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A B S T R A C T

A merit of this thesis is to introduce a unified image restoration approach based on a
convolutional neural network which is to some degree degradation type independent.
Convolutional neural network models were trained for two different tasks, a motion
deblurring of license plate images and a removal of artifacts related to lossy image
compression. The capabilities of such models are studied from two main perspectives.
Firstly, how well the model can restore an image compared to the state-of-the-art
methods. Secondly, what is the model’s ability to handle several ranges of the same
degradation type.

An idea of the unified end-to-end approach is based on a recent development of
neural networks and related deep learning in a field of computer vision. The existing
hand-engineered methods of image restoration are often highly specialized for a given
degradation type and in fact, define state of the art in several image restoration tasks.
The end-to-end approach allows to directly train the required model on specifically
corrupted images, and, further, to restore various levels of corruption with a single
model.

For motion deblurring, the end-to-end mapping model derived from models used
in computer vision is deployed. Compression artifacts are restored with similar end-
to-end based model further enhanced using specialized objective functions together
with a network skip architecture.

A direct comparison of the convolutional network based models and engineered
methods shows that the data-driven approach provides beyond state-of-the-art results
with a high ability to generalize over different levels of degradations. Based on the
achieved results, this work presents the convolutional neural network based methods
suggesting a possibility having the unified approach used for wide range of image
restoration tasks.
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1I N T R O D U C T I O N

In 1943 Warren S. McCulloch, a neurophysiologist, together with Walter Pitts, a math-
ematician, published their work A logical calculus of the idea immanent in nervous activity
which is in the field of artificial neural networks considered to be one of the first at-
tempts to define and design a model of a very simplified network reflecting the real
neural architecture. During more than 70 years, the neural network based models
were developed into more complex and in several aspects more by nature inspired
architectures. Nowadays, the most visible Artificial Neural Network (NN) impact is
in the tasks of speech recognition and computer vision where the ongoing research
develops fast and almost continuously reveals new knowledge.

The primary objective of this thesis involves the NN deployment in image restora-
tion which, by its nature, is part of the more general image processing field. Such
an idea does not evolve for the first time. However, the presented image restoration
is framed by a unified approach based on a data-driven Convolutional Neural Net-
work (CNN) model. This idea is introduced in more detail on two examples of common
image restoration tasks such as an image deblurring, i. e. restoring the blurred image
into its sharp representation, and an image artifacts removal.

A well-established approach exists to restore the degradation caused by blur which
consists of several steps. First, the model of the process blurring the image has to
be defined. Based on this model, the so-called Point Spread Function (PSF) is derived.
Second, having the PSF, the blurred image can be reversed into its sharp representation
using deconvolution. The approach differs in the case of image artifacts removal. The
degradation process has to be modeled as well; however, the method to remove or at
least to suppress the artifacts is diametrically different from the one for deblurring.

Compared to the traditional engineered methods designed for a particular type of
corruption restoration, the NN allows using the same NN based model just trained on
different data. A single model used for arbitrary corruption restoration would be the
desired outcome, which, considering the capabilities the neural networks have, should
not be so much unrealistic. However, this is not the case. This thesis focuses on the
utilization of a NN as the primary approach in image restoration, which may differ in
training or particular architecture providing significant and state-of-the-art compara-
ble results. There exist various published methods in image processing which make
use of NN. The selected restoration tasks are often considered in the examples includ-
ing traffic surveillance system, the production line monitoring system, or any utiliza-
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introduction 2

tion of low-quality image capture devices. In a case of artifacts removal it consists of
low-quality bandwidth, i. e. images may be heavily compressed and later restored.

objectives The main hypothesis of this thesis and the related objectives can be
summarized as follows. Most of the different image restoration methods is replaceable by a
unified approach represented by CNN models which are end-to-end trained and often achieves
state-of-the-art or even beyond results. These models may differ in particular architecture
or in the objectives they are trained for. The end-to-end mapping considers the direct
transformation from a corrupted representation of a restored image. To provide the
evidence showing the validity of such a hypothesis, two various image restoration
tasks are selected.

Motion Deblurring The deblurring, namely the motion deblurring, is evaluated on
the specific text images including the license plates captured by the surveillance sys-
tem. In this task, the primary attention will be given on the capability of deblurring
itself under the assumption of not known blur parameters, i. e. the model will provide
a blind deconvolution. CNN deblurring model will be examined to reveal its capacity
which may allow using a single model for a large range of possible blurs.

Artifacts Removal The artifacts comprise a non-linear corruption compared to the
linear blur degradation. In this task, the same approach of CNN as in motion deblur-
ring comprise the unified approach. Next to the simple architecture used in the direct
end-to-end mapping approach, several different objectives the model is trained for
together with an architecture extension are studied. Finally, the CNN based image
restoration applied directly on the JPEG coefficients instead of pixels is proposed and
described. Considering the deployment of a CNN model in different data domain, the
achieved results may support the idea of a single CNN based approach for different
tasks of image restoration.

thesis outline engineered image restoration briefly introduces the mo-
tion blur and the high compression artifacts. cnn image restoration comprises
the core hypothesis of this thesis with the detailed description of the objectives framed
by the principle idea of a single unified approach. experiments provides the eval-
uations and results showing the validity of the presented hypothesis and also offers
the possible extensions to the introduced models with the hints for further research.
conclusion summarizes the whole work, highlights achievements, and with a con-
clusion based on the results closes this thesis.



2E N G I N E E R E D I M A G E R E S T O R AT I O N

Image restoration is generally a transformation of a damaged image on an undistorted
image. This chapter introduces the selected degradations and describes various hand
engineered widely used methods for their restoration. Image restoration1, in the scope
of this thesis, consists of two different inverse problems. Motion deblurring can be un-
derstood as a linear inverse transformation described as deconvolution. In contrary,
a restoration of lossy JPEG compression represents the non-linear inverse transfor-
mation which, generally, is an ill-posed2 problem because the transformation can be
non-invertible. JPEG compression, with a low-quality setting, produces the blocking
artifact and the ringing – Gibbs phenomenon.

In this thesis, an image is understood as a finite matrix. Precisely, an image ex-
pressed as a continues function f (x,y) of two coordinates in the plane is sampled into
a matrix M×N, where each sample is quantized to an integer value of K intervals [1].
Three types of images are considered, latent3 image represents an ideal image which
does not suffer from any corruption and it is denoted as x. An undistorted image
represents the estimation of the latent image and is denoted as x̂. Finally, a distorted
image is the result of the process modifying a latent image and is denoted as y. In
this work, the terms like degradation, corruption, damage, etc., are understood as
synonyms for a general process modifying the latent images.

Both types of degradation can be decomposed into an operator applied to a discrete
image and additive noise. The model [2] considering the discrete property can be
written

y = Ux+W , (2.1)

where y is the degraded image, x is the latent image, U represents the discrete opera-
tor – motion blur or JPEG artifacts, and W is an additive noise. The discrete operator
U can be represented as a linear operation, i. e. convolution, or a non-linear operation,
the discrete cosine transform with quantization.

This chapter introduces both of previously mentioned degradations and the meth-
ods of its restoration. Motion blur is described with examples of some simple yet
typical linear operators and its outcomes. Next, a basic motion blur Point Spread

1 As both degradations can be well modeled, the inverse transformation is therefore referred as restoration.
Image enhancement, on the other hand, does not suppose a strong model.

2 An incorrectly or improperly posed problem.
3 The original meaning is related to exposed photosensitive material – photographic film.
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2.1 motion blur 4

(a) (b)

Figure 2.1: An uniform motion blur (a) with a vector field representing the spatial blur and a
non-uniform blur (b).

Function (PSF) estimation is introduced to compute the Wiener filter and produce the
estimated sharp image. A state-of-the-art text-oriented deconvolution method – L0-
regularized intensity and gradient prior [3] is described to be later on compared with
the introduced data-driven learned CNN based approach.

JPEG compression based degradation is mentioned with the emphasize on stages of
transformation pipeline where the compression artifacts come from. Methods dealing
with these artifacts are mentioned with a description of the current state-of-the-art
Shape Adaptive Discrete Cosine Transform method [4, 5]. The majority of hand engi-
neered methods usually consist of several steps based on an analytical solution. This
chapter briefly introduces several of such methods to highlight the difference between
data-driven methods which a CNN is a part of.

2.1 motion blur

Digital image restoration related, beside others, to the motion blur massively ap-
peared with the space programs in 1950s. The rising amount of aerial pictures taken
during the missions were often subject to many photographic degradations – includ-
ing the motion blur [6]. This is often caused by a shake of a camera or a moving
object in the scene. Degraded images can be uniformly or non-uniformly blurred. A
convenient example of the easier case – uniform blur can be found in surveillance
systems where the camera is fixed and a moving object appears captured with longer
exposure. A uniform blur is represented solely by a single PSF applied on the entire
image. Non-uniform blur may often be related to an optics distortion, camera rotation,
or objects moving in the scene with different speed or in various distances and con-
sists of several PSF describing the blur in a particular part in the image. Both types of
blur, uniform and non-uniform is shown in Figure 2.1. Direct solution of (2.2) leads to
the inverse filter with all the drawbacks mentioned later. In a case of considering the
noise and keeping the assumption of linearity, the Wiener filter is usually used. This
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Figure 2.2: The sharp image x blurred with the motion blur PSF g. The result is an uniformly
blurred image y.

may be based on known or unknown PSF – in such a case the transformation called a
non-blind or blind deconvolution. Often the existing methods of blind deconvolution
concentrated in estimating the single blur PSF for the entire image. This is valid for a
restricted set of applications but generally, such an assumption is far being satisfied
in the case of objects which in the scene move independently.

