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Anotace
Tato práce se zabývá popisem Ostwaldova zrání trojrozměrných ostrůvků depono-

vaných na rovinných površích. V první kapitole jsou představeny dvě teorie Ostwaldova
zrání: LSW teorie založená na aproximaci středního pole a mnohačásticová teorie vy-
cházející z řešení difuzní rovnice v kvazistatické aproximaci. Ve druhé kapitole je popsán
algoritmus numerického řešení rovnic získaných z mnohačásticové teorie. Výsledky nu-
merického řešení jsou ve třetí kapitole srovnány s předpověďmi LSW modelu.

Bylo zjištěno, že předpovědi standardní LSW teorie popisující systémy s dvourozměr-
ným transportem hmoty jsou v ostrém protikladu jak s výsledky získanými z dokonalej-
šího mnohačásticového modelu, tak s experimenty popsanými v uvedených pramenech.
Mnohačásticový model založený na difuzní rovnici poskytuje výsledky konzistentní s ji-
nými teoriemi i experimentem.

Abstract
This thesis deals with Ostwald ripening of three-dimensional clusters deposited on a

two-dimensional surface. In the first chapter two distinct theories of Ostwald ripening
are presented: the mean-field LSW theory and a many-body theory based on the solution
of the diffusion equation in quasistationary approximation. In the second chapter the
algorithm used for numerical solution of the equations obtained from the many-body
theory is described. The results extracted from the numerical solution are compared
with predictions of the LSW model in the third chapter.

We found that the standard LSW theory of systems with two-dimensional mass
transport should not be used in practice because its predictions are in strong disagree-
ment with the results obtained both from the more elaborate diffusion-equation model
and from experimental studies described in references. On the other hand, the diffusion-
equation based model gives results consistent with other theories and experiments.

Klíčová slova: fázová separace, Ostwaldovo zrání, LSW teorie, numerická simulace
Keywords: phase separation, Ostwald ripening, LSW theory, numeric simulation
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Introduction
A series of experiments studying the self-limited Ostwald ripening of gallium nan-

oclusters on silicon surfaces was performed at the Department of Solid State Physics
and Surfaces of Institute of Physical Engineering at Faculty of Mechanical Engineering,
Brno University of Technology, in fall and winter 2007. A theory describing the process
of self-limited growth exists; however, it is a mean-field theory which ignores cluster-
cluster interactions. Our experiments were performed at very high areal coverages and
we therefore expect the cluster-cluster interaction to play an important role. The need
therefore appeared of a more precise treatment which would take these interaction into
account. Since the problem considered is far too difficult to be solved analytically we
decided to perform a numerical simulation.

The purpose of this work is to compare the simplest possible mean-field model, the
LSW theory, with a much more sophisticated approach based on the solution of the
steady-state diffusion equation. These models will be used to predict the results of a
simplified version of our real experiment. With a comparison of these results in hand,
we should be able to appreciate the importance of cluster-cluster interactions and decide
whether a mean-field theory is sufficient to describe the ripening process or if a better
model has to be used.





Chapter 1

The theory of Ostwald ripening

Suppose that a thin adsorbate layer is being deposited on a clean substrate surface.
In the Volmer-Weber growth mode, the adsorbate atoms are more strongly bound to each
other than to the substrate atoms and three-dimensional islands start to nucleate and
grow right on the substrate [1]. Similar situation is observed in the Stranski-Krastanov
growth mode, where the islands grow on a wetting layer formed by the adsorbate atoms.

The process of increasing the mean island size at the expense of decreasing the num-
ber of islands is referred to as coarsening [1]. Two main mechanisms of coarsening are
distinguished: coarsening by coalescence, either static or dynamic, during which two
smaller islands merge upon contact to form one larger island, and ripening, or more
usually Ostwald ripening1, during which larger islands grow and smaller ones shrink due
to the adatom diffusion.

Coarsening by coalescence is crucial if the islands are mobile enough (dynamic coa-
lescence in the early-stage coarsening) or in mass non-conserved systems with continuous
deposition (static coalescence of large immobile islands). Ostwald ripening is the domi-
nant coarsening mechanism during late-stage coarsening of mass-conserved systems.

1.1 Mean-field and many-body theories

The coarsening theories can be roughly divided into two following categories:

• Mean-field theories neglect the effect of island-island interactions (namely, dif-
fusion interactions or interactions mediated by elastic deformation of substrate
underlying the islands). These theories are relatively simple and are sufficient to
predict the correct power-law time dependence of mean island volume and the exis-
tence of scale-invariant island size distribution, but they fail to predict the correct
form of this distribution. Furthermore, they cannot, by their very nature, predict
the spatial correlations of the island positions. However, mean-field theories are a
good starting point to any serious analysis.

1After Wilhelm Ostwald, who in 1896 first observed ripening of precipitates in three-dimensional
matrix.

3
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• Many-body theories are capable to take the island-island interaction into account.
Although some of the predictions, e.g., the time evolution of the mean island
volume, are approximately the same as in the case of mean-field theories, more
sophisticated results (island size distribution function) are usually significantly
altered by the interactions. Many-body theories are, except to trivial cases of no
practical importance, impossible to solve analytically and only numerical solutions
are available.

1.2 Possible approaches to the problem

In this thesis we will focus on describing the Ostwald ripening of a mixed 3D/2D system
(3D islands on 2D substrate). There are three most widely used approaches to describe
the coarsening of such a system: Monte Carlo simulations, rate equation models and
models based on the solution of the difussion equation.

• Monte Carlo simulation. The system consists of a substrate layer which forms a
2D array of lattice sites and a set of atoms which can occupy these sites. These
atoms can jump from their current location to any adjacent unoccupied lattice site
with probability proportional to exp(−EB/kT ), where EB is the energy barrier
for the jump. The Monte Carlo techniques are very powerful, since there are no
restrictions on the areal coverage, deposition flux or the shape of the islands and
they are not limited to the case of Ostwald ripening, but can be at the same
time used to model nucleation and early stages of nucleation and coarsening by
coalescence [2]. There are two main drawbacks of these methods: first, they
are very time-consuming; various ways were developed to overcome this problem,
such as the accelerated Monte Carlo simulation [3]. Second, there is no easy way
to determine the size of the energy barriers EB.

• Rate equation approach. The system is described in terms of the quantities Nj(t),
j = 1, 2, . . . where Nj(t) is the number of islands consisting of exactly j atoms at
the time t. The evolution of the system is governed by a set of coupled, first-order
ordinary differential equations (rate equations) of the form [4]

dNj(t)
dt

= n
[
σi

j−1Nj−1(t)− σi
jNj(t)

]
+
[
σo

j+1Nj+1(t)− σo
jNj(t)

]
, j > 1, (1.1)

where σi
j is the capture cross-section and σ

o
j is the release cross-section of adatoms

for an island having j atoms and n is the adatom concentration. The first problem
with this aprroach is that there is no simple way to determine the form of the rate
constants σ. This is very serious, since these constants contain all the information
concerning the nature of the system (especially the dominant interactions and
growth-limiting processes). Second, the number of equations needed to describe
the late-stage coarsening when the islands contain many atoms can be very large.
Hopefully, there are means to deal with this problem, such as solving the rate
equations only for clusters of certain size j and interpolating between these selected
values of j or letting the number of atoms in an island become a continuous variable
and transforming the set of rate equations into one partial differential equation [5].
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Furthermore, the rate equation model is basically a mean-field approach, since the
rate constants usually do not depend on the positions of the islands, although there
is no principal restriction concerning this. The advantages of this approach are: (i)
nucleation and coalescence can be easily studied within the same framework, (ii)
nonzero deposition flux can be easily included and (iii) the famous LSW mean-field
model (see below) based on the diffusion equation can be recovered under certain
assumptions [5].

