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Abstract
Counting automata (CAs) are classical finite automata extended with bounded counters.
They still denote the class of regular languages but in a more compact way than finite
automata. Since CAs are a recent model, there is a gap in the knowledge of efficient
algorithms implementing various operations on the CAs. In this thesis, we mainly focus
on an existing subclass of CAs called monadic counting automata (MCAs), i.e., CAs with
counting loops on character classes, which are common in practice (e.g., detection of packets
in network traffic, log analysis). For this subclass, we efficiently solve the emptiness and
inclusion problems. Moreover, we provide two extensions of the class of MCAs (but not
beyond the class of CAs) and efficiently solve the emptiness problem for them. MCAs
naturally arise from regular expressions that are extended by the counting operator limited
only to character classes. Thus our algorithm solving the inclusion problem of MCAs can
be used in a new method for solving the inclusion problem of such regular expressions.
We experimentally evaluated this method on regular expressions from a wide range of
applications and compared it with the naive method. The experiments show that the
method using our algorithm is less prone the explode. It also outperforms the naive method
if the regular expressions contain counting operators with large bounds. As expected, for
the easy cases, the naive method is still faster than the method based on our algorithm.

Abstrakt
Čítací automaty (CA) jsou klasické konečné automaty rozšířené o omezené čítače. CA stále
reprezentují třídu regulárních jazyků, ale kompaktněji než konečné automaty. Jelikož jsou
CA nedávným modelem, chybějí zde efektivní algoritmy implementující různé operace nad
nimi. V této práci se primárně soustředíme na existující podtřídu CA zvanou monadické
čítací automaty (MCA). Jsou to CA s čítacími smyčkami na třídě znaků, které se často
vyskytují v praxi (např. při detekci paketů v síťovém provozu nebo analýze log souborů).
Pro tuto podtřídu efektivně vyřešíme problémy prázdnosti a inkluze. Navíc poskytneme dvě
rozšíření třídy MCA, které jsou stále podtřídou CA, a vyřešíme pro ně efektivně problém
prázdnosti. MCA přirozeně vznikají z regulárních výrazů, které jsou rozšířené o čítací
operátory vyskytující se pouze na třídě znaků. Náš algoritmus řešící problém inkluze MCA
tedy může být použit jako základ nové metody pro testování inkluze takových regulárních
výrazů. Tento přístup jsme experimentálně vyhodnotili na regulárních výrazech z praxe
a porovnali s naivní metodou. Experimenty ukazují, že metoda používající náš algoritmus
je více odolná proti stavové explozi. Také překonává naivní metodu, pokud regulární výrazy
obsahují čítací operátory s velkými mezemi. Podle očekávání, pro jednoduché případy je
naivní metoda stále rychlejší než metoda používající náš algoritmus.
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Rozšířený abstrakt
Čítací automaty (CA) jsou nedávným modelem pro reprezentaci třídy regulárních

jazyků [14]. Můžeme si představit, že CA jsou klasické konečné automaty rozšířené o omezené
čítače (tj. každý čítač může nabývat konečně mnoha hodnot). Poté přechody mezi stavy
nezávisí pouze na vstupním symbolu, ale také na aktuální konfiguraci čítačů a jestli CA
vstupní slovo přijme nezávisí pouze na tom, v jakém stavu skončíme, ale také na koncové
konfiguraci čítačů. Pro úplnost, iniciální stav čítacího automatu není dán pouze počátečními
stavy, ale i počáteční konfigurací čítačů. Jedna z motivací pro zavedení CA je redukce
počtu stavů (tedy i přechodů) v nedeterministických konečných automatech (NFA). Z toho
plyne výhoda CA proti NFA—CA kompaktněji reprezentují třídu regulárních jazyků. V
literatuře existují modely, které se snaží pouze o redukci počtu přechodů v NFA, například
symbolické konečné automaty [13, 23] redukují přechody efektivnějším způsobem než CA.
Upozorňujeme, že lze jednoduše rozšířit definici CA tak, aby poskytovala všechny výhody
symbolických automatů. Použití takového automatu potom vede na efektivnější redukci
přechodů než za použití CA. Jednu možnou definici takového automatu poskytneme v naší
práci.

Každý čítač v CA nabývá pouze konečně mnoha hodnot, tedy počet všech možných
konfigurací čítačů je konečný. Proto jednoduše každý CA může být převeden na ekvivalentní
NFA tak, že se každá konfigurace čítačů zakóduje do jednoho stavu NFA. Z toho plyne, že
každá operace nad CA (sjednocení, průnik, atd.) může být převedena na operaci nad NFA.
Takový postup je možný, ale neefektivní, protože časová složitost takto řešených operací je
potom stejná jako časová složitost operací nad NFA. Poznamenejme, že není známý žádný
efektivní algoritmus řešící různé operace nad CA kromě determinizačního algoritmu [14].
Existence efektivního determinizačního algoritmu naznačuje, že je možné takové efektivní
algoritmy implementující různé operace nad CA vytvořit. V této práci se návrhu daných
algoritmů věnuji.

Zejména se soustředíme na existující podtřídu CA, na tzv. monadické čítací automaty
(MCA)—čítací automaty kde dochází k inkrementaci čítače pouze na smyčkách (přechod,
který začíná a končí ve stejném stavu) jednotlivých stavů. MCA se často vyskytují v praxi
(např. při detekci paketů v síťovém provozu nebo analýze log souborů). MCA přirozeně
reprezentují rozšířené regulární výrazy (dále jen regulární výrazy), jsou to standardní
regulární výrazy rozšířené o počítání na skupině (třídě) znaků. Takové regulární výrazy
stále značí třídu regulárních jazyků, ale kompaktněji než standardní regulární výrazy (např.
[abc]{5} značí všechny řetězce délky 5 kde každý symbol je buď a, b, nebo c). Autoři CA
poskytují efektivnější determinizační algoritmus pokud vstupem je MCA.

Vymysleli jsme efektivní řešení (algoritmus) pro testovaní jazykové inkluze MCA, které
imituje řešení pro testování jazykové inkluze NFA—sestavíme produkt automat ze vstupních
dvou NFA a hledáme v něm dosažitelné koncové stavy. Aby jsme tenhle postup mohli
aplikovat i pro MCA 𝑀1 a 𝑀2, museli jsme najít odpovědi na následující problémy: jak
vypočítat komplement automatu 𝑀2, jak sestavit produkt automat 𝑀1 ×𝑀2 automatu 𝑀1

a komplementu 𝑀2, a jak efektivně určit zda stav v produkt automatu je dosažitelný. Také
jsme rozšířili třídu MCA na dvě nové podtřídy CA. Jak ukážeme na příkladech, tyto nové
podtřídy dokáží reprezentovat komplexnější regulární výrazy. Například nejsme limitovaní
pouze na počítaní na skupině znaků, ale může přímo počítat sekvence znaků (např. (abc){5}
značí řetězec, který vznikne konkatenací řetězce abc 5 krát za sebou). Pro tyto podtřídy
(včetně MCA) jsme efektivně vyřešili problém prázdnosti. Mimo jiné jsme intuitivně ukázali
proč řešení problémy prázdnosti a inkluze obecných CA vyžadují použití NFA.