In case of an uniform motion blur, the equation (2.1) can be derived into a model
described as

y = x ∗ g+w , (2.2)

where y is the captured motion blurred image, x is the sharp latent image. The opera-
tor U (2.1) becomes the convolution ∗ with a shift invariant PSF g representing a degra-
dation due to motion and optics imperfections, and, finally, w is an additive random
noise with zero mean Gaussian distribution. Figure 2.2 shows the example of motion
blurred license plate image with the corresponding PSF. The presented model (2.2)
rarely, if any, match the realistic conditions, e.g. optics is not exactly shift-invariant,
digital imaging sensors do not have the precise Gaussian distribution of noise etc.

2.2 image compression – jpeg

Citing the ITU [7] Recommendations, Joint Photographic Experts Group (JPEG) was
formed in 1986 to establish a standard for the sequential progressive gray-scale and
color images. The abbreviation JPEG used for the file format itself is an informal name
for the JPEG File Interchange Format (JFIF) [8] used mainly for images processed by
computer software or Exchangeable Image File Format (EXIF) [9] used by imaging
cameras. A typical compression ratio of lossy JPEG is approximately 10:1. In the case
of the higher compression ratio, the image degradation becomes much more percep-
tible indicated by the blocking and ringing artifacts Figure 2.3. This section provides
the short description of JPEG compression pipeline focusing on the source of artifacts.

JPEG compression artifacts suppression has several considerable applications
where data acquisition is expensive, difficult or demanding. For instance, the image
or video playing over unreliable or low-bandwidth data connection. Image process-
ing with low compression quality in surveillance systems encompasses application
from traffic to production line monitoring. Its massive employment can be in the
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(a) (b)

Figure 2.3: The JPEG artifacts in the form of the blocking (a) on the left and ringing (b) on the
right which is visible on the edges. The monarch image is here compressed with the
quality 10 and it is selected from LIVE1 image dataset [10].

low-quality images preview in systems where the storage together with bandwidth
capacity matters.

2.2.1 JPEG Compression Pipeline

The compression pipeline as introduced in [7] consists of various steps which differ
according the lossy or lossless compression. The first one, lossy, is Discrete Cosine
Transform (DCT) based Figure 2.4 and allows depending on the characteristics of the
particular image as well as on desired picture quality to set the required amount of
compression. Lossy image compression, generally, achieves high compression ratios
through an elimination of information that does not contribute to a human perception
of images, or contributes as little as possible. The second one, lossless coding, is based
on predictor definition and Huffman or arithmetic coding rather than DCT.

Firstly, the image color space is transformed from RGB to Y′CBCR representing
the luma Y′, CB blue-difference, and CR red-difference chroma components. Usually,
the chroma components are down-sampled due to lower human sensitivity to colors
compared to brightness intensities. Secondly, during encoding, the input image is
split into 8× 8 blocks which are transformed by the forward DCT into a 64 values
referred as the DCT coefficients which represent the particular frequencies the DCT

block consist of.
The quantization step in JPEG compression pipeline actually causes a non-linear

degradation based on the compression quality. The quantized DC coefficient is then
treated separately from the remaining quantized AC coefficients. Its value is based on
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Figure 2.4: The JPEG compression pipeline with the highlighted DCT encoder part.

the difference of the previous DC value i. e. the very first DC coefficient is the reference
one for all the subsequent DCs. Next, the coefficients are passed to an entropy encod-
ing process which, losslessly, compress the data. Decoding is proceed in the reverse
order, where the dequantized coefficients B are transformed by the Inverse Discrete
Cosine Transform (IDCT). The main degradation sources are 8× 8 block sampling and
related quantization step with following rounding operation.

2.3 summary on image degradations

Two different image degradation types were introduced, motion blur and the JPEG

related artifacts. The blur in the image is usually a consequence of a single reason, the
long exposure time, which is often caused by several factors. The motion blur is a lin-
ear transformation where the image information is not reduced but only transformed.
This yields to the straightforward solution, i. e. the deconvolution of the blurred image
to restore the latent sharp image. Several related problems can and often do occur like
the noise in the image which makes the deconvolution hard and requires specialized
approaches. Often the estimation of PSF is performed with the external knowledge
represented like the prior as for example the distribution of gradients in the sharp
image.

The JPEG artifacts solely caused by the high compression ratio differs from the
motion blur primarily in lost image information. The artifact removal is therefore
completely different from the methods for deblurring. However, the prior in the form
of a regular grid is often used to deal with the blocking artifacts. An important thing
to notice is the diversity of approaches the engineered restoration consists of.



3C N N I M A G E R E S T O R AT I O N

Image restoration based on CNN representing an unified approach is the core idea
of this thesis. The unified method is based on an assumption of a single end-to-end
model which directly maps the degraded image on the restored image. This model
is purely data driven and in fact, may differ in its architecture which comprises the
number of neurons, depth of a model and layers arrangement together with their type.
That allows the end-to-end models shift the effort from designing the specific methods
towards training objective definitions. The end-to-end approach allows simplifying
extend or adapt the model on certain degradation level which involves just to train a
model on new data.

The field of image restoration includes various types of degradations. Within the
scope of this thesis, two different tasks of restoration were selected. It is the motion
deblurring which together with the additive noise represents a linear transformation.
The other is artifacts removal approach which deals with a non-linear transformation
caused by the quantization step in the JPEG compression pipeline. These two types
of degradations are a subject of restoration method based on the data-driven CNN

models.
The majority of engineered restoration approaches comprise a particular processing

pipeline. The deployment of NN in image restoration is usually associated with a
certain step in the pipeline. These are, in fact, the vast majority of image processing NN

approaches described in the previous chapter. Namely, the L0 regularized method [3]
represents the most recent approach for blurred text image restoration. The Shape
Adaptive Discrete Cosine Transform (SA-DCT) [4] is considered to be an up-to-date
advanced method for JPEG artifact removal. Both represent the engineered approaches
with the first-class results.

However, the recently introduced CNN based end-to-end methods provide signifi-
cant outcomes often beyond what the widely used engineered approaches can achieve.
The recent data-driven methods are represented by the text image denoising CNN [11]
or JPEG artifact removal CNN model [12] which is an extension of the super-resolution
model [13].

This chapter formulates the CNN based methods for license plate deblurring and
JPEG artifacts removal. The presented models are based on almost only on the existing
approaches often used in the field of computer vision. Both introduced approaches,
compared to the vision related CNN methods, are extended and adapted for the image

8



3.1 end to end mapping 9

restoration requirements, which yields to regression instead of classification models.
The main concepts are introduced which were used to train and deploy the network
in both image restoration tasks. Follows the description of direct mapping approach.
The improvements based on the skip architecture are introduced with the relation to
gradient vanishing and neuron exploding problems. Several different objectives of the
direct mapping and an initialization proposals are given. The data resampling is pro-
posed to make the objective easier to learn. The chapter is closed by an introduction
to the end-to-end approach for the nonimage data restoration focused directly on the
JPEG coefficients.

hypothesis Most of the different image restoration methods is replaceable by a unified
approach represented by CNN models which are end-to-end trained and often achieves state-of-
the-art or even beyond results. These models may differ in particular architecture or in
the objectives they are trained for. The term unified covers the data-driven approach
which adapts to a particular type of degradation, it does not inherently mean a single
model. Different training objectives provide various speeds of convergence and rarely
better models as well. The end-to-end mapping considers the direct transformation
from a corrupted representation of a restored image. On the other hand, this approach
would allow just to obtain a model for a particular type of degradation which needs
to be restored. The following text comprises several ideas, assumptions, and consider-
ations framed by the unified CNN based approach for image restoration. Based on the
provided experiments, it often does not finally depend on the extensions primarily in
the sense of performance, but in particular cases, different train objectives speed up
the training in the sense of convergence time.

3.1 end to end mapping

To introduce the end-to-end mapping based on the data-driven learned CNN model,
the usual restoration pipelines of deblurring and image artifacts removal are quickly
summarized. The common approach of deblurring is to estimate the PSF the image
was corrupted with and to use it to restore its sharp representation. The restoration
can be computed locally using the deconvolution with the inverse PSF or globally
based on some specific global operator. However, estimating the PSF in a case of the
blind scenario is an ill-posed problem. Several approaches were presented using the
natural image priors, the histogram of gradients in the sharp image distribution, the
specific spectrum properties in the frequency domain and other priors. Both steps,
the PSF estimation, and the consequent deconvolution are prone to fail due to the
noise, significant outliers, and other related causes. Thus, image deblurring is a spe-
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(a) (b)

Figure 3.1: The end-to-end mapping (a) is a direct transformation from the degraded image to
its restored representation. In contrary, the recent engineered and learned methods
(b) usually estimate the PSF to deconvolve the image.

cialized processing pipeline. The methods for JPEG artifacts removal, from the simple
yet widely used Simple Postprocessing (SPP) included in FFmpeg up to the SA-DCT uti-
lizing the adaptive shape support to estimate the restoration, present the engineered
post-processing approaches. These are entirely different from the methods for deblur-
ring. Being highly specialized is the only common thing they share.

That is not the case of the end-to-end mapping approach considered in this thesis.
This data-driven approach is based on the CNN, specifically the Fully Convolutional
Network. The general Fully Convolutional Network (FCN) model is trained to process
the input image directly. The image is transformed – scattered through the network
layers in the feedforward transformation. That consists of gradually applied nonlinear-
ity operators and convolutions. The whole network is trained to estimate the restored
image or the error being the difference between the degraded and restored image. The
last layer finally outputs the data straight in the pixel format with an arbitrary num-
ber of channels. Compared to the majority of previously learned methods, which com-
prise several steps including PSF estimation and consequent restoration, this approach
provides quantitative simplification and simultaneously the qualitative improvement.
The direct end-to-end mapping compared to the different approach based on a PSF

estimation is shown in Figure 3.1. The definition is written

x̂ = FL (W,y) , (3.1)

where L defines the number of layers, x̂ is the estimated non-degraded latent image
x, y represents the input image corrupted by an arbitrary distortion, and W are the
network weights and biases.