• Diffusion equation approach. The system is treated as being composed of two
distinct parts: a set of islands of defined size and shape and a background gas of
adatoms. The evolution of the adatom concentration field n(r, t) is governed by
the time-dependent diffusion equation

∂n(r, t)
∂t

= D∆n(r, t), (1.2)

where D is the adatom diffusivity, while the time evolution of the islands is given
by the growth equation

dV
dt
= 2πvMJ, (1.3)

where V is the island volume, vM is the molar volume of the adatom phase and J is
the total adatom diffusion flux into the island (see below for the derivation). These
equations are coupled by the boundary conditions for the adatom concentration
field prescribed on the surface of each island. It is customary to use the steady-
state approximation in which the time derivative on the left-hand side of (1.2)
is neglected in order to simplify the situation. This simplification works well in
three dimensions, but in two-dimensional systems a serious problem arises since
the steady-state solution of diffusion equation has a logarithmic divergence for
large r. This divergence can be treated in two ways: (i) if the system is mass-
conserved, i.e., there is no deposition flux, the logarithmic terms exactly cancel
each other and the divergence is resolved; (ii) one can define a screening length [4]
to cut-off the diverging concentraton field. The latter treatment suffers from the
fact that the screening length ia an artificial addition to the theory and therefore
the degree of approximation cannot be estimated [4]. One of the main advantages
of the diffusion equation approach is that it can be used to examine the spatial
correlations in the system, i.e., it is a many-body approach. Furthermore, one can
work with very large areal coverages (up to 40%) and with islands of varying shapes
[6]. Further extensions allowing for more general experimental conditions (e.g.,
systems where elastic interactions play important role) also seem to be possible.

In this thesis we use two models based on the diffusion equation approach: the mean-
field LSW model and a slightly improved version of the many-body model described in
Yao et al. [7].
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1.3 Basic quantities related to ripening systems

There are several quantities used to describe the state of a ripening system:

• Number of islands N(t) present in the system at the time t, or, equivalently, the
island number density N (t) = N(t)/L2, where L is the length of the side of the
sample, which is assumed to be square.

• The mean island radius

〈ρ(t)〉 = 1
N(t)

N∑
i=1

ρi(t), (1.4)

where ρi is the radius of the ith island, and the mean island volume

〈V (t)〉 = 1
N(t)

N∑
i=1

Vi(t), (1.5)

where Vi is the volume of ith island. A power-law time dependence of 〈ρ〉 and
〈V 〉 has been observed experimentally in most 3D/3D and 2D/2D systems; re-
cent experiments suggest that the power-law scaling might apply also in 3D/2D
systems.

• The island size distribution function φ(ρ, t), where φ(ρ, t) dρ dt gives the probabil-
ity of finding an island of radius (ρ; ρ + dρ) in the time interval (t; t + dt). For
3D/3D and 2D/2D systems it is predicted that this distribution function is scale-
invariant for t large enough: when the island size distribution is scaled by the
time-dependent mean island radius, it assumes a unique time-independent form
[8]. According to [9], the distribution function is self-similar if

φ(ρ, t) = φ

{[
〈ρ(λt)〉
〈ρ(t)〉

]
ρ, λt

}
(1.6)

holds for any λ from a certain interval.

• The mean nearest-neighbor distance

〈r(t)〉 = 1
N(t)

N∑
i=1

|Ri −Ri,n| (1.7)

where Ri is the position of the ith island and Ri,n is the position of the nearest
neighbor of the ith island.

• The nearest-neighbor distance distribution function ψ(r, t), where ψ(r, t) dr dt
gives the probability of finding two islands separated by a distance between r
and r+dr in the time interval (t; t+dt). This distribution was again found to be
self-similar with mean nearest-neighbor distance being the time-dependent scaling
factor [9].
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• The individual radial distribution function ξi(r, t) for ith island, where ξi(r, t) dr
is the ratio of the number of particles found in a circular shell of radius r and
thickness dr around ith island to the expected number of particles in the same
shell calculated from the mean particle number density:

ξi(r, t) =
1
Nr

r+dr∫
r

N∑
j 6=i

δ(|Ri −Rj|) dr, Nr = 2πN (t)
r+dr∫
r

rdr. (1.8)

The overall radial distribution function ξ(r, t) is the average of the individual
distribution functions ξi(r, t),

ξ(r, t) =
1
N

N∑
i=1

ξi(r, t). (1.9)

Several experiments show the presence of a denuded zone around the islands. By
this we mean that around every island there is a circular shell of a certain radius
in which no other islands are present. The existence of this zone can be easily
proven by means of the radial distribution function: it corresponds to the interval
of r where ξ(r, t) is appreciably lesser than unity.

1.4 The LSW theory

The first complete theory of Ostwald ripening, the famous LSW theory, was developed
by Lifshitz and Slyozov [10] and by Wagner [11]. The original LSW theory considered
only the case of three-dimensional particles deposited in three-dimensional matrix; later
it was extended by Chakraverty2 to the case of two-dimensional (2D/2D) and three-
dimensional (3D/2D) islands on surfaces [12]. A fairly general derivation of the basic
results of the LSW theory based on [10, 11, 12] is given in [14]; let us now briefly repeat
the most important steps of this derivation in the particular case of a mixed 3D/2D
system in which surface diffusion acts as a limiting process for the island growth.

The LSW theory is a mean-field theory based on the diffusion equation approach.
The LSW model assumes that the system is being composed of the ideal adatom gas
and an island formed by condensed adatoms; these two phases are considered to be in
diffusive equilibrium. This implies that the adatom concentration n(ρ) in the immediate
vicinity of an island of radius ρ is given by

n(ρ) = n(∞) exp
[
µ(ρ)
kT

]
, (1.10)

where n(∞) is the equilibrium concentration at an ideally flat phase boundary between
the adatom gas and the bulk material, µ(ρ) is the chemical potential of an island, which
is considered to be dependent on the island radius, k is the Boltzmann’s constant and
T is the temperature.

2However, this extension is based on several assumptions of doubtful validity; a better treatment
can be found in [13].
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1.4.1 The growth rate equation

The starting point is the equation for the growth rate for hemispherical island centered
in the origin of the coordinate system

dV
dt
=
d
dt

[2π
3
ρ3
]
= −vM

∫
C

J · n̂ dγ, (1.11)

where vM is the molar volume of the material in the island, J is the adatom flux, C is the
curve encircling the base of the island, n̂ is the outward normal to the curve C and dγ
is the line element of C. If J is constant around the periphery of the island and parallel
to n̂, then

d
dt

[2π
3
ρ3
]
= −2πρvMJ. (1.12)

The adatom flux is, according to Fick’s first law, J = −D∇n, where D is the adatom
diffusivity, and thus

d
dt

[2π
3
ρ3
]
= 2πρvMD|∇n|r=ρ. (1.13)

The two-dimensional diffusion equation has now to be solved in order to evaluate the
concentration field gradient |∇n|. We have already stated that the steady-state solution
to the 2D diffusion equation has a logarithmic divergence which has to be dealt with.
Chakravery [12] used a screening length concept to circumvent the problem of diverging
concentration field to obtain

|∇n|r=ρ =
n̄− n(ρ)
ρ ln(`/ρ)

(1.14)

where n̄ is the equilibrium adatom concentration far from the island and ` is the screening
length. It has been argued [4] that this treatment is unsatisfactory and should not be
taken too seriously; we shall use it nevertheless since all the other models are significantly
more complicated. Substituting (1.14) into (1.13) we obtain

d
dt

[2π
3
ρ3
]
=
2πvMD
ln(`/ρ)

[n̄− n(ρ)] ≈ 2πvMD
ln ˜̀

[n̄− n(ρ)] (1.15)

where we have approximated ln(`/ρ) by a constant ln ˜̀ [14]. Rearranging (1.15) we get

dρ
dt
=

vMD
ρ2 ln ˜̀

[n̄− n(ρ)]. (1.16)

From (1.16) it is evident that the growth rate is proportional to the supersaturation
n̄−n(ρ). The critical island radius is defined as the radius ρ∗ of an island that does not
grow nor shrink,

n(ρ∗) ≡ n̄ = exp

[
µ(ρ∗)
kT

]
. (1.17)

If µ(ρ) is a monotonic function of ρ, as we shall assume from now on, then ρ∗ is unique.

An appropriate form of the chemical potential has to be chosen if one wants to
proceed further. In order to preserve dynamical scaling, the expression for the chemical
potential has to be of the form

µ(ρ) = cr−α, (1.18)
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where c is a constant and α ≥ 1. The exponent α comes from the expression for the
Gibbs free energy of the island and the thermodynamic identity µ = (∂G/∂n). In the
most commonly considered case of capillarity-driven coarsening, the driving force for
ripening is the reduction of the total surface energy of the islands, which corresponds to
µ(ρ) ∼ γ∂S /∂V ∼ γρ−1, where γ is the surface tension (surface energy per unit area);
hence, α = 1 for capillarity-driven coarsening.

