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Chapter 1

Introduction

Orthogonal functions are used in many different fields thanks to their properties suit-
able for finite precision computation. In this thesis, we will introduce the methods
for continuous-time dynamical system identification and signal compression with the
use of the generalized Laguerre functions. In the second chapter, we will show the
definitions and basic properties of the generalized Laguerre polynomials and functions.
The third chapter is devoted to the proposed method for system identification with
the generalized Laguerre functions. After some motivational examples of continuous-
time approach the least squares method for continuous-time identification will be
described. Then the method for system identification with the Laguerre functions will
be introduced. The proposed method was presented in [1, 2, 3] and in the upcoming
publication from the conference ICNAAM 2016 “Continuous Time Models Identifica-
tion with Laguerre Functions”, which will be published in 2017. In the fourth chapter
the question of the optimal choice of the generalization parameter α and the time-scale
parameter p will be studied. It will be shown that increasing the value of time scale
parameter p results in faster convergence to zero and increasing the value of α re-
sults in a more slowly starting weight function under which the generalized Laguerre
polynomials are developed. In the fifth chapter we will take a look on the model
reduction of the large-scale identified systems. The described identification method
often produces systems with orders much higher than those of the original systems.
We have to reduce the order of the model. In the sixth chapter the proposed identi-
fication method and the least squares method will be compared on the examples of
the system identification. Seventh chapter will deal with the signal compression using
the discrete cosine transform and discrete Laguerre transform. The basic definitions
will be shown and the described transforms will be compared on the examples of the
signal compression. The generalized discrete Laguerre transform will be proposed and
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compared with standard discrete Laguerre transform and discrete cosine transform.
The work from seventh chapter was presented in [4, 5]. The contribution of this thesis
is the introduction of the generalized Laguerre functions into the systems and signals
modeling field. The usage of the generalized Laguerre function instead of the simple
Laguerre functions in these fields and searching for the optimal parameters α and
p is quite a new topic. There are some articles, mostly in the field of theoretical
mathematics, which deal with the generalized Laguerre functions, but these functions
definitely deserve more attention in the practical applications.

In the next chapter we will start with the basic definitions of generalized Laguerre
polynomials and functions.
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Chapter 2

Laguerre functions and their

applications

2.1 Laguerre polynomials and functions

Historically, the Laguerre polynomials were introduced by Edmond Laguerre as poly-
nomial solutions of the Laguerre differential equation in 1879 [6]; since then, they
have been widely applied on various problems in mathematics, physics, and electrical
engineering.

In the following, some basic definitions will be presented. The generalized Laguerre
polynomials l

(α)
n (t) are the solution of the differential equation

ty
′′

+ (α+ 1− t)y
′

+ ny = 0, n ∈ N0, α ∈ (−1,∞). (2.1)

For α = 0 the generalized Laguerre polynomials are often called simple Laguerre
polynomials in the literature. The above differential equation (2.1) can be converted
into the Sturm-Liouville form by multiplying tαe−t

−
d

dt
(tα+1e−ty

′

) = ntαe−ty. (2.2)

Thus, the extensive theory concerning the Sturm-Liouville systems (see [7]) can be
used for analyzing the properties of the solutions of the above equation, i.e., the
generalized Laguerre polynomials.

One of the most important properties of the orthogonal polynomials is that they
satisfy the 3-term recurrence relation; the generalized Laguerre polynomials then sat-
isfy the following formulas:

(n + 1)l
(α)
n+1(t) = (2n+ 1 + α− t)l(α)n (t)− (n+ α)l

(α)
n−1(t), (2.3)
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tl
′(α)
n (t) = nl(α)n (t)− (n + α)l

(α)
n−1(t). (2.4)

The above-shown relations are very important for practical computation.
Further, relevant literature refers to the simple Laguerre polynomials; these can

be obtained simply by putting α = 0:

ln(t) ≡ l(0)n (t). (2.5)