The common assumption related to the CNN depth, i. e. number of layers, is that the
deeper models provide better results [14, 15]. That is in regards to reviewing the net-
work as a complex data transformation where the layers compose a feature hierarchy
representation. This thesis put the emphasize on the end-to-end models considering
the ability to generalize over various parameter ranges in a restoration task to pro-
vide a single and unified model. The regression model is proposed, which in contrary
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to the classification, is generally harder to train1 together with higher acquirements
on the numerical precision. Finally, the end-to-end mapping architecture allows to be
quite easily trained for specific parameters in case if needed, i. e. refine the model in
case the parameters are roughly known. This approach was initially applied in the
text denoising model presented in [11], for superresolution tasks [13, 16], and also for
artifacts reduction [12]. Within this thesis, the end-to-end model is studied for two
specific yet different image tasks, the motion deblurring, and artifacts removal.

3.2 architecture extension

Deeper networks may have problems with exploding and vanishing gradients and
they may take a long time to learn to propagate information through a large number
of layers efficiently. The problems with the gradients can be eliminated by proper
initialization [17, 18, 19] which takes effect in the beginning and predicts the overall
training speed. The skip architecture influences the network weights during the whole
training. This behavior is significant in a case the whole natural image propagates
through a deep network in the end-to-end mapping approach.

Training deep models in case of image restoration are still quite a challenge. The
problems with propagating information through many layers can be alleviated by
bypassing some more deep layers [20]. Such an approach, the skip architecture, can
beneficially improve the novel end-to-end methods as it contributes to building a
deeper model. The goal of the skip architecture in the image restoration is to allow
the network to pass geometric information easily from the input to the output, and
to allow for more complex reasoning about the image content in the middle layers,
e. g. in case of artifacts removal, what is an artifact and what local context information
should be used to restore the image.

An arbitrary CNN model FL of depth L which utilizes the skip architecture is shown
on Figure 3.2 and could be written as

fl‖s(x) = hl‖s

(
Wl‖s

(
fl−1 (x) ‖ fs (x)

))
FL (W, x) =

(
fL ◦ . . . ◦ fl‖s ◦ . . . ◦ fs ◦ . . . ◦ f1

)
(x)

y = FL(W, x) ,

(3.2)

where the operator ‖ denotes the concatenation and fs is the skip layer, i. e. the one
to be transfered, and fl‖s is the layer to which the skip one is concatenated to. The
fl‖s layer is defined as a function which is computed on the concatenated activation
maps obtained from fl−1 and previous layer fs. The W denotes the CNN weights,

1 Classification outcomes are much more limited compared to regression results, namely, compare classifying
into two classes and the real number prediction.
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Figure 3.2: The skip architecture allows propagating the low-level image features from the front
layer in the network to deeper layers.

trainable parameters including the biases and hl is an arbitrary activation function.
The skip architecture does not have to utilize the concatenation only but can be based
on addition as can be found in Long et al. [20] who adds the activations together. The
skip architecture utilizing the concatenation of activations from the arbitrary previous
layer is proposed to a more challenging task of JPEG artifacts removing.

3.3 specialized objectives

The end-to-end mapping forces the network to transfer the whole general image
through all the convolutional layers interleaved by non-linearities and to restore the
degraded image parts while not touching the uncorrupted patches. It shows that such
a straight approach requires more training, measured by a number of iteration, how-
ever, it does not have to reach the best optimum in a case of restoring complex natural
images. Moreover, the learning of such autoencoder-like mapping in situations where
the input images are highly correlated with the desired outputs may be wasteful espe-
cially for broad and deep networks. It may be one of the main reasons why Dong et al.
[12] were not able to scale up their networks and why they required approximately
107 iterations to train their AR-CNN. Similar problems were reported by Kim et al.
[21].

residual In specific tasks, the residual image can be learned instead of a highly
variable natural image. Such an idea was first introduced by He et al. [22, 23] for a
super-resolution based on the CNN, where the input and output images are highly
correlated. The same approach for JPEG artifact removal is almost simultaneously in-
troduced in this thesis which supports layers to learn a residual of their inputs. Instead
of training the network to restore the whole image, the task could be defined to only
complete the degraded image, i. e. to restore the residual 4x between the input cor-
rupted image y and the original latent uncorrupted image x. The residual objective
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y Δx x^ ^

Figure 3.3: Pixel-to-Residual mapping network scheme.

is suitable for the task like JPEG compression artifacts removal, where the repeated
blocking artifact occurs. The residual objective is written

arg min
W

1

2

N−1∑
i=0

∥∥FL (W,yi) −4xi
∥∥2
2

, (3.3)

where the latent residual is defined as 4x = x− y. The x corresponds to the ground
truth image while the x̂ is the result obtained by the CNN processing. The residual
learning scheme is shown in Figure 3.3. Kim et al. [21] were able to speed up the
training by the factor of up to 104× with the residual learning and it allowed them to
learn much deeper networks – 20 layers compared to three in [13] and four in [12].

edge enhancement Mean square error used in many image restoration meth-
ods does not necessarily well correlate with the image quality perceived by humans.
With convolutional networks, it is relatively easy to use more perceptually valid er-
ror measures as long as they can be efficiently differentiated. Therefore, next to the
residual objective, the edge enhancement learning is proposed to support the human
edge sensitivity perception. The partial first derivatives of the image with the image
itself are the inputs into the loss function. The input is in the form of the transformed
image xe defined as

xe = [x, x ∗ gx, x ∗ gy] , (3.4)

where gx and gy represent the Sobel [24] horizontal respectively vertical operators.
The xe is thus the concatenation of the original image and its horizontal and vertical
edge enhanced representation. The objective utilizing the edge priors in ye and xe is
defined

arg min
W

1

2

N−1∑
i=0

∥∥FL (W,ye i) − xe i
∥∥2
2

. (3.5)

The scheme of edge enhancement deployed in the network architecture shows Fig-
ure 3.4. The assumption is that the addition of the first derivatives should force the
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Figure 3.4: Scheme of a restoration network trained with the emphasize on edges.

network to focus specifically on high-frequency structures such as edges, ringing arti-
facts, and blocking artifacts and it could lead to perceptually better restorations. The
combined edge emphasized loss can be easily implemented in all existing convolu-
tional network frameworks by defining the Sobel derivative kernels as a convolutional
layer with predefined fixed filters.

psnr The quality of the restored images is measured is measured in several metrics,
e. g. the signal focused Peak Signal to Noise Ratio (PSNR) and more human perception
adapted Structural Similarity (SSIM) index [25, 26]. The loss function usually used
based on the squared `2-norm can be with several assumptions swapped to the loss
emphasizing function. The network, therefore, can focus on restoring the image to be
more visually plausible or to provide better values measured by particularly metric.
The loss function based on PSNR is introduced together with its differentiation needed
for the backpropagation, i. e. the chain rule. PSNR based on the Mean Square Error
(MSE) is defined

MSE (x̂, x) =
1

MN

M−1∑
m=0

N−1∑
n=0

(x̂mn − xmn)
2 (3.6)

PSNR (x̂, x) = 10 log10

(
MAX2

MSE (x̂, x)

)
, (3.7)

where x̂ = FL (W,y) is the network restored image and x is the latent uncorrupted
image, and MAX represents the maximum intensity value the image can be of, i. e. 1
in the case oh having the image values in the range [0, 1]. The loss function based on
the PSNR is then defined

arg min
W

(
−10 log10

(
MAX2

MSE (x̂, x)

))
, (3.8)
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where the minus sign is present to keep the minimization, i. e. the gradient descent
approach. Within the CNN based image restoration, the PSNR objective is proposed. Its
differentiation w. r. t. to the input, i. e. the restored image is written

∂PSNR(x̂, x)
∂x̂

=
∂10 log10

(
MAX2

MSE(x̂,x)

)
∂x̂

, (3.9)

which equals to the partial differentiation written in the Jacobian matrix yielding to
just rescaled error

k = 20

(
log(10)

M−1∑
m=0

N−1∑
n=0

(x̂mn − xmn)
2

)−1

∂PSNR(x̂, x)
∂x̂

=


(x00 − t00) k . . . (x0N − t0N) k

...
. . .

...

(xN0 − tM0) k . . . (xMN − tMN) k

 ,

(3.10)

where the small errors has higher cost compared to the large ones. The interpretation
of PSNR loss function in the task of JPEG compression artifacts removal is based on the
sensitivity to distortions in the stationary regions of the image like the sky and the
clearly visible blocking artifacts in such a region. Finetuning the model could utilize
these properties to focus on the ostensibly small errors yet more noticeable compared
to high errors in the image areas with heterogeneous structure.

3.4 task specific modifications

All the mentioned methods operate directly with the image pixels. In a case of a
JPEG file, this leads to an additional postprocessing, which is computed after decod-
ing the image. On the other hand, utilizing the technique of JPEG Quality Transcoder
(JQT) [27] allows to process the DCT coefficients directly. In this thesis, the new ap-
proach of CNN based JPEG file coefficients processing to suppress or remove the high
compression related artifacts is proposed. A scheme of such a network which trans-
forms the JPEG coefficients to coefficients representing the restored image is shown in
Figure 3.5 where, nevertheless, the loss is computed through the pixels.

The coding and decoding pipeline described in Section 2.2.1 transforms the 8× 8
image patches into the 8× 8 of DCT coefficients which correspond to specific frequen-
cies in that patch. These coefficients noted as B are sorted based on their frequencies
in the zig-zag manner. Based on the user specified compression quality the predefined
quantization table Q is selected and the DCT coefficients are quantized and rounded.
The quantization affects the amount of blocking and ringing artifacts and implicates
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two potential types of CNN input, the quantized DCT coefficients B, where the network
is forced to learn the quantization table Q as well, and the DCT coefficients B already
per element multiplied by the quantization table, the QB.

The non-linearity caused by the quantization of otherwise linear DCT transform (??)
affects the network loss function. The properties of the loss computed on quantized B

or quantization table multiplied coefficients QB differ from the loss calculated on the
decoded values – the pixels. That means that the network trained on minimizing the
loss of coefficients is actually producing different restoration compared to training
the network based on the pixel loss. That is given by the different gradients of the
loss computed on pixels versus the coefficients QB. Next, the T.81 recommendation
[7] states the IDCT transformed values have to be clipped to fit into the range of the
image domain which also influences the loss.

