delta

in order to easily align two Ąngerprints at the global level (see Ągure 2.4). However, the
distinctiveness of them alone is not suicient for accurate matching. [13]

In practice, the core is deĄned as the centre of the northernmost loop type singularity. It
is however diicult to Ąnd a core in Ąngerprints that contain no loop at all (e.g., Ąngerprints
belonging to the arch class). In this case, core is deĄned as the point of maximum ridge
line curvature. Delta is the centre of triangular regions where three diferent direction Ćows
meet. [16, 1]

core

delta

Figure 2.4: Core and delta located on a particular Ąngerprint image.

Singular regions are often used as the top-level Ąngerprint classiĄcation feature. The
goal of dividing Ąngerprint images into a predeĄned set of classes is to simplify search and
their retrieval. The categories are: left loop, right loop, whorl, arch, and tended arch (see
Ągure 2.5). [13]

2.2.3 Fingerprint minutiae

At the local level, Ąngerprint can be described by other features, called minutiae [13]. Minu-
tia means small detail and in Ąngerprint, they describe the way ridge can be discontinued.
Two most commonly used types of ridge discontinuation are termination (ridge comes to
an end suddenly) and bifurcation (ridge is divided into two). Although several diferent
types can be distinguished (see Ągure 2.6), only a small subset of the whole minutiae list is
commonly used in practice because of increasing diiculty in automatically discerning the
diferent types of minutiae with required accuracy. [13]
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Figure 2.5: Fingerprint classes [13].

Figure 2.6: Most common Ąngerprint minutiae types [13].

The American National Standard Institute (ANSI) proposed a minutiae taxonomy based
on four classes: terminations, bifurcations, crossovers (trifurcations), and undetermined.
The FBI minutiae model takes into account only terminations and bifurcations instead.
[13]

Fingerprint images can be described even further into detail by identifying sweat pores.
This requires images to be captured at high resolution (e.g., 1,000 dpi). Matching results
of methods using sweat pores only are outperforming methods using minutiae points and
combination of the two techniques results in signiĄcant improvement of matching scores
[26]. However, even though pore information is highly distinctive, very few automatic
recognition systems use them because of high demands on image quality. [13, 11]

2.3 Fingerprint acquisition technology

From historical point of view, the only Ąngerprint acquisition technology available was so-
called ink technique [13]. With this method, Ąngerprint images are collected from subjects
by pressing their ink-coloured Ąngers against a paper card. Then the paper cards can
be converted into digital form using a scanner or camera. This is referred to as of-line
Ąngerprint acquisition or sensing.

Modern approaches of Ąngerprint acquisition prefer to use more sophisticated methods
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of capturing Ąngerprint images by directly sensing the Ąnger surface with an electronic
Ąngerprint scanner. The most important part of a Ąngerprint scanner is the sensor, which
is the component actually creating the Ąngerprint image. Almost all the existing sensors
belong to one of the three categories [13]: optical, solid-state, and ultrasound, falling into
the on-line (also called live-scan) sensing category.

Each technology is described in the following subsections using information acquired
mainly from JainŠs Handbook of Fingerprint Recognition [13] and paper by X. Xia and
L. OŠGorman [24].

2.3.1 Optical sensors

One of the longest and most-commonly used technique of live-scan Ąngerprint acquisition
is the Frustrated Total Internal ReĆection (FTIR) technique (Ągure 2.7a). While the Ąn-
ger touches the top of glass prism, the left side is illuminated through a difused light
which is reĆected by valleys and absorbed by ridges. The light exits the prism on the
right side and is focused to a CCD (charge-coupled device) or CMOS (complementary
metalŰoxideŰsemiconductor) sensor.

As the technique requires a 3D surface to scan, it cannot be tricked by presenting a
photograph of a Ąngerprint. Despite generally better image quality, devices based on FTIR
technology cannot be miniaturised as well as other optical techniques can. However, one
way of improving the Ąnal size of the device at the cost of lower image quality is to use a
modiĄed FTIR technology with sheet prism instead of a single large prism (Ągure 2.7b).

(a) FTIR (b) FTIR with sheet prism

Figure 2.7: Two FTIR-based Ąngerprint acquisition techniques [13].

Some of the newer optical-based sensors use optical Ąbres, allowing to further reduce the
size of the scanning device (Ągure 2.8a). During the sensing, the Ąnger is in a direct contact
with the upper side of the Ąber-optic platen. On the other side, a CCD or CMOS sensor
receives light brought by the glass-Ąbres. As the sensor is tightly coupled with the platen,
its size has to cover the whole scanning area, and this therefore makes the production more
expensive.

A diferent approach is taken by the electro-optical-based scanning devices (Ągure 2.8b).
They consist of two layers, one of them containing a polymer that upon polarisation with
proper voltage emits light. As the ridges touch the layer and valleys do not, the emitted light
is diferent. This light is then captured by the second layer which consists of photodiode
array and is converted into digital image of the Ąngerprint.
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(a) Optical Ąbres

(b) Electro-optical

Figure 2.8: Optical Ąbres and electro-optical Ąngerprint sensing methods [13].

Last described method of Ąngerprint acquisition based on optical sensors is direct read-
ing. It uses a high-quality camera to directly capture the image of a Ąngerprint. The Ąnger
does not get in physical contact with any surface and therefore overcomes the need to clean
the scanning area surface. Other advantages over traditional methods of Ąngerprint sensing
by pressing a Ąnger against a hard surface are elimination of partial or degraded images.
Degradation can be caused by improper Ąnger placement, skin deformation, slippage or
smearing. [6, 23]

However, capturing a well-focused and high-contrast image is not easy to do. Another
challenging part of the acquisition process is the unwrapping of 3D touch-less Ąngerprints
into 2D such that the resulting 2D Ąngerprints are compatible with legacy rolled Ąngerprints.
[6]

Examples of Ąngerprint acquisition devices using this kind of sensor are devices made
by TBS1.

2.3.2 Solid-state sensors

Solid-state sensors were designed to overcome the cost and size issues of optical sensors. The
silicon-based sensors consist of an array of pixels, each working as a stand-alone sensor itself.
Therefore, there is no need for CCD or CMOS image sensors. Four main technologies are
used in order to convert the captured information into digital image. They are capacitive,
thermal, electric Ąeld, and piezoelectric.

The most-common used method for Ąngerprint sensing based on solid-state sensor is
the capacitive method (Ągure 2.9). The sensor consists of a two-dimensional array of micro-
capacitor plates on a chip. Upon placing the Ąnger on the chip, small electrical charges
are created between the Ąnger and each of the silicon plates. Depending on the distance of
the Ąngerprint surface and the plates, the magnitude of electrical charges difers. Based on
them, the Ąngerprint image is then created.

1http://www.tbs-biometrics.com/
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Figure 2.9: Capacitive Ąngerprint sensing method [13].

Another type of Ąngerprint capturing device uses thermal solid-state sensor. It is made
of pyro-electric material generating current based on temperature diferentials. Because
ridges are in direct contact with the sensor surface, a diferent temperature is produced
by them than the temperature produced by valleys which are further away. The sensorŠs
surface is usually heated to increase the diference between temperatures of the Ąnger and
the sensor. The Ąngerprint image is produced upon contact being made. However, it soon
disappears because of reaching temperature equilibrium. Therefore, it is ideal to use a
sweeping method to acquire the Ąngerprint image.

An electric Ąeld sensors consist of a drive ring generating a sinusoidal signal and a matrix
of active antennas capturing a small amplitude signal modulated by the derma structure.
It is required that the Ąnger stays in contact with both the sensor and the drive ring during
the process of sensing.

The last representative of Ąngerprint sensing devices using solid-state sensors is piezo-
electric. The idea of this kind of devices is to use pressure-sensitive sensors that generate
electrical signal when mechanical pressure is applied to them. The sensor surface consists
of a dielectric material that produces a small amount of current depending on the pressure
applied to it. Due to the diferent distance of ridges and valleys, the pressure created by
them is diferent too, thus they generate a diferent amount of current.

2.3.3 Ultrasound sensors

Ultrasound sensors are based on the echography technology (Ągure 2.10). An acoustic signal
is being sent towards the Ąngerprint and its echo is captured. The echo signal is used to
compute the Ąngerprint structure.

Figure 2.10: Ultrasound Ąngerprint sensing method [13].
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The sensor is made of two main components: the transmitter and receiver. The trans-
mitter generates short acoustic pulses and the receiver detects responses returning from the
Ąngerprint surface. This technology allows high-quality images capturing and is resilient to
dirt and oil that might visually spoil the Ąngerprint image.

2.4 Fingerprint recognition process

A captured Ąngerprint image must be processed before it can be stored or looked up in a
database. Although there are methods directly comparing Ąngerprint images using correla-
tion, a grey-scale Ąngerprint image is known to be a highly unstable representation. Most of
the Ąngerprint-processing algorithms require image features to be identiĄed and extracted
before they are processed further.

The methods described in the following paragraphs have been adopted from biometrics-
related literature [9, 19, 13].

2.4.1 Fingerprint image processing and feature extraction

The quality of Ąngerprint images usually difers in practice as they belong to a group of
images with generally high ration of clutter. Clutter is deĄned as every element of the image
which does not relate to the papillary lines. Fingerprint image processing algorithms aim
to enhance the image quality by applying various Ąltering techniques in order to extract
minutiae more accurately.

The Ąrst step in Ąngerprint image processing is local ridge orientation estimation. The
Ąngerprint image is divided into smaller blocks and for each block a local ridge orientation is
estimated. The Ąngerprint orientation image is a matrix D (see Ągure 2.11), whose elements
encode the local orientation of the Ąngerprint ridges. Each element θij , corresponding to
the block [i, j] of the square grid over the pixel [xi, yj ] denotes the average orientation of the
Ąngerprint ridges in the neighbourhood of the pixel. Also an additional value rij , associated
with every element, evaluates the consistency of each orientation estimation.

The easiest way for extracting the local ridge orientation uses Ąngerprint image gra-
dients computation. The gradient ∇(xi, yj) at pixel [xi, yj ] is a two-dimensional vector
[∇x(xi, yj),∇y(xi, yj)], where ∇x and ∇y are the derivative of pixel [xi, yj ] in the image
with respect to the x and y directions. Therefore, the direction θij of image block centred
at [xi, yj ] is orthogonal to the gradient phase angle at [xi, yj ].

Figure 2.11: Local ridge frequency estimation [2].
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The Ąngerprint image processing continues with local ridge frequency estimation denoted
as fxy at point [x, y]. The local ridge frequency represents the inverse of the number of ridges
per unit length along the segment of the Ąngerprint image centred at [x, y] and orthogonal
to previously computed local ridge orientation θxy. A matrix of computed frequency for
each block of the image is then called a frequency image F (Ągure 2.11).