The orthonormalized Laguerre polynomials are denoted as the Laguerre functions
L
(α)
n (t):

L(α)
n (t) =

√

Γ(n + 1)

Γ(n+ α + 1)
e−t/2tα/2l(α)n (t). (2.6)

The special case for α = 0 is

L(0)
n (t) = e−

t

2 l(0)n (t). (2.7)

These functions are often called the simple Laguerre functions (SLF).
The time-scale parameter p can be introduced into the definition of the Laguerre

polynomials and functions, see [8]

l(α)n (t, p) ≡ lαn(2pt) =
t−αe2pt

n!

dn

dtn
(e−2pttn+α), (2.8)

L(α)
n (t, p) =

√

2pΓ(n+ 1)

Γ(n+ α+ 1)
e−pt(2pt)α/2lαn(t, p). (2.9)

The choice of the time-scale parameter p and the generalization parameter α is
crucial for the quality of the approximation of the system with the finite series of the
Laguerre functions, this problem will be discussed below.
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Chapter 3

The generalized Laguerre functions

for continuous-time system

identification

3.1 Identification of continuous-time system from

sampled data

Let us assume a continuous time linear dynamical system described by the linear
differential equation with constant coefficients. Let u(t) be the input signal and y(t)
the output signal.

A(p)y(t) = B(p)u(t) + e(t), (3.1)

y(t) = F (p)u(t) + ξ(t), ξ(t) =
1

A(p)
e(t), (3.2)

F (p) =
B(p)

A(p)
=

b0p
m + b1p

m−1 + . . .+ bm
pn + a1pn−1 + . . .+ an

, n ≥ m. (3.3)

p is the time-domain differentiation operator, i.e

px(t) =
dx(t)

dt
, (3.4)

and the additive terms e(t), ξ(t) represents the noise.
Given this description, the identification problem is to determine a suitable model

structure for (3.2) and then estimate the parameters that characterize this structure,
based on the sampled input and output data ZN = {u(tk), y(tk)}

N
k=1.
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3.2 Description of the GLF method

The history of using the Laguerre orthonormal functions in system modeling and iden-
tification since their introduction in [9, 10] and [11] is rather long, with many papers
documenting the differing theoretical approaches. In [12] the Laguerre functions were
applied for the identification of the finite expansion of the transfer function. The ap-
proach in [12] was further developed in [13] with the use of the Kautz functions and in
[14] with the generalized orthonormal basis functions. In [15] it was proved that nth
order transfer function can be expanded into the ratio of two linear combinations of
n Laguerre functions and the coefficients of these combinations were identified. This
was an alternative approach to the transfer function approximated by a finite sum of
orthonormal basis functions in [12], [13] and [14]. In [16] the signal transformation
using finitely-supported filter kernels generated from Laguerre basis functions was pro-
posed in order to avoid the calculation with infinite integral during the expansion of
observation signals with Laguerre basis functions. In this section we will present new
method for identification of the dynamical systems based on the transform of their
inputs and outputs instead of the expansion of the transfer functions. The inputs and
outputs will be expanded into the generalized Laguerre functions basis.

Let us assume that the input and output signals are square-integrable in the
Lebesgue sense, i.e.,

u(t), y(t) ∈ L2[0,∞). (3.5)

Thus, we can expand the input and output signals into the generalized Laguerre
function series L

(α)
n (t, p)

L(α)
n (t, p) =

√

2pΓ(n+ 1)

Γ(n+ α+ 1)
e−pt(2pt)α/2lαn(t, p), (3.6)

with the time-scale parameter p and the generalization parameter α

u(t) =
∞
∑

n=0

Un(α1, p1)L
(α1)
n (t, p1), (3.7)

y(t) =

∞
∑

n=0

Yn(α2, p2)L
(α2)
n (t, p2). (3.8)

The generalized Laguerre functions are orthonormal in the [0,∞), and therefore
the coefficients Un(α1, p1), Yn(α2, p2) can be expressed as