Existence našeho algoritmu pro řešení inkluze MCA otevírá novou možnost jak testovat
jazykovou inkluzi regulárních výrazů—vstupní regulární výrazy převedeme na MCA a poté
aplikujeme náš algoritmus. Implementovali jsme náš algoritmus pro testovaní jazykové
inkluze MCA a využili jsme knihovnu Automata od Microsoftu [3], která poskytuje prostředky
pro převod regulárních výrazů na MCA a determinizační algoritmus pro MCA. Tento přístup
jsme experimentálně ověřili na regulárních výrazech z praxe a porovnali s naivní metodou,
která je založena na převodu regulárních výrazu na NFA, implementovanou v [1]. Přestože
náš algoritmus není optimalizovaný a chybí implementace jedné akcelerační formule pro
smyčky v deterministickém MCA, experimenty ukazují, že metoda používající náš algoritmus
je více odolná proti stavové explozi. Zejména se jedná o regulární výrazy použité v Bro [22].
Pokud vstupem jsou regulární výrazy s čítacím operátory, které mají velké meze, tak metoda
založena na MCA překonává naivní metodu. Pro jednoduché regulární výrazy (kde regulární
výrazy obsahují 1.6 čítacích operátorů s mezí 110 v průměru) je naivní metoda očekávaně
rychlejší než metoda založená na MCA.

V naší implementaci algoritmu pro řešení inkluze MCA používáme Z3 SMT solver [4]
s lineární celočíselnou logikou pro práci s formulemi. Připomínáme, že nejsme schopni
v této logice implementovat jednu akcelerační formuli pro smyčky v determinizovaném MCA.
Existence takové implementace zcela jistě dále zvýší výkonnost naše algoritmu. Mimo jiné
v naší implementaci je prostor pro vyzkoušení jiných (efektivnějších) algeber pro reprezentaci
symbolu v (determinizovaném) MCA. Vidíme také možnost integrace našeho algoritmu do
knihovny Automata od Microsoftu [3], která už poskytuje nějaké prostředky práci s MCA.

Stejné metoda pro určování dosažitelných stavu v produkt automatu 𝑀1 ×𝑀2 může být
použita pro minimalizaci deterministický MCA, které vzniknou aplikací determinizačního
algoritmu v [14, Sekce 4.2], ve smyslu odstranění nedosažitelných stavů. Myslíme si,
že tato metoda může být dále upravena, tak aby byla přímo součástí výše uvedeného
determinizačního algoritmu. Důsledkem by bylo, že by algoritmus negeneroval nedosažitelné
stavy, které doposud může generovat (viz [14]).

Naše řešení pro inkluzi MCA přesně reprezentuje stavy z tzv. subset konstrukce. Jako
další rozšíření práce lze uvažovat aplikace subsumpce pro prořezávání množiny dosažených
stavů, např. na podobném principu jako používá algoritmus Antichains pro testování inkluze
NFA. Toto spočívá v zamezení prozkoumání stavů, jejichž sémantika je z hlediska testování
inkluze pokryta sémantikou dosažených stavů.
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Chapter 1

Introduction

Classical finite automata (FAs) together with regular expressions (REs) are the main models
for describing the class of regular languages. Usually, in the computers, REs are represented
by the FAs. Thus the applications of FAs are at least as wide as the applications of REs. For
example, in the text processing (searching in logs, detecting packets in the network traffic),
compilers (lexical and syntax analyzer), or formal verification to name a few. Although FAs
are working on a finite state space with a finite alphabet by the definition, sometimes FAs
are too large to be stored in computers. Suppose that an FA 𝑁 implements some RE 𝑟
(i.e., 𝑁 denotes the same language as 𝑟). If symbols in 𝑟 are encoded by ASCII or UTF-16,
then the alphabet has 28 or 216 symbols, respectively. Hence the number of transitions from
each state in 𝑁 is either 28 or 216. This example shows one disadvantage of FAs—they do
not scale well with the growing number of symbols in the alphabets and if the alphabet is
infinite, then it is impossible to use FAs.

There are several techniques to reduce the number of transitions in FAs (e.g., partial
transition relation to avoid irrelevant symbols). But a radical reduction in the number of
transitions comes from the use of symbolic finite automata (SFAs) [13, 23], i.e., FAs where
each transition is annotated by a predicate that denotes a set (possibly infinity) of symbols.
The advantage of SFAs over FAs is that multiple transitions between the same states in
FAs can be represented in SFAs by a single transition. Nevertheless, SFAs like FAs still
suffer from the state explosion (e.g., in the determinization of FAs or SFAs). Consider
the extended regular expression (eRE)1 .*a.{k} for k ≥ 0, then the smallest equivalent
deterministic finite or symbolic automaton has 2k+1 states. Even for relatively small values
of k, the resulting deterministic automaton has so many states that it is impossible to store
such an automaton in any computer.

In the literature, there are also several automata models that are designed for the
reduction in the number of states (e.g., [17, 21]). In this thesis, we focus on one recent model,
the so-called counting automata (CAs) [14]. All these models represent eREs in a succinct
way, but [14] provides also an efficient determinization algorithm of CAs. For instance, the
smallest equivalent CA for the eRE .*a.{k} has two states regardless of the value of k
(in contrast to nondeterministic FAs (NFAs), where the size depends linearly on k) and
the smallest equivalent deterministic CA has only k + 2 states (cf. [14]). Therefore, using
this model we often significantly reduce the number of states compared to the equivalent
(deterministic) FAs.

1Until we give a precise definition of extended regular expression, we can use POSIX extended regular
expressions that still denote the class of regular language, but in a more succinct way than the standard
regular expression.
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We note that any CA 𝑁 can be transformed to an equivalent NFA 𝑁 ′ by unfolding
every possible configuration in 𝑁 into part of states in 𝑁 ′. Therefore, any operation on CAs
(union, intersection, etc.) can be transformed in the terms of NFAs. Such solutions are not
the most efficient ones (but perhaps the only ones possible), since the time complexity of
the algorithms performing the operations remains the same as for NFAs. To the best of our
knowledge, there are no known efficient algorithms implementing various operations on CAs
except the determinization algorithm. The existence of the determinization algorithm of
CAs suggests that it is possible to find efficient algorithms performing operations on CAs.
In this thesis, we give a partial answer by designing algorithms for some operations on CAs.

We restrict ourselves mainly to the subclass of CAs that are common in practice. This
subclass is called monadic counting automata (MCAs), i.e., CAs with counting loops on
character class. MCAs naturally arise from eREs, where counting is limited to the character
classes (e.g., [abc]{0,5} or .*a.{k}). We note that [14] provides an even more efficient
determinization algorithm if the input CA is also an MCA. For this subclass, we give an
efficient solution (algorithm) to the language inclusion problem in a similar manner as for
NFAs—we build the product automaton of MCAs and search for a reachable final state.
Such an approach is straightforward but not as easy as for NFAs, because the next move
of CAs does not depend only on the input symbol but also on the actual configuration
of counters. Moreover, we introduce two new subclasses of CAs, which are both larger
than MCAs. For all these subclasses (including MCAs) we give an efficient solution to
the emptiness problem. Besides the main work, we also give an intuition about why the
emptiness and inclusion problem of general CAs are require transformation to the NFAs.

Our algorithm for testing language inclusion of MCAs can be used in a new approach for
testing language inclusion of eREs—we transform eREs to MCAs and apply our algorithm.
We implemented our algorithm for testing the language inclusion of MCAs and used
Microsoft’s Automata library [3], which provides algorithms for transformation of eREs to
MCAs and the determinization algorithm of MCAs. We evaluate this approach on eREs
from a wide range of applications (e.g., Snort rules [20] used for finding attacks in network
traffic) and compared it with the implementation of method when the eREs are transformed
to the NFAs [1]. Briefly, the experiments show that the method based on MCAs is less
prone the explode. And for the eREs that contain counting operators with large bounds,
the method based on MCAs outperforms the method based on NFAs.