In order to make further steps of Ąngerprint image processing more eicient, image
enhancing techniques have to be used. In practice, several diferent methods of image
enhancement are commonly applied. The simplest one is image thresholding technique,
however in low-quality images, it is not able to produce good results. A more eicient
approach to discriminating Ąngerprint from the background is based on the idea of isolating
the Ąngerprint area according to local histograms of ridge orientations. Other methods such
as using the average magnitude of the gradient in each image block or enhancing image using
Gabor Ąlters are used as well.

Finally, before minutiae detection from the Ąngerprint image is done, ridge thinning
technique is often applied in order to reduce the width of the ridges to one pixel.

2.4.2 Minutiae detection

Once a binary skeleton of Ąngerprint has been obtained, the image is scanned through
in order to detect pixels corresponding to diferent minutiae by computing the so-called
crossing number (see equation 2.1).

The crossing number cn(p) of a pixel p is deĄned as half the sum of the diferences
between pairs of adjacent pixels in the 8-neighbourhood of p:

cn(p) =
1

2

︁

i=1..8

|val(pi mod 8)− val(pi−1)|, (2.1)

where p0..7 are the pixels deĄning the 8-neighbourhood of p and val(p) ∈ {0, 1} is the
pixel value. With crossing number deĄned, it is simple to note (see Ągure 2.12) that a pixel
p with val(p) = 1 and corresponding number value:

∙ is an intermediate ridge point if cn(p) = 2,
∙ deĄnes a termination minutia when cn(p) = 1, and
∙ deĄnes a more complex minutia (bifurcation, crossover, etc.) in case cn(p) ≥ 2.

Figure 2.12: An intra-ridge pixel; termination minutia; bifurcation minutia [13].

A post-processing stage in minutiae detection step is often useful in order to Ąlter out
minutiae detected in corrupted regions of image or wrongly detected minutiae brought in
by some of the image enhancement techniques.
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Simple structural rules might be used in order to remove false minutiae structures. The
algorithm is based on predeĄned rules and as input, it requires minutiae characteristics
such as the length of the associated ridge(s), the minutia angle, and the number of facing
minutiae in the neighbourhood. As shown in Ągure 2.13, the algorithm connects facing
endpoints (a, b), removes bifurcations facing with endpoints (c) or with other bifurcations
(d), and removes spurs (e), bridges (f), triangles (g), and ladder structures (h).

Figure 2.13: The false minutia structures correction rules [13].

2.5 Synthetic Ąngerprint

With the ever-growing progress of Ąngerprint recognition systems adoption in many dif-
ferent areas, methodical and accurate performance evaluations of Ąngerprint recognition
algorithms are needed. The evaluation is usually based on their recognition accuracy on
test data. The evaluation process consists of three main steps [25]:

1. Ąngerprint images acquisition,
2. features extraction and matching in order to generate match scores,
3. match scores analysis in order to compute error rates.

Due to very small error rates to be estimated, a reliable evaluation method requires
large databases of Ąngerprints. However, collection of a large database of Ąngerprints is [2]:

1. expensive in terms of money,
2. time-consuming,
3. problematic due to privacy legislation that applies to biometric features.

Synthetic Ąngerprint database has been used for example at a performance evaluation
event FVC2006 [3] (Fingerprint VeriĄcation Competition 2006) along with three other
databases containing real Ąngerprints. [4]

In order to overcome the diicult and time-consuming process of Ąngerprint collection,
synthetic Ąngerprint generators can be used to produce large databases at very low cost in
terms of money and time. Several methods have been presented and published that produce
authentic images of Ąngerprints. Their detailed description follows.
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2.5.1 SFinGe

One of the Ąrst approaches to realistic synthetic Ąngerprint image generation has been
introduced by R. Cappelli from the University of Bologna in 2004 [2]. The synthetic Ąn-
gerprints generated emulate real images acquired with on-line sensors such as capacitive or
optical ones.
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Figure 2.14: Basic steps of SFinGe method [2].

The basic steps to create a synthetic Ąngerprint image are: generate a Ąngerprint shape,
a directional map and density map separately and combine the three features afterwards.
The process of Ąngerprint generation process can be seen in Ągure 2.14. SFinGe method
uses a master-Ąngerprint in order to derive several synthetic images of the same Ąngerprint.

The process of generating the master Ąngerprint (steps 1Ű4) and Ąngerprint impression
(steps 5Ű10) consists of the following steps:

1. Ąngerprint shape generation;
2. directional map generation;
3. density map generation;
4. ridge pattern generation;
5. contact region selection;
6. image erosion or dilation;
7. Ąngerprint distortion;
8. noising and rendering;
9. global translation and rotation;

10. background generation.

Step 1 deĄnes the Ąnal shape of generated Ąngerprint; step 2 utilises a mathematical
ridge-Ćow model to generate a consistent directional map considering the Ąngerprint class
and position of singularities; step 3 creates a density map based on real Ąngerprint images; in
step 4 the ridge-line pattern and minutiae are created using a space-variant linear Ąltering.

In order to create diferent impressions of the same master-Ąngerprint the following steps
are made. Step 5 simulates diferent placement of the Ąnger over the acquisition sensor by
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translating the ridge pattern randomly without modifying the global shape and position. In
step 6, the erosion operator is applied to simulate dry skin and oppositely dilatation is used
to make the skin wetter. Step 7 generates realistic impressions by using a skin distortion
model, while step 8 adds some noise to the image simulating pores in between the ridges
and diferent contact with the sensor. Finally, step 9 makes Ąngerprint images randomly
rotated and translated and step 10 generates realistic background for the Ąngerprint image
based on selected sensor technology.

Figure 2.15: Example Ąngerprints generated by SFinGe method.

SFinGe method is a mature synthetic Ąngerprint algorithm with a large variety of
settings that can be modiĄed. It produces high-quality images of realistic Ąngerprints (an
example of generated Ąngerprint image can be seen in Ągure 2.15). Authors provide two
versions of the software tool, a free version limited to generating one Ąngerprint at a time,
and a full version capable of generating whole databases of hundreds of Ąngerprints.

2.5.2 Radek ChaloupkaŠs method

Another way to generating synthetic Ąngerprint images has been published by Radek
Chaloupka in his master thesis in 2007 [5].

In his work, Chaloupka chooses a modiĄed approach from the SFinGe method. While
SFinGe isnŠt supplied with minutiae in advance, a complete Ąngerprint image is generated
based only on the selected shape and Ąngerprint class. ChaloupkaŠs method works with
minutiae type and position deĄned before the generation of Ąngerprint image begins.

The steps of Ąngerprint generation are as follows [5]:

1. directional map generation;
2. density map generation;
3. ridge pattern generation;
4. Ąngerprint shape generation.

Step 1 is the most important one in the whole generation process as it deĄnes the
Ąnal Ąngerprint ridges appearance. Directional map generation is based on already known
positions and types of minutiae deĄned. For every pixel in image, the direction based
on the closest minutia is computed. In step 2, random density map is generated. Ridge
pattern generation in step 3 uses the same set of Gabor linear Ąlters as SFinGe method
does. The only diference is that here, the Ąltering cannot be applied to the whole image

19



Figure 2.16: Fingerprints generated by ChaloupkaŠs method (shape generation) [5].

as the already existing minutiae must be kept intact. As the last step, the Ąnal Ąngerprint
shape is selected by applying mask on the generated image.

Fingerprint image generation method proposed by Radek Chaloupka is largely based on
the SFinGe method. Even though the images generated by this method might at Ąrst glance
look realistic, after examining them more in detail, one can notice that the Ąngerprints do
not respect existing Ąngerprint classes (see Ągure 2.16). Therefore, they are not suitable
for most use cases in comparison with images generated by SFinGe method.

2.5.3 Statistical feature models based method

The most recent approach to generate synthetic Ąngerprint images is by Zhao et al., pub-
lished in 2012 [25]. ItŠs goal is to improve SFinGe method by retaining speciĄed features
(orientation Ąeld, minutiae) chosen in advance. The method is based on sampling Ąnger-
print features from statistical models established for each of the types of Ąngerprint (i.e.
arch, tented arch, left loop, right loop, and whorl).

The Ąngerprint image synthesis algorithm consists of the four following steps [25]:

1. sampling Ąngerprint features from statistical models;
2. master Ąngerprint generation;
3. Ąngerprint impressions generations;
4. rendering Ąngerprint images.

In step 1, the method sequentially samples the Ąngerprint features from statistical mo-
dels based on a given Ąngerprint type. First, singular points are sampled, followed by
orientation Ąeld and minutiae. In step 2, the master Ąngerprint is reconstructed from a
set of sampled features using the AM-FM based method. This results in a relatively small
number of missing minutiae. Afterwards, Ąngerprint impressions are generated in step 3.
This is done by distorting the master Ąngerprint by applying non-linear plastic distortion
followed by global rigid transformation. The Ąnal step 4 renders the Ąngerprint image and
simulates the Ąnger dryness and adds noise.

ZhaoŠs method of Ąngerprint image generation aims at improving the SFinGe method
by distributing the generated minutiae on the Ąngerprint image more evenly based on a
selected statistical model (see comparison of Ąngerprints generated by SFinGe and method
proposed by Zhao in Ągure 2.17).

20



Figure 2.17: SFinGe Ąngerprint; and Stat. feature models based method Ąngerprint [25].

2.6 Disease-afected Ąngerprints

Although it is well-known that Ąngerprints do not change with time, images of the same
captured Ąnger can become quite diferent over a period of time due to many factors. These
include injuries and bruises, peeling of the skin on the Ąnger, current dryness of the skin,
and also developing a skin disease afecting personŠs skin on Ąngers. [14]

Skin diseases represent an important factor of Ąngerprint acquirement process. It is
however often left out of consideration. Therefore, patients with Ąngerprint-afecting dis-
eases are often unable to use Ąngerprint scanners in order to authenticate into a given
system.

The fact that this subject is ignored is supported by missing research in this area of
Ąngerprint biometrics. Only two recent academic works conducted by Drahansky et al. [8]
and Lee et al. [17] explore the efects of skin diseases on the Ąngerprint acquisition process.
The work of Lee et al. concentrates on patients with hand dermatitis while the work of
Drahansky et al. considers several diferent diseases and at the same time presents a way of
enhancing the disease-afected Ąngerprint image to improve the success rate of enrolment
and matching.

Even though it is impossible to estimate the total number of people with skin diseases,
about 20Ű25% of patients in general medical practice are reported to have some sort of
skin-related problems [8]. It is important to note that patients after successful recovery
from the disease can use the Ąngerprint authentication again in the case the disease had
not attacked and destroyed the structure of papillary lines in the two top layers of the skin:
epidermis and dermis.