Un(α1, p1) =

∫

∞

0

x(t)L(α1)
n (t, p1)dt, (3.9)
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Yn(α2, p2) =

∫

∞

0

y(t)L(α2)
n (t, p2)dt. (3.10)

For the Laplace images of the input and output of the system (3.2), we have the
equation

L{y(t)} =
B(s)

A(s)
L{u(t)}, (3.11)

where L is the symbol of the Laplace transform. Additional computation then yields

∞
∑

n=0

Yn(α2, p2)L{L
(α2)
n (t, p2)} =

B(s)

A(s)

∞
∑

n=0

Un(α1, p1)L{L
(α1)
n (t, p1)}. (3.12)

For the Laplace transform of the generalized Laguerre function, we have the iden-
tity

L{L(α)
n (t, p)} = Φ(n, α, p)

P
(α)
n (s)

(s+ p)n+1+α/2
, (3.13)

Φ(n, α, p) =
√

(2p)α+1Γ(n+ 1)Γ(n+ α + 1), (3.14)

P (α)
n (s) =

n
∑

m=0

A(α)
n,m

n−m
∑

i=0

(

n−m

i

)

sn−m−ipi, (3.15)

A(α)
n,m =

(−1)m(2p)mΓ(m+ α/2 + 1)

m!(n−m)!Γ(m+ α + 1)
. (3.16)

The above expression for the Laplace transform of the generalized Laguerre func-
tions is another form of the identity derived in [17]. By additional editing of the
previously introduced formula (3.12) we obtain

∞
∑

n=0

Yn(α2, p2)Φ(n, α2, p2)
P

(α2)
n (s)

(s+ p2)n+1+α2/2
=

=
B(s)

A(s)

∞
∑

n=0

Un(α1, p1)Φ(n, α1, p1)
P

(α1)
n (s)

(s+ p1)n+1+α1/2
. (3.17)
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This expression comprises only the powers of s; thus, it is sufficient to equate the
coefficients of the same powers of s in order to get the coefficients of the polynomials
A(s), B(s), namely to obtain the unknown transfer function F (s) as a fraction of two
polynomials from the time progression of the input and output signals.

For practical computation, we can obtain only a finite number of terms N1, N2 in
the Fourier expansion series for the input and output signals:

uN1
(t) =

N1
∑

n=0

Un(α1, p1)L
(α1)
n (t, p1), (3.18)

yN2
(t) =

N2
∑

n=0

Yn(α2, p2)L
(α2)
n (t, p2). (3.19)

It is also possible to measure the input and output signals only for the finite time T :

UT
n (α1, p1) =

∫ T

0

u(t)L(α1)
n (t, p1)dt, (3.20)

Y T
n (α2, p2) =

∫ T

0

y(t)L(α2)
n (t, p2)dt. (3.21)

We can write the above equation (3.17) in the form

N2
∑

n=0

Y T
n (α2, p2)Φ(n, α2, p2)

P
(α2)
n (s)

(s+ p2)n+1+α2/2
≈

≈
B(s)

A(s)

N1
∑

n=0

UT
n (α1, p1)Φ(n, α1, p1)

P
(α1)
n (s)

(s+ p1)n+1+α1/2
. (3.22)

After multiplying both sides of the equation by the term

(s+ p2)
N2+1+α2/2(s+ p1)

N1+1+α1/2 (3.23)

and performing some computation, we obtain the following approximation of the trans-
fer function:

F̃ (s,N1, N2, T ) ≈
(s+ p1)

N1+1+α1/2

(s+ p2)N2+1+α2/2
∗

∗

∑N2

n=0 Y
T
n (α2, p2)Φ(n, α2, p2)P

(α2)
n (s)(s+ p2)

N2−n

∑N1

n=0 U
T
n (α1, p1)Φ(n, α1, p1)P

(α1)
n (s)(s+ p1)N1−n

. (3.24)
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The following limit holds

lim
N1→∞

lim
N2→∞

lim
T→∞

F̃ (s,N1, N2, T ) = F (s). (3.25)