The rest of this thesis is organized as follows. Chapter 2 introduces the basics of
automata theory (including the definition of a CA), notation used throughout the thesis,
and necessary notions from graph theory. In Chapter 3, we present efficient algorithms
implementing various operations on NFAs and SFAs. Namely, the algorithm for computing
the intersection, computing simulation, and solving the inclusion problem of NFAs and
SFAs. In Chapter 4, we introduce several subclasses of CAs and for each of them we give
a solution to the emptiness problem. In Chapter 5, we solve the inclusion problem of MCAs.
In Chapter 6, we experimentally evaluate the performance of our implementation of the
algorithms for testing inclusion problem of MCAs. Chapter 7 summarizes the achieved
results and gives the possible further directions of this thesis.

3



Chapter 2

Automata theory

In this introductory chapter, we introduce all necessary definitions that will be used in the
following chapters. First, we define classical finite automata and symbolic finite automata,
which we use mainly in Chapter 3 (Section 2.1). Second, we introduce an automata model
called counting automata (CAs), based on the definition in [14] (Section 2.2). This type of
automaton is tha main object of examination in this thesis. Lastly, the values of transitions
in the automata are sometimes not important, because we are interested only in the structure
of the automata (e.g., whether there exists a path from one state to another state). For such
tasks, the automata can be transformed into directed graphs (we call them simply graphs).
Hence in Section 2.3, we introduce basic notions from graph theory.

Throughout the thesis, we use the following notation. We use N to denote the set
of all nonnegative integers {0, 1, 2, . . . }. The set of all positive integers N+ is defined as
N ∖ {0}. The set of the first 𝑛 > 0 positive integers is denoted by [𝑛] = {1, 2, . . . , 𝑛} and
[0] = ∅. The expression 𝐴 ⊎ 𝐵 stands for a union of two disjoint sets 𝐴,𝐵. Moreover,
we extend the notation to use more than two disjoint sets as follows:

⨄︀
𝑖∈[1]𝐴𝑖 = 𝐴1 and⨄︀

𝑖∈[𝑛]𝐴𝑖 =
⨄︀
𝑖∈[𝑛−1]𝐴𝑖 ⊎ 𝐴𝑛, for 𝑛 ≥ 2. Given a function 𝑓 : 𝐴 → 𝐵, we refer to the

elements of 𝑓 using 𝑎 ↦→ 𝑏 (when 𝑓(𝑎) = 𝑏).

2.1 Finite Automata and Symbolic Finite Automata
In the following, suppose that 𝑛 ∈ N. A finite, non-empty set Σ of symbols is called an
alphabet. A string is a sequence of symbols 𝑎1𝑎2 . . . 𝑎𝑛 where 𝑎𝑖 ∈ Σ, for 1 ≤ 𝑖 ≤ 𝑛. The
length of 𝑤 is defined as |𝑤| = 𝑛. We use 𝜖 /∈ Σ to denote the empty string, so |𝜖| = 0. The
set of all strings over the alphabet Σ is denoted by Σ*.

Definition 2.1. A nondeterministic finite automaton (NFA) 𝑁 is a five-tuple (𝑄,Σ, 𝐼, 𝐹,∆)
where 𝑄 is a finite set of states, Σ is an alphabet, 𝐼 ⊆ 𝑄 is the set of initial states, 𝐹 ⊆ 𝑄 is
the set of final states, and ∆ ⊆ 𝑄× Σ×𝑄 is a transition relation.

Let 𝑁 = (𝑄,Σ, 𝐼, 𝐹,∆) be an NFA. We use 𝑞−{𝑎}→𝑟 to denote that (𝑞, 𝑎, 𝑟) ∈ ∆. A run
of the NFA 𝑁 over a string 𝑤 = 𝑎1𝑎2 . . . 𝑎𝑛 ∈ Σ* from a state 𝑞0 ∈ 𝑄 is a sequence of
transitions 𝑞0−{𝑎1}→𝑞1, 𝑞1−{𝑎2}→𝑞2, · · · , 𝑞𝑛−1−{𝑎𝑛}→𝑞𝑛. The run is initial if 𝑞0 ∈ 𝐼, and the run is
accepting if 𝑞𝑛 ∈ 𝐹 . The string 𝑤 is accepted by 𝑁 from 𝑞 if there is some accepting run of 𝑁
on 𝑤 from 𝑞, otherwise 𝑤 is rejected by 𝑁 from 𝑞. The language of a state 𝑞 is denoted by
ℒ(𝑁)(𝑞) = {𝑤 ∈ Σ* | 𝑤 is accepted by 𝑁 from 𝑞}. For convenience, a set of states 𝑃 ⊆ 𝑄 is
called a macro-state. The definition of the language of a state is lifted to the macro-state 𝑅
as ℒ(𝑁)(𝑅) =

⋃︀
𝑟∈𝑅 ℒ(𝑁)(𝑟). Then the language of automaton 𝑁 is defined as ℒ(𝑁) =
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ℒ(𝑁)(𝐼). The post-image of a state 𝑝 is defined as 𝑃𝑜𝑠𝑡(𝑝) = {𝑝′ | ∃𝑎 ∈ Σ : (𝑝, 𝑎, 𝑝′) ∈ ∆}
and the post-image of a macro-state 𝑃 is defined as 𝑃𝑜𝑠𝑡(𝑃 ) = {𝑃 ′ | ∃𝑎 ∈ Σ : 𝑃 ′ = {𝑝′ |
∃𝑝 ∈ 𝑃 : (𝑝, 𝑎, 𝑝′) ∈ ∆}}. A deterministic finite automaton (DFA) 𝑁 = (𝑄,Σ, 𝐼, 𝐹,∆) is an
NFA where the transition relation ∆ is a (partial) function from 𝑄× Σ to 𝑄.

Next, we define symbolic finite automata (SFAs). Informally, an SFA is an NFA, where
the transitions are labelled by predicates that denote a set of symbols instead of a single
symbol. SFAs can be defined in several ways, for example in [15] simply as an extension
of NFAs, where the transition relation ∆ is defined as a subset of 𝑄 × 2Σ × 𝑄. We use
the more complex definition that allows us to have potentially an infinite alphabet (i.e.,
an alphabet with an infinite number of symbols), following [13]. First, we need to define
a notion of an effective Boolean algebra.

Definition 2.2. An effective Boolean algebra 𝒜 is a six-tuple (𝒟,Ψ, [ · ],∧,∨,¬) where Ψ is
a set of predicates closed under predicate transformers ∨,∧ : Ψ×Ψ→ Ψ and ¬ : Ψ→ Ψ. A
first order interpretation (denotation) [·] : Ψ→ 2𝒟 assigns to every predicate of Ψ a subset of
the domain 𝒟 such that, for all 𝜙,𝜓 ∈ Ψ it holds that [𝜙∨𝜓] = [𝜙]∪[𝜓], [𝜙∧𝜓] = [𝜙]∩[𝜓],
and [¬𝜙] = 𝒟 ∖ [𝜙].