A list of several selected most common diseases divided into three categories by their
efects on skin follows. Information in this section is based on research published by Dra-
hansky et al. [8] and clinical Dermatology books [15, 10].
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2.6.1 Diseases causing histopathological changes of epidermis and dermis

The following diseases might cause problems for most of sensor types as the colour and
structure of epidermis and dermis are afected.

(a) Hand eczema (b) Fingerprint eczema (c) Pompholyx

Figure 2.18: Skin diseases (hand eczema, Ąngerprint eczema, and pompholyx) [8, 15].

Hand eczema [10] is an inĆammatory non-infectious long-lasting relapsing disease. It is
one of the most common skin diseases with prevalence reaching approximately 5.4%.
The most common type of eczema is irritant contact dermatitis, atopic eczema, and
allergic contact dermatitis. Acute form is characterized by presence of erythema,
swelling, blisters, and crusts (Ągure 2.18a).

Fingertip eczema [10] is very dry chronic form of eczema of the palmar surface of the
Ąngertip afecting one or several Ąngers. Initially the skin may be moist and then
become dry, cracked, and scaly. The skin peels from the Ąngertips distally, exposing
a very dry, red, cracked, tender, or painful surface without skin lines (Ągure 2.18b).

Pompholyx (dishidrosis) [15] is one of the most common skin disorders. It is not related
to blockage of sweat ducts, although palmoplantar hyperhidrosis is common in these
patients. Itching precedes the appearance of tiny water-Ąlled vesicles on the palms
and sides of the Ąngers which are relatively deep seated. The skin may be red and
wet (Ągure 2.18c).

Pyoderma [8] is a sign of bacterial infection of the skin. It is caused by Staphylococcus au-
reus or Streptococcus pyogenes. Blistering distal dactylitis is speciĄc type of pyoderma
and is characterized by tense superĄcial blisters occurring (Ągure 2.19a).

Herpes simplex virus [8] infection may uncommonly occur on the Ąngers. Lesions begin
with tenderness and erythema and deep-seated blisters develop until 48 hours after
symptoms occur. In the host with systemic immune-compromise, Herpes simplex may
cause chronic ulcerations (Ągure 2.19b)

Leprosy [15] is a chronic granulomatous disease caused by M. leprae, usually acquired dur-
ing childhood/young adulthood. It is disease of the developing world. Lepromatous
type can lead to loss of tissue of Ąngertip (Ągure 2.19c).

22



(a) Pyoderma (b) Herpes simplex (c) Leprosy

Figure 2.19: Skin diseases (pyoderma, herpes simplex, and leprosy) [8, 15].

2.6.2 Diseases causing skin discolouration

The following diseases often make it diicult to capture Ąngerprint using optical sensors.

Hand, foot, and mouth disease (HFMD) [15] is a contagious infection occurring pri-
marily in children and characterized by a vesicular palmoplantar eruption. The skin
lesions begin as red macules that rapidly become pale, white, oval vesicles with red
areola (Ągure 2.20a).

Scarlet fever (scarlatina) [8] is contagious disease caused by β-hemolytic Streptococcus
that produces an erythrogenic toxin. In the Ąnal stages of the disease, large sheets
of epidermis may be shed from the palms in glove-like cast, exposing new tender and
red epidermis beneath (Ągure 2.20b).

Secondary syphilis [8, 15] starts at about the 9th week of infection and is characterized
by lesions, which may assume a variety of shapes, including round, elliptic, or annular.
These lesions are called syphilids. Semirigid small lesions of red-brown colour with
scaling may be observed on palms, soles, and Ąngers (Ągure 2.20c).

(a) HFMD (b) Scarlet fever (c) Secondary syphilis

Figure 2.20: Skin diseases (HFMD, scarlet fever, and secondary syphilis) [8, 15].
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2.6.3 Diseases causing histopathological changes in junction of epidermis

and dermis

The following diseases are mainly focused on ultrasonic sensors, which detect the base of
papillary lines on the border of epidermis and dermis. Some of them can be also set to the
Ąrst group.

(a) Warts (b) Psoriasis

Figure 2.21: Skin diseases (warts, psoriasis) [15].

Warts (verruca vulgaris) [8] are benign epidermal neoplasms that are caused by human
papilloma viruses (HPVs). Warts commonly appear at sites of trauma, on Ąngers of
both hands. HPVs induce hyperplasia and hyperkeratosis (Ągure 2.21a).

Psoriasis [8] is characterized by scaly papules and plaques. The disease is transmitted
genetically and is lifelong. It is characterized by chronic, recurrent exacerbations and
remissions. Psoriasis of the palms and Ąngertips is characterized by red plaques with
thick brown scale. The lamellar scales are more adherent and only their removal will
reveal the reddish inĆammatory base (Ągure 2.21b).
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Chapter 3

Analysis and design of methods

simulating disease-afected

Ąngerprint

The following chapter contains analysis of existing Ąngerprint images damaged by selected
diseases and the method design of simulating similarly modiĄed skin disease-afected Ąn-
gerprint images from synthetic Ąngerprints.

The thesis goals are outlined and elaborated in section 3.1. Section 3.2 describes the
STRaDe database of Ąngerprints acquired from patients with various skin diseases. In the
next two sections, section 3.3 and 3.4, selected skin diseases are described in detail, existing
disease-afected Ąngerprint images are analysed, and methods of simulating similar disease
marks to a synthetic Ąngerprints are proposed.

3.1 Thesis goals elaboration

The task assigned for this thesis has been to select up to two most common Ąngerprint-
afecting diseases from the available subset of STRaDe database and design an algorithm
modifying a synthetic Ąngerprint image in a way similar to the way a real disease would.
The implemented algorithm should then be used to generate a set of at least a hundred Ąn-
gerprints afected by selected diseases. With the generated datasets, experiments should be
conducted to verify the inĆuence of Ąngerprint-afecting diseases on the Ąngerprint recog-
nition process.

The STRaDe database contains Ąngerprint images acquired via several diferent devices
using diferent sensing technology (see the following section 3.2 for more details). As the
appearance of disease marks can difer due to diferent technology of acquisition used, the
work will concentrate only on Ąngerprints acquired using the optical technology (including
digitalized Ąngerprint images acquired using the ink-method).

Because diseases can afect Ąngerprint in various extent, it has been decided to exclude
from further examination those Ąngerprint images that are heavily damaged by the disease.
The excluded group consists of Ąngerprints missing all ridge structure or structure visible
only on a small area (less than 25% of the Ąngerprint).

The methods designed shall respect the outlined constraints. The synthetic Ąngerprint
generator is to be set to produce undamaged synthetic Ąngerprint images simulating the
optical technology of sensing. The Ąnal damaged Ąngerprint images shall preserve the ridge
structure in a way that it is still visible at least on 25% of the Ąngerprint area.
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3.2 STRaDe Ąngerprint database

A subset of a Ąngerprint database has been acquired from the STRaDe research group1

at Brno University of Technology. The whole database consists of thousands of Ąngerprint
images (the available subset is made up of 750 images) acquired directly from patients with
various skin diseases. The sensing methods and devices used to capture the Ąngerprint
images include ink technique, Sagem MSO 3002, TBS 3D Enroll3, UPEK Eikon II, UPEK
EikonTouch 5004, and Dino-Lite microscope5.

The range of diseases the database contains include acrodermatitis (Ągure 3.1a), atopic
dermatitis also known as atopic eczema (Ągure 3.1b), warts (Ągure 3.1c), dyshidrosis (Ąg-
ure 3.1d), hyperkeratotic eczema (Ągure 3.1e), lupus (Ągure 3.1f), and several other, less
common illnesses.

(a) acrodermatitis (b) atopic dermatitis (c) warts

(d) dyshidrosis (e) hyperkeratotic eczema (f) lupus

Figure 3.1: Examples of disease-afected Ąngerprints from STRaDe database.

For the purpose of this thesis, the two most-common Ąngerprint-afecting skin diseases
have been chosen: warts and atopic eczema. The two diseases are analysed in more detail
in the following sections of this chapter.

1http://strade-fs.fit.vutbr.cz/cms/en/
2http://www.morpho.com/en/biometric-terminals/desktop-devices/fingerprint-devices/
3http://www.tbs-biometrics.com/en/hardware/
4http://www.crossmatch.com/eikon-usb-readers/
5http://www.dino-lite.com/
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3.3 Warts

The Ąrst skin disease chosen for simulation are warts, speciĄcally common warts (verruca
vulgaris). In the following sections, the disease is described in detail (adapted mainly from
[15]), analysis of selected representative set of wart-afected Ąngerprints is conducted and a
method of simulating similarly-looking Ąngerprint images afected by warts is proposed.

3.3.1 Warts: disease description

Warts are caused by human papillomaviruse (HPV) which belongs to a group of papo-
vaviruses. There is more than a hundred of types of HPV and gene sequences of HPVs
throughout the world are similar. Most of them cause speciĄc types of warts and favour
certain anatomic locations, such as plantar warts, common warts, genital warts, and so on.

HPV infection is very common amongst the world population, as most people will
experience it during their lifetime. HPVs have coexisted with humans for many millennia,
and humans are also their primary host. HPVs have been successful pathogens of human
because they evade their immune response.

Common warts are the most-spread variant of warts (afecting approximately 10% of the
population [21]) and usually cause frustration on the part of the patient. Social activities
can be afected, lesions can be uncomfortable or bleed, and treatment is often painful
and frustratingly inefective [7]. Frequent immersion of hands in water is a risk factor for
common warts. People working with raw meat have a high incidence of common warts of
the hands.

Common warts are usually located on the hands, favouring the Ąngers and palms (see
Ągure 3.2). Periungual warts are more common in nail biters. Fissuring may lead to
bleeding and tenderness. Lesions range in size from pinpoint to more than 1 cm, most
averaging about 5 mm. They grow in size for weeks to months and usually present as
elevated, rounded papules with a rough, grayish surface. In some instances, a single wart
(mother wart) appears and grows slowly for a long time, and then suddenly many new warts
erupt. On the surface of the wart, tiny black dots may be visible, representing thrombosed,
dilated capillaries. Warts do not have Ąngerprint folds, as opposed to calluses, in which
these lines are accentuated.

(a) (b)

Figure 3.2: Common warts on hands and Ąngers [15].
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Treatments for common warts involve two basic approaches: destruction of the wart
and induction of local immune reactions. Destructive methods are most commonly used
as initial therapy by most practitioners. Cryotherapy is a reasonable Ąrst-line therapy for
most common warts. The wart should be frozen adequately to produce a blister after one
or two days. An alternative method of treatment gaining on popularity is a pulsed dye
laser treatment which is both efective and safe for the patient [21].