The order of the above-approximated system (3.24) is

N = N1 +N2 + 1 +max(α1/2, α2/2). (3.26)

The quality of the approximation depends on the numbers of the Laguerre functions
N1, N2 in the truncated expansions of the input and output signals, on the time-scale
parameters p1, p2, and on the choice of the generalization parameters α1 and α2. The
difference δ between the order of the numerator and the denominator in the transfer
function approximation (3.24) is

δ =
α2 − α1

2
. (3.27)

This can lead us to the non-integer transfer function approximation when the difference
α2 − α1 is not an even integer. In the next chapter we will show how to choose the
optimal parameter α and the time-scale parameter p in the case of approximating the
given signal

x(t) ∈ L2[0,∞) (3.28)

by the truncated series of the GLF

xN(t) =

N
∑

n=0

Xn(α, p)L
(α)
n (t, p). (3.29)
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Chapter 4

Optimal parameters for the

truncated GLF expansion

The choice of the optimal parameter α and the time-scale parameter p during the
approximation of the given signal x(t) ∈ L2[0,∞) by the truncated series of the GLF
was studied in [17]. In this section we will present the results that will be used for the
experiments with system identification in the chapter below.

Increasing the value of time-scale parameter p results in faster convergence to zero.
Increasing the value of α results in a more slowly starting weight function under which
the generalized Laguerre polynomials are developed. In turn, this leads to more slowly
starting generalized Laguerre functions. Thus, with α, the center of energy of these
functions can be shifted in time. Equivalently, a larger value for α results in more
emphasis on the lower frequency components of the functions at the expense of the
higher frequency components.

For functions x(t) ∈ L2(R
+) we have that

(x(t), tx′′(t)) = −(x(t), x′(t))− (x′(t), tx′(t)). (4.1)

This gives us

F (α, p) =
α2

8p
m−1 −

α + 1

2
m0 +

p

2
m1 +

1

2p
m2, (4.2)

where the moments m−1 to m2 are defined as

m−1 = (x(t),
1

t
x(t)), (4.3)

m0 = (x(t), x(t)), (4.4)
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m1 = (x(t), tx(t)), (4.5)

m2 = (x′(t), tx′(t)). (4.6)

Setting the derivative F (α, p) with respect to p equal to zero yields a good time-scale
parameter p for a given order of generalization α

p(α) =

√

α2m−1+4m2

m1

2
. (4.7)

Setting the derivatives of F (α, p) with respect to α and p both equal to zero yields one
unique solution for a good time-scale parameter p and good order of generalization α

p =

√

m−1m2

|m1m−1 −m2
0|
, (4.8)

α =
m0

m−1
2p. (4.9)

The described procedure does not require complete knowledge of x(t), only a few
specific measurements of the function need to be known, and is thus useful in practical
situations with experimental data. According to [17], the obtained time-scale param-
eter p and the order of generalization α are the best that can be found when only the
basic measurements of the function x(t) are available.
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Chapter 5

Model reduction for GLF

approximations

The described approximation method often produces systems with orders much higher
than those of the original systems; we can therefore reduce the order of the model.

The representation of the transfer function (3.3) of the given system can be trans-
formed into state space representation:

∑

=

{

dx(t)
dt

= Ax(t) + Bu(t),
y(t) = Cx(t) +Du(t).

(5.1)

The equations above can be written in the following simple notation for the SISO LTI
system:

∑

=

[

A B
C D

]

∈ R
(N+1)×(N+1). (5.2)

We have to find the approximation ˆ∑ of
∑

ˆ∑
=

[

Â B̂

Ĉ D̂

]

∈ R
(K+1)×(K+1), (5.3)

where K ≪ N . This can be achieved via various methods, see [18, 19]. In this work,
we will use the balanced truncation of the system based on omitting the part of the
system corresponding to the N − K smallest Hankel singular values in the Singular
value decomposition of (5.2). This model reduction scheme is well grounded in theory
and it is commonly used in practical computations. It was introduced in [20, 21] to
the systems and control literature.
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Chapter 6

Examples of system identification

with GLF

6.1 Experiments with systems generated in Mat-

lab

The MATLAB program was used to enable the practical implementation of the idea
defined above. In the first section we will demonstrate the system identification with
dynamical system which were generated in MATLAB. The input signals for the iden-
tification were chosen as u(t) = e−t = L

(0)
0 (t, 1/2), u(t) = te−t and u(t) = e−t cos(t).