For 𝜙 ∈ Ψ, we say that 𝜙 is satisfiable if [𝜙] ̸= ∅. The predicate 𝐼𝑠𝑆𝑎𝑡(𝜙) returns TRUE
iff 𝜙 is satisfiable. The predicate 𝐼𝑠𝑆𝑎𝑡 and the predicate transformers ∧,∨, and ¬ must be
effectively computable. We assume that Ψ contains the predicates ⊤ and ⊥ with [⊤] = 𝒟
and [⊥] = ∅. Let Φ ⊆ Ψ, the set 𝑀𝑖𝑛𝑡𝑒𝑟𝑚𝑠(Φ) of minterms of a finite set Φ of predicates
is defined as the set of all satisfiable predicates of {

⋀︀
𝜙∈Φ′ 𝜙 ∧

⋀︀
𝜙∈Φ∖Φ′ ¬𝜙 | Φ′ ⊆ Φ} (e.g.,

see [10] for an algorithm computing minterms).
The symbols from the alphabet of regular expressions are usually encoded in UTF-16

or ASCII, so every symbol can be represented by 16-bit or 8-bit vector. In Examples 2.1
and 2.2, we provide two effective Boolean algebras that implement the operations ∧,∨,
and ¬ in a different way.

Example 2.1. For 𝑘 > 0, the BDD𝑘 algebra is an effective Boolean algebra whose domain 𝒟
is the set of all 𝑘-bit vectors and predicates Ψ are represented by binary decision diagrams
(BDDs) [8] over 𝑘 Boolean variables 𝑥1, . . . , 𝑥𝑘, representing particular bits of the 𝑘-bit
vector. The operations ∧,∨, and ¬ directly correspond to the operations on the BDDs. We
note that it is necessary to choose the right order of the variables because different order
of variables leads to a different BDD, which are different from each other by the size (the
number of nodes). Thus the operations above have different time complexity for a different
BDD representing the same predicate. The denotation [ · ] of a BDD 𝛽 ∈ Ψ is the set of
𝑘-bit vectors whose binary representation corresponds to a solution of 𝛽.

Example 2.2. For 𝑘 > 0, the BV𝑘 algebra is an effective Boolean algebra whose domain 𝒟
is the set of all 𝑘-bit vectors and predicates Ψ in bit-vector arithmetic with one free variable 𝑥.
The operations ∧,∨, and ¬ correspond directly to the standard logical operations on binary
vectors. Moreover, the bit-vector arithmetic provides the standard arithmetic operations
such as ≤, <,≥, >, and =. We use 𝑛1 ≤ 𝑥 ≤ 𝑛2 as shorthand for 𝑛1 ≤ 𝑥 ∧ 𝑥 ≤ 𝑛2.
The denotation [ · ] of 𝜙 ∈ Ψ is the set of all variables 𝑦 that makes 𝜙 true if 𝑥 is
substituted by 𝑦 in 𝜙. For example, the regular expression [a-zA-Z0-9] can be written
as ’0’ ≤ 𝑥 ≤ ’9’ ∨ ’A’ ≤ 𝑥 ≤ ’Z’ ∨ ’a’ ≤ 𝑥 ≤ ’z’ in BV8, or more exactly 48 ≤ 𝑥 ≤
57 ∨ 65 ≤ 𝑥 ≤ 90 ∨ 97 ≤ 𝑥 ≤ 122 (in ASCII).

In particular, the algebras BDD8 or BV8 represent the encodings ASCII and the
algebras BDD16 or BV16 represent the encodings UTF-16. The algebra BV𝑘 does not
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1 2 3 4

⊤

[^0-9] [^0-9] [^0-9]

⊤

Figure 2.1: An SFA 𝑀 = ({1, 2, 3, 4},BV8, {1}, {4}, {(1,⊤, 1), (1, 𝜓, 2), (2, 𝜓, 3),
(3, 𝜓, 4), (4,⊤, 4)}) where 𝜓 = (𝑥 < 40 ∨ 49 > 𝑥). 𝑀 denotes the same language as
the regular expression .*[^0-9]{3}.*.

scale as well as BDD𝑘 for increasing 𝑘 (cf. [15]). But the predicates in BV𝑘 are easy to
write as is shown in Example 2.2. Thus we use BV𝑘 algebra in all examples in this section.
Now we are ready to define an SFA.

Definition 2.3. A symbolic finite automaton (SFA) 𝑀 is a five-tuple (𝑄,𝒜, 𝐼, 𝐹,∆) where 𝑄
is a finite set of states, 𝒜 = (𝒟,Ψ, [ · ],∧,∨,¬) is an effective Boolean algebra, 𝐼 ⊆ 𝑄 is
a set of initial states, 𝐹 ⊆ 𝑄 is a set of final states, and ∆ ⊆ 𝑄×Ψ×𝑄 is a finite symbolic
transition relation.

Let 𝑀 = (𝑄,𝒜, 𝐼, 𝐹,∆) be an SFA. Similarly as for NFAs, we use 𝑞−{𝜓}→𝑟 to denote that
(𝑞, 𝜓, 𝑟) ∈ ∆. We write [𝑞−{𝜓}→𝑟] to denote the set {𝑞−{𝑎}→𝑟 | 𝑎 ∈ [𝜓]} of concrete transitions
represented by 𝑞−{𝜓}→𝑟. Moreover, let [∆] =

⋃︀
𝑞−{𝜓}→𝑟∈Δ [𝑞−{𝜓}→𝑟]. Other notations (run,

language, etc.) are defined analogously as for NFAs. In Figure 2.1 is an example of an SFA.

Example 2.3. Suppose that we want to implement an automaton model that accepts all
strings containing a substring of length 3 that does not contain any digit 0–9. In other
words, we want to design an automaton 𝑀 such that ℒ(𝑀) = ℒ(.*[^0-9]{3}.*), where
the language of the regular expression is defined as usual. We have two options—design 𝑀
as an SFA or as an NFA. The SFA 𝑀 is depicted in Figure 2.1. If 𝑀 is designed as an
NFA, then 𝑀 would have the same number of states, but each transition 𝜓 of 𝑀 would be
replaced by the set of concrete transitions [𝜓]. Note that the size of [𝜓] depends on the
used encodings (if it uses UTF-16 encoding, then, for example, the self-loop of state 1 is
replaced by 216 concrete self-loops).

Definition 2.4. Let 𝑀 = (𝑄,𝒜, 𝐼, 𝐹,∆) be an SFA where 𝒜 = (𝒟,Ψ, [ · ],∧,∨,¬) is an
effective Boolean algebra. We say that 𝑀 is complete if for every state 𝑞 ∈ 𝑄 and every
symbol 𝑎 ∈ 𝒟, there exists a state 𝑟 such that 𝑞−{𝜓}→𝑟 ∈ ∆ with 𝑎 ∈ [𝜓].

SFAs can be completed in this way: we add a new non-final state 𝑞𝑠𝑖𝑛𝑘 and from every
state 𝑞 ∈ 𝑄, we add a transition from 𝑞 to 𝑞𝑠𝑖𝑛𝑘 labelled with ¬

⋁︀
{𝜙 | ∃𝑟 ∈ 𝑄 : 𝑞−{𝜙}→𝑟 ∈ ∆},

if the disjunction is satisfiable.