The usual practice is to expand the exponentials in (1.17) into their Taylor series
and to retain only the absolute and linear terms, which corresponds to the case of low
supersaturations and/or high temperatures; the growth law (1.16) in this approximation
with µ(ρ) given by (1.18) then reads

dρ
dt
=
K

ρ2

(
1
(ρ∗)α

− 1
ρα

)
(1.19)

with K being a constant. It is convenient to define the following quantities in order to
simplify the following calculations: the relative radius

u(t) =
ρ(t)
ρ∗(t)

, (1.20)

the dimensionless time

τ = 4K ln

(
ρ∗(t)
ρ∗(0)

)
, (1.21)

where ρ∗(0) is the critical radius for the system at t = 0, and the growth parameter

ν = 4K
dt

d[(ρ∗)4]
. (1.22)

Using (1.20), (1.21) and (1.22), the growth equation can be cast into the dimensionless
form

du
dτ
=
1
4u3

[
ν(u− 1)− u4

]
. (1.23)

1.4.2 Mean island radius

Equation (1.22) can be used to find the expression for the time evolution of the critical
island radius. If the growth parameter ν is independent of time, we get, after integration,

[ρ∗(t)]4 = [ρ∗(0)]4 +
4
ν
Kt. (1.24)

Since the critical radius is equal to the mean island radius, the mean island radius grows,
for large t, as

〈ρ〉 ∼ t1/4. (1.25)



10 CHAPTER 1. THE THEORY OF OSTWALD RIPENING

1.4.3 Conservation of mass

The theory presented in [14] is valid (apart from some very special cases) only in the
case of zero deposition flux, i.e., in mass-conserved systems. The requirement of mass
conservation can be stated, for hemispherical islands, in the form

∞∫
0

2π
3
ρ3φ(ρ, t) dρ = V0, (1.26)

where φ(ρ, t) is the distribution function for the island radii and V0 is the total volume
of all islands.

In scaled variables (1.20), (1.21) and (1.22), the mass conservation condition (1.26)
becomes ∞∫

0

u3φ(u, τ) du = Q (1.27)

where Q is a constant and φ(u, τ) is the scaled distribution function. We shall assume
that φ(u, τ) can be written in a separated form

φ(u, τ) = F (u)T (τ). (1.28)

Substituing this into (1.27) and using (1.21) we get

T (τ) = exp
(
−3
4
τ
)
. (1.29)

1.4.4 The equation of continuity

The third and last of the equations necessary to establish the LSW theory is the equation
of continuity for the distribution function

∂φ

∂τ
+

∂

∂u

[
φ
dφ
dτ

]
= 0 (1.30)

which comes from the fact that island radii change smoothly in time, i.e., nucleation and
island coalescence are prohibited. Substituting (1.28) and (1.29) into the equation of
continuity we arrive at an equation for the spatial part F (u) of the distribution function

F (u) = − 1
f(u)

exp

3
4

u∫
0

1
f(u′)

du′
 (1.31)

where f(u) = du/dτ is given by equation (1.23).

However, equation (1.23) still contains the unknown growth parameter ν. The value
of ν0 corresponding to the LSW solution is determined by the solution of simultaneous
equations

f(u0)|ν=ν0 = 0, f ′(u0)|ν=ν0 = 0, (1.32)

where u0 is the value of u above which F (u) vanishes. The two parameters ν0 and u0
are given by

ν0 =
44

33
=
256
27

, u0 =
4
3
. (1.33)

The plot of F (u) is in the figure 1.1.
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Figure 1.1: The time-independent part F (u) of the scale-invariant LSW distribution
function φ(u, τ) = F (u)T (τ).

1.5 A many-body theory for 3D/2D systems

The LSW theory is a mean-field model and it is thus strictly valid only in the limit
of zero areal coverage. Our goal is to obtain a theoretical prediction of behavior of
a mass-conserved system with high areal coverage where island-island interactions are
important. We therefore employed a many-body theory based on the diffusion equation
approach [7]. This theory was originally developed for 3D/3D and 2D/2D systems and
slight adjustments were therefore required if we wanted to apply it for 3D/2D systems.
Unfortunately, the resulting equations are far too complex to be solved analytically, and
we had to resort to numerical solution, or, as we will say from now on, to numerical
simulation of the time evolution of the system.

1.5.1 Basic equations for the numerical simulation

The starting point of our treatment of the ripening problem is the 2D steady-state
diffusion equation3 for the adatom concentration field

∆n(r) = 0 (1.34)

3In the quasistationary approximation, in which we neglect the time derivative ∂n/∂t. This can be
done if the growth rate of islands is much slower than the relaxation time of concentration field [7].
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subject to the boundary condition

n(r)||r−Rj |=ρj
= n(∞) exp

[
µ(ρj)
kT

]
(1.35)

on the perimeter of the jth island, j = 1, . . . , N , and the boundary condition

lim
|r|→∞

n(r) = n̄ (1.36)

which specifies the concentration field far from the islands. We shall assume that coars-
ening is capillarity-driven, leading to the chemical potential of the form [15]

µ(ρ) =
γvM

NA

∂S

∂V
=
2γvM

NAρ
=
σ

ρ
, (1.37)

where γ is the surface tension, vM is the molar volume of the island phase, NA is
Avogadro’s constant, S is the island surface, V is the island volume and σ = 2γvM/NAkT
is the capillary length. We can Taylor-expand the exponential in (1.35) and retain only
terms up to the first order in µ/kT , following the same line of thought as in section
1.4.1, to get

n(r)||r−Rj |=ρj
= n(∞)

[
1 +

σ

ρ

]
, (1.38)

the Gibbs-Thomson boundary condition.

Let us now define the following characteristic quantities : characteristic length rc = σ,
characteristic time tc = σ3/vMDn(∞) and dimensionless concentration field φ(r) =
[n(r)− n(∞)]/n(∞). Using these, we can rewrite equations (1.34), (1.38) and (1.36) in
the dimensionless form

∆φ(r) = 0, (1.39)

φ(r)||r−Rj |=ρj
= 1/ρ, (1.40)

lim
|r|→∞

φ(r) = φ̄. (1.41)

Equations (1.39), (1.40) and (1.41) define a many-body diffusion problem which is not
feasible without approximations.

Yao [7] replaced each island by a point source (or sink) of strength B located at
the point R. This is a good approximation provided that the islands are immobile and
well separated in space, limiting the applicability of the theory to areal coverages lesser
than approximately 0,1 [7]. Equation (1.39) can be then defined even inside the original
islands,

∆φ(r) = 2π
N∑

j=1

Bjδ(r−Rj). (1.42)

We need two more equations to be able to solve (1.42): the growth rate equation and
the mass conservation law. We begin with the growth rate equation (1.11)

d
dt

[2π
3
ρ3j

]
= −

∫
Cj

J · n̂ dγ. (1.43)
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According to the Fick’s first law, the diffusion flux J is proportional to the negatively
taken gradient of the concentration field φ; in our dimensionless variables, the constant
of proportionality is equal to one and thus J = −∇φ. Substituting this into (1.43)
and using the divergence theorem to transform the contour integral into surface integral
gives, using (1.42),

d
dt

[2π
3
ρ3j

]
= −

∫
Sj

∆φ(r) dS = 2πBj, (1.44)

and hence
dρj

dt
= Bjρ

−2
j . (1.45)

Finally, the mass conservation law is

N∑
j=1

Bj = 0. (1.46)

We will see in the next section that the treatment of Ostwald ripening using the diffusion
equation stands and falls with the conservation of mass (1.46).

1.5.2 Solution of the diffusion equation

Equation (1.42) can be solved using the method of Green’s functions. The Green’s
function of Poisson’s equation ∆φ(r) = f(r) in two dimensions is

G(r, r′) =
1
2π
ln |r− r′|. (1.47)

The solution to (1.42) is then

φ(r) =
∫
r′

G(r, r′)f(r′) dr′ = B0 +
N∑

j=1

Bj ln |r−Rj| (1.48)

with B0 constant. The Gibbs-Thomson boundary condition (1.40) becomes

B0 +Bj ln ρj +
N∑

i6=j

Bi ln |r−Ri| = ρ−1j for |r−Rj| = ρj. (1.49)

The expression |r − Ri| in the last term on the right-hand side is very inconvenient
and we shall therefore get rid of it using the so-called monopolar approximation [7, 16].
First, we expand this expression into the Fourier series (see figure 1.2)

|r−Ri| =
√
ρ2j − 2ρj|Rj −Ri| cosψ(r) + (Rj −Ri)2 =

= A0 +
∞∑

n=1

An cos(nψ) +Bn sin(nψ). (1.50)

Second, we evaluate the coefficient A0 as usual by multiplying both sides by A0 and
integrating over ψ from 0 to 2π with the result

A0 = |Rj −Ri|. (1.51)
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Third, we truncate the series at A0, giving

|r−Ri| ≈ |Rj −Ri| for |r−Rj| = ρj. (1.52)

This approximation is valid when the other islands are distributed evenly around the
jth island, so that the anisotropy in |r−Ri| averages over. We will consider higher-order
approximations later. Using the monopolar approximation, (1.49) becomes

B0 +Bj ln ρj +
N∑

i6=j

Bi ln |Rj −Ri| = ρ−1j for |r−Rj| = ρj. (1.53)

The growth rates can be evaluated by solving equation (1.53) together with the conser-
vation of mass (1.46).