In the figures, the step input response of the reduced approximated systems of the
order K with the simple Laguerre functions, with the generalized Laguerre functions
and with LS method with SVF given by L(s) = λ

(s+λ)n
is shown. The n is given by the

order of the original system, λ is chosen larger than the guessed bandwidth (half of
the sampling rate fs), see [22]. The corresponding relative RMS errors (rRMSE)

rRMSE =
RMS(y(t)− ŷ(t))

RMS(y(t))
∗ 100% (6.1)

and graphs of relative approximation errors

y(tk)− ŷ(tk)

y(tk)
(6.2)

are displayed, where y(t) is step input response of the original system and ŷ(t) is step
input response of the approximated systems. The optimal parameters α and p are
chosen for the GLF approximation according to the above chapter. The dominant
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Hankel singular values of the approximated systems of the order N are visualized on
a logarithmic scale. The number of dominant Hankel singular values can help us to
find the order of the original system and to appropriately choose the order K of the
reduced system. In this reduced version of Ph.D. thesis an example of one system is
presented.
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The 1st system is a first order dynamical system with one real pole:

F (s) =
1

5s+ 1
, u(t) = e−t. (6.3)
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Figure 6.1.1: Hankel singular values of the GLF approximation of the 1st system
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Figure 6.1.2: Step input response and relative approximation error of the 1st system
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6.2 Experiments with real-life systems

For the experiments with real life data the universal modules FM2016 for realiza-
tion of physical models of differential equations were made. The universal modules
FM2016 were developed with the help of Czech Science Foundation under the project
16-08549S. Every equation is made from several modules. The universal module de-
sign was made. The parts of differential equations were modeled by plugging different
components into the universal module. The universal module design is shown in the
following figures. The input signals for identification were chosen as u(t) = 10e−8t

and u(t) = 10e−8tcos(t). In the figures, the step input response of the reduced ap-
proximated systems of the order K with the simple Laguerre functions, with the
generalized Laguerre functions and with LS method with SVF. The rRMSE is shown
and the graphs of the approximation error and Hankel singular values for the GLF
approximation are displayed. In this reduced version of Ph.D. thesis an example of
one system is presented.
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The 10th system is a second order dynamical system with two real poles:

F (s) =
0.5

(0.492s+ 1)(0.267s+ 1)
, u(t) = 10e−8t. (6.4)
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Figure 6.2.1: Hankel singular values of the GLF approximation of the 10th system
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Chapter 7

DLT for data compression

7.1 Discrete Laguerre and cosine transforms

In this chapter we will give the short introduction of the discrete orthogonal trans-
forms. The comparison between the discrete Laguerre and cosine transforms (DLT,
DCT) when applied on the data compression task will be presented. The impact of
the choice of the optimal generalization parameter α during the discrete Laguerre
transform with GLF basis functions will be presented.

The DCT was introduced in 1974 into electrical engineering literature by N. Ahmed,
T. Natarajan and K.R. Rao in their article [23]. It is the real version of the discrete
Fourier transform. Nowadays DCT and its modifications like the modified discrete
cosine transform are the cores of many algorithms for data compression and signal
processing. For example, DCT is used in the JPG and MP3 algorithms for image and
sound processing. The main idea behind the use of the orthogonal transforms for data
compression is their so-called “energy compaction property”, see [24]. It means that
the most of the information is stored in the first few Fourier coefficients of the Fourier
series for the original data.