2.2 Counting Automata
In this section, we introduce the notion of counting automata (CAs), following [14]. Since
CAs are defined as a specialisation of a more general model, which is called labelled transition
system (LTS), we first define LTS and, next, we extend it to a CA. At the end of this section,
we introduced special types of CAs and in Example 2.4 we give a connection between SFAs
and CAs.
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2.2.1 Labelled Transition Systems

Often, a labelled transition system (LTS) is defined as a triple (𝑄,𝐴,∆) where 𝑄 is a set
of states, 𝐴 is a set of labels (or actions), and ∆ ⊆ 𝑄 × 𝐴 × 𝑄 is the transition relation
(e.g., [12]). Sometimes, we use the so-called rooted LTS, which is a pair (𝑇, 𝑞0) where
𝑇 = (𝑄,𝐴,∆) is an LTS and 𝑞0 ∈ 𝑄 is the initial state.

For our purpose the definition of a (rooted) LTS is not sufficient. We want to have some
state to be final, i.e., we want to know that some sequence of actions leads to a final state.
For more generality, finals and initials state are encoded by formulae. Furthermore, also
transition relation is encoded by a formula. We use the following definition [14].

Given a set of variables 𝑉 and a set of constants 𝑄 (disjoint with N), we define a 𝑄-
formula over 𝑉 to be a quantifier-free formula 𝜙 of Presburger arithmetic extended with
constants from 𝑄 and Σ, i.e., a Boolean combination of (in-)equalities 𝑡1 = 𝑡2 or 𝑡1 ≤ 𝑡2
where 𝑡1 and 𝑡2 are constructed using +,N, and 𝑉 , and predicates of the form 𝑥 = 𝑎 or
𝑥 = 𝑞 for 𝑥 ∈ 𝑉, 𝑎 ∈ Σ, and 𝑞 ∈ 𝑄. An assignment 𝑀 to free variables of 𝜙 is a model of 𝜙,
denoted as 𝑀 |= 𝜙, if it makes 𝜙 true. The semantics of a formula 𝜙 is the set [𝜙] of all
possible tuples of the free variables in 𝜙 which make 𝜙 true. If [𝜙] ̸= ∅, then we say that 𝜙
is satisfiable. Finally, the predicate 𝐼𝑠𝑆𝑎𝑡(𝜙) returns TRUE iff 𝜙 is satisfiable.

Definition 2.5. A labelled transition system (LTS) over Σ is a five-tuple 𝑇 = (𝑄,𝑉, 𝐼, 𝐹,∆)
where

• 𝑄 is a finite set of control states,

• 𝑉 is a finite set of configuration variables,

• 𝐼 is the initial 𝑄-formula over 𝑉 ,

• 𝐹 is the final Q-formula over 𝑉 , and

• ∆ is the transition 𝑄-formula over 𝑉 ∪ 𝑉 ′ ∪ {l} with 𝑉 ′ = {𝑥′ | 𝑥 ∈ 𝑉 }, 𝑉 ∩ 𝑉 ′ = ∅ ,
and l /∈ 𝑉 .

We call l the symbol variable and allow it as the only term that can occur with a predicate
l = 𝑎 for 𝑎 ∈ Σ, called an atomic symbol guard. Moreover, l is also not allowed to occur in
any other predicates in ∆.

A configuration of an LTS 𝑇 is a function 𝛼 : 𝑉 → N ∪𝑄 that maps every configuration
variable to a number from N or a state from 𝑄. We will denote by 𝒞 the set of all configuration
of the LTS 𝑇 . As mentioned above, the transition relation [∆] ⊆ 𝒞×Σ×𝒞 is encoded by the
transition formula ∆ as follows (𝛼, 𝑎, 𝛼′) ∈ [∆] iff 𝛼 ∪ {𝑥′ ↦→ 𝑘 | 𝛼′(𝑥) = 𝑘} ∪ {l ↦→ 𝑎} |= ∆.
For a string 𝑤 ∈ Σ*, we define inductively that a configuration 𝛼′ is a 𝑤-successor of 𝛼,
written 𝛼

𝑤−→ 𝛼′, such that 𝛼 𝜖−→ 𝛼 for all 𝛼 ∈ 𝒞, and 𝛼
𝑎𝑣−→ iff 𝛼

𝑎−→ 𝛼
𝑣−→ 𝛼′ for some

configuration 𝛼, 𝑎 ∈ Σ, and 𝑣 ∈ Σ. A configuration 𝛼 is initial if 𝛼 |= 𝐼, and final if
𝛼 |= 𝐹 . The outcome of 𝑇 on a word 𝑤 is the set 𝑜𝑢𝑡𝑇 (𝑤) of all 𝑤-successors of the
initial configurations, and 𝑤 is accepted by 𝑇 if 𝑜𝑢𝑡𝑇 (𝑤) contains a final configuration. The
language ℒ(𝑇 ) of 𝑇 is the set of all words that 𝑇 accepts.

2.2.2 Definition of Counting Automata

The following definition of counting automaton is a slight modification of the definition
in [14].
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𝑞

𝑟 {𝑐 = 5}

𝑡

l = 𝑎, 𝑐′ = 0

l = 𝑎 ∧ l = 𝑏

𝑐 < 5
𝑐′ = 𝑐+ 1

𝑐 = 5
𝑐′ = 1

Figure 2.2: An example of a CA 𝑁 = ({𝑞, 𝑟, 𝑡}, {𝑐}, 𝐼, 𝐹,∆) where 𝐹 : (s = 𝑟∧𝑐 = 5)∨s = 𝑡,
𝐼 : s = 𝑞, and ∆ : 𝑞−{l=𝑎,⊤,𝑐′=0}→𝑟 ∨ 𝑞−{l=𝑎∧l=𝑏,⊤,⊤}→𝑡 ∨ 𝑟−{⊤,𝑐<5,𝑐′=𝑐+1}→𝑟 ∨ 𝑟−{⊤,𝑐=5,𝑐′=1}→𝑟
with ℒ(𝑁) = {𝑤 ∈ Σ* | 𝑤 = 𝑎𝑧 where 𝑎 ∈ Σ, 𝑧 ∈ Σ* and |𝑧| = 5𝑘 for 𝑘 ∈ N+}.

Definition 2.6. A (nondeterministic) counting automaton (CA) is a five-tuple 𝐴 =
(𝑄,𝐶, 𝐼, 𝐹,∆) such that (𝑄,𝑉, 𝐼, 𝐹,∆) is an LTS with the following properties:

1. The set of configuration variables 𝑉 = 𝐶 ∪ {s} consists of a set of counters 𝐶 and
a single control state variable s such that s /∈ 𝐶.

2. The transition formula ∆ is a disjunction of transitions, which are conjunctions of
the form (s = 𝑞) ∧ 𝜎 ∧ 𝑔 ∧ 𝑓 ∧ (s′ = 𝑟), denoted by 𝑞−{𝜎,𝑔,𝑓}→𝑟, where 𝑞, 𝑟 ∈ 𝑄, 𝑞 is the
transition’s guard formula over {l}, 𝑔 is the transition’s guard formula over 𝑉 , and 𝑓
is the transition’s counter assignment formula, a conjunction of atomic assignments to
counters in which every counter is assigned at most once.

3. There is a constant max𝐴 ∈ N such that no counter can ever grow above that value.

Moreover, for every transition 𝜙 = 𝑞−{𝜎,𝑔,𝑓}→𝑟 in ∆, we define the following functions
that return particular components of 𝜙: 𝑠𝑦𝑚(𝜙) := 𝜎, 𝑐𝑜𝑛𝑠(𝜙) := 𝑔, and 𝑢𝑝(𝜙) := 𝑓 . An
example of CAs is on Figure 2.2.