The IDCT layer is defined to being able to compute the loss function directly on the
pixels and further backpropagate the loss computed gradients. To follow the chain
rule the IDCT differentiation w. r. t. the input dequantized coefficients QB is defined in
(3.15). Therefore, the backpropagation through the IDCT layer equals to

∂F−1
c (QB)

∂QB
4d = Fc (g) , (3.11)

where the partial differentiation of the IDCT F−1
c multiplied by the gradients 4d from

the layer above is equal to the discrete cosine transform Fc.
The inference of the IDCT differentiation consists of several steps. First, consider to

dequantized coefficients QB to be denoted as c which is defined as c = QB. First, the
partial differentiation of the F−1

c w. r. t. c is written

∂F−1
c (c)mn
∂c

=


∂F−1

c (c)mn
∂c00

. . .
∂F−1

c (c)mn
∂c0,N−1

...
. . .

...
∂F−1

c (c)mn
∂cM−1,0

. . .
∂F−1

c (c)mn
∂cM−1,N−1

 , (3.12)

where the differentiated element of the Jacobian matrix reduces from the summation
to a single expression

∂F−1
c (c)mn
∂cpq

= αpαq cos
(
π (2m+ 1)p

2M

)
cos
(
π (2n+ 1)q

2N

)
. (3.13)

Second, all the Jacobian matrices (3.12) written in the general expression define the
whole 8× 8 differentiated patch w. r. t. c in the form of

∂F−1
c (c)

∂c
=


∂F−1

c (c)00
∂c . . .

∂F−1
c (c)0,N−1

∂c
...

. . .
...

∂F−1
c (c)M−1,0
∂c . . .

∂F−1
c (c)M−1,N−1

∂c

 . (3.14)
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Figure 3.5: DCT-to-Pixel mapping network with a predefined IDCT layer.

Based on this expression, the backpropagation of gradient 4d is equal to the sum-
mation of per element multiplication of the top layer gradients 4d and the corre-
sponding partial differentiations ∂F−1

c (c)mn/∂cpq. That is written as the equation

Fc (·)pq =

M−1∑
m=0

N−1∑
n=0

4dmn
∂F−1
c (c)mn
∂cpq

, (3.15)

which, if expanded, directly equals to the discrete cosine transform Fc ()

Fc (·)pq = αpαq

M−1∑
m=0

N−1∑
n=0

4dmn cos
(
π (2m+ 1)p

2M

)
cos
(
π (2n+ 1)q

2N

)
. (3.16)

The illustration of the gradients backpropagation through the IDCT layer is shown in
Figure 3.6a Based on the defined inverse discrete cosine transform layer, the network
the decoding layer is deployed in is defined

FL (W, x) =
(
F−1
c ◦ fL−1 ◦ . . . ◦ f1

)
(x)

y = FL(W, x) ,
(3.17)

where the loss function is computed directly on the F−1
c output of a layer, i. e. pixels.

In a case of JPEG artifacts, it is simple to define the prior, e. g. the blocking artifacts
occur every 8th pixel. That can be utilized in the form of resampled input which is
illustrated in Figure 3.6b. The input patches are resampled from 8× 8 into 64D vectors.
Meanwhile, the resampled input is proposed to be used with the DCT coefficients. The
same technique is introduced for the pixel input data. However, the motivation to
resample the data differs in both cases, coefficients and pixels. The resampled input
data in the cases of the quantized or dequantized coefficients provides the network
the possibility to learn the spatial filters which can utilize the continuity of the related
frequencies represented by the coefficients. The resampling, within the pixels based
method, is suitable due to the blocking artifact properties, namely its fixed position
and repeating structure. Resampling these 8× 8 blocks into the 64D channel vectors
can directly support the network to utilize the blocking prior.
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Figure 3.6: The illustration of the backward gradient propagation (a) through the IDCT layer from
right to left. D are the gradients computed in the loss function. The contributions of
all the gradients to every coefficient QBpq shows the left part of the figure (a) and
is equal to the discrete cosine transform Fc (D). The 4 pixel blocks of size 8× 8 (b)
resampled to the 4 64 channel vectors.

3.5 summary

The general end-to-end mapping Convolutional Neural Network approach has been
introduced with several adjustments for the text based image motion deblurring and
JPEG artifacts removal. The concept of the end-to-end mapping has been clarified. Nev-
ertheless, it is not an entirely new technique, this thesis puts the emphasize on such
an approach because it has an impressive potential to be successfully deployed in a
variety of different tasks. The end-to-end data-driven direct mapping has been slightly
improved using the skip architecture which concatenates the previous activations to
the activations deeper in the network. This skip allows to transfer the features of input
data deeper into the network and provide a more complex basis for further reasoning.

A set of specialized objectives has been introduced. These allow the network to fo-
cus on a specific subject to learn like the residual learning which is much less model
capacity demanding compared to the full image end-to-end approach. An edge en-
hancement technique based on the Sobel operators has been proposed to support the
heterogeneous structures in the images. The loss function based on the PSNR has been
introduced to allow the narrowly focused optimization which compared the usually
used MSE based loss function forces the network to rate the errors differently.

Finally, in a case of JPEG artifacts removal, the possibility to suppress the artifacts
directly in the DCT domain is described. The specialized IDCT layer is proposed to
allow the direct end-to-end mapping yet training on the pixel loss function instead of
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coefficient loss function which has different properties. The coefficients arrangement
allows utilizing the samples-coefficients between connectivity and directly learn the
adapted spatial filters. The similar prior and the same approach has been introduced
for pixels, where the resampled data organization from 8× 8 block to the 64D channel
vector allows the network to adapt directly on the fixed blocking artifacts. The exten-
sions and techniques of CNN based model show the applicability and deployment in
the tasks of image restoration which is empirically proved later in this work.



4E X P E R I M E N T S

The CNN models based on the proposals given in the previous chapter are deployed
and studied in the field of image restoration. Namely, it is the motion deblurring
of images captured by the surveillance system and the high compression JPEG arti-
facts removing. Various experiments show the strengths yet also some weaknesses the
CNN models have. The presented approach is viewed from two different perspectives.
Firstly, the contribution which the proposed methods deliver in comparison with the
other widely used approaches is shown. Secondly, the description of how the models
behave, which includes the model generalization possibilities, several model exten-
sion impact, and other more or less task-specific traits, is presented. Almost all the
experiments have very similar structure. This consist of the way data are retrieved, a
model specification, a description of the training procedure, and finally the achieved
results with their interpretation.

The vast majority of data is artificially produced from the latent undistorted, i. e.
ground truth, images. Interestingly, model based on artificial data works very well
as it is shown later in this chapter on the image deblurring task. However, it is not
so much surprising in the case of artifacts removal, where this is the only way to
acquire the training data. It is important to mention that all the experiments were
performed using caffe [28] – the fast open framework for deep learning which allowed
to concentrate on the model itself instead of the network implementation.

In the beginning, the attention is directed to the deblurring of license plate im-
ages [29]. That presents the end-to-end mapping model of 15 layer network. Besides
the reported results beyond state of the art, an interesting generalization ability these
models have is revealed. Various models are trained for an identical degradation of dif-
ferent levels. That shall provide a perspective how well the CNN approach restores the
images of different degradation level compared to blind and non-blind approaches.
The part describing the JPEG artifacts removal [30] addresses the majority of the pro-
posed network enhancements including the different objectives, extended architecture,
and processing of DCT coefficients instead of pixel.

The last part of this chapter names the possible CNN exploitations in various fields
including the surveillance systems, data storage, transfer based services, and user
photo-based applications. The future work and possible research directions based on
the results of this thesis are outlined. Finally, the very last brief summary closes this
chapter.

20
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list of experiments

License plate motion deblurring

Length range
Direction range
Real data deblurring with model trained on artificially blurred data
Optical Character Recognition (OCR) accuracy comparison with state-of-
the-art method

JPEG compression artifacts removal

Three different architectures, L4, L8, and L5
Direct, residual, edge enhancement and PSNR objectives
Comparison with state-of-the art methods
Generalization over various compression qualities restoration
Training dataset size impact
Resampled input
Coefficient based restoration
An impact of quantized vs dequantized coeficients

4.1 cnn for motion deblurring

The majority of methods used for deblurring do not utilize the direct end-to-end
mapping. The only exception is the work of Hradis et al. [11] who focused on noise
corruption and out of focus blurred text restoration. The other methods deploy the
end-to-end mapping but not as an integral solution but more as a subtask [31, 32]
which estimates the PSF to be later used in the deconvolution itself. An experiment
with the non-blind and blind approach as well is performed on the task of license
plate motion deblurring utilizing the 15 layer architecture introduced by [11]. This
experiment addresses the model generalization properties and the comparison with
blind and non-blind deconvolution approaches .

4.1.1 Architecture

This 15 layer fully convolutional network architecture, L15 CNN, is selected to train
the motion deblurring end-to-end mapping model. The reason this model has been
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Figure 4.1: L15 architecture with a number of filters per layer, their spatial size, and the preview
of grouped channels in the second half of the network. L15 consists solely of convo-
lutional layers followed by the ReLU activation layers (not shown) providing the FCN

model.

selected is the success of this model based on the out-of-focus text deblurring results
published in [11]. The motion deblurring L15 network definition is written

L15 (W,y) = (f15 ◦ f14 ◦ . . . ◦ f1) (y)

x̂ = L15(W,y) ,
(4.1)

where y is the degraded input image, W are the network weights including biases, fi
represents the ith convolutional layer with the consequent activation Rectified Linear
Unit (ReLU) function, and x̂ is the restored estimation of the latent sharp image x.
Besides the formal notation, the Figure 4.1 and ?? show and describe the exact network
architecture with several channels grouped together.