Figure 1.2: To the monopole approximation.

1.5.3 The Ewald summation technique

Equations (1.46) and (1.53) are sufficient to find the growth rates. However, the last
term on the left-hand side of equation (1.53), the interaction term, contains logarithm
of the interparticle separation; this implies that the interactions between the islands
are extremely long-ranged. We should be therefore very careful when evaluating the
interaction term, because its value depends sensitively even on the islands very far
away (which means unstability with respect to numerical roundoff in the simulation).
An elegant way to get rid of the problems with long-ranged interactions is to use the so-
called Ewald summation. The idea is very simple: we split the interaction between the
islands into short-ranged and long-ranged part and then sum the short-ranged part in
direct space and the long-ranged part in reciprocal space where it converges very rapidly.
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Let us then split φ(r) into two parts φ1(r) and φ2(r), which are found by solving
equations

∆φ1(r) = 2η
N∑

i=1

Bi exp
[
−η|r−Ri|2

]
, (1.54)

∆φ2(r) = −2η
N∑

i=1

Bi exp
[
−η|r−Ri|2

]
+ 2π

N∑
i=1

Biδ(r−Ri), (1.55)

where η > 0 is a constant yet to be determined. It is evident that the sum φ = φ1+φ2 is
the solution of the original problem (1.42). Equation (1.54) is solved using the Fourier
transform method. If Φ1(k) is the Fourier transform of φ1(r),

φ1(r) =
1
(2π)2

∫
k

Φ1(k) exp(ik · r) dk, (1.56)

then

∆φ1(r) = −
1
(2π)2

∫
k

k2Φ1(k) exp(ik · r) dk (1.57)

and thus the Fourier image of ∆φ1(r) is k2Φ1(k). Fourier transforming the right-hand
side of (1.54) we get

∫
r

2η
N∑

i=1

Bi exp
[
−η(r−Ri)

2 − ik · r
]
dr = 2π

N∑
i=1

Bi exp [−ik ·Ri] exp

[
− k2

4η2

]
. (1.58)

From this and (1.57) we get φ1(r) as

φ1(r) = −
1
2π

N∑
i=1

Bi

∫
k

k−2 exp

[
− k2

4η2

]
exp [ik · (r−Ri)] dk. (1.59)

The solution of (1.55) can be found using the Green’s function (1.47),

φ2(r) =
∫
r′

1
2π
ln |r− r′|

{
2η

N∑
i=1

Bi exp
[
−η|r−Ri|2

]
+ 2π

N∑
i=1

Biδ(r− Ri)

}
dr′. (1.60)

We have already evaluated the second part of this integral involving the δ-functions; to
evaluate the first part, we transform the integral into polar coordinates and integrate
the radial integral by parts to obtain

φ2(r) = −
1
2π

N∑
i=1

Bi

∞∫
0

exp(−ηr′2)
2π∫
0

r′ − |r−Ri| cos θ
|r′ − (r−Ri)|2

dθdr′. (1.61)

The angular integral is 2π/r′ for r′ > |r−Ri| and zero for r′ ≤ |r−Ri|. Equation (1.61)
thus becomes

φ2(r) = −
N∑

i=1

Bi

∞∫
|r−Ri|

exp(−ηr′2)
r′

dr′. (1.62)
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Adding (1.59) and (1.62) we get

φ(r) = − 1
2π

N∑
i=1

Bi

∫
k

k−2 exp

[
− k2

4η2

]
exp [ik · (r−Ri)] dk−

N∑
i=1

Bi

∞∫
|r−Ri|

exp(−ηr′2)
r′

dr′.

(1.63)
We now need to apply the Gibbs-Thomson boundary condition (1.53). We begin by

rewriting (1.53) as

ρ−1j = B0 +Bj ln ρj + lim
R′

j→Rj

[
−Bj ln |R′

j −Rj|+
N∑

i=1

|R′
j −Ri|

]
. (1.64)

The last term in the square bracket is, apart from a constant B0, nothing more than
the original solution (1.48), and thus

ρ−1j = B0 +Bj ln ρj + lim
R′

j→Rj

[
−Bj ln |R′

j −Rj| −B0 + φ(R′
j)
]
. (1.65)

The trick is that now we can substitute (1.63) for φ(r) in this equation; after quite
lenghty rearrangements involving the treatment of limits and several transformations of
integrals we get [7]

ρ−1j = B0 +Bj

ln(√ηρj) +
1∫
0

1− exp(−t2)
t

dt−
∞∫
1

exp(−t2)
t

dt

−

−
N∑

i6=j

Bi

∞∫
√

η|Rj−Ri|

exp(−t2)
t

dt− 1
2π

N∑
i=1

Bi

∫
k

exp(−k2/4η)
k2

exp [ik · (Rj −Ri)] dk.

(1.66)
The last approximation required is that we restrict the system to a square of a side
L and use periodic boundary conditions. The Fourier transform in (1.66) reduces to
Fourier series and the unknown constant η relates to the system size, η = 1/L2. The
allowed values of k are k = 2π(nx, ny)/L with nx, ny integer. Equation (1.66) becomes

ρ−1j = B0 +Bj

ln(ρj

L

)
+

1∫
0

1− exp(−t2)
t

dt−
∞∫
1

exp(−t2)
t

dt

−

−
N∑

i6=j

Bi

∞∫
|Rj−Ri|/L

exp(−t2)
t

dt− 1
2π

N∑
i=1

Bi

∑
k6=0

exp(−k2/4L2)
k2

exp [ik · (Rj −Ri)] . (1.67)

The singularity corresponding to k = 0 is resolved thanks to the conservation law (1.46).
Equations (1.45), (1.46) and (1.67) are all what is needed for the simulation.

1.5.4 Scaling properties of simulation equations

Suppose we rescale the spatial dimensions of the system by a factor α, e. g., L → αL,
ρ→ αρ and so on. The growth rates Bi, which are given by equation (1.67), are rescaled
to Bi → Bi/α since each Bi is a linear function of 1/ρj’s. If we also rescale the time as
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t→ α4t, then the growth equation (1.45) is left unchanged by the scaling. This means
that if we have a solution of the simulation equations corresponding to a system of size
L and we want to find the solution for a system α-times larger, but otherwise identical,
we need only to relabel the axes like

ρ→ αρ, V → α3V, t→ α4t. (1.68)

Thanks to these scaling properties, the simuation is independent of the computation cell
size L. It follows that we can set L = 1 in (1.67) and treat all the distances as being
relative to the system size.

1.5.5 Matrix form of the simulation equations

Let us now take equations (1.67) and (1.46) and rewrite them in a more compact matrix
form. We begin by defining the quantities cj, dj, Kij and Sij as follows:

cj = ln
(
ρj

L

)
+

1∫
0

1− exp(−t2)
t

dt−
∞∫
1

exp(−t2)
t

dt, (1.69)

dj = ρ
−1
j , (1.70)

Kij = −
∞∫

|Rj−Ri|
L

exp(−t2)
t

dt, (1.71)

Sij = −2π
∑
k6=0

exp(−k2L2/4)
k2L2

exp[ik · (Rj −Ri)]. (1.72)

Using definitions (1.69), (1.70), (1.71) and (1.72) and noting that Sij = Sji, Kij = Kji

we can write the set of (N + 1) simultaneous linear equations (1.67) and (1.46) in the
desired matrix form

0 1 1 . . . 1

1 c1 + S1,1 K1,2 + S1,2 . . . K1,N + S1,N
1 K1,2 + S1,2 c2 + S2,2 . . . K2,N + S2,N
...

...
...

. . .
...

1 K1,N + S1,N K2,N + S2,N . . . cN + SN,N





B0

B1

B2
...

BN


=



0

d1

d2
...

dN


. (1.73)

The coefficient matrix of this linear equation set is symmetric and undefinite.
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Chapter 2

The simulation algorithm

2.1 The initial set of islands

Crucial fact that has not been considered so far is that we need an initial condition to
solve equations (1.73) and (1.67). By this we mean that we need to know the exact
state of the system, i. e., the island positions and radii, at t = 0. Since we do not intend
to perform simulations of early stages of the ripening (nucleation and coalescence) we
have to use a different approach to obtain the initial condition.