Definition 2.7. A deterministic counting automaton (DCA) is a CA 𝑁 = (𝑄,𝐶, 𝐼, 𝐹,∆)
where 𝐼 has at most one model and, for every symbol 𝑎 ∈ Σ, every reachable configuration
𝛼 has at most one 𝑎-successor.

Example 2.4. We show how to extend CAs to handle large or infinite set of symbols using
effective Boolean algebra. We use the idea of the definition of SFAs. A (nondeterministic)
symbolic counting automaton (SCA) is a six-tuple 𝑁 = (𝑄,𝒜, 𝐶, 𝐼, 𝐹,∆), where 𝑄,𝐶, 𝐼, 𝐹
have the same meaning as in Definition 2.6, 𝒜 = (𝒟,Ψ, [ · ],∧,∨,¬) is an effective Boolean
algebra, and ∆ is a disjunction of the transitions (s = 𝑞) ∧ 𝜎 ∧ 𝑔 ∧ 𝑓 ∧ (s′ = 𝑟) where all
components have the same meaning as in Definition 2.6 except that 𝜎 ∈ Ψ. Similarly as for
SFAs, we write [𝑞−{𝜎,𝑔,𝑓}→𝑟] to denote the set of concrete transitions {𝑞−{l=𝑎,𝑔,𝑓}→𝑟 | 𝑎 ∈ [𝜎]},
and so on. From this example, we see that SCAs are an extension of SFAs. In other words,
if 𝐶 = ∅ in this definition, then we obtain the definition of SFAs.

SFAs were introduced to reduce the number of transitions in NFAs—if there are multiple
transitions between states 𝑞 and 𝑟, then all of them can be replaced by a single transition
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1 2 3

⊤

[^0-9], 𝑐′ = 0

[^0-9], 𝑐 < 1
𝑐′ = 𝑐 + 1

[^0-9], 𝑐 = 1

⊤

Figure 2.3: An SCA 𝑁 = ({1, 2, 3},BV8, {𝑐}, 𝐼, 𝐹,∆) where 𝐼 : s = 1, 𝐹 : s = 3, and
∆ : 1−{⊤,⊤,⊤}→1∨1−{𝜓,⊤,𝑐′=0}→2∨2−{𝜓,𝑐<1,𝑐′=0}→2∨2−{𝜓,𝑐=1,𝜓}→3∨3−{⊤,⊤,⊤}→3 with 𝜓 = (𝑥 < 40∨
49 < 𝑥). 𝑁 denotes the same language as the extended regular expression .*[^0-9]{3}.*.

from 𝑞 to 𝑟. For example, the number of transitions remains the same if the alphabet of the
regular expression is ASCII or UTF-16 in Figure 2.1. Similarly, we can think that CAs were
introduced to reduce the number of states in NFAs. Note that CAs also reduce the number
of transitions, but not in as efficient way as SFAs because the symbol guards of transitions
can be only a disjunction of l = 𝑎 or l ̸= 𝑎 for 𝑎 ∈ Σ.

Combining the SFAs and CAs as in Example 2.4, we obtain a solid reduction in both
number of states and transitions. In Figure 2.3 is an SCA equivalent to the SFA in
Figure 2.1. Now suppose that we want to design an SFA and a SCA for the regular
expression .*[^0-9]{k}.* for k > 1. Note that the SCA for such a regular expression has
the same structure as the SCA in Figure 2.3 except that number 1 in the counter guards are
replaced by k− 2. On the other hand, the number of states in SFAs for the same regular
expression grows linearly with k, thus also the number of transitions. In practice, we have
regular expressions where the number of repetitions is larger (e.g., the value of k in the last
example). Finally, we note that all discussions in this thesis about CAs are also true for
SCAs or can be easily modified for SCAs.

Lastly, let 𝑁 be a CA. We often talk about whether a transition is satisfiable or reachable
(in 𝑁) and whether a final state is reachable (in 𝑁) with its satisfiable final condition. We
give here the precise definitions of this notation.

Definition 2.8. Let 𝑁 = (𝑄,𝐶, 𝐼, 𝐹,∆) be a CA and 𝛼 any configuration of 𝑁 .

• We say that a transition 𝜙 ∈ ∆ is reachable from 𝛼 if there exists a string 𝑤 ∈ Σ* and
a configuration 𝛽 such that 𝛽 is a 𝑤-successor of 𝛼 and 𝐼𝑠𝑆𝑎𝑡(𝛽 ∧ 𝜙). Otherwise, 𝜙 is
unreachable.

• We say that a transition 𝜙 ∈ ∆ is satisfiable from 𝛼 if 𝐼𝑠𝑆𝑎𝑡(𝛼 ∧ 𝜙). Otherwise, 𝜙 is
unsatisfiable.

• We say that a state 𝑞 ∈ 𝑄 is reachable from 𝛼 if there exists a string 𝑤 ∈ Σ* and
a configuration 𝛽 such that 𝛽 is a 𝑤-successor of 𝛼 and 𝐼𝑠𝑆𝑎𝑡(𝛽 ∧s = 𝑞). Otherwise, 𝑞
is unreachable.

• We say that a state 𝑞 is a reachable final state (with its satisfiable final condition 𝜙)
from 𝛼 if there exists a string 𝑤 ∈ Σ* and a configuration 𝛽 such that 𝛽 is a 𝑤-successor
of 𝛼 with 𝛽 |= 𝐹 and 𝐼𝑠𝑆𝑎𝑡(𝛽 ∧ s = 𝑞 ∧ 𝜙). Otherwise, 𝑞 is an unreachable final state
or its final condition is unsatisfiable.

If 𝛼 is not specified, then it is either clear from the context or it is an initial configuration
of 𝑁 .
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𝑞

𝑟 {𝑐 = 5}

𝑞𝑠𝑖𝑛𝑘

l = 𝑎, 𝑐′ = 0

l ̸= 𝑎

𝑐 < 5
𝑐′ = 𝑐 + 1

𝑐 = 5
𝑐′ = 1

𝑐 > 5

⊤

Figure 2.4: An example of a clean and complete CA 𝑁 .

2.2.3 Types of CAs

Let 𝑁 = (𝑄,𝐶, 𝐼, 𝐹,∆) be a CA. We define several special types of CAs that simplify
reasoning about them in Chapters 4 and 5. Moreover, for any type we give a procedure that
transform any CAs to such type.

Definition 2.9. 𝑁 is clean if for each transition 𝜙 ∈ ∆ it holds that 𝑠𝑦𝑚(𝜙) is satisfiable.

Let 𝜙 ∈ ∆, if 𝑠𝑦𝑚(𝜙) is unsatisfiable, then the whole transition is unreachable, i.e., 𝜙 is
logically equivalent to ⊥. So, we can remove 𝜙 from 𝑁 and the language of 𝑁 still remains
the same. We can repeat this process until 𝑁 contains only reachable transitions.

We note that any transition 𝜙 in a clean CA can be still unreachable because we ignore
the counter guard of 𝜙. For example, the transition with the counter guard 𝑐 > 5 ∧ 𝑐 < 5 is
unreachable since it is equivalent to ⊥. In this simple example, it is easy to find that, but it
can be difficult in general. Another example is in Figure 2.4, the transition 𝑟−{⊤,𝑐>5,⊤}→𝑞𝑠𝑖𝑛𝑘
is unreachable because there is no way how the counter 𝑐 can reach to value 6 or more.