The spatial sizes of the network filters and the composition of the layers provides
the network with the receptive field of 50 px. The implementation of convolutions
yields to 25 px crop of the input image. That is caused by computing the convolutions
without any padding. The L15 network architecture consists of grouped data and
related filters in its second half. That helps to reduce the total number of parameters.
Such an architecture is trained on data generated according to various motion blur
parameters, namely the length and direction.

4.1.2 Data

All the data the presented network is trained on, are artificially generated. A random
blur kernel is computed representing simple linear motion blur PSF. The kernels are
generated with the sub-pixel accuracy to cover the generally nondiscrete space, That is
achieved by drawing a line representing the motion blur PSF with the 100× scale and
finally resampled into the required length using pixel area relation method which
gives moiré-free results in image decimation. The final motion blur kernel has odd
dimensions. The same technique is used to sample various directions. The drawn line,
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representing the motion blur, is rotated based on the sampled direction. This kernel
is subsampled into right sized PSF. The motion blurred image is further corrupted
by an additive white noise sampled from the user defined parameters. That helps to
generate artificially blurred images reflecting the natural images captured in the real-
world conditions. Such a data processing allows generating arbitrary linear motion
blur PSF used to produce the final blurred image. With the sub-pixel accuracy, the
data augmentation allows generating random sized training dataset.

In a case of the end-to-end mapping approach, it is crucial that the ground truth x
images are not corrupted. The data used for generating the artificially blurred images
are images captured with various imperfections. These are mostly based on the con-
ditions what the real surveillance system operates in. A small fraction of all images
was therefore mostly blur distorted or captured in a poor light, i. e. contained high
levels of noise. For this reason, the ground truth dataset was processed to filter out
the highly corrupted images. The detection of such images was based on an approach
based on the high and low-frequency ratio. An ad-hoc threshold was chosen based on
the observation to filter out the degraded images. The final dataset consists of 140 k
clean and sharp license plate images.

Nevertheless, the disjunct set of naturally blurred data was collected including 721
images of various motion blurred license plates. These were used for verification the
model works well on naturally blurred images as well, where the blur PSF usually is
not a straight line but reflects some curved trajectory. These images were taken by
two static surveillance cameras controlling the road under different angles with the
restricted range of directions the vehicles could approach. The cameras were set to
capture the images with near uniformly sampled exposition times from 6ms to 12ms
with the step of 2ms on the road where the official speed limit is up to 90 km h−1.
These images were cropped around the license plate and normalized to the size of
264× 128px. They were carefully manually annotated with license plate characters
such that OCR accuracy could be evaluated. The approximate direction range the cap-
tured cars did approach were 37° to 57° and 59° to 79°, see the Figure 4.2.

4.1.3 Training

The pairs of artificial blurred image and its sharp undistorted representation (yi, xi)
were divided into two disjoint parts. The training set which consisted of 126 k pairs
and the testing set which had 14 k pairs of images. All the images were of the same
size 264× 128px. The model was trained on fixed size crops with the dimension of
66× 66px, where 5 randomly sampled crops per training image created the set of
630 k input crops. Because the receptive field of the model is 50px, the output images,
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Figure 4.2: The illustration of the surveillance system images and the correspondent results of
L15. The blue circle shows the approximate direction range the cars usually approach,
where the left range equals to 37° to 57° and the right range to 59° to 79°. The
blurred input and restored license plate images are shown.

the model produce, are only 16× 16px central patches of the input cropped images.
The pair of training data is shown in Figure 4.3.

The whole network was initialized using the modified1 Xavier initialization [18]

Var (Wi) =

√
3

fan-outi
, (4.2)

where the variance distribution of the initialized convolutional layer weights Wi is
related to the number of filters, precisely on the fan-outi parameter which is defined
as spatial filter size × number of filters in the layer fi (??). The network was trained
for 400 k iterations with a mini-batch of 54 samples. The objective was based on mini-
mization the loss function defined as

1

2N

N∑
i=1

∥∥L15 (W,yi) − x̂i
∥∥2
2

, (4.3)

where N is the number of training pairs in the mini-batch of degraded image yi and
its ground truth sharp central patch representation xi. The network took on average
3 days to train on a single Nvidia GeForce 980 GPU. Initial learning rate was set
to 4× 10−5 and it was reduced five times by a factor of 2. The weight update was
performed based on the Stochastic Gradient Descent (SGD) with the momentum equal
to 0.9 and the weight decay 5× 10−4. All the input data were normalized and centered
around zero.

Figure 4.3: The training image pair with the illustrated blurred crop on the left and the equivalent
sharp center patch on the right. In the middle is the magnified motion blur PSF.

1 Based on the implementation in Caffe [28].
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4.1.4 Semi Non-Blind Restoration

Two experiments were performed to assess the behavior of deblurring CNN on motion
blur length and a range of blur directions. These experiments were performed on the
artificially blurred images. The restored image quality was measured based on PSNR

(3.7). The deblurring model is first trained on specific motion blur parameters defined
as the range of the motion blur length and the range of direction.

There were 4 models trained with the fixed direction range to 20° and gradually
increasing the motion blur lengths including 0–5px, 0–9px, 0–13px and 0–17px. The
length was always uniformly sampled from the corresponding range. Figure 4.4a
shows the results of these networks for different blur lengths. These results indicate
that networks trained for shorter blur length range perform better inside these ranges.
However, their results degrade rapidly outside the trained range. The restoration qual-
ity starts to degrade already at the border of the respective ranges. That is probably
because no larger blurs are represented in the respective training sets. The reconstruc-
tion quality decreases linearly for longer blur kernels.

The second experiment is shown in Figure 4.4b assess the performance of the net-
works for different blur direction ranges. Seven models were trained, one model per
different direction range, including the uniformly sampled, 10°, 20°, 40°. 60°, 90°, 130°,
and 180° wide ranges of possible directions. Note that the blur kernels are symmetric
and consequently the largest range of 180° covers all the possible directions. All the
directions were blurred with a length uniformly sampled from 0–13px. The observed
results show similar trends as in the experiment with different blur lengths, the net-
works trained for tighter direction ranges perform better inside these ranges, but their
performance degrades rapidly outside the respective direction ranges.

4.1.5 Blind Restoration of Naturally Blurred Data

Six models were trained to provide the evaluation on the naturally blurred test im-
ages captured by two surveillance cameras. These networks were all trained on blur
kernels covering both cameras, i. e. the range of the blur directions was 50° wide,
which shall be sufficient according to the possible directions of approaching vehicles.
The networks were trained for blur lengths 0–9px, 0–11px, 0–15px, 0–19px, 0–21px,
and 0–23px. The L0-regularized blind deconvolution method by Pan et al. [3] was
selected as a representative of the traditional blind deblurring methods to serve as the
baseline for a model comparison. This method is specifically optimized for images
containing text and it should be suitable for the license plate images as well. An opti-
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Figure 4.4: The graph on the left shows the result of specific length range trained model on
several blur lengths. On the right, the presents results of models trained on specific
ranges evaluated on several direction ranges.

mal parameters of L0-regularized were selected using the grid search directly on the
test images.

Figure 4.5 shows results on the naturally blurred images as an accuracy of an Op-
tical Character Recognition system. The deployed OCR system2 is optimized for li-
cense plates and is used in commercial traffic surveillance systems. The networks
trained for shorter blur perform poorly as the set contains blurs up to 19 px long.
The networks trained for sufficiently long blurs significantly outperform the baseline
blind deconvolution method of Pan et al. [3]. The improvement is from the character
error of 23% down to 9% compared to the L0-regularized which corresponds to rel-
ative improvement by a factor more then 2. It is worth to emphasize that the OCR
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Figure 4.5: The OCR accuracy results of the originally blurred images, L0-regularized blind and
non-blind deconvolved images and the L15 restorations.

2 UnicamLPR, http://www.camea.cz/

http://www.camea.cz/
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Original

Blind L0

L15

Figure 4.6: The naturally blurred license plates sorted from left to right based on the blur amount
with the corresponding deconvolved results of L0-regularized method and the re-
stored L15 images.

accuracy keeps approximately the same for the models trained for long blurs. In a
case of non blind restoration, the L0-regularized method tuned per license plate to
performs similarly to the blind approach based on CNN. However, this requires the
known motion blur parameters for each license plate. Figure 4.6 presents the original
blurred images, reconstructed license plates by L0-regularized blind deconvolution
and the L15 restorations.

4.1.6 Summary on motion deblurring

The evaluated L15 architecture contains of 2.3M unique weight parameters, i. e. the
model occupies approximately 9MiB in memory. Compared to convolutional net-
works used in computer vision tasks, this network is still small and computationally
relatively efficient. It requires 2.3M multiply-accumulate operations per pixel. The
CNN proved to be effective for the naturally blurred images even though they were
trained only on images which were blurred artificially with a simple line kernel. The
deblurring CNN provided superior accuracy of a consequent OCR compared to the
state-of-the-art L0-regularized blind deconvolution tuned for text images [3]. These
results show for the first time that CNNs provide quantitatively better deblurring
quality compared to engineered state-of-the-art blind methods in a practical applica-
tion.

The experiments showed that the quality of reconstructed images could be im-
proved by customizing the CNNs for the specific range of blurs. However, the im-
provement is only modest in the target application, and general networks trained for
a wide range of blurs still provide the high-quality results. The reconstruction quality
declines linearly, in PSNR, with the increasing length of the blur kernels which makes
it easy to predict possible reconstruction quality for larger blurs. Although the net-
works can reconstruct real images which suggest that the kernels used for training
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do not have to match the shape of kernels in a real application too closely, the re-
construction quality degrades quite sharply for blurs which parameters like direction
and length range are outside the trained values. The deblurring CNN are well suited
for embedded applications due to their flexibility, relatively low computational power
requirements, robustness, and the absence of any tunable parameters. The deblurring
CNNs can be considered mature and ready to be deployed in the traffic surveillance
systems.