2.1.1 Initial distribution of island sizes

We use the spatial (time-independent) part of the LSW size distribution F (u) (1.31) as
an initial guess for the island size distribution function. In the first step we need to find
the normalized cumulative distribution function

Φ(u) =
1
Φ0

u∫
0

F (u′) du′, Φ0 =
∞∫
0

F (u) du, (2.1)

which gives the probability to find an island with relative radius lesser than or equal
to u. This function can be found by simple numeric integration of F (u); the correspond-
ing graph can be found in figure 2.1.

In the next step we generate a random number x ∈ [0; 1] and find the vaule of u
corresponding to x = Φ(u); this procedure is repeated N times in order to get the
relative radii ui = ρi/〈ρ〉 of N islands to be placed in the simulation cell. Finally, we
need to find the average radius 〈ρ〉. This can be done if we specify the desired areal
coverage Θ since

Θ =
1
L2

N∑
i=1

πρ2i = π
〈ρ〉2

L2

N∑
i=1

(
ρi

〈ρ〉

)2
= π

〈ρ〉2

L2

N∑
i=1

u2i (2.2)

and thus

〈ρ〉 = ΘL2

π
∑
i
u2i
. (2.3)

The value of 〈ρ〉 is then used to find the absolute radii ρi = ui〈ρ〉.

19
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Figure 2.1: The cumulative distribution function Φ(u) of the island radii in the frame-
work of the LSW theory.

2.1.2 Initial island positions

A good starting approximation of the island size distribution analogous to the LSW dis-
tribution in the previous section is not known. We use two methods to obtain the initial
island positions within the simulation cell: random placement and random placement
with denuded zone.

In the first case we proceed as follows: first, we generate a random island position Ri

within the simulation cell and second, we perform a test if the island to be placed would
not overlap with any of the islands already present. To do this we find the location Rj

of the nearest island and test if

ρi + ρj > |Ri −Rj|. (2.4)

If this condition is fulfilled the island is added to the system; otherwise a new random
location is calculated and the procedure is repeated.

The case of random deposition with denuded zone is entirely analogous except that
the island is added when

α(ρi + ρj) > |Ri −Rj| (2.5)

where the parameter α determines the extent of the denuded zone around the island.
There is not a simple rule to estimate the optimal value of α; we use α = 50 for
simulations with initial areal coverage 1,0 · 10−4 and α = 2,5 for simulations with initial
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areal coverage 5,0 · 10−2. The value for Θ = 5,0 · 10−2 is the same as used in [16]. We
should not worry about the exact value of α because the asymptotic state of the system
should be independent of the initial conditions. The only purpose of α is to provide
a better initial condition in order to speed up the convergence.

2.1.3 The asymptotic behavior of the system

We hope that in the course of our simulation the influence of the initial conditions will
decrease as the system evolves towards the asymptotic state. In order to access the
long-time behavior we need a system which is large enough; approximatelly 20 000 is-
lands seems to be enough [16]. The time required for one simulation run scales roughly
as N3 logN ; the maximum number of islands for which the simulation is feasible with
the available hardware is N ≈ 2 500 which is far too few to reach the asymptotic state.

A simple way to circumvent this problem is to perform 4k simulation runs with
relatively small number of islands (N = 1000 in most cases). The results can be then
used to assembly 4k−1 initial states for the next step by merging four simulation cells
from previous step into one larger cell. This process can be repated k times.

2.2 The initialization part

In the initialization part of the algorithm the coefficient matrix of linear equation set
(1.73) is set up. To do this, we need to evaluate cj (1.69), dj (1.70), Kij (1.71) and Sij

(1.72). Evaluation of dj is straightforward; the only thing we need to consider is that
the coefficients dj will change after every iteration step since the island radii change in
every step. The first term in the expression (1.69) for cj depends on the island radius;
it will therefore also change after every iteration of the simulation. The other two terms
in (1.69) are just constants; the corresponding integrals have to be evaluated only once
and their values can be inserted into the simulation as parameters. Integration was per-
formed using Simpson’s method for improper integrals based on the extended midpoint
rule [17].

The maximum value of the lower bound in (1.71) is
√
2 when the two islands are

placed in the opposite corners of the simulation cell. It is therefore convenient to split
the improper integral in (1.71) into two parts,

Kij = −
∞∫

|Rj−Ri|
L

exp(−t2)
t

dt = −
κ∫

|Rj−Ri|
L

exp(−t2)
t

dt−
∞∫
κ

exp(−t2)
t

dt, (2.6)

where κ >
√
2 is the breakpoint1. The first term is quite ordinary definite integral,

while the second one is an improper integral, which is much more difficult to compute
numerically. With our clever choice of the breakpoint the improper part is independent
of i and j and thus needs to be evaluated only once; this was done in exactly the same
way as for the analogous integrals in (1.69), i. e., using Simpson’s method. The first

1The actual value used in the simulation is κ = 1,45.
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integral is calculated using the Romberg method of fourth order [17]. It should be noted
that evaluation of this integral is the most time-consuming step in the whole simula-
tion and better quadrature methods would give far better performance; in fact, using
Gauss-Legendre quadrature, the simulation can be speeded up as much as ten times,
but, unfortunately, Gaussian quadrature proved to be highly unstable in this particular
case.

Equation (1.72) for Sij can be simplified using the fact that k = 2π
L
(nx, ny) with nx,

ny integer:

Sij = −
1
2π

∑
nx,ny

exp[−π2(n2x + n2y)]
n2x + n2y

exp

[
2πi
(nx, ny) · (Rj −Ri)

L

]
. (2.7)

Furthermore, equation (2.7) has a kind of inversion symmetry, since for each (nx, ny)
there is also the term (−nx,−ny) in the sum. Using this fact, (2.7) can be reduced to

Sij = −
1
2π

∑
nx,ny

exp[−π2(n2x + n2y)]
n2x + n2y

cos
[2π
L
(nx, ny) · (Rj −Ri)

]
(2.8)

from which is evident that Sij = Sji. Let us now estimate how many terms should be
included into the sum. The number of points (nx, ny) within the distance n from the
origin grows as n2 while their relative weight in the sum decreases exponentially; the
sum is therefore convergent. The weight of the terms with n = 1 is of the order 10−5;
terms with n =

√
2 have weight ≈ 10−9 and the points with n = 2 are negligible because

their weight is approximately 10−17. Therefore only eight points contribute significantly
to the sum: (±1, 0), (0,±1) and (±1,±1). These terms can be summed explicitly to
give

Sij = −
1
π
exp(−π2)

[
cos
2π(Rj,x −Ri,x)

L
+ cos

2π(Rj,y −Ri,y)
L

]
− 1
π
exp(−2π2)×

×
[
cos
2π(Rj,x −Ri,x +Rj,y −Ri,y)

L
+ cos

2π(Rj,x −Ri,x −Rj,y +Ri,y)
L

]
. (2.9)

2.3 Finding the growth rates

We need to solve (1.73) in order to find the growth rates Bi. This linear equation set
has a coefficient matrix that is symmetric, but undefinite; the most efficient method
to solve this type of linear equation set is the LDL decomposition2. We used the
LAPACK [18] routine DSYSV to perform the decomposition. The efficiency of the
DSYSV routine relies strongly on the platform-specific implementation of Basic Linear
Algebra Subroutines (BLAS). Although generic BLAS from [19] are enclosed with the
simulation package we strongly recommend using either the ACML library [20] for AMD
processors or the IMKL library [21] for Intel processors.

2Yao [7] used LU decomposition to solve (1.73). The LU decomposition does not use the symmetry
of the coefficient matrix and is therefore much slower (about a factor of four in our case) than LDL.
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2.4 Updating the island radii

Having computed the growth rates Bj we can focus on solving (1.45). We used explicit
Euler method to solve this set of N uncoupled first-order ordinary differential equations:

ρj(t+∆t) = ρj(t) +Bjρ
−2
j ∆t. (2.10)

Since explicit Euler method is indeed a primitive one, great care has to be taken in
choosing the time increment ∆t. We proceeded as follows: we found the fastest shrinking
island, i. e., the one with the largest negative change in the relative volume dV/dt ∼
Bjρ

−3
j . This is not necesarilly the smallest one since the growth rates depend on the

neighborhood of the particular island. Then we choose the time step so that the fastest
shrinking island loses a certain percentage p of it original volume,

∆t = −p ρ
3
min

Bmin

. (2.11)

The island radii are then updated according to (2.10). We chose p = 0,2 in our simula-
tions.