Any algorithm for CAs based on finding reachable states builds upon an effective
procedure that decides which transitions are reachable. Namely, in Chapters 4 and 5, we
find such effective procedures for restricted classes of CAs. It should be mentioned that
there is always a possibility to transform every CA into an NFA by unfolding every possible
configuration in the CA into part of states in the NFA.

Definition 2.10. 𝑁 is complete if for each configuration 𝛼 of 𝑁 and every symbol 𝑎 ∈ Σ
there exists a configuration 𝛼′ of 𝑁 such that 𝛼′ is an 𝑎-successor of 𝛼.

To make 𝑁 complete, we first add a new non-final state 𝑞𝑠𝑖𝑛𝑘 and the transition
𝑞𝑠𝑖𝑛𝑘−{⊤,⊤,⊤}→𝑞𝑠𝑖𝑛𝑘. For every state 𝑞, let 𝑃𝑞 = {𝜎 ∧ 𝑔 | 𝑞−{𝜎,𝑔,𝑓}→𝑟 ∈ ∆𝐷}. Then for every
state 𝑞 ̸= 𝑞𝑠𝑖𝑛𝑘 ∈ 𝑄, we add a new transitions of 𝑞−{𝜓}→𝑞𝑠𝑖𝑛𝑘 where 𝜓 = ∧𝜙∈𝑃𝑞¬𝜙. Intuitively,
if no outgoing transition from 𝑞 can be executed, then we can use this new added one. For
this reason the procedure also preserves determinism.

Example 2.5. In Figure 2.4 is an example of a clean and complete CA. Note that this CA
is equivalent to the CA in Figure 2.2, i.e., both CAs recognize the same language.

The following type of automata has an important property—if 𝑁 is clean, then it
preserves the emptiness of language (see Lemma 2.1)—which we use in Chapter 4. To
compute such type of CA is easily done directly from the definition.
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Definition 2.11. Let 𝑁 = (𝑄,𝐶, 𝐼, 𝐹,∆) be a CA. Then the CA 𝑁𝑇 = (𝑄,𝐶, 𝐼, 𝐹,∆𝑇 ) is
called the truthfulness of 𝐴 where ∆𝑇 = {𝑞−{⊤,𝑔,𝑓}→𝑟 | 𝑞−{𝜎,𝑔,𝑓}→𝑟 ∈ ∆}.

Lemma 2.1. Let 𝑁 = (𝑄,𝐶, 𝐼, 𝐹,∆) be a clean CA. Then ℒ(𝑁) ̸= ∅ if and only if
ℒ(𝑁𝑇 ) ̸= ∅ where 𝑁𝑇 = (𝑄,𝐶, 𝐼, 𝐹,∆𝑇 ) is the truthfulness of 𝐴.

Proof. Let 𝛼 be an initial configuration of 𝑁 and 𝑁𝑇 , i.e., 𝛼 |= 𝐼 and 𝛼 |= 𝐼𝑇 . First, suppose
that ℒ(𝑁) ̸= ∅. It follows that, there exists a string 𝑤 ∈ Σ* such that a final configuration 𝛼′

is a 𝑤-successor of 𝛼 in 𝑁 . Since for any formula 𝜙 the following holds [𝑠𝑦𝑚(𝜙)] ⊆ [⊤], we
can conclude that 𝛼′ is also a 𝑤-successor of 𝛼 in 𝑁𝑇 . Thus ℒ(𝑁𝑇 ) ̸= ∅.

Conversely, suppose that ℒ(𝑁𝑇 ) ̸= ∅. Then there is a string 𝑤 ∈ Σ* such that a final
configuration 𝛼′ is a 𝑤-successor of 𝛼 in 𝑁𝑇 . Note that for any other string 𝑧 of same length
as 𝑤, i.e., |𝑤| = |𝑧|, 𝛼′ is a 𝑧-successor of 𝛼 in 𝑁𝑇 , because [⊤] = Σ. Since 𝑁 is clean, for
every transition 𝜙 in 𝑁 we have [𝑠𝑦𝑚(𝜙)] ̸= ∅. Thus there must be a string 𝑧 of the same
length as 𝑤 such that 𝛼′ is a 𝑧-successor of 𝛼 in 𝑁 . Thus ℒ(𝑁) ̸= ∅.

Definition 2.12. Let 𝑁 = (𝑄,𝐶, 𝐼, 𝐹,∆) be a CA. We say that 𝑁 is normalized if
𝑞−{𝜎1,𝑔1,𝑓1}→𝑟, 𝑞−{𝜎2,𝑔2,𝑓2}→𝑟 ∈ ∆ and [𝑔1] = [𝑔2], [𝑓1] = [𝑓2], then [𝜎1] = [𝜎2].

Every CA 𝑁 can be normalized by the following procedure: if such two transitions occur
in 𝑁 , then we replace them by the transition 𝑞−{𝜎1∨𝜎2,𝑔1,𝑓1}→𝑟 or 𝑞−{𝜎1∨𝜎2,𝑔2,𝑓2}→𝑟. It is not
hard to see that the language of the automaton is preserved.

2.3 Basic Notions from Graph Theory
A (finite directed) graph 𝐺 is a pair (𝑉,𝐸), where 𝑉 is a finite set of vertices (or states
if 𝐺 originates from an automaton) and 𝐸 ⊆ 𝑉 × 𝑉 is a finite set of edges (or transitions).
If 𝐺 is a graph, then 𝑉 (𝐺) and 𝐸(𝐺) denote the vertex set of 𝐺 and the edge set of 𝐺,
respectively. Let 𝐺 = (𝑉,𝐸) be a graph. The the order (or size) of 𝐺 is |𝐺| defined as |𝑉 |.
The out-degree of the vertex 𝑣 ∈ 𝑉 (𝐺) is the number of 𝑣′ such that (𝑣, 𝑣′) ∈ 𝐸. We say that
a graph 𝐺′ is a subgraph of 𝐺 if 𝑉 (𝐺′) ⊆ 𝑉 (𝐺) and 𝐸(𝐺′) ⊆ 𝐸(𝐺). 𝐺′ is called a subgraph
of graph 𝐺 = (𝑉,𝐸) induced by a set of vertices 𝑉 ′ ⊆ 𝑉 if 𝐺′ =

(︀
𝑉 ′, 𝐸 ∩ (𝑉 ′ × 𝑉 ′)

)︀
.

Graphs 𝐺 and 𝐻 are called isomorphic, written 𝐺 ∼= 𝐻, if there exists a bijection 𝑓 :
𝑉 (𝐺) → 𝑉 (𝐻) such that (𝑥, 𝑦) ∈ 𝐸(𝐺) ⇐⇒ (𝑓(𝑥), 𝑓(𝑦)) ∈ 𝐸(𝐻). The graph 𝐶𝑛 = (𝑉,𝐸)
for some 𝑛 ≥ 2 is called the cycle of length n (or simply a cycle if the length is not important)
if 𝑉 = [𝑛] and 𝐸 = {(𝑖, 𝑖 + 1) | 𝑖 ∈ [𝑛 − 1]} ∪ {(𝑛, 1)}. We say that a graph 𝐺 contains
a cycle if there is a subgraph of 𝐺 that is isomorphic to 𝐶𝑛 for some 𝑛 ≥ 2.