4.2 cnn for jpeg artifacts removal

The end-to-end mapping network architecture is deployed for JPEG compression arti-
facts removal. Its utilization is principally based on the achieved results of the CNN

model in motion deblurring. The artifacts are caused and clearly visible by a low com-
pression quality. That is caused by setting the higher frequency related coefficients
during the quantization step to zero. On the other hand, this loss is redeemed by
achieving the high compression ratio. The way the coefficients are omitted is related
to the human perception where the less sensitivity correlates with the high frequen-
cies and vice versa.

Several metrics exist to assess the perceptual quality of images objectively. In this
work, the restoration is measured based on PSNR, PSNR-B, and SSIM metrics. Gener-
ally, the most commonly used quality metric is the MSE [26] (3.6). This quantity is
computed by averaging squared intensity differences of the distorted image and the
reference image. That is often expressed in a logarithmic scale as the Peak Signal to
Noise Ratio (PSNR) (3.7). Unfortunately, PSNR and MSE are not necessarily well corre-
lated with the perceptual quality.

The SSIM [25] that compares local patterns of pixel intensities should better correlate
with human perceptual quality. Since the attention is focused on the JPEG artifacts,
the blocking artifacts, a block-sensitive metric referred to as the PSNR-B [33] is used
to provide additional insights. PSNR-B modifies the original PSNR by including an
additional blocking effect factor (BEF). Some experiments report IPSNR which is a
PSNR increase compared to PSNR of the degraded image. IPSNR is more stable across
different dataset and it directly reflects the quality improvement.

In regard to the color space Y′CBCR which represents the luma Y′, CB blue-
difference, and CR red-difference chroma components, the most details are covered in
the Y′ luma channel. That is the primary reason why the main attention in this work
is focused almost on the Y′ luma channel only. Note, that the JPEG compression is by
definition a nonlinear degradation compared to the almost only linear based motion
blur.
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In contrary to the deep L15 network, several small architectures are introduced in-
cluding the 4, 5 and 8 layer networks L4, L5, and L8 respectively. The L4 network is a
simple model similar to the AR-CNN [12] with the main distinctions in the training
and related objective function. The results are compared to AR-CNN, to the widely
regarded deblocking oriented SA-DCT [4, 5], and to a simple postprocessing filter SPP

included in the FFmpeg framework [34]. The deepest L8 network introduces an ex-
tended skip architecture described in Section 3.2. The L5 network is used to compute,
besides the pixels, directly mapping on the DCT coefficients as well. Regarding the
specific architecture and different training dataset, L5 is not directly comparable with
the other architectures.

4.2.1 Architectures

The L4 is a shallow network trained regarding direct, edge enhancement, and residual
objective. The network size is comparable with the AR-CNN which is actually recog-
nized as the state-of-the-art CNN based method. The entire L4 network receptive field
is 19px where, considering the block size of 8× 8, the whole JPEG block and half is
covered on each side, which provides the network with possibly sufficient spatial in-
formation. The L8, except to be a deeper model, differs mainly in the skip architecture
defined as

f4 (x) = h4

(
W4
(
f3 (x) ‖ f1 (x)

))
f6 (x) = h6

(
W6
(
f5 (x) ‖ f1 (x)

))
L8 (W,y) = (f8 ◦ f7 ◦ . . . ◦ f1) (y)

x = L8(W,y) ,

(4.4)

where the operator ‖ denotes the concatenation. The layers represented by f4 and f6
are defined as functions which are computed on the concatenated activation maps
obtained from f1 and previous f3 and f5 layers. The receptive field of whole L8
network is 25px. L4 and L8 include solely the convolutional layers followed by the
nonlinear ReLU units. Both architectures are shown in Figure 4.7.

The last architecture, L5, illustrated in Figure 4.8, is slightly deeper compared to the
most shallow L4 network, but in the same time much wider than any here presented
network. Such a width is closely related to the data the network is fed with as it mainly
is the DCT coefficients resampled from the 2D 8× 8 blocks into the 1D 64 channels
vectors as illustrated in Figure 3.6b. The same L5 architecture is trained for identically
resampled pixels with an assumption that the block structure, which is coded directly
into the input data arrangement, provides an additional information the CNN can
utilize. The L5 model has several modifications related to the type of input data. In
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Figure 4.7: The L4 on the left is a simple and shallow FCN network. The L8 on the right deploys
the skip architecture which allows transferring the layer representation deeper into
the network. The activation maps of the first layer are transfered into 4th and 6th
layer.

the case of pixel input data, L5 is a straight end-to-end mapping architecture, while
in the case of the coefficients input data, the network is extended by a fixed IDCT

layer similarly as in Figure 3.5 which allows computing the loss of pixels instead of
coefficients. All the L5 architectures are trained using the residual objective. The L5
model is based on the convolutional layers followed by the trainable Parametrized
Rectified Linear Unit (PReLU) [23].

4.2.2 Data

The majority of the experiments were computed on images from BSDS500 [35] and
LIVE1 [10] datasets. The L4 and L8 networks were trained solely on the merged train
and validation part of BSDS500 which contains 400 images. The L5 training was based
on the INRIA holidays dataset [36] where the included images were downsampled to
correspond the size of images from the other datasets and to suppress the already
occurring JPEG artifacts in the original ground truth data.

The images were transformed, as was stated earlier, to the grayscale representa-
tion using the Y′CBCR color model keeping the luma Y′ component only. Only
the grayscale images were considered because the attention was solely focused on
the ringing and blocking artifacts while the chromatic distortions were left out. The
grayscale images were compressed with the MATLAB JPEG encoder into five disjoint
sets based on the JPEG quality. Specifically, the images were compressed with the qual-
ity 10, 20, 40, 50, and 60. The DCT coefficients were extracted and stored together with
the related quantization tables.

The networks were evaluated on the test set from BSDS500 which includes 100 high-
quality compressed images and on the LIVE1 dataset containing 29 color images of
uncompressed BMP format. All the evaluation images were transformed to grayscale
the same way as the training images and also compressed using the same encoder.
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Figure 4.8: L5 architecture compared to L4 or L8 has much wider layers – number of filters to
process the input of 64 channels.

It is important to use the same encoder because the quantization tables may differ
between different encoder implementations.

4.2.3 Training

The training of presented models differs according to the objective, architecture, and
data. The formerly presented L4 and L8 networks were trained the same way except
for the several objective experiments which were evaluated with L4 architecture only.
The L5 based models differ already in the solver itself. Namely L5 used the Adam
solver instead of SGD with momentum.

The importance of the network initialization has been formerly emphasized in sev-
eral publications [17, 18, 19]. In this work, the assumption of zero mean of the net-
work initialization is recognized as helpful as it prevents mean offsets of activations
to propagate through the layers. In case the mean was not zero, any mean offset in
input values would result in the non-zero mean of output activations which could
force the ReLU non-linearities to get fully stuck either in the positive linear interval
or, even worse, in the negative interval where gradients are not propagated rendering
the unit useless.

This problem is eliminated by explicitly forcing individual filters to have zero mean
during initialization. Such initialization allows to use significantly higher initial learn-
ing rates, especially together with residual learning, and it results in trained networks
with significantly fewer saturated neurons. The L4 and L8 based models were initial-
ized using the Xavier approach (4.2) and shift to have the zero mean per filter.

All the filters can be forced to have zero mean during the whole training. Such
constraint almost entirely eliminates any potential for unit saturation, but it prevents
networks to utilize the DC component of input signals. Although reasonably good
results were achieved with this constraint in the preliminary experiments, it was not
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decided to use the offset suppression in the presented experiments. The L4 and L8
based models were trained using the SGD with the momentum with the minibatch of
64 64× 64px patches and 4 128× 128px patches respectively. Solver related parame-
ters are collected in Table 4.1. The patches were randomly sampled from the training
images.

In all the experiments, the loss was normalized by the number of output pixels

1

N× xwxhxch

N∑
i=1

∥∥F (W,yi) − xi
∥∥2
2

, (4.5)

where yw is the output patch width, yh the height and ych number of channels.
Such scaling influences the scale of gradients and results in some cases in relatively
high learning rates and low weight decay parameters. The number of L4, L8, and
L5 training iterations was fixed to 250 k which is significantly less compared to AR-
CNN’s 107 iterations.

The L5 based models were trained based on the residual objective and using the
ADAM solver [37]. The specific solver parameters are given in Table 4.1. The learning
rate was five times decreased by the factor of 3. The L5models were all equally trained
using 250 k iterations, where the minibatch per iteration consisted of 24 samples. The
models were initialized per layer with the Gaussian distribution with zero mean and
the standard deviation equal to 10−1 for the first layer, 10−2 for all the middle layers,
and 0.5× 10−2 for the last 5th layer.

4.2.4 Artifacts Removal Quality

The results are compared to AR-CNN [12], to the widely regarded deblocking ori-
ented SA-DCT [4, 5], and to a simple postprocessing filter SPP included in the FFm-

Table 4.1: L4, L8 and L5 training parameters including solver type, learning rate (lr), momentum
(m), and weight decay (wd).

Network solver lr m wd

L4 Direct SGD 0.4 0.97 5× 10−7

L4 Residual SGD 8 0.97 5× 10−7

L4 Edge enh. SGD 0.05 0.97 5× 10−4

L8 Skip arch. SGD 4 0.95 5× 10−7

Network solver lr β1 β2 ε wd

L5 ADAM 5× 10−4 0.9 0.999 10−8 0
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Table 4.2: Image restoration quality on LIVE1 test dataset for JPEG quality 10 and 20.

Q10 Q20
method PSNR PSNR-B SSIM PSNR PSNR-B SSIM

distorted 27.77 25.33 0.791 30.07 27.57 0.868
spp 28.37 27.77 0.806 30.49 29.22 0.877
SA-DCT 28.65 28.01 0.809 30.81 29.82 0.878
AR-CNN 28.98 28.70 0.822 31.29 30.76 0.887
L4 Residual 29.08 28.71 0.824 31.42 30.83 0.890
L5 Pixel – – – 31.42 30.63 0.890
L8 Residual – – – 31.51 30.92 0.891

Table 4.3: Image restoration quality on BSDS500 test dataset for JPEG quality 10 and 20.