A classical method for generating discrete orthogonal transforms is to start with an
orthonormal set of polynomials and then use the Gauss-Jacobi procedure to generate
the transform matrix. Using this procedure one can derive new transforms.

We will present short overview of the discrete orthogonal transforms, see [25] for
more details. The coefficients of the discrete orthogonal transform of the following
vector z ∈ R

N+1 are defined by the following expression

cn =

N
∑

k=0

[wkφn(tk)]zk, (7.1)
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where φn(t) is set of orthogonal functions and tk are roots of the following equation

φN+1(tk) = 0, k = 0, 1, . . . , N. (7.2)

Coefficients wk are weights of the Gauss quadrature theory, see [26] for the deriva-
tion of the weights wk. The discrete orthogonal transform can be written in the
following matrix form

c = Bz, (7.3)

where
c = [c0c1 . . . cN ]

T , (7.4)

z = [z0z1 . . . zN ]
T . (7.5)

The matrix B is given by

B =











w0φ0(t0) w1φ0(t1) . . . wNφ0(tN)
w0φ1(t0) w1φ1(t1) . . . wNφ1(tN)

...
...

. . .
...

w0φN(t0) w1φN(t1) . . . wNφN(tN )











. (7.6)

Matrix B can be written as a product of two matrices

B = ΦTW, (7.7)

where

Φ =











φ0(t0) φ1(t0) . . . φN(t0)
φ0(t1) φ1(t1) . . . φN(t1)

...
...

. . .
...

φ0(tN) φ1(tN) . . . φN(tN )











. (7.8)

Matrix W is diagonal matrix with the weights wk in the main diagonal, i.e.

W =











w0 0 . . . 0
0 w1 . . . 0
...

...
. . .

...
0 0 . . . wN











. (7.9)
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The inverse discrete orthogonal transform is given by the generalized Fourier series of
the following form

zk =

N
∑

n=0

cnφn(tk). (7.10)

The above expression can be written in the matrix form

z = Φc. (7.11)

Vectors {φn(tk)}
N
n=0 form orthogonal basis in R

N+1, i.e.

N
∑

k=0

wkφm(tk)φn(tk) = δmn. (7.12)

The above equation can be written in the following matrix form

ΦB = IN+1, (7.13)

with the unity matrix IN+1.
The DCT uses as basis functions φn the Chebyshev polynomials. Although there

are many articles about the Laguerre polynomials and functions, the transform simi-
lar to DCT based on the Laguerre orthonormal functions wasn’t introduced till 1995
when the article [26] appeared. In that article the DLT was defined with the help of
Gauss-Laguerre integration in the similar way as the other finite orthonormal trans-
forms. It was suggested, that this transform could lead to the better results in the
data compression tasks than the DCT. It means that the DLT have the same energy
compaction property as the DCT. This will work especially for the vectors, that de-
cay exponentially to zero, i.e., that have the similar behavior as the Laguerre basis
functions.

In [26] the coefficients wk (7.9) were derived for simple Laguerre functions basis
transform, i.e.

wk = −
aN+2

aN+1

1

L
′(0)
N+1(tk, p)L

(0)
N+2(tk, p)

, k = 0, 1, . . . , N, (7.14)

where tk are roots of L
(0)
N+1(t, p) and aN are the coefficients of the terms xN in L

(0)
N (t, p),

aN+2

aN+1

= −
1

N + 2
. (7.15)
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The following recurrence equations hold (see (2.3) and (2.4))

2ptL
′(0)
N+1(t, p) = (N + 1)L

(0)
N+1(t, p)− (N + 1)L

(0)
N (t, p) = (7.16)

= (2pt−N)L
(0)
N+1(t, p) + (N + 2)L

(0)
N+2(t, p). (7.17)

We can consider that tk are roots of L
(0)
N+1(t, p), so

(2ptk −N)L
(0)
N+1(tk, p) = 0. (7.18)

It means that
2ptkL

′(0)
N+1(tk, p) = (N + 2)L

(0)
N+2(tk, p). (7.19)

The above expression (7.14) for the weights wk can be written in the following form

wk =
2ptk

(N + 2)2[L
(0)
N+2(p, tk)]

2
. (7.20)

Note that the derived weights wk for DLT are the Gauss-Laguerre weights of the
Gauss-Laguerre quadrature rule, see [27].