3.3.2 Warts-afected Ąngerprint analysis

The STRaDe Ąngerprint database contains Ąngerprint images acquired by various methods
and sensors. To study possible diferences between images acquired by diferent sensors,
three Ąngerprints of the same Ąnger afected by warts have been chosen (see Ągure 3.3).
Figure 3.3a has been acquired using the ink technique, Sagem MSO 300 sensor has been
used to capture Ągure 3.3b, and Ągure 3.3c has been acquired by UPEK Eikon II sensor.

On Ągures 3.3a and 3.3b, it can be seen that the wart is located just on top of the whorl.
It is a white oval with irregular border. Inside the oval, there are black dots. The ridge
structure is completely disrupted by the wart. However, the ridge Ćow continues normally
around the border of the wart. Image 3.3c acquired by UPEK sensor cuts the wart out of
the image completely.

(a) ink technique (b) Sagem MSO 300 (c) UPEK Eikon
II

Figure 3.3: Same Ąngerprint afected by warts acquired by diferent sensors.

Let us now compare three diferent Ąngerprint images afected by warts (Ągure 3.4) that
have been captured using a single sensor, in this case Sagem MSO 300.

The Ąrst Ągure 3.4a shows a Ąngerprint with a clean ridge structure except for the
part where the wart is located. The wart is located near the right border of the image
and on the image it is represented by a white circle-shaped object with several black dots
irregularly spread over its surface. In the upper part of the Ąngerprint image, another small
oval-shaped structure can be seen. It could be a small wart that has spread from the larger
one. When the wart is relatively small, usually it contains little or no black dots at all.

In the second Ągure 3.4b, a single large wart is located near the whorl. Black dots on
top of it represent the hard and scaly skin of the wart. The wart is irregularly shaped and
its border is well-deĄned. The ridge structure around the wart is mildly deformed and the
ridges are compressed. However, except for the close surroundings of the wart, the ridge
structure of the Ąngerprint is unafected.

The third Ągure 3.4c shows a Ąngerprint that has been afected by warts in a large area
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of its surface. There are at least three large white oval-like objects with irregular borders
near each other. The warts afect the ridge structure near their edges similarly as the wart
described previously.

(a) (b) (c)

Figure 3.4: Diferent Ąngerprints afected by warts acquired by Sagem MSO 300.

From the available subset of STRaDe database of Ąngerprints, it has been found that
the size of warts on Ąngers varies from very small ones to ones as large as half of the
hypothetical radius of the Ąngerprint. The location of warts on Ąngerprint is completely
random and often one wart produces other so-called satellite warts in its close surroundings.

3.3.3 Design of a method for warts-afected Ąngerprint generation

Based on the analysis of existing Ąngerprints afected with warts, design of a method for
generating similar synthetic Ąngerprint images is proposed in this section. The algorithm
consists of the following steps:

1. localise the Ąngerprint area on the image;
2. determine the new wart size and locate its centre point in the Ąngerprint;
3. draw the wart into an image bufer:

(a) create an empty image bufer;
(b) generate a number of small circles around the centre point of the wart;
(c) draw the generated circles into the bufer;
(d) draw dark dots inside the wart;
(e) determine the Ąnal colour of each wart pixel;
(f) blur the wart in the bufer.

4. draw the wart from the image bufer into the Ąngerprint image;
5. generate possible secondary warts.

In order to generate warts into the image with synthetic Ąngerprint, the Ąngerprint has
to be localised in the input image Ąrst. This is done in step 1. First, an adaptive threshold-
ing is applied in order to clearly separate the Ąngerprint structure from background. Then
the image is blurred so that the Ąngerprint ridges connect and contours can be localised in
the image. The contour of the largest area is then selected as the Ąngerprint contour (see
Ągure 3.5). This contour then deĄnes the border of the Ąngerprint.

In step 2, a centre of the new wart is localised. The point coordinates are randomly
generated and are used only if they comply with the requirements (location inside of the
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(a) Original Ąngerprint (b) Blurring applied (c) Fingerprint contour

Figure 3.5: Fingerprint area localisation (step 1).

Ąngerprint, minimal distance from the Ąngerprint border). Also in this step, the size of the
generated wart is randomly determined within boundaries set.

(a) Wart drawn in distinctive
colours

(b) Wart with dots added (c) Wart drawn in Ąnal colours

Figure 3.6: Wart drawing (into bufer).

Each new wart is Ąrst drawn into its own image bufer as not to interfere with the rest of
the Ąngerprint. This is done in step 3 (see Ągure 3.6). First, an empty bufer of a size large
enough for the new wart to Ąt in is created (step 3a). In the following step 3b, a number
of small circles of varying radius is generated with their centres being distributed with
exponentially large distance from the wart centre point. In the next step 3c, the previously
generated circles are drawn into the bufer in distinctive colour (e.g. red or green) with
their border drawn in a diferent distinctive colour (Ągure 3.6a). The Ąnal drawing step is
step 3d in which the dots with randomly generated coordinates are drawn onto the warts
surface. The dots are drawn with the same colour as the border of the small circles in the
previous step (Ągure 3.6b).

With the wart shape drawn in the bufer, the algorithm proceeds with step 3e where
the Ąnal colour of each pixel of the wart is determined (Ągure 3.6c). Depending on if the
pixel is drawn by colour for border or the colour of the inside of the wart, the colour of the
neighbouring pixels in the original Ąngerprint image is acquired (in this case dark pixels for
border and light ones for the inside of the wart). The Ąnal pixel colour is then determined
by one of the two following methods. First method picks random neighbouring pixel and
copies its colour. The second method computes the mean colour of all the neighbouring
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(a) Wart bufer drawn into the orig-
inal image

(b) Secondary warts

Figure 3.7: Wart drawing (steps 4 and 5).

pixels and then the mean colour is computed and applied to the pixel. Afterwards the
bufer image is blurred slightly in step 3f in order to better Ąt into the original Ąngerprint
image.

Finally, in step 4 the bufer is drawn into the original Ąngerprint image taking in con-
sideration the transparency of the pixels in the bufer and blending them into the original
image appropriately (Ągure 3.7a).

Eventually, secondary warts are drawn into the Ąngerprint if required in step 5 following
the same steps of the algorithm as for the main wart (Ągure 3.7b). The only diference is
an added requirement not to overdraw already existing warts in the image.

3.4 Atopic dermatitis

The second of the two chosen skin diseases is atopic dermatitis (also known as atopic
eczema). In the following sections, the disease is described in detail with focus on hand
eczema (adapted from [15]), analysis of selected representative set of atopic dermatitis-
afected Ąngerprints is conducted and a method of simulating Ąngerprint images afected
by this disease is described.

3.4.1 Atopic dermatitis: disease description

Atopic dermatitis (AD) [15] is a chronic, inĆammatory skin disease that is characterized
by pruritus and a chronic course of exacerbations and remissions. The prevalence of AD
increased dramatically in the last half of the twentieth century, becoming a severe health
problem in many countries. Rates of AD are around 15Ű20% worldwide with up to 20% of
children afected by the disease [20].

The skin, in general, is dry and somewhat erythematous. LicheniĄcation and prurigo-
like papules are common. Papular lesions tend to be dry, slightly elevated, and Ćat-topped.
They are nearly always excoriated and often coalesce to form plaques.
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Figure 3.8: Hand eczema [15].

The hands, including the wrists, are frequently involved in adults, and hand dermatitis
is a common problem for adults with a history of AD. Hand eczema (Ągure 3.8) is the most
common occupational skin condition, accounting for more than 80% of all occupational
dermatitis. Women are at increased risk for the development of hand eczema. Most of this
increased risk is accounted for by a spike in the rate of hand eczema in the age of 20Ű29
because of increased environmental exposures.

There are Ąve diferent types of hand eczema [15]:

1. allergic contact dermatitis,
2. irritant hand dermatitis,
3. atopic hand eczema,
4. vesicular endogenous hand eczema,
5. hyperkeratotic endogenous hand eczema.

3.4.2 Atopic dermatitis-afected Ąngerprint analysis

As in the case of warts-afected Ąngerprints, in order to study the diferences between images
acquired by diferent sensors, three Ąngerprint images of the same Ąnger have been selected
(see Ągure 3.9). Figure 3.9a has been acquired using the ink technique, to capture Ągure
3.9b, Sagem MSO 300 sensor has been used, and in case of Ągure 3.9c, UPEK Eikon II
sensor has been used.

Comparison of the three images shows no signiĄcant diference in capturing quality
among them. Abnormal white lines can be seen on all three of them as well as patches of
light and dark colour. Light patches are located mainly on the outer parts of the Ąngerprint,
while dark areas are concentrated mostly in the centre of the Ąngerprint.

Let us now analyse four diferent Ąngerprint images afected by atopic dermatitis (see
Ągure 3.10) that have been captured using a single sensor, Sagem MSO 300.

The Ąrst Ągure 3.10a shows clearly wide and long white lines running throughout the
whole Ąngerprint. The lines are mostly horizontally oriented. The Ąnger is dry and ridge
structure is in some areas of the Ąngerprint image less visible than in an image of a healthy
Ąnger. On the other hand, other parts of the Ąngerprint show unusually dark areas with a
damaged ridge structure.
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(a) ink technique (b) Sagem MSO 300 (c) UPEK Eikon II

Figure 3.9: Same Ąngerprint afected by atopic dermatitis acquired by diferent sensors.

Figure 3.10b is similar in the structure of the abnormal white lines to the previously
described one. The lines run predominantly in horizontal direction with their length as
large as the width of the Ąngerprint. Other thinner and shorter white lines can be seen in
both, horizontal and vertical directions. The ridge structure is clearer than on the previous
Ąngerprint image, however the patches are present as well.

Fingerprint on Ągure 3.10c contains many large white-only patches with no ridge struc-
ture whatsoever. In the centre of the image, there is a wide line running from the bottom-left
corner through the centre of the Ąngerprint to the upper-right corner of the image. Other
thinner lines can be seen in the left half of the Ąngerprint. As the ridge structure is mostly
badly damaged, this Ąngerprint image can hardly be used in an authentication system.

Figure 3.10d is the last Ąngerprint of the described set. It is similar to the Ąrst analysed
Ąngerprint image with white lines running throughout it. In contrast with the other images,
this oneŠs lines are not as wide and run only in horizontal direction. Also, the white lines
are considerably shorter. Several small white patches covering the ridge structure can be
seen in the upper part of the Ąngerprint image.

To sum up, the two types of damage by atopic dermatitis are abnormal white lines and
light and dark patches. According to Lee et al., the patches represent dystrophy of the skin
and the median percentage of the surface area of dystrophy in their study was 22.80% [17].

The abnormal white lines usually run in horizontal or vertical direction and their length
ranges from very short up to lines running throughout the whole Ąngerprint. According
to the study of Lee et al., the median number of white lines per Ąngerprint was 12 and
short horizontal lines prevailed (with occurrence in 73.0%), followed by short vertical lines
(56.5%), long horizontal lines (52.5%), and long vertical lines (18.0%) [17].
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(a) (b)

(c) (d)

Figure 3.10: A set of Ąngerprints afected by atopic eczema acquired by Sagem MSO 300.