Q10 Q20
method PSNR PSNR-B SSIM PSNR PSNR-B SSIM

distorted 27.58 24.97 0.769 29.72 26.97 0.852
spp 28.13 27.49 0.782 30.11 28.68 0.859
AR-CNN 28.74 28.38 0.796 30.80 30.08 0.868
L4 Residual 28.75 28.29 0.800 30.90 30.13 0.871
L5 Pixel – – – 30.94 29.91 0.873
L8 Residual – – – 30.99 30.19 0.872

peg framework [34]. While L4 architecture was used in most experiments and it was
trained for various compression quality levels, L8 was trained only for JPEG quality 20.
If not stated otherwise, the residual version of networks was used. The results of L5
are included with the note that it was trained on the INRIA Holiday dataset instead
of BSDS500 used for L4 and L8.

The evaluation of removing the artifacts on LIVE1 dataset with JPEG quality 10 and
20 is presented in Table 4.2. The results achieved on BSDS500 test dataset are written
in Table 4.3. L8 model outperforms all the other methods with significantly higher
scores in all three quality metrics with the exception on BSDS500 test dataset, where
the L5, trained completely on different data, achieved a higher SSIM result. Although
L4model performs worse compared to L8, it still surpasses the other methods in most
cases even though it is much smaller and computationally efficient compared to both
L8 and L5. Interestingly, the L5 performance is between the L4 and L8 having good
results based on the SSIM meanwhile surprisingly worse on the B-PSNR. Examples of
resulting images are presented in Figure 4.13. There are still visible blocking artifacts
of L4 and L8 models trained with residual objective while the L5 model with the
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worse results based on the PSNR metric seems to restore such a type of artifact very
well. That is seen on the monotonic parts of the image like for example the sky.

jpeg quality generalization The attention was focused on the generalization
ability of the trained networks regard to a different compression quality. The ability of
CNNs to handle various compression qualities is assessed by the experiment which
consisted of training the single L4 model for one particular quality and consequently
evaluating such a model on all the other qualities. The results in Figure 4.9 show
that L4 trained on a range of qualities, from Q10 up to Q60, provides stable results
across the equal quality range. However, the quality-specific networks perform better
for their respective qualities which yield to a possibility to train the high specialized
models in case of the quality of degraded images is known. On the other hand, the
quality-specific networks generalize only to similar qualities. In practice, a single net-
work should easily be able to handle smaller quality ranges, e. g. from 10 up to 20
quality points wide, when trained on data from such a range.
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Figure 4.9: Generalization ability of L4 networks trained with normal, residual, and edge pre-
serving objectives for different JPEG quality levels.
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Figure 4.10: Generalization for different sized train set.

dataset size The quality of restoration achieved by larger networks may suffer
due to inadequate size of a training set. In order to assess how the L4 and L8 models
behave with respect to training dataset size, the residual versions of the networks
were trained on 4, 16, 64, 256, and 400 images from BSDS500 training set. The L4 and
L8 models contain approx 70 k and 220 k learnable parameters respectively which
suggest that L8 model should require a larger training set for the same generalization.
Figure 4.10 shows results of models trained and evaluated on differently sized training
datasets together with the evaluation on the corresponding independent test dataset.
Both networks clearly overfit on the smaller datasets. L8 model overfits significantly
more, and it would require more images to reach proper generalization, while L4
seems to reach its maximal generalization already on the relatively small dataset of
400 images.

4.2.5 Impact of The Objective

All the L4 models were trained for direct mapping, residual, and edge enhancement
objectives to evaluate the contribution of each. Although the architecture and initial-
ization of all the L4 networks were the same, the suitable learning rates (lr) and weight
decay coefficients (wd) had to be selected based on the parameters grid search for each
learning objective separately. The solver parameters are noticed in Table 4.1. All the
parameters were selected regarding JPEG quality 10 and they were used for all the
other qualities as well.

The learning progress is shown in Figure 4.11. The residual network converges
much faster compared to the both direct and edge enhancement objectives. The re-
sults on LIVE1 based on PSNR, PSNR-B and SSIM metrics are presented in Table 4.4.
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The results show that the residual based model converges faster and achieves the
best restoration quality compared to other objectives. The edge enhancement objec-
tive converges a slightly faster in the beginning but stops to develop quite soon let-
ting the direct mapping to overcome its results. It could be expected that the direct
objective-based training may achieve a similar restoration quality compared with the
residual objective-based training with a clear disadvantage in the form of time needed
to converge.

The progress of training the filters of the first layer during training in different
objective based models is shown in Figure 4.12. All the networks formed reasonable-
looking filters. The residual objective trained model formed more complex higher fre-
quency filters compared to the other networks. The edge preserving network learned
some low-pass filters which are probably needed to transfer the general image appear-
ance through the network. These filters are missing in the residual objective trained
model. The filters of the direct objective trained model remain noisy, which could be
due to different weight decay coefficient the low learning rate, or their combination.
It also implies that the direct mapping would get slightly better results if trained for
more iterations which are indicated regarding the IPSNR shown in Figure 4.11.

The results indicate that the residual learning is beneficial for JPEG artifact removal
regarding restoration quality and training speed. On the other hand, the edge preserv-
ing objective does not improve the quality as is shown in the case of L4.

DCT coefficient based restoration was computed using the L5 architecture with an
atypical layers width providing much more filters per layer compared to the L4 or L8
models. The L5 can not be compared directly to both L4 and L8 pixel based models
because L5 models were trained on the different training set, the INRIA Holiday [36].
The input data were normalized by a single fixed value to be approximately in the
interval from −1 up to 1. The L5 models operating with quantized DCT coefficients –
B, JPEG dequantized coefficients – QB, and directly with pixels were evaluated with
the results presented in Table 4.5.

Table 4.4: Results of L4 networks with different objectives on LIVE1 dataset with quality 10.

Objective PSNR PSNR-B SSIM

Distorted 27.58 24.97 0.769
Direct mapping 28.99 28.66 0.820
Edge preserving 28.69 28.40 0.813
Residual learn. 29.08 28.71 0.824
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Figure 4.11: Development of L4 with different training objectives.

dct coefficients The training dataset was later on augmented by shifting the
images by a uniformly sampled shift size in the range from 0 up to 7 pixels in both
directions. These shifted original images were then encoded into the JPEG. 64× more
data became available leaving the blocking artifact in the same position within the
image. The L5 pixel–pixel mapping model trained on the augmented dataset achieved
16% higher IPSNR compared with the same model trained on the original smaller
amount if training data but with the same amount of training iterations. Despite the
lower achieved PSNR compared to the L8 network, the result images are blocking free
while both L4 and L8 models, unfortunately, preserve surpassed still visible blocking
artifacts.

The different type data based L5 models, coefficients, dequantized coefficients and
pixels, show very similar results, where the differences are apparently related to the
model initialization. The exception is the case in which the JPEG DCT coefficients B

are multiplied by the quantization table Q. The results of L5 model operating with
such data are slightly better compared to other L5 models. It is apparent that the
DCT based restoration models can be successfully deployed without the requirement
of any post-processing of the decoded JPEG image. That allows keeping the existing
decoders and just use the networks in a preprocessing step being similar to JPEG
Quality Transcoder (JQT) approach. The blocking artifacts are well removed by models
operating with the resampled input pixels from the 8× 8 blocks into the 64 channel
vectors. Regarding the results, it is highly probable that such resampled input data
explicitly helps the model to train focus on the blocking fixed size and periodicity.

4.2.6 Summary on Artifacts Restoration

The CNN based models, namely L4, L5, and L8 were presented. All three outper-
formed state of the art with most significant results achieved by the L8 model based
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Figure 4.12: Filters from the first layer of L4 networks with normal/residual/edge preserving
objective at different stages of training. Iterations are showed below the images.

on the residual training and skip architecture. The residual objective proved to be ap-
propriate for JPEG artifacts restoration and allowed to train the model faster regard to
the number of iterations and achieved results. However, the edge enhancement objec-
tive did not show any benefits compared to the direct mapping which would provide
any reason to prioritize such a learning objective. The importance of the dataset size in
regard to the model capacity showed both experiments, the observed L4 and L8 mod-
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Table 4.5: The different input data and loss function based L5 architecture results. The structure
of the model name describes the settings, i. e. the input data and the loss-computed-
data. The B is the JPEG quantized DCT coefficient, QB is the B multiplied by the
quantization table, pix stands for pixel data. L5 B–pix represents the L5 model with
the JPEG DCT quantized coefficient input data and the loss computed on pixels.

LIVE1 BSDS500
method PSNR PSNR-B SSIM PSNR PSNR-B SSIM

distorted 30.07 27.57 0.868 29.72 26.97 0.852
L5 B–B 31.25 30.51 0.890 30.81 29.82 0.871
L5 QB–QB 31.31 30.52 0.890 30.85 29.84 0.872
L5 B–pix 31.25 30.51 0.890 30.81 29.82 0.871
L5 pix–pix 31.23 30.49 0.889 30.78 29.81 0.871

L5 pix–pix C-PSNR 31.44 30.63 0.892 30.94 29.92 0.873

L5 pix–pix aug 31.42 30.63 0.892 30.94 29.90 0.873

els trained on several dataset sizes and the L5 model trained on the 64× augmented
training dataset which provides more than 16% of IPSNR increase compared to the
same model on the original training dataset size. The CNN based models ability to gen-
eralize was investigated with the results showing the single model covering a wide
range of compression qualities with restoration level. However, the specialized model
for specific quality can deliver slightly better results measured by the PSNR metric.
The experiments provided support for the JQT which transforms the low-quality JPEG

coefficients to the coefficients representing higher quality restored image. The input
image blocks resampled from 8× 8 spatial size into the 64 channel vectors provided
the L5 architecture with the subsidiary information feasible to compute high quality
blocking artifacts restoration.