We can derive similar formula for generalized Laguerre functions basis. We can
take the definition of the Gauss-Laguerre quadrature weights for generalized Laguerre
polynomials basis (2.8) from [27], i.e.

wk =
Γ(α+N + 2)tk

(N + 1)!(N + 2)2[l
(α)
N+2(p, tk)]

2(2ptk)αe−2ptk
. (7.21)

When we replace the generalized Laguerre polynomials (2.8) by the generalized
Laguerre functions (2.9) in the above equation we can get the sought formula for the
Gauss-Laguerre weights, i.e.

wk =
2ptk

(N + 2)(α +N + 2)[L
(α)
N+2(p, tk)]

2
. (7.22)

Note that, when
α = 0 (7.23)

the above formula reduces to the formula for the simple Laguerre function basis (7.20),
which was derived in [26].

Since 1995 the DLT was used in the modeling only few times. The article [28]
was published in 1995 after the original article about DLT. In [28] there was shown
the application of the DLT to the speech coding. The DLT was compared to DCT
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in the classic speech coding algorithm [29]. It was shown, that it outperforms the
DCT at low bitrates. In 2000 and 2001 the DLT was applied to the digital image
watermarking by M.S.A. Gilani and A.N. Skodras in their articles [30, 31] and [32].
It was shown that the image quality is better with the use of the DLT instead of the
classical approach with the DCT.

In the next section we will show the examples of the data compression with DLT
similar to the examples of the data compression in the article [26]. We will demonstrate
that with the proper choice of the generalization parameter α we can achieve even
better results than in the [26]. We will use DLTopt: DLT based on the generalized
Laguerre functions with the optimal choice of the parameter α, see (4.9) with the
given time-scale parameter p = 1

2
. The examples of the data compression using DCT,

DLT, DLTopt will be presented.

7.2 Examples of the data compression using DCT

and DLT

Now the following data compression task for z ∈ R
N+1 will be presented. Let’s consider

the generalized Fourier series for the vector z, i.e.,

z =

N
∑

n=0

cnφn,

where {ck} are the Fourier coefficients for some orthonormal basis {φn} of RN+1. Now
consider the truncated expansion for some K ≤ N , i.e.,

ẑ =

K
∑

n=0

cnφn.

The vector reconstruction ẑ is the approximation of the vector z. This move from
the vector z to the vector ẑ is often called the compression of the vector z or simply
the reduction of the model.

In the following there are the pictures of the vector of length 32 reconstruction for
K = 12, 16, 28 using the discrete cosine basis (DCT), simple Laguerre functions basis
(DLT) and generalized Laguerre functions basis (DLTopt) with the optimal choice of
the parameter α. The graphs and tables of the relative compression error (rCE)

rCE =
‖z − ẑ‖2
‖z‖2

(7.24)

are shown with K = 12, 16, 20, 24, 28. All the experiments were done in MATLAB.
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The 1. vector is sampled exponentially damped sine function. The results for this
vector with DCT and DLT basis were presented in [26], p. 11.

zk = e−0.3(k+1) sin(k + 1), k = 0, 1, . . . , 31.
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Figure 7.2.1: Reconstruction of the 1. vector
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Chapter 8

Conclusion and future work

In this thesis the generalized Laguerre function were introduced and presented as useful
tool in the identification and modeling field. The idea that the optimal choice of the
time-scale parameter p and the generalization parameter α can bring better results
than the usage of the simple Laguerre functions was presented in the two fields.