A path in 𝐺 from 𝑣0 to 𝑣𝑛 is a sequence (𝑣0, 𝑣1, . . . , 𝑣𝑛) for 𝑛 ≥ 0, where 𝑣𝑖 ̸= 𝑣𝑗 for 𝑖 ̸= 𝑗
and (𝑥𝑖−1, 𝑥𝑖) ∈ 𝐸(𝐺) for 1 ≤ 𝑖 ≤ 𝑛. 𝐺 is called a connected graph if for any two vertices
𝑥, 𝑦 ∈ 𝑉 (𝐺) there is a path from 𝑥 to 𝑦, or vice versa. A graph 𝐺 is a tree if 𝐺 is connected
and there is no cycle in 𝐺. Let 𝐺 = (𝑉,𝐸) be a graph. The graph 𝐺− 𝑣, for 𝑣 ∈ 𝑉 , denotes
an subgraph of 𝐺 induced by 𝑉 − {𝑣}.

Let 𝑁 = (𝑄,𝐶, 𝐼, 𝐹,∆) be a CA. The direction of 𝑁 , written 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛(𝑁), is a graph
𝐺 = (𝑄,𝐸), where 𝐸 = {(𝑞, 𝑟) | 𝑞−{𝛼}→𝑟 ∈ ∆}. Intuitively, 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛(𝑁) originates from 𝑁
if we remove labels from its transitions and ignore that some states are final or initial.
The self-loop of a CA and a graph 𝐺 is a transition 𝑞−{𝛼}→𝑞 and an edge (𝑞, 𝑞) ∈ 𝐸(𝐺),
respectively. Note that the self loop in a graph is not considered a cycle.
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Chapter 3

An Overview of Efficient
Algorithms for FAs and SFAs

In general, for almost every problem there are several algorithms, which differ by simplicity
and efficiency (the most simple algorithms are usually not the most efficient ones, and vice
versa). The same holds for algorithms for automata, for example the minimization of a DFA
(see [16] for two algorithms performing the operation, one running in the time 𝑂(𝑛2) and
the other in 𝑂(𝑛 · 𝑙𝑜𝑔(𝑛)), where 𝑛 is the number of states in the DFA). Unfortunately, there
are many problems for which there are no known algorithms running in a time better than
exponential in the worst case (e.g., NFA to DFA conversion, which is called determinization
of NFA, or the inclusion problem of NFAs). In this chapter, we give a brief overview of
selected algorithms for NFAs and SFAs. We do not consider DFAs, because the algorithms
for this class are easier than for NFAs, see for example [11, Section 4.1] for such algorithms.
On top of that, every DFA is also an NFA, thus all algorithms introduced here for NFAs
also apply for DFAs.

In Section 3.1, we introduce an algorithm for the intersection of NFAs (SFAs). In
Section 3.2, we define the simulation relation on NFAs (SFAs). Moreover, we show how it
can be efficiently computed. Simulation is frequently used for accelerating some algorithms
for NFAs (SFAs). One example is demonstrated in Section 3.3, namely the inclusion problem
of NFAs. Before we start introducing the algorithms, we clarify the meaning of the operations
on automata mentioned above plus some other needed later.

Definition 3.1. Let us fix an alphabet Σ. Let 𝑁1, 𝑁2 be automata (classical, symbolic, or
counting) with languages ℒ(𝑁1) and ℒ(𝑁2), respectively. Then,

• the union of 𝑁1 and 𝑁2 is the automaton 𝑁1 ∪𝑁2 with ℒ(𝑁1 ∪𝑁2) = ℒ(𝑁1) ∪ ℒ(𝑁2).

• the intersection of 𝑁1 and 𝑁2 is the automaton 𝑁1∩𝑁2, with ℒ(𝑁1∩𝑁2) = ℒ(𝑁1)∩ℒ(𝑁2).

• the set difference of 𝑁1 and 𝑁2 is the automaton 𝑁1∖𝑁2 with ℒ(𝑁1∖𝑁2) = ℒ(𝑁1)∖ℒ(𝑁2).

• the complement of 𝑁1 is the automaton 𝑁1 with ℒ(𝑁1) = Σ* ∖ ℒ(𝑁1).

• the universality problem of 𝑁1 is the problem of deciding whether 𝐿(𝑁1) = Σ*.

• the emptiness problem of 𝑁1 is the problem of deciding whether 𝐿(𝑁1) = ∅.

• the language inclusion problem of 𝑁1 and 𝑁2 is the problem if deciding whether 𝐿(𝑁1) ⊆
𝐿(𝑁2).
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3.1 Intersection of Two Automata
Initially, we give an algorithm for computation of intersection of NFAs [11, Section 4.2].
Then, we show how to modify the algorithm for computation of intersection of SFAs.

3.1.1 Nondeterministic Finite Automata

Let 𝑁1 and 𝑁2 be NFAs, there are at least two ways how to build the automaton that
recognizes the language ℒ(𝑁1)∩ℒ(𝑁2). The first one, which is introduced here as Algorithm 1,
following [11, Section 4.2], is based on combining runs of both 𝑁1 and 𝑁2. We denote this
resulting automaton as 𝑁1 ∩𝑁2. The second one, which is included as part of the solution
in Section 3.3, is also based on combining runs, but now of 𝑁1 and 𝑁 ′

2, where 𝑁 ′
2 is a DFA

equivalent to 𝑁2. The size of 𝑁1 ∩𝑁2 is smaller than 𝑁1 ×𝑁2. Since both automata are
still NFAs, it is more efficient to use the automaton 𝑁1 ∩𝑁2 for matching or searching. On
the other hand, if we want to solve the inclusion problem of 𝑁1 and 𝑁2, then it is preferable
to use the automaton 𝑁1 ×𝑁2 (see Section 3.3).

Algorithm 1: Intersection of NFAs
Input : NFAs 𝑁1 = (𝑄1,Σ, 𝐼1, 𝐹1,∆1), 𝑁2 = (𝑄2,Σ, 𝐼2, 𝐹2,∆2)
Output : NFA 𝑁1 ∩𝑁2 = (𝑄,Σ, 𝐼, 𝐹,∆) with ℒ(𝑁1 ∩𝑁2) = ℒ(𝑁1) ∩ ℒ(𝑁2)

1 𝑄,∆, 𝐹 ← ∅; 𝐼 ← 𝐼1 × 𝐼2;
2 𝑊 ← 𝐼;
3 while 𝑊 ̸= ∅ do
4 take and remove (𝑞1, 𝑞2) from 𝑊 ;
5 𝑄← 𝑄 ∪ {(𝑞1, 𝑞2)};
6 if 𝑞1 ∈ 𝐹1 and 𝑞2 ∈ 𝐹2 then
7 𝐹 ← 𝐹 ∪ {(𝑞1, 𝑞2)};
8 foreach 𝑎 ∈ Σ do
9 foreach 𝑞′1 ∈ ∆1(𝑞1, 𝑎), 𝑞′2 ∈ ∆2(𝑞2, 𝑎) do

10 if (𝑞′1, 𝑞
′
2) /∈ 𝑄 then

11 𝑊 ←𝑊 ∪ {(𝑞′1, 𝑞′2)};
12 ∆← ∆ ∪

{︀(︀
(𝑞1, 𝑞2), 𝑎, (𝑞

′
1, 𝑞

′
2)
)︀}︀

;
13 return (𝑄,Σ, 𝐼, 𝐹,∆);

For any 𝑞 ∈ 𝑄 and 𝑎 ∈ Σ, we define ∆(𝑞, 𝑎) = {𝑞′ | (𝑞, 𝑎, 