2.5 Removing islands from the system

When one of the islands becomes too small it is removed from the system. The condition
for an island to be removed is

Vj < q〈V 〉, (2.12)

i. e., the relative island volume with respect to the mean island volume is lesser than q.
The actual value of q used in our simulations was q = 0,05. When an island is removed,
its remaining volume is redistributed evenly among the rest of the islands in order to
keep the total volume of the islands constant3; the system is then reinitialized with N−1
islands according to section 2.2 and the simulation continues until the specified number
of islands is reached. We chose this minimum value to be N = 350 since for N < 300
the effects related to limited system size were clearly apparent.

2.6 Implementation

The algorithm used to generate the initial set of islands is implemented in the program
Deposit and the rest of the simulation algorithm is implemented in the OsSim program.
Both these programs are written in ISO standard Fortran 95 and compiled using either
an evaluation copy of Intel Visual Fortran compiler [22] or the G95 compiler [23] available
under the GNU license. Deposit and OsSim can be found, together with their source
code, on the CD enclosed.

3Alternatively, we can transfer the material from the disappearing island to its nearest neighbor,
since most islands actually disappear by coalescence [2].
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2.7 Possible improvements of the algorithm

The maximum number of islands for which the simulation is completed in reasonable
time on available hardware4 is approximatelly 1 600 which is too few to access the
asymptotic ripening regime [8]. With the following improvements systems consisting of
as much as 100 000 islands can be treated efficiently [16].

Most of the computing time is spent on numerical quadrature when evaluating the
coefficients Kij in (2.6). We tried to implement the Gauss-Legendre method to perform
the quadrature, but this proved to be numerically unstable in certain cases although
it reduced the simulation time by a factor of 10. A more promising way is to improve
the implementation of the Romberg method. A parallel version [24] of this algorithm
speeds up the simulation by a factor of 2. It is, however, not implemented in the current
version of the OsSim package because of conflicts with the LAPACK library which have
not yet been fully resolved.

Another way to reduce the computation time is to use the cutoff distance concept [8]
which is based on the assumption that only a finite number of nearest-neighbor inter-
actions needs to be taken into account since the diffusion field of a particle sufficiently
far away is screened out. Adopting this assumption, we can define the cutoff distance
rc and consider only particles closer that rc when evaluating the growth rate for a given
island; this significantly reduces the size of the equation set that has to be solved. The
principal problem with this approach is that there is not an explicit formula for the
cutoff distance. However, it has been shown that the results do not depend on rc if it is
chosen large enough [8].

Additionally, we can solve the linear equation set for the growth rates by iterative
methods rather than direct methods. Akaiwa [6] used the generalized minimal residual
method with a preconditioner along with an efficient matrix-vector multiplication algo-
rithm to reduce the time required to solve the equation set by a factor of 2 500 which is
really impressive.

The stability of the simulation could be further enhanced if we use a more elaborate
way to solve the growth rate equation (1.73) such as the Runge-Kutta-Fehlberg method
of fourth order with adaptive step size (RKF45). We did not implement this algorithm
since there are problems when choosing the proper step size.

4Simulation where 1 400 islands are initially placed into the computation cell lasts approximately 7
hours on AMD Athlon 64 3000+ processor and slightly less than 5 hours using a single core of the Intel
C2D T6450 processor.



Chapter 3

Results

We performed 96 simulation runs in total in order to estimate the time dependence
of the mean island radii, the distributions of island radii, the nearest-neighbor distance
distributions and the radial distribution functions. To find the dependence on the initial
areal coverage Θ, we performed 16 runs with Θ = 0,000 1 and Θ = 0,05 and 4 runs with
Θ = 0,01, Θ = 0,02 and Θ = 0,10. To study the effects of the presence of initial denuded
zone on the results, another 16 runs for Θ = 0,000 1 with α = 50 and Θ = 0,05 with
α = 2,5 were carried out. In all cases the initial number of islands was 1 000 and we
iterated until the number of islands decreased to approximatelly 350. An attempt to
acces the asymptotic behavior was made using the composite simulations1 with k = 2
for Θ = 0,000 1 and Θ = 0,05 both with and without the denuded zones. We used the
results of the previous (from now on called single) runs as the input for these simulations.

3.1 Mean island radius

There are two ways to obtain the scaling exponent in (1.24). The first is to use the
asymptotic form (1.25) and take the logarithm of both sides to get

ln〈ρ〉 ∼ 1
3
ln t. (3.1)

Thus, if we plot the time dependence of the mean radius in a log-log plot, the slope of
the linear part should be equal to the scaling exponent. We could not use this method
since there was no linear part at all in the data. The second way to obtain the scaling
exponent is to fit the measured data with the model function corresponding to (1.24)

〈ρ(t)〉 = (A+Bt)−c (3.2)

where A, B and c are parameters with the following meaning: A is the cube of the ini-
tial mean island radius, B is proportional to the growth constant and c is the reciprocal
value of the scaling exponent. The fitted curves are in figures 3.1 - 3.11 and the values
of the parameter c are summarized in table 3.1.

LSW theory predicts that the scaling exponent is equal to 1/4 and therefore c = 4.
The values of c obtained from simulatons vary between 3,13 and 5,17 with no apparent

1As described in section 2.1.3.

25
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Θ c Θ c Θ c

0,000 1NS 3,56± 0,03 0,05NS 3,13± 0,07 0,01NS 3,7± 0,1
0,000 1NC 4,14± 0,06 0,05NC 5,17± 0,07 0,02NS 3,41± 0,08
0,000 1DS 3,86± 0,05 0,05DS 2,92± 0,06 0,10NS 3,3± 0,1
0,000 1DC 4,16± 0,06 0,05DC 4,81± 0,05

Table 3.1: Scaling exponents obtained from the fit of the simulated data for various
initial areal coverages Θ either averaged from single runs (S) or from a composite run
(C) and with (D) or without (N) denuded zone.

dependence on coverage or the initial population of islands. Futhermore, the values
of the parameter A obtained from the fit are several orders of magnitude lower than
expected; the attempt to fit the data points using A = 〈ρ(0)〉 gave very poor results.

This discrepancy between the theory and our simulations has two reasons. First,
the theory itself in not strictly valid because of the unsatisfactory treatment of the
diverging concentration fields as mentioned earlier. Apart from this, we will show that
in this particular case the theory cannot be applied at all since the predicion of the
constant scaling exponent is based on the assumption that the growth rate does not
depend on time. To see why this is not true, consider the following: the areal coverage
is not constant, which is specific to mixed-dimensional systems. Therefore all quantities
dependent on the areal coverage either become dependent on time or, if they are already
time-dependent, their time dependence becomes more complicated. Second, it has been
shown in many studies (see [4] and references therein) that ν depends on areal coverage
and therefore, according to our previous reasoning, on time, invalidating the necessary
condition for (1.24) to hold.
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Figure 3.1: Time evolution of the mean island radius for the initial areal coverage
Θ = 0,000 1 without initial denuded zone (crosses; averaged from 16 single runs) and fit
of these data by (3.2) (solid red line).
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Figure 3.2: Time evolution of the mean island radius for the initial areal coverage
Θ = 0,000 1 with inital denuded zone (crosses; averaged from 16 single runs) and fit of
these data by (3.2) (solid red line).
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Figure 3.3: Time evolution of the mean island radius for the initial areal coverage
Θ = 0,01 without inital denuded zone (crosses; averaged from 4 single runs) and fit of
these data by (3.2) (solid red line).
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Figure 3.4: Time evolution of the mean island radius for the initial areal coverage
Θ = 0,02 without initial denuded zone (crosses; averaged from 4 single runs) and fit of
these data by (3.2) (solid red line).
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Figure 3.5: Time evolution of the mean island radius for the initial areal coverage
Θ = 0,05 without initial denuded zone (crosses; averaged from 16 single runs) and fit of
these data by (3.2) (solid red line).
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Figure 3.6: Time evolution of the mean island radius for the initial areal coverage
Θ = 0,05 with initial denuded zone (crosses; averaged from 16 single runs) and fit of
these data by (3.2) (solid red line).
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Figure 3.7: Time evolution of the mean island radius for the initial areal coverage
Θ = 0,10 without initial denuded zone (crosses; averaged from 4 single runs) and fit of
these data by (3.2) (solid red line).
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Figure 3.8: Time evolution of the mean island radius for the initial areal coverage
Θ = 0,000 1 without initial denuded zone (crosses; from composite run with k = 2) and
fit of these data by (3.2) (solid red line).
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Figure 3.9: Time evolution of the mean island radius for the initial areal coverage
Θ = 0,000 1 with initial denuded zone (crosses; from composite run with k = 2) and fit
of these data by (3.2) (solid red line).
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Figure 3.10: Time evolution of the mean island radius for the initial areal coverage
Θ = 0,05 without inital denuded zone (crosses; from composite run with k = 2) and fit
of these data by (3.2) (solid red line).
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Figure 3.11: Time evolution of the mean island radius for the initial areal coverage
Θ = 0,05 with inital denuded zone (crosses; from composite run with k = 2) and fit of
these data by (3.2) (solid red line).
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3.2 Shape histograms