3.4.3 Design of a method for generation of atopic dermatitis-afected

Ąngerprint

Based on the analysis of existing Ąngerprints afected with atopic eczema, design of a
method for generating similarly damaged synthetic Ąngerprint images is proposed in this
section. The algorithm consists of the following steps:

1. localise the Ąngerprint area on the image;
2. create an empty image bufer;
3. draw eczema patches into a bufer:

(a) determine the centre and size of the patch;
(b) draw the patch of determined type (light, dark).

4. determine the Ąnal colour of each pixel of the patches;
5. blur the patches in image bufer;
6. draw eczema white lines into the bufer:

(a) determine the starting point, direction, and length of the line;

(b) generate line points in given direction and length;

(c) interpolate the generated line points;

(d) draw the lines in determined thickness.

7. blur the lines in image bufer;
8. draw the bufer into the Ąngerprint image.
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Step 1 of the algorithm is identical to the Ąrst step of the algorithm for generating
warts. The result of this step is a contour of the Ąngerprint on the input image. Knowing
precisely where on the image is the Ąngerprint located is necessary in order to draw onto
the Ąngerprint area only and not outside of it.

In step 2, a new image bufer is created. The size of the bufer is the same as the size
of the input image. The patches and white lines shall be drawn into the bufer separately
as not to interfere with the original image.

First the light and dark patches are drawn into the bufer in step 3. The number of
patches is generated randomly within set boundary values. Afterwards the type (light,
dark), size, and a centre point for each patch is determined in step 3a. If the centre point
lies within the Ąngerprint boundaries, the algorithm proceeds to drawing the patch into the
bufer. This is step 3b (see Ągure 3.11a). In this step, pixels in distance generated with
exponential distribution from the centre point are drawn into the bufer in a distinctive
colour (e.g. red or blue). It is randomly chosen if the pixels of the patch will later be in
light colour or dark.

When all the patches are drawn into the bufer in a distinctive colour, the Ąnal colour of
each pixel is determined in step 4 (see Ągure 3.11b). First, the neighbouring pixels of each
pixel in patch are collected from the input image. Then, based upon the selected algorithm,
the Ąnal pixelŠs colour is either one of a randomly chosen neighbouring pixel or mean of all
itŠs neighbourŠs colours. After this, the patches in bufer are blurred in step 5 (see Ągure
3.11c).

(a) Patches drawn in distinc-
tive colours

(b) Patches drawn in Ąnal
colours

(c) Blurred patches drawn
onto the Ąngerprint

Figure 3.11: Eczema patches drawing (into bufer) (steps 3, 4, and 5).

The second signiĄcant part of the algorithm takes place in step 6 where white lines are
drawn into the bufer. Each part of the process is described in the following paragraphs.

In step 6a, parameters of each line are determined. The length of the line is determined
within set boundary values and the line direction (either vertical or horizontal) is set.
The starting point for line generation is found using random coordinates generation. The
starting point must be suiciently far from all other starting points of all other lines of the
same type.

Line points are generated in step 6b. Beginning with the starting point, other leading
points are generated based on the length of the line, the direction of the line, and a random
generated angle within a pre-deĄned range (see Ągure 3.12a).
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To make the lines look more realistic, in step 6c, the line leading points count is doubled
and spline interpolation of the Ąrst order is applied. This makes the line appear less edgy
and smooths it (see Ągure 3.12b).

(a) Line leading points (b) Interpolated line leading
points

(c) White lines drawn onto the
Ąngerprint

Figure 3.12: Eczema lines drawing (into bufer) (steps 6b, 6c, and 6d).

Finally, each line is drawn into the bufer in step 6d (see Ągure 3.12c). The thickness of
the line is set and the line is drawn in several steps starting with the whole length drawn
in the smallest thickness. Then the Ąrst and last leading points are removed and the line
is drawn over with a higher thickness. This process repeats until the Ąnal set thickness is
reached. This ensures that the lineŠs width decreases towards line ends.

In the last two steps, the bufer is once again blurred in step 7 and then in the follow-
ing step 8, the bufer is drawn into the original Ąngerprint image taking in consideration
the transparency of the pixels in the bufer and blending them into the original image
appropriately.
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Chapter 4

Disease-simulating methods

implementation and results

This chapter explains the decisions taken in a process of implementing the methods for
simulating previously described diseases in synthetic Ąngerprint images.

Implementation tools, the environment and techniques used are described in the fol-
lowing section 4.1 in detail. The implemented solution description of a Ąngerprint disease
simulator follows next in section 4.2 with the fundamental parts of all the application classes
thoroughly described. In the end of this chapter in section 4.3, the resulting Ąngerprints
with simulated diseases of warts and atopic eczema are presented together with the original
images for the reader to compare the results achieved.

4.1 Implementation tools and environment

The system for simulating diseases in synthetic Ąngerprints has been designed as a console
application processing an input image and producing an output image with marks of a
selected disease. The marks generation process can be customized by various command-
line parameters.

The simulator has been implemented in the Python1 programming language, speciĄcally
in version 3.4.0. For the graphic operations, a computer vision library OpenCV2 in version
3.1 has been extensively used. The library has been used for image Ąle manipulation, 2D
drawing, and image processing like thresholding, smoothing or contour detection. Other
libraries used include the scientiĄc computing library NumPy3, on which OpenCV relies
heavily, and SciPy4.

The simulator implementation is multi-platform and should run on all main operating
systems without any obstacles. All used libraries are multi-platform as well and no platform-
speciĄc code has been used. The application was developed and tested on a PC platform
with Xubuntu operating system in version 15.10 installed.

1http://www.python.org
2http://www.opencv.org
3http://www.numpy.org
4http://www.scipy.org
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4.1.1 SFinGe automation tool

SFinGe, one of the synthetic Ąngerprint generators described in section 2.5, has been cho-
sen as the input generator for this task. In its freely available version however, it allows
generating only one Ąngerprint at a time and all the parameters of the generation have to
be manually speciĄed during the process by the user.

In order to automate the process of generating hundreds of synthetic Ąngerprint images
manually, an automation script has been implemented, making this time-consuming task
easier. The automation script has been implemented in Python using a tool for visual-
based automation SikuliX5. It allows to go through the process of generating a synthetic
Ąngerprint automatically, setting parameters in the SFinGe GUI based on constrains given
in the source code of the automation script.

The automation tool is not an oicial part of the implemented Fingerprint disease si-
mulator system. It is provided merely as a tool developed aside from the main thesis goal
in hope that it might be of use to others.

4.2 Fingerprint disease simulator

Fingerprint disease simulator, the thesis product, has been implemented with modular
design and extendibility in mind. Using an object-oriented programming approach, a main
base class representing a single disease generator has been implemented. It has been named
BaseGenerator and implements common methods for all speciĄc disease generator classes.

BaseGenerator

contour
debug_img
dest_file
input_img
output_img
params

__init__()
blend_image_in()
draw_semitransparent()
find_fingerprint_in_image()
generate_disease()
get_neighbours_color()
is_point_inside_fingerprint()
open_image()
save_image()

EczemaGenerator

__init__()
draw_eczema_line()
draw_eczema_lines()
draw_eczema_patch()
draw_eczema_patches()
generate_disease()
generate_eczema_line_points()
is_far_enough()

WartsGenerator

__init__()
add_dots_inside()
draw_wart()
generate_disease()
generate_secondary_warts()
is_far_enough()

Figure 4.1: Class diagram of the Fingerprint disease simulator.

5http://www.sikulix.com
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Two generator classes extending the BaseGenerator have been implemented. WartsGe-

nerator class implements designed methods for damaging the synthetic Ąngerprint with
warts. Likewise, EczemaGenerator class implements methods of simulating atopic eczema
in a synthetic Ąngerprint image. Implementation details of the generator classes can be
found in the following paragraphs. A class diagram of the implemented solution can be
seen in Ągure 4.1.

The entry point to the application is main.py Ąle. Its primary task is parsing command-
line arguments and passing them as parameters to the disease generator objects. The
generator to be used is chosen based on a --type argument. A detailed description of all
available command-line arguments can be found in the application manual on the DVD
attached.

4.2.1 BaseGenerator class

The BaseGenerator class is the core of the Fingerprint disease simulator application. It
serves as a base class for all speciĄc disease generators and provides shared convenience
methods to be used by them. It also deĄnes an interface for other speciĄc generators to
implement. This allows the implemented application to be easily extended by adding new
modules generating other diseases into synthetic Ąngerprints.

All speciĄc disease generators share the __init__() method which initializes the gen-
erator object as well as deĄnes important object variables. Parameters are extracted from
the command line argument parser and according to their values, the input image is opened
and loaded using the imread() method provided by the OpenCV library, the output image
is created as a copy of the input image, and optionally in case that the debugging is enabled,
the debug image is created in a similar fashion.

In the next step of the initialization process, the Ąngerprint is found on the input image.
In order to do that, the find_fingerprint_in_image() method is called. First the input
image is binarized using adaptive thresholding provided by OpenCV and then it is blurred
using the Gaussian blurring method with kernel of size 11× 11 and σ = 5. This allows the
algorithm to use a contour-Ąnding method more eiciently. The contour area of all contours
found is then computed and the largest one is returned as the contour of the Ąngerprint.

Other shared methods provided by the BaseGenerator class include helping method
is_point_inside_fingerprint() which, using an OpenCV method pointPolygonTest(),
determines if the given point is inside of the Ąngerprint contour or not. Another helping
method is called get_neighbours_color(). Its task is to Ąnd neighbouring pixel colours
and return the Ąnal colour of the pixel based on the method speciĄed as a parameter of the
application. Two other helping methods blend_image_in() and draw_semitransparent()

are used to blend given image bufer pixels with input image seamlessly using the alpha
channel value of the image bufer pixels.

The class also provides an abstract method generate_disease() which is to be imple-
mented by all speciĄc disease generator classes in order to generate marks into the synthetic
Ąngerprint image.

4.2.2 WartsGenerator class

The WartsGenerator class is an implementation of warts Ąngerprint marks generator for
the Fingerprint disease simulator application. As all speciĄc disease generators, it extends
the BaseGenerator class.
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After the generator is initialized, the generate_disease() method is called. Inside of
this method, the marks of warts are generated into the synthetic Ąngerprint image. First,
a random coordinates of a point inside of the Ąngerprint contour are found. This is the
new centre of the wart to be generated. With the wartŠs size determined by generating a
random value within set boundary values, draw_wart() method is called.