The GLF method for identification of continuous-time dynamical systems from
sampled data was introduced in the chapter 3. The method for the optimal choice
of the optimal time-scale parameter p and the generalization parameter α for the
truncated GLF expansion was presented in the chapter 4. The GLF method was
compared with SLF method and least squares SVF method on the continuous-time
dynamical systems. The application of the generalized Laguerre functions in GLF
method with appropriate choice of the parameters α and p can bring better results than
the usage of the simple Laguerre functions in the SLF method and it is comparable
with the traditional least squares SVF method. The number of dominant Hankel
singular values in the GLF approximated system gives the idea of the order of the
identified system. The results of the application of the generalized Laguerre functions
were published in [1, 2, 3].

The introduction of discrete orthogonal transform using the generalized Laguerre
functions was made in the chapter 7 It was shown not only that DLT can outperform
the traditional approach with DCT but also that DLT with optimal choice of the
generalization parameter α DLTopt can bring even better results. The work with
DLT and DLTopt was published in [4, 5].

In the future work we will focus on the more precise choice of the optimal parame-
ters α and p in approximation of the transfer function (3.24) without the substitution
of α by the nearest even number. The substitution of the of the nearest even number is
a must when we want to avoid the non-integer transfer function approximation (3.24).

26



The possible non-integer transfer function approximations with the optimal choice of
parameters α and p will be examined. The fractional order transfer function can be
described by the following formula, see [33]

a0D
αny(t) + a1D

αn−1y(t) + . . .+ anD
α0y(t) = (8.1)

= b0D
βmu(t) + b1D

βm−1u(t) + . . .+ bmD
β0u(t), (8.2)

where Dγ is fractional derivative

Dγf(t) = lim
h→0

h−γ

[ t
h
]

∑

j=0

(−1)j
(

γ

j

)

f(t− jh). (8.3)
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Abstract: This thesis deals with the use of the Laguerre functions in system identi-
fication and modeling. After the short introduction the definition of the Laguerre
polynomials and functions is given. The method for system identification of the
continuous-time dynamical systems from discrete sampled data with generalized La-
guerre functions is introduced and compared with the least squares method. The
choice of the optimal parameters p and α for finite Fourier series with generalized La-
guerre functions is discussed. The proposed identification method is compared with
the least squares method on the examples. The discrete Laguerre transform with sim-
ple and generalized Laguerre functions is introduced. The application of the discrete
Laguerre transform on the data compression is shown on the examples. It is pointed
out that the discrete Laguerre transform can give better results than discrete cosine
transform in the task of the data compression.

Keywords: generalized Laguerre function, compression, polynomial, identification,
modeling

Abstrakt: Tato práce se zabývá použit́ım zobecněných Laguerrových funkćı pro mod-
elováńı a identifikaci dynamických systémů. Po krátkém úvodu je uvedena definice
zobecněných Laguerrových polynomů a funkćı a některé jejich vlastnosti. Je zavedena
metoda pro identifikaci spojitých dynamických systémů z diskrétńıch nasamplovaných
dat s použit́ım zobecněných Laguerrových funkćı a porovnána s metodou nejmenš́ıch
čtverc̊u. Je diskutována volba optimálńıch parametr̊u p a α pro konečné Fourierovy
řady se zobecněnými Laguerrovými funkcemi. Na př́ıkladech je porovnána navržená
identifikačńı metoda s metodou nejmenš́ıch čtverc̊u. Je zavedena diskrétńı Laguer-
rova transformace a jej́ı rozš́ı̌reńı s použit́ım zobecněných Laguerrových funkćı. Na
př́ıkladech je předvedena aplikace diskrétńı Laguerrovy transformace na kompresi dat.
Je ukázáno, že použit́ı diskrétńı Laguerrovy transformace může vést k lepš́ım výsledk̊u
při kompresi dat než tradičńı postup s využit́ım diskrétńı kosinové transformace.

Kĺıčová slova: zobecněná Laguerrova funkce, komprese, polynom, identifikace, mode-
lováńı
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