The distribution of island radii found in our simulation is apparently different from the
one predicted by the LSW theory. The simulated distribution function is less sharply
peaked and wider; it is also more symmetric. The height of the maximum decreases
with increasing initial coverage (see figure 3.12) which is expected since the greater the
coverage, the stronger the interactions.
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Figure 3.12: The distribution of island radii scaled with respect to the mean island
radius for various areal coverages: Θ = 0,000 1 (red squares), averaged from 16 runs;
Θ = 0,01 (green circles), averaged from 4 runs; Θ = 0,02 (dark blue triangles), averaged
from 4 runs; Θ = 0,05 (light blue triangles), averaged from 16 runs; and Θ = 0,10 (violet
diamonds), averaged from 4 runs. The LSW distribution is plotted for comparison (solid
black line).

The distribution function seems to be dependent on whether the denuded zone has
been used to generate the initial population of islands or not. Simulations with de-
nuded zone show a slightly more pronounced peak; this observation is valid both for
Θ = 0,000 1 and Θ = 0,05 as can be seen from figures 3.13 and 3.14. Since the long-time
behavior should be independent of the initial conditions, we can conclude that at the
end of our simple runs the system has not yet reached the asymptotic regime. The dis-
tribution functions obtained from composite simulation runs should therefore be used,
but, unfortunately, these do not provide reliable information due to insufficient statistics.
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Figure 3.13: Comparison of the scaled island size distribution function for Θ = 0,000 1
without the denuded zone (red squares) and with denuded zone (α = 2,50; green circles).
These distributions were obtained by averaging 16 simple runs in each case. The LSW
function is plotted for comparison (solid black line).
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Figure 3.14: Comparison of the scaled island size distribution function for Θ = 0,05
without the denuded zone (red squares) and with denuded zone (α = 50; green circles).
These distributions were obtained by averaging 16 simple runs in each case. The LSW
function is plotted for comparison (solid black line).
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We also compared the simulations with the distribution functions obtained from
experiment (figure 3.15). In this experiment, gallium was deposited onto Si(100) surface
with constant deposition flux of 1ML/6min at 300◦C for 24, 96 and 194 minutes with
the resulting Ga areal coverages of 0,15 in the first two cases and 0,20 in the third case.
After the deposition, flat Ga islands (several hundreds of nanometers wide and less that
100 nm high) can be found on the surface. The island radii were measured ex situ by
the atomic force microscopy (AFM). We can see that the experimental distributions are
narrower and more symmetric than the ones obtained by experiment. This is caused by
the effect of the nonzero deposition flux [4].
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Figure 3.15: Comparison of the scaled island size distribution function predicted by the
LSW thoery (solid black line) with the distribution functions obtained from simulation
for Θ = 0,10 (violet diamonds) and from experiment with Θ = 0,15 after 24 min.
deposition (red triangles), Θ = 0,15 after 96 min. deposition (green circles) and Θ = 0,20
after 194 min. deposition (black squares). See the text for details.

3.3 Spatial histograms

As there is no theoretical prediction concerning the distribution of nearest neighbors,
we concentrated only on the description of the data obtained from our simulations. We
fitted the data using a gamma distribution [25] instead of Gaussian distribution [9] since
(i) the Gaussian distribution is defined for arbitrary value of the independent variable
whereas r/〈dnn〉 can attain only nonnegative values and (ii) the Gaussian function has
zero skewness which is apparently not true for our data.
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The gamma distribution is described by two parameters k and θ. In terms of these
parameters all the important quantities could be calculated: the mean value is kθ, the
variance is kθ2 and the skewness is 2k−1/2. The results of the fits are summarized in
tables 3.2 and 3.3. Note that the mean value should be equal to unity if the nearest-
neighbor distribution was given by a gamma distribution since the data are normalized
with respect to the mean nearest-neighbor distance; in all cases the mean values are
indeed equal to unity within the standard deviation. The results clearly show that with
increasing coverage, the distributions are more sharply peaked and more symmetric.

Θ k θ kθ
√
kθ2 2k−1/2

0,000 1 5,1± 0,2 0,205± 0,009 1,04± 0,06 0,46± 0,02 0,89± 0,02
0,01 6,7± 0,4 0,15± 0,01 1,01± 0,09 0,39± 0,03 0,77± 0,02
0,02 7,2± 0,5 0,14± 0,01 1,0± 0,1 0,38± 0,04 0,74± 0,03
0,05 9,6± 0,1 0,105 0± 0,000 1 1,01± 0,01 0,325± 0,002 0,645± 0,004
0,10 12,2± 0,7 0,083± 0,005 1,01± 0,08 0,29± 0,02 0,57± 0,02

Table 3.2: Parameters of the gamma distribution used to fit the simulation results
for various initial areal coverages obtained from simulations without the initialdenuded
zone.

Θ k θ kθ
√
kθ2 2k−1/2

0,000 1N 5,1± 0,2 0,205± 0,009 1,04± 0,06 0,46± 0,02 0,89± 0,02
0,000 1D 6,7± 0,4 0,15± 0,01 1,02± 0,09 0,39± 0,03 0,77± 0,02
0,05N 9,6± 0,1 0,105 0± 0,000 1 1,01± 0,01 0,325± 0,002 0,645± 0,004
0,05D 13± 1 0,074± 0,006 1,0± 0,1 0,27± 0,02 0,55± 0,02

Table 3.3: Parameters of the gamma distribution used to fit the simulation results for
initial areal coverages Θ = 0,001 and Θ = 0,05 with denuded zones (labeled with D)
and without the denuded zones (N).

The comparison of the nearest-neighbor distributions for various coverages is compli-
cated by the fact that these curves have to be different: because an island has nonzero
radius, there are no other islands closer than ρ which results in the fact that the dis-
tribution function is shifted to larger values of r/〈dnn〉. Since for larger areal coverages
the islands are bigger, this shift should increase with increasing Θ, which is indeed ob-
served (see figure 3.16). On the other hand, for larger coverages there is less space on
the surface which reduces the probability of finding large nearest-neighbor separations.
This explains the fact that the width of the distribution decreases with increasing Θ.

The same effect as described in the previous paragraph is observed when we compare
results for the same coverage, but with and without the denuded zone. This is not
surprising because when placing islands, (i) their effective radius is bigger and (ii) the
effective areal coverage is larger. This can be seen in figs. 3.17 and 3.18.
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Figure 3.16: Comparison of the scaled nearest-neighbor distribution function for various
initial areal coverages: Θ = 0,000 1 (black squares, from 16 runs), Θ = 0,01 (red circles,
4 runs), Θ = 0,02 (green triangles, 4 runs), Θ = 0,05 (dark blue triangles, 16 runs) and
Θ = 0,10 (light blue diamonds, 4 runs). All the initial data sets were generated without
the denuded zones.
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Figure 3.17: Comparison of the scaled nearest-neighbor distribution function for Θ =
0,000 1 without the denuded zone (black squares) and with denuded zone (red circles).
The curves were obtained by averaging data from 16 single runs in both cases.
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Figure 3.18: Comparison of the scaled nearest-neighbor distribution function for Θ =
0,05 without the denuded zone (black squares) and with denuded zone (red circles). The
curves were obtained by averaging data from 16 single runs in both cases.

3.4 Radial distribution functions

Radial distribution functions (RDF’s), defined in section 1.3, provide us with important
information on the denuded zones around the islands. The RFD’s were evaluated in the
following manner: we took the computation cell at the end of the simulation, created
a total od nine identical copies and assembled them into a large 3×3 cell. This was
necessary to avoid problems with particles close to the edge of the original cell. Then
we took one island in the central subcell and sorted the other islands according to their
distance. This was repeated for each island in the central subcell and the results were
averaged. In the next step, we scaled the distances with respect to the mean nearest-
neighbor distance. Finally, we calculated the expected number of particles in a shell of
radius r from the island number density (N = 1/N since L = 1 in our simulations).
From this the RDF was estimated using the definition (1.9). The results for various
initial areal coverages are in figure 3.19 and the comparison of simulations with and
without the denuded zone for two different coverages are in figures 3.20 and 3.21.