The pixel based architectures, L4 and L8, are with their 70 k and 220 k weight param-
eters significantly smaller compared to the motion deblurring L15 model with 2.3M
weights. Using cuDNN3 v3 implementation of convolutions on GeForce GTX 780, the
1Mpx image takes approximately 220ms with network L4 and roughly 1052ms with
L8 to be restored. The L4 and L8 networks require approximately 140 k and 440 k
floating point operations per pixel.

3 Nvidia GPU-accelerated library of primitives for deep neural networks.
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Figure 4.13: Visual comparison of restored monarch image from LIVE1 [10] dataset originally
compressed with JPEG quality 20. L4 restores the ringing artifacts but the blocking
is to a certain extent preserved. L8-skip compared to L4 provides obviously better
results restoring the blocking artifacts. Note, that both L5 smooth the blocking arti-
facts but performs slightly worse on the ringing artifacts compared to L8 and L4 as
well.
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4.3 summary of contributions

The core of this thesis is framed by a unified method of image restoration based on
Convolutional Neural Network. The data-driven approach has been deployed for par-
ticular tasks of image restoration. It is the deconvolution, namely the motion deblur-
ring, which is well described and where the hard part is to estimate the unknown blur
parameters such as the length and direction. Further, it is the compression artifacts
removal task, which instead of deconvolution restores an image by suppressing the
artificial boxing and ghost edges of ringing artifacts. In both cases, i. e. license plate
motion deblurring and JPEG artifacts removal, the presented CNN provides beyond
state-of-the-art results. Compared to the engineered methods, which significantly dif-
fer from each other according to the task they focus on, the CNN approach allows to
quickly train a specialized or a universal model solely dependent on the training data.
The case of a specific model is related to a limited range of parameters the degra-
dation can be modeled with, e. g. the limited range of lengths the motion blur can
consist of. In contrary, the universal model can be used for various levels of particular
degradation. That is the case of the single model used for an arbitrary range of motion
blur lengths and directions. Considering the results presented in this thesis, the hypothesis
is fulfilled.

This work extends the approach of text deblurring based on CNN introduced by
Hradis et al. [11], which is based on the 15 layer CNN model trained purely on ar-
tificially blurred data. This model performs well for various ranges of motions blur
lengths and directions. The results on artificially blurred data show model ability to
recover an arbitrary range of blur parameters. Simultaneously, the end-to-end model
easily outperforms the blind deconvolution L0-regularized method and competes
very well compared to the non-blind variation of the same text image specialized
L0-regularized method. Further, the L15 model can restore the naturally blurred im-
ages as well. Based on the OCR accuracy, L15 CNN model delivers significantly better
results compared to L0-regularized method which is considered to be state of the art.
The motion deblurring based on CNN reveals how simple it is to obtain a model with
the beyond state-of-the-arts outcomes. Model, which generalizes very well and which
can handle a wide range of possible blur parameters.

The CNN approach for image compression artifacts restoration presented in this
work significantly improves the-state-of-the-art results. Similarly to the L15 model for
license plate motion deblurring, the introduced models besides the beyond state-of-
the-art results provide a significant generalization ability over various JPEG compres-
sion qualities. The analysis of the architectures and the objectives the networks are
trained for is given. The residual objective used for artifacts restoration is presented
allowing to speed up the training process together with better outcomes compared
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to the direct objective. The experiments pointed out the contribution of input data
reorganization referring to the deblocking. The work shows that the CNN model used
for image restoration in the pixel domain is suitable for transforming the highly com-
pressed JPEG coefficients to the coefficients representing the image, which decoded,
becomes artifacts free. The JPEG compression artifacts removal supports the idea of a
unified approach to image restoration. There are many others tasks of image restora-
tions. Nevertheless, even these are not reviewed in this thesis, here presented results
indicates a possible performance increase in the sense of accuracy and quality based
on the data-driven CNN models.

4.4 future work

The combination of all described approaches including the skip architecture, residual
objective with further relatively smaller kernel stacking, e. g. like the inception net-
work [38, 39], may provide the results yet far beyond state of the art. Unfortunately,
the amount of computational time is directly proportional to the model complexity.
Therefore, the recently used architectures take several days to train which makes the
exhaustive architecture state space search quite difficult.

The image restoration CNN based models were and yet significantly are influenced
by the computer vision research. Based on results in computer vision, the next steps
shall lead to architectures of stacked filters comprising the model build from relatively
small kernels interleaved with a higher amount of non-linearities, like ReLU, PReLU as
used in the L5 models, or recently introduced Exponential Linear Unit (ELU). Further,
classification instead of regression may provide the network with a much easier prob-
lem to learn, i. e. the output would be one of 256 possible values representing the
image intensity. In such a case an ensemble of models in a form as presented in [40]
or just utilizing the dropout in a network can be simply used to achieve better results.

In the case of JPEG artifacts restoration, the transposed convolution can offer interest-
ing outcomes. It is worth considering networks utilizing the transposed convolution –
sometimes noted as deconvolution which spatially scatters the data. That includes var-
ious scenarios like deconvolution, in the beginning, gradually stacked deconvolution,
and deconvolution at the end of the network. The deconvolution, precisely transposed
convolution, is understood as the reverse convolution where the single input value,
the result of a convolution, is partially distributed to its source values ??. Here, the
possible future research regarding JPEG DCT coefficients is likely to provide interesting
results.

Although the PSNR based objective did not directly show any significant benefit
over the simple MSE loss function, the SSIM loss function is worth a try. The related
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idea of inpainting the corrupted image to obtain the perceptually plausible image
could be used in situations where the scene fidelity is not necessary. Apart from the
restoration tasks, the CNN can be deployed in other image processing challenges in-
cluding in robotics often used visual based parameters estimation. These may include
the image matching for the loop closer detection extending the work [41] in the map-
ping and environment reconstruction applications, the rotation-translate estimation
between several consequent images, the scene segmentation, the depth from an image
estimation, several sensors fusion [42], or descriptors learning [43].

Plethora of degradations and corruptions types exist, where the CNN utilization may
improve the restoration results compared to the engineered methods, e. g. the whole
family of deconvolution methods. In this thesis, the deconvolution CNN is utilized for
license plate images deblurring, which is a very narrow image domain compared to
the natural images. The end-to-end mapping for such tasks may be much too hard
for recent network models. Nevertheless, no such known research has been yet done
in this field. A regression CNN models introduced to compute the image restoration
are likely to be suitable for similar tasks related to inpainting. An inpainting model
can be used to estimate the shape and a texture of partially occluded objects in an
image or generate details which may provide better perceptual image quality. An
interesting approach to image generation is based on adversarial networks, where
the generator network tries to fool the discriminator network with generated images
instead of real images. Last but not least, the inpainting may by used for several
objects anonymization including the human faces, license plates, advertisements and
generally anything in the image.



5C O N C L U S I O N

This work focuses on an image restoration based on models of convolutional neu-
ral networks. Particularly, two different tasks were chosen, motion deblurring of li-
cense plate images taken by a surveillance system and artifacts removal caused by
low quality of JPEG compression. Usually, the methods of image restoration are hand-
engineered. That yields to a variety of approaches which are comprised of certain
processing pipelines related to a type of degradation. Specifically, in motion deblur-
ring, the pipeline consists of PSF estimation and a subsequent deconvolution to restore
the latent sharp image. Compression artifacts restoration methods try to smooth the
discontinuities made by blocking or suppress ringing on edges.

In this work, in contrary, a direct end-to-end mapping based on convolutional neu-
ral networks is presented. Restoration relies on a data-driven trained model which
directly transforms a degraded image to an undistorted image. Recently introduced
convolutional neural network architecture, i. e. AlexNet, inspired a model deployed
for license plate motion deblurring. Several experiments show that a single model
is sufficient for various motion blurs differing in lengths and directions which allow
the comparison with blind deconvolution methods. The model trained solely on arti-
ficially blurred data outperforms the considered state-of-the-art method deployed on
naturally blurred images where the achieved OCR based error accuracy is 9% com-
pared to 23% error accuracy of L0-regularized method.

Further, a nonlinear degradation based on the JPEG compression is restored ex-
ploiting the same end-to-end approach of data-driven trained models. Compared to
motion deblurring, restoration of compression artifacts is a harder problem due to
the missing image information. While the approach is the same, various training and
architecture related extensions are introduced including the residual objective, skip
architecture, and loss computed on an image data in a case of JPEG coefficient trans-
formation. These extensions contribute to train model which achieved in artifacts sup-
pression state-of-the-art results. Particularly, L8 model achieved 31.51 PSNR compared
to 31.29 PSNR of recently introduced AR-CNN and 30.81 PSNR of hand-engineered
SA-DCT. In the case of JPEG artifacts restoration, direct transformation of JPEG coeffi-
cients based on the convolutional network is proposed. Such transformed coefficients
allow restoring the artifacts degraded image before decoding itself.

The results achieved in both tasks contribute to the idea of utilizing CNNs as a uni-
fied approach to image restoration. It is worth to try to follow the ongoing research in

44
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computer vision, where the majority of CNN related trends come from. That includes
stacking the spatially small filters interleaved by more nonlinearities providing even
better models. An interesting yet challenging deblurring of natural images should
be investigated further. In the case of JPEG coefficients transformation, the fixed IDCT

layer can be substituted by the trained transposed convolution allowing the network
to adapt the decoding step. Considering the fact that all the presented models are
regression based CNN, they can be therefore deployed for a task of inpainting as well.
That would allow restoring incomplete data in an image, i. e. occluded objects or sim-
ply too much-degraded image regions. The impact of CNN models in various research
domains is high. There is a lot of other applications the deployment of data-driven
models is worth to try.

This thesis begins with an introduction reminding a year the research on NN is
considered to begin. After more than 70 years later the actual state of the art of CNN

dynamically evolves providing a significant impact in various domains including the
image restoration as well.
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