Within the draw_wart() method, an image bufer large enough for the newly generated
wart to Ąt in is created. Then the main part of the warts-generating process takes place
in this method. First, a number of small circles is generated and stored in a list. Each of
the circle is deĄned by its radius and a centre point. The centre point is determined by a
calculation of coordinates using a randomly generated angle α and a randomly generated
radius r. Using a simple equation 4.1, the centre point [xcircle, ycircle] of a new circle is
calculated:

xcircle = xcentre + r · cosα

ycircle = ycentre + r · sinα,
(4.1)

where [xcentre, ycentre] is the wartŠs centre point. The drawing of the generated small
circles is then done in two steps. First, the circles are drawn in a distinctive colour repre-
senting the outline of the circles. Afterwards, the same circles are drawn only with their
radius smaller by one to two pixels. This creates a desired efect of a wart composed of a
number of small circles with only the outline of the whole wart object visible. This is better
illustrated by Ągure 4.2a, which represents an actual output of the implemented algorithm.

(a) Wart drawing: circles (b) Wart drawing: dark
dots

(c) Wart drawing: pixel
colouring

Figure 4.2: Process of wart drawing into an image bufer (enlarged).

The next step in wart simulation is adding black dots inside of the wart. This is done
in add_dots_inside() method call. The coordinates of the dark dot centre are randomly
generated. If the colour of the pixel on the generated coordinates is the inner colour of
the wart, a circle of a small radius (one to two pixels) is drawn in the colour of the wartŠs
border. The result of the process can be seen on Ągure 4.2b.

The wart drawing process continues by executing a common method blend_image_in()

which changes colours of pixels drawn in distinctive colours to better match the Ąngerprint
colour scheme (see Ągure 4.2c). Blurring of the wart with kernel of size 3 × 3 in image
bufer follows, making the image less sharp and look more realistic. After that, the bufer
is drawn into the output image with respect to the alpha channel value of each pixel. This
is done using a common method draw_semitransparent() from the BaseGenerator class.
The result can be seen on Ągure 4.3a.
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(a) Main wart drawing (b) Secondary wart drawing

Figure 4.3: Wart drawing process.

An optional part of the wart drawing process is generation of the secondary warts. The
method responsible for secondary warts drawing is called generate_secondary_warts().
As a default, secondary warts drawing happens only with a 50% chance and the maximum
number of them can be set as a parameter of the application. The process of secondary
warts drawing is the same as with the main wart except the algorithm furthermore checks
the minimal distance from the other secondary warts so that they do not overlap. For
this, a helping method is_far_enough() is called. The Ąnal output of the algorithm is
represented by Ągure 4.3b.

4.2.3 EczemaGenerator class

The second of implemented generators for the Fingerprint disease simulator is the Eczema-

Generator which simulates marks of atopic eczema into a synthetic Ąngerprint. It also
extends the BaseGenerator class.

After the generator is initialized, the generate_disease() method is called. Inside of
this method, the marks of atopic eczema are generated into the synthetic Ąngerprint image.
First, an image bufer of the same size as the input image is created.

Next, the eczema colour patches are drawn into the synthetic Ąngerprint image. For
this, the draw_eczema_patches() method is responsible. The number of colour patches to
generate is determined randomly within bounds set by arguments passed to the application.
For each patch, its colour is determined Ąrst. It is either a dark or white patch. Then a
centre point of the patch is randomly generated within the Ąngerprint contour along with
the radius of the patch.

The drawing of the patches itself does the draw_eczema_patch() method. Within the
method, a number of points around the centre point are created. The distance of the points
from the centre point is generated with exponential distribution. Using a similar equation
as equation 4.1, the point coordinates are calculated. If the point is within the boundaries
of the Ąngerprint, a small circle with radius of 1 pixel is drawn into the image bufer (see
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Ągure 4.4a).
The pixels of the patches are then drawn with appropriate colours that Ąt the Ąngerprint

image by using the blend_image_in() common method. Afterwards, the image bufer is
blurred using the OpenCV blur() method with kernel of size 3× 3. After these steps, the
result can be seen on Ągure 4.4b.

(a) Patches drawn in distinctive
colours

(b) Final patches drawing (back-
ground is added for better visibility)

Figure 4.4: Atopic eczema patches drawing process.

Another speciĄc mark for atopic eczema are white lines running throughout the whole
Ąngerprint. These are simulated inside of the draw_eczema_lines() method call. The
lines can be either of a horizontal or vertical direction and the two types are generated
separately.

For each generated line, the starting point is Ąrst found with its coordinates generated
randomly within the Ąngerprint contour boundaries. Also, the minimal distance from all
starting points of other already generated lines is checked. If a valid starting point is found,
the length of the line to be generated is determined within boundary values set.

Line leading points are generated by the generate_eczema_line_points() method.
Within this method, the direction of the generating is determined randomly (left or right
for horizontal lines; up or down for vertical lines). Each following point is generated using
a similar equation as equation 4.1. The angle is generated randomly within boundaries set
and depending on the type of the line (horizontal or vertical) and its direction.

The generated leading points of each line are afterwards interpolated using a SciPy
interpolation method interp1d() with linear spline interpolation algorithm. Then the line
is drawn into the image bufer using the draw_eczema_line() method which internally
uses the OpenCV polylines() method.

In order to make the line look realistic, it is drawn with its width thinner towards its
ends. This efect is achieved by drawing the full line in the lowest width and gradually
drawing thicker lines without the Ąrst and the last leading points over the previous ones
(see Ągure 4.5a).
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The pixels of the lines are then drawn in white colour to Ąt in the Ąngerprint image
by using the blend_image_in() common method. Afterwards the image bufer is blurred
once again using the OpenCV blur() method with kernel of size 3 × 3. The simulated
atopic eczema lines at this point of the process can be seen on Ągure 4.5b.

As the last step, the bufer pixels are drawn into the output image with respect to their
alpha channel value using the draw_semitransparent() common method.

(a) Lines drawn in distinctive colours (b) Final lines drawing (background
is added for better visibility)

Figure 4.5: Atopic eczema lines drawing process.

4.3 Implementation results

Example result outputs of warts generator and atopic eczema generator by the Fingerprint
disease generator are presented in this section. Selected samples of original Ąngerprints from
the STRaDe database with similar disease marks are presented alongside for comparison.
For the complete set of generated Ąngerprints, please refer to the attached DVD.

4.3.1 Warts simulation results

Figure 4.6 shows two selected samples of Ąngerprints afected by warts taken from the
STRaDe database.

The following Ągure 4.7 represents two selected sets of Ąngerprint images to show the
product of Ąngerprint disease simulation. SubĄgures 4.7a and 4.7c represent original syn-
thetic Ąngerprints and next to each of them, on subĄgures 4.7b and 4.7d, there are the same
images with disease marks on them implemented by the Fingerprint disease simulator.

The parameters of the Ąngerprint disease simulator used for simulating the disease marks
into the synthetic Ąngerprint images have been kept to default (for more information, please
refer to the application manual on the attached DVD).
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(a) (b)

Figure 4.6: Samples of original warts-afected Ąngerprint from the STRaDe database.

(a) Synthetic Ąngerprint (b) Warts simulation result

(c) Synthetic Ąnger-
print

(d) Warts simulation
result

Figure 4.7: Fingerprint warts simulation results.
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4.3.2 Atopic eczema simulation results

Figure 4.8 shows two selected samples of Ąngerprints afected by warts taken from the
STRaDe database.

(a) (b)

Figure 4.8: Samples of original eczema-afected Ąngerprint from the STRaDe database.

The following Ągures 4.9 and 4.10 represent two selected sets of Ąngerprint images to
show the product of Ąngerprint disease simulation. SubĄgures 4.9a and 4.10a represent the
original synthetic Ąngerprints. On the right from each of them, the same images with disease
marks on them implemented by the Fingerprint disease simulator can be seen (subĄgures
4.9b and 4.10b).

The parameters of the Ąngerprint disease simulator used for simulating the disease marks
into the synthetic Ąngerprint images have been kept to default (for more information, please
refer to the application manual on the attached DVD).

(a) Synthetic Ąngerprint (b) Eczema simulation result

Figure 4.9: Fingerprint atopic eczema simulation results.
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(a) Synthetic Ąngerprint (b) Eczema simulation result

Figure 4.10: Fingerprint atopic eczema simulation results.
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Chapter 5

Fingerprint veriĄcation and quality

assessment

In order to evaluate the output of the Fingerprint disease simulator, the resulting damaged
Ąngerprints must undergo veriĄcation against unmodiĄed synthetic Ąngerprint images and
their quality has to be measured. Thirteen sets, each containing 250 Ąngerprint images
have been generated with diferent parameters for evaluation. A detailed description of the
datasets can be found in section 5.1.

Two methods of evaluation have been selected. VeriFinger1 by NEUROtechnology has
been used for the Ąngerprint veriĄcation. The output is a matching score of a damaged
Ąngerprint expressed in a relation to a matching score of the original Ąngerprint that has
been veriĄed against itself. The results for both warts datasets and eczema datasets can be
found in section 5.2.

NFIQ 2.0 2 Ąngerprint quality assessment tool has been used to determine the quality of
the damaged Ąngerprints compared to the quality of unmodiĄed synthetic Ąngerprints. The
output is a score based on several quality features computed from the Ąngerprint image.
The results for the warts and eczema datasets are presented in section 5.3 in detail.

Due to the large size of each dataset, only results evaluated for the whole dataset are
presented, usually in form of median values. For the full results set, please refer to data on
the DVD attached.

5.1 Description of datasets

For the purpose of veriĄcation and quality assessment of the synthetic Ąngerprints with
disease marks generated by the Fingerprint disease simulator, a total number of thirteen
datasets have been generated, each containing 250 unique Ąngerprint images afected by
warts or atopic eczema. Each dataset has been created with diferent set of parameters
of the algorithm so that it can be evaluated which parameters afect the quality of the
Ąngerprint the most.

The parameters of warts datasets are presented in table 5.1. Four datasets of warts-
afected Ąngerprints have been created in total. Warts dataset 1 and 2 are generated with
warts size set to 5Ű10% of hypothetical radius of the Ąngerprint, while the size for dataset
3 and 4 is set to 10Ű15%. The maximum number of secondary warts (Max. SW cnt) is two
for datasets 2 and 4. In case of datasets 1 and 3, they have been disabled completely.

1http://www.neurotechnology.com/verifinger.html
2http://www.nist.gov/itl/iad/ig/development_nfiq_2.cfm
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Dataset Wart size [%] Max. SW cnt

Warts 1 5Ű10 0
Warts 2 5Ű10 2
Warts 3 10Ű15 0
Warts 4 10Ű15 2

Table 5.1: Warts datasets parameters.