We found that even in simulations without initial denuded zones (fig. 3.19) these
appear in the course of ripening. Two facts should be noted: first, there is always a
certain region where the RDF is equal to zero since the islands have a nonzero radius;
the extent of this region depends on the quotient of the mean island radius and the
mean nearest-neighbor distance. This quotient is time-dependent which makes it hard
to compare the results of simulations with different initial conditions. Second, the total
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extent of the denuded zone seems to decrease with increasing coverage and varies from
approximatelly 2 × 〈dnn〉 for Θ = 0,000 1 to 1 × 〈dnn〉 for Θ = 0,10. This decrease was
observed also in 3D/3D systems [8] and 2D/2D systems [16].
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Figure 3.19: Comparison of the radial distribution functions for various initial areal
coverages: Θ = 0,000 1 (black squares, from 16 runs), Θ = 0,01 (red circles, 4 runs),
Θ = 0,02 (blue triangles, 4 runs), Θ = 0,05 (green triangles, 16 runs) and Θ = 0,10
(violet diamonds, 4 runs). All the initial data sets were generated without the denuded
zones.

The RDF look quite differently if the initial denuded zones are present. However,
the total extent of the denuded zone at the end of the simulation is again ≈ 1,5×〈dnn〉.
There is one more interesting thing: the initial denuded zones begin to be filled; the
RDF is small but nonzero for small values of r/〈dnn〉 at the end of the simulation
whereas it was exactly zero at the beginning for the same values. In the aymptotic
RDF’s obtained from composite runs (figs. 3.22 and 3.23) the difference between the
simulations with and without the initial denuded zone has disappeared; however, the
extent of the denuded zone cannot be estimated due to missing statistics.
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Figure 3.20: Comparison of the RDF for Θ = 0,000 1 without the inital denuded zone
(black squares) and with initial denuded zone (red circles). The curves were obtained
by averaging data from 16 single runs in both cases.
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Figure 3.21: Comparison of the RDF for Θ = 0,05 without the inital denuded zone
(black squares) and with initial denuded zone (red circles). The curves were obtained
by averaging data from 16 single runs in both cases.
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Figure 3.22: Comparison of the RDF for Θ = 0,000 1 without the inital denuded zone
(black squares) and with initial denuded zone (red circles). The curves were obtained
from composite runs with k = 2 in both cases.
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Figure 3.23: Comparison of the RDF for Θ = 0,05 without the inital denuded zone
(black squares) and with initial denuded zone (red circles). The curves were obtained
from composite runs with k = 2 in both cases.



Conclusion

Overview of the simulation results

The LSW theory predicts that the mean island radius scales with time as 〈ρ〉 ∼ t1/4

for t large enough. However, this prediction is valid only if the growth constant does
not depend on time, which is not true. According to [4] the power-law scaling is then
valid only for short time intervals. We hoped that the deviation from the power-law
scaling would be small enough for our results to be comparable with the LSW theory.
We fitted the simulated data by a function of the form predicted by the LSW theory and
we obtained scaling exponents between 3,13 and 5,17 with no apparent dependence on
the simulation conditions while the other fitting parameters were in strong disagreement
with the values obtained from the fit. We can therefore conclude that the power-law
scaling of the mean island radius predicted by the LSW theory is not valid. More recent
studies predict that the mean island radius grows roughly as (t/ ln t)1/3 and that there
is no scaling at all [4].

We have compared the distribution functions of the island radii with the LSW pre-
diction to found that the simulated distributions are broader and more symmetric with
the broadening being more pronounced for larger initial areal coverages. This is consis-
tent with both the theoretical prediction and experimental results [4].

Spatial correlations were studied using the nearest-neighbor distance distribution
function and the radial distribution function. Unfortunately, there are no analytical
results and very few experimental studies or simulations available at this time. The
nearest-neighbor distance distribution was examined in an experimental study of ripen-
ing of Sn clusters on Si(111) surface [9]. The measured distributions were fitted by
a Gaussian distribution and the scaled standard deviations σ/〈dnn〉 were found to be
close to 0,21 ± 0,02 in most cases. We used a gamma distribution to fit the our data
since the Gaussian distribution cannot in principle be used becaus r/〈dnn〉 attains only
positive values. We found that in simulations without initial denuded zones the stan-
dard deviation decreases from 0,46± 0,02 to 0,29± 0,02 with the initail areal coverage
decreasing from 0,000 1 to 0,10. If we compare the simulations with and without the
denuded zone for the same areal coverage we find that the distribution is broader in the
latter case. It should also be noted that in the distributions obtained from simulations
without the denuded zone memory effects of initial random island placement are clearly
distinguishable whereas the distributions with initial denuded zones are similar to the
experimental results [9].

When analyzing the radial distribution functions we found that there is a denuded
zone around each island whose extent (measured with respect to the mean nearest-
neighbor distance) increases with decreasing areal coverage. We compared simulations
in which the islands were placed with the initial denuded zone with simulations where
there is initially no such zone to find that at the end of the simulation the size of
the denuded zone is approximatelly the same in both cases. Both experimental and



computational studies show that the radial distribution grows from zero value until it
reaches a local maximum with ξ > 1; this maximum is followed by a slow decline to the
asymptotic value ξ = 1. Such local maxima were not observed in our resuls because the
height of the maximum increases with increasing coverage [4, 8, 16, 6] and for the areal
coverages used in our study it cannot be disinguished from fluctulations present due to
insufficient statistics.

Possible extensions of the model

The monopolar approximation employed in the model is valid when the areal coverage
is lesser than approximatelly 0,10 [8, 16]. For larger areal coverages it is necessary to
use higher-order approximations. These approximations not only allow for higher areal
coverages but they bring entirely new qualitative features to the model. In the dipolar
approximation, the islands are mobile, with the dipole terms being directly related to
the velocity of the centre of mass of the islands [16]. It is also possible to relieve the
constraint of fixed island shape in 2D/2D systems [6] but the applicability to 3D/2D
remains an open issue.

The problem of diverging concentration fields inherent to steady-state diffusion equa-
tion in two dimensions is resolved due to the mass conservation condition (or the
screening-length concept, which is based on this condition). However, the restriction
to mass-conserved systems is very unconvenient and there were attempts to relieve this
restriction. Rogers and Desai [26] attempted to use the non-steady state diffusion equa-
tion but at the cost of major simplification including a mean-field approximation while
Hayakawa and Family used perturbation theory to solve the many-body diffusion prob-
lem [27].

The ripening is usually considered to be driven by capillariry effect which is expressed
by the Gibbs-Thomson boundary condition. More recently, the importance of elastic
strain has been recognised [28, 29]. These effect can be taken into account by replacing
the Gibbs-Thomson condition; a very simple example of how this can be done is shown
in [14].

Applicability of the LSW theory

The main purpose of this work was to determine whether the simple LSW mean-field
theory can at least roughly describe the Ostwald ripening process in mixed 3D/2D sys-
tem. Based on the discussion in section 3.4 it is obvious that the Chakraverty’s extension
[12] of the LSW theory to 3D/2D systems is unsatisfactory and that its use should be
avoided. This is rather unconvenient because there is no other model of such simplicity.



In addition, we have shown that the extrapolation of the 3D/3D and 2D/2D models
from [7] to 3D/2D can be used to describe ripening in the mixed-dimensional case as the
principal features are in agreement with the results of other groups, either experimental
studies or simulations. Although this model can be extended to be applicable to cases
with very large areal coverages and perhaps to include elastic strain effects, its validity
remains limited to mass-conserved systems.
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Seznam příloh

1. Program Deposit pro generování počáteční populace ostrůvků (ver. 1.01), přilo-
ženo na CD, BP/OsSim 1.13/Deposit.exe.

2. Program OsSim pro simulaci časového vývoje populace ostrůvků (ver. 1.13), při-
loženo na CD, BP/OsSim 1.13/OsSim.exe.

3. Zdrojový kód k programům Deposit a OsSim spolu se zdrojovým kódem k ruti-
nám z knihovny BLAS [19] a rutině DSYSV z knihovny LAPACK [18], přiloženo
na CD, BP/OsSim 1.13/OsSim.v1.13.Source.Code.zip.

4. Zdrojové soubory pro zpracování simulovaných dat v programu Matlab (ver. 7.1);
přiloženo na CD ve složce BP/Matlab/.
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