The number of eczema datasets generated for veriĄcation and quality assessment is nine
and the parameters for each dataset can be found in table 5.2. The parameters include range
of horizontal white lines count (HL cnt), vertical lines count (VL cnt), line length repre-
sented by percentage of hypothetical Ąngerprint radius (L. length), line width (L. width),
patches count (P. cnt) and their size in percent relative to hypothetical Ąngerprint radius
(P. size).

Datasets 1Ű4 combine diferent line types and their length, while eczema datasets 5 and
6 add diferent line thickness. Datasets 7 and 8 contain diferent amount of patches with no
lines and the last dataset 9 combines the vertical and horizontal lines with patches together.

Dataset HL cnt VL cnt L. length [%] L. width P. cnt P. size [%]

Eczema 1 4Ű12 0 50Ű100 8 0 0
Eczema 2 4Ű12 0 100Ű200 8 0 0
Eczema 3 0 2Ű6 50Ű100 8 0 0
Eczema 4 0 2Ű6 100Ű200 8 0 0
Eczema 5 4Ű12 2Ű6 50Ű200 8 0 0
Eczema 6 4Ű12 2Ű6 50Ű200 5 0 0
Eczema 7 0 0 0 0 2Ű10 20Ű80
Eczema 8 0 0 0 0 10Ű20 20Ű80
Eczema 9 4Ű12 2Ű6 50Ű200 8 4Ű20 20Ű80

Table 5.2: Eczema datasets parameters.

5.2 NEUROtechnology VeriFinger

For veriĄcation of generated disease-afected Ąngerprint, VeriFinger, a Ąngerprint identiĄ-
cation tool by NEUROtechnology, has been used.

The tool allows the user to enroll Ąngerprints into a database and verify or identify
Ąngerprints against the existing database templates. During the process, a matching score
is printed out. This score has been used to evaluate the degree of the damage generated by
the Fingerprint disease simulator into the synthetic Ąngerprint.

The methodology of the veriĄcation process is as follows:

1. enroll the original unmodiĄed synthetic Ąngerprints into the database;
2. verify the same unmodiĄed synthetic Ąngerprints and save their scores (this consti-

tutes a baseline score Ů 100% score);
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3. for each Ąngerprint from a given testing set, verify the damaged Ąngerprint against
the original unmodiĄed one and record the matching score;

4. evaluate the percent value of the recorded matching score Ů the normalized median
value of the matching score;

5. calculate the median value for each set.

5.2.1 Warts

The results of warts-afected Ąngerprint veriĄcation are presented in table 5.3. The table
contains the median of the set matching score as well as its normalized value. Graphical
representation of the result values can be found on Ągure 5.1.

Dataset Original Warts 1 Warts 2 Warts 3 Warts 4

Median 1116.50 1037.50 1029.00 944.50 918.00
Norm. median [%] 100.00 93.47 92.74 85.80 83.42

Table 5.3: VeriFinger score: warts datasets.

From the data in table 5.3 it is clear that presence of warts in a Ąngerprint negatively
afects the value of the Ąngerprint matching score. The Warts 1 and Warts 2 datasets are
generated with only relatively small warts in size, while the other two datasets, Warts 3
and Warts 4 contain noticeably larger warts. Because of this, the score dropped by almost
10% when warts were relatively small (size parameters set to 5Ű10%) and by about 15% for
larger warts (size parameter set to 10Ű15%).

Also the presence of secondary warts in datasets Warts 2 and Warts 4 lowers the Ąnal
score considerably (by 0.73% in case of Warts 1 compared to Warts 2 ; and by 2.38% for
Warts 3 and Warts 4 datasets).
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Figure 5.1: VeriFinger score: warts datasets.
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The most probable reason for this is that the wart in a Ąngerprint creates new minutiae
while covering those present before the disease has been generated into the Ąngerprint. This
results in lower matching score as some ridge structures cannot be properly matched by the
algorithm any more.

5.2.2 Atopic eczema

The results of atopic eczema-afected Ąngerprint veriĄcation are presented in table 5.4.
The table contains the median of the set matching score as well as its normalized value.
Graphical representation of the results can be found on Ągure 5.2.

Dataset Original Ecz. 1 Ecz. 2 Ecz. 3 Ecz. 4

Median 1116.50 836.50 841.50 855.50 857.50
Norm. median [%] 100.00 76.11 75.94 77.15 77.80

Dataset Ecz. 5 Ecz. 6 Ecz. 7 Ecz. 8 Ecz. 9

Median 809.00 869.50 842.00 761.50 706.00
Norm. median [%] 73.79 78.33 76.25 68.20 64.30

Table 5.4: VeriFinger score: eczema datasets.

Judging from the data acquired, when comparing datasets Eczema 1 and Eczema 2
with datasets Eczema 3 and Eczema 4, it can be said that the type of eczema lines on
the Ąngerprint has only little efect on the matching score (approximately 24% decrease
for horizontal lines versus circa 23% decrease). The damage caused by the horizontal and
vertical lines is principally the same. The white lines disrupt the Ćow of ridges and thus
create new false minutiae in places of line crossing.

The length of the lines has a negligible efect on the Ąnal matching score. The diference
of medians of datasets Eczema 1 and Eczema 2 is only 0.17% and in case of datasets
Eczema 3 and Eczema 4, the diference is 0.65%.

The small diference might be caused by the fact that a signiĄcant part of the line can
be generated outside of the Ąngerprint. The reason for this is that while the starting point
of the line is generated to be inside of the Ąngerprint, the direction of line generating is
decided randomly. Therefore if the starting point is located near the Ąngerprint border and
the direction is determined to point out of the Ąngerprint, the generated line might be in
fact shorter than expected.

Examining the inĆuence of line thickness on the matching score by comparing datasets
Eczema 5 and Eczema 6 shows that thicker lines have a greater damaging efect on the
Ąngerprint. The median of matching score for lines of maximal thickness 8 is only 73.79%,
while the median of score for lines of maximal thickness 5 is 78.33%. This efect can be
explained by the fact that thinner ridge disruptions might be repaired by the matching
algorithm, while thicker lines discontinue the ridges more efectively.

Comparing each single eczema damage type (white lines versus patches), the one causing
the greatest damage to the Ąngerprint are patches. Their efect is most signiĄcant when a
large amount of patches is generated into the Ąngerprint. Compare dataset Eczema 7 (2Ű10
patches per Ąngerprint) with median of matching score 76.25% versus dataset Eczema 8
(10Ű20 patches per Ąngerprint) with median of matching score 68.20%. The patches in
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Ąngerprint make the ridge structure efectively less clear and bring more noise into it. This
makes the minutiae recognition process for the matching algorithm harder to do, thus
lowering the matching score.

The most efective damaging results are brought by both types of damage (white lines
and patches) combined. As represented by dataset Eczema 9, the median of matching score
declined to 64.30%.
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Figure 5.2: VeriFinger score: eczema datasets.

5.3 NIST NFIQ 2.0

The second method of damage veriĄcation caused to synthetic Ąngerprint by the Fingerprint
disease simulator has been done with the help of NFIQ 2.0 Ąngerprint quality assessment
tool released by the NIST (National Institute of Standards and Technology).

In order to assess the quality of a Ąngerprint, NFIQ 2.0 computes a set of quality
features from the input image, and uses them to predict the Ąngerprint image quality. The
output of the algorithm is a score value in range of [0Ű100], where 0 represents an image
of no utility and 100 is the highest utility value. The NFIQ 2.0 algorithm bases its score
computation on fourteen selected quality features which together constitute the Ąnal score
for given input image.

The base score has been established for each Ąngerprint by evaluating the quality of
the unmodiĄed original synthetic Ąngerprint image. Then for each damaged Ąngerprint, its
score has been evaluated. A median of scores for each dataset has been found and expressed
in percent in relation to the base score median.
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5.3.1 Warts

The results of warts-afected Ąngerprint quality assessment can be seen in table 5.5. The
table contains the median of set quality score as well as its normalized value. Graphical
representation of the result values can be found on Ągure 5.3.

Dataset Original Warts 1 Warts 2 Warts 3 Warts 4

Median 64.00 66.00 66.00 67.00 67.00
Norm. median [%] 100.00 101.92 101.92 104.20 104.20

Table 5.5: NFIQ2 score: warts datasets.

As data in table 5.5 shows, the NFIQ2 score actually increased for all testing datasets of
warts-afected Ąngerprints when compared to the unmodiĄed original synthetic Ąngerprint
dataset.
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Figure 5.3: NFIQ2 score: warts datasets.

In order to explain this, the NFIQ2 score calculation has to be taken into account. The
value of the score is based on fourteen diferent quality features computed from the input
Ąngerprint image. Because the application decision logic is based on a trained random
forest learning, not all quality features have the same weight. Detailed information on the
weight of each quality feature can be found in the NFIQ 2.0 documentation3 (page 29).

Therefore, it can be assumed that the quality features afected by changes implemented
by the Fingerprint disease simulator do not have weight large enough to inĆuence the Ąnal

3http://biometrics.nist.gov/cs_links/quality/NFIQ_2/nfiq2_report.pdf
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NFIQ2 score. In fact, as in this case, some other quality features might be enhanced by
the changes so that the Ąnal score rises above the score of the control set.

Detailed examination of several individual quality feature results can be found in section
5.3.3 further down.

5.3.2 Atopic eczema

Quality assessment results of Ąngerprints afected by atopic eczema can be found in table
5.6. The table contains the median of set quality score as well as its normalized value.
Graphical representation of the result values can be found on Ągure 5.4.

Dataset Original Ecz. 1 Ecz. 2 Ecz. 3 Ecz. 4

Median 64.00 65.00 64.00 63.00 64.00
Norm. median [%] 100.00 101.71 100.00 100.00 100.00

Dataset Ecz. 5 Ecz. 6 Ecz. 7 Ecz. 8 Ecz. 9

Median 66.00 64.00 65.00 68.00 68.00
Norm. median [%] 102.03 100.00 101.79 104.67 104.67

Table 5.6: NFIQ2 score: eczema datasets.

Also in the case of eczema datasets, the NFIQ2 quality score is equal or higher than the
score of the control dataset. The reasons have been described in previous section and are
the same in this case also.
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Figure 5.4: NFIQ2 score: eczema datasets.
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5.3.3 NIST NFIQ 2.0: selected quality features

In order to explain the higher value of NFIQ2 score for all datasets of damaged Ąngerprints,
while the exact opposite was expected, the NFIQ2 score computation method has to be
studied. The score value is calculated from fourteen unique quality features of a given
Ąngerprint. The predicted value is determined by an implementation of random forest
algorithm that has been trained on existing testing Ąngerprint datasets.

Therefore, not all the quality features have the same weight when evaluating the quality
of given input image. Thus, in order to verify that the changes made by the Fingerprint
disease simulator bring signiĄcant damage marks into the Ąngerprint, let us investigate
the scores of several selected quality features evaluated by the NFIQ 2.0 algorithm. Only
quality features that expressed a noticeable change in the score have been selected into
the set of examined quality features. Others stayed rather constant when compared to
control dataset of unmodiĄed synthetic Ąngerprints, therefore there is no need to study
them further. For the complete results please refer to the contents of the attached DVD.

The NFIQ 2.0 employs a customized version of FingerJet FX OSE minutia extractor4

for determining the count of minutiae detected in the whole image (Minutiae cnt) and an
arithmetic mean of all minutiae quality values. Two diferent methods for computing the
quality of the minutiae are used.

The Ąrst method calculates the quality using an arithmetic mean of pixel values in
the input image (MU M. Quality). The second method of minutiae quality assessment
computes the quality as the Orientation Certainty Level of blocks of pixels centred at the
minutia location (OCL M. Quality).

The other quality features presented are ROI Relative Orientation Map Coherence Sum
(OM Coherence) which represents the average coherence values over all image blocks in the
Ąngerprint ROI.

The last of the studied quality features is the Ridge Valley Uniformity (Uniform Image)
feature. It measures the consistency of the ridge and valley widths. For a Ąnger image with
clear ridge and valley separation it is expected that the ratio remains rather constant and
thus the standard deviation of the ratios is used as an indication of the Ąngerprint quality.

Warts

The results of selected quality features evaluation of the NFIQ 2.0 algorithm for warts-
afected Ąngerprints datasets are presented in table 5.7.

Dataset Original Warts 1 Warts 2 Warts 3 Warts 4

Minutiae cnt 36 38 37 43 45
MU M. Quality [%] 85.00 83.00 84.00 75.00 71.00
OCL M. Quality [%] 77.00 71.00 69.00 60.00 55.00
OM Coherence [%] 75.00 74.00 74.00 73.00 72.00
Uniform Image [%] 53.72 53.49 53.42 53.23 53.06

Table 5.7: NFIQ2: selected quality features: warts datasets.

From the summarized results it can be deduced that changes brought by the Finger-
print disease simulator generating warts, increase the number of detected minutiae in a

4https://github.com/FingerJetFXOSE/FingerJetFXOSE
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Ąngerprint. This means that the newly detected minutiae must be false ones. Increasing
the size of warts also increases the number of new false minutiae.

The quality of minutiae measured by both methods previously described also decreases
with increasing size of warts generated. Original quality score values of 85% and 77% go
down as low as to 0.71% and 0.55% for dataset Wart 4 containing generated warts of a
large size (10Ű15%) and secondary warts generating enabled.

As far as OM Coherence and Uniformity of Image quality features are concerned, their
score values difer insigniĄcantly from the original control dataset.

To sum up, for warts-afected Ąngerprints, new false minutiae are detected by the minu-
tiae extractor and their quality is signiĄcantly lower than the quality of minutiae found on
the original Ąngerprint image. Other score values change only negligibly.

Atopic eczema

The results of selected quality features evaluation of the NFIQ 2.0 algorithm for datasets
containing Ąngerprints afected by atopic eczema are presented in table 5.8.

Dataset Original Ecz. 1 Ecz. 2 Ecz. 3 Ecz. 4

Minutiae CNT 36 36 36 36 35
MU M. Quality [%] 85.00 79.00 79.00 82.00 80.00
OCL M. Quality [%] 77.00 75.00 76.00 76.00 76.00
OM Coherence [%] 75.00 75.00 75.00 75.00 75.00
Uniform Image [%] 53.72 49.50 49.66 49.69 49.87

Dataset Ecz. 5 Ecz. 6 Ecz. 7 Ecz. 8 Ecz. 9

Minutiae CNT 36 36 36 37 40
MU M. Quality [%] 78.00 82.00 79.00 71.00 68.00
OCL M. Quality [%] 72.00 76.00 69.00 46.00 43.00
OM Coherence [%] 74.00 75.00 73.00 67.00 67.00
Uniform Image [%] 49.00 49.61 43.20 36.70 37.58

Table 5.8: NFIQ2: selected quality features: eczema datasets.

Judging from the summary of results presented, the minutiae count does not change
signiĄcantly for eczema-afected Ąngerprints. The only exception for this rule is the last
dataset Eczema 9 which contains Ąngerprints damaged by all types of available eczema
marks. In comparison to the other datasets which keep the same number of detected
minutiae as the control dataset, the median value of minutiae detected in dataset Eczema 9
is 40.

The only considerable quality change of the minutiae of Ąngerprints afected by eczema
can be observed in Eczema 8 (71% and 46% versus 85% and 77% for the control dataset)
and Eczema 9 datasets (68% and 43% versus 85% and 77% for the control dataset). Other
datasets do not show such a signiĄcant change in quality. The most probable reason for
this is that the last two datasets contain a large number of eczema patches generated into
the Ąngerprints. This decreases the quality of minutiae measured by both of the methods
of Ąngerprint minutiae quality assessment.

As far as ROI Relative Orientation Map Coherence Sum (OM Coherence) quality feature
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is concerned, the only signiĄcant change can be seen in Eczema 8 and Eczema 9 datasets
(the score of both is 67%). The score of control dataset is 75% and the other dataset scores
range between 73% and 75%. Again, this is caused by a large number of eczema patches
present in Ąngerprints contained in Eczema 8 and Eczema 9 datasets.

For the Uniformity of Image quality feature, the score of patches-containing datasets
decreases noticeably while datasets containing Ąngerprints with eczema lines record only a
small decrease in score value (approximately 4% decrease). Even a small number of patches
brings the score value down to 43.20% for dataset Eczema 7. Larger decrease of the score
value can be seen in Eczema 8 and Eczema 9 datasets (36.70% and 37.58% versus the
control dataset value of 53.72%).

All in all, except for the minutiae count, all other quality features are negatively afected
by a large number of eczema patches present in a Ąngerprint image. On the other hand,
eczema lines do not have such a signiĄcant efect on the score value of selected quality
features.
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Chapter 6

Conclusion

The aim of the thesis was to design an algorithm for modifying a synthetic Ąngerprint image
in a way similar to the way a real disease would. In order for the goal to be fulĄlled, a number
of subjects concerning Ąngerprint biometry had to be studied. Among the subjects there was
Ąngerprint biometry itself, the sensing technology used for acquiring a Ąngerprint, and the
process of Ąngerprint recognition. Also several synthetic Ąngerprint generating algorithms
have been studied. Finally, familiarization with a number of skin-afecting diseases has
been done in order to better understand the efect they might have on the Ąngerprint ridge
structure.

From the STRaDe database of disease-afected Ąngerprints, two most common diseases
have been selected: warts and atopic eczema. For each of the disease, further study has
been carried out. Based on the samples available from the database, an analysis of selected
Ąngerprint images has been conducted and disease-speciĄc features described. Based on
the analysis, design of a method for the speciĄc disease generation has been proposed.

The designed methods have been implemented as modules for the Fingerprint disease
simulator serving as a base for possible future extensions in form of new modules simulating
other diseases into synthetic Ąngerprint images. Tools implemented for automation of the
process of generating the dataset of synthetic Ąngerprints using SFinGe application has been
described together with other tools and libraries used to develop the Fingerprint disease
simulator application. An example of outputs from the application have been presented in
the thesis and the full set of output images is available on the DVD attached.

A signiĄcant part of the thesis are experiments conducted in chapter 5. In order to
verify the damaging efect caused to the synthetic Ąngerprints by simulating diseases marks
to them, thirteen datasets (four warts and nine eczema datasets) each containing 250 Ąn-
gerprint images has been generated in total. Each dataset has been created using diferent
parameters so that it could be later examined which parameters afects the Ąngerprint
recognition process in what way. Two methods have been used to verify the Ąngerprints
and assess their quality: VeriFinger by NEUROtechnology and NFIQ 2.0 algorithm by the
NIST.

When evaluated with the VeriFinger algorithm, warts datasets showed decrease in the
matching score depending on the generated warts size. The score for the dataset of warts
with the size parameter set to 10Ű15% and secondary warts generation enabled went as low
as 83.42% of the control dataset score.

Even more signiĄcant was the decrease of matching score for datasets of eczema-afected
Ąngerprints. For datasets with Ąngerprints containing white eczema lines only, the score
dropped by approximately 23Ű24% to 76Ű77% of the control dataset score. It was also found
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that more damaging are thicker lines (score of 78.33% for thickness 5 versus 73.79% for line
thickness 8). By far, the most damaging efect on the Ąngerprint ridge structure have eczema
patches. The matching score of datasets generated with the patches enabled dropped to
68.20% of the control group score. When patches and eczema lines were combined, the
matching score recorded went down to only 64.30%.

As far as the quality assessment is concerned, the Ąnal score of the NFIQ 2.0 quality
assessment tool did not reĆect changes made by the Fingerprint disease simulator as ex-
pected. The reason for this is that the Ąnal score is computed based on fourteen diferent
quality features, each of them having various weight in the algorithm. Therefore, several
speciĄc quality features have been selected instead and their results are discussed further.

For warts datasets, there has been an increase in minutiae count compared to the
control dataset (up to 45 versus 36 detected minutiae per Ąngerprint) meaning that the
disease marks simulated by the Fingerprint disease simulator create new false minutiae in
the Ąngerprint. Along with that, the quality of minutiae decreased signiĄcantly, measured
by two diferent methods (by up to 14 percent points and by up to 22 percent points).
Other quality features changed only slightly.

Eczema datasets showed almost no new false minutiae creation (except for the last
dataset combining the eczema patches and white lines, where the minutiae count rose to
40 compared to 36 minutiae per Ąngerprint for the control dataset). However, the quality
of the minutiae dropped signiĄcantly, mainly in datasets with large number of generated
patches. The quality dropped by up to 9 percent points by one measuring and by up to 32
percent points measured by the second method. Also the other two quality features (ROI
Relative Orientation Map Coherence Sum and Uniformity of Image) dropped signiĄcantly
for the datasets with large number of generated patches (from 75% down to 67% for the
OM Coherence and from 53.72% down to 37.58% for the Uniformity of Image).

All in all, the changes to the synthetic Ąngerprints made by the Fingerprint disease
generator are well-measurable. In case of warts, the main aspect inĆuencing the damage
extent is the size of the generated warts and the amount of them. As far as atopic eczema is
concerned, the main inĆuencing aspect is the count of eczema patches, while eczema white
lines have lesser efect.

The Fingerprint disease simulator has been designed so that it can be extended with
new modules simulating other Ąngerprint diseases than warts and atopic eczema. Having
worked with such a tool, matching algorithms could proĄt from the virtually unlimited
amount of Ąngerprints generated in order to adapt themselves and improve the Ąngerprint
recognition of Ąngerprints with various diseases.
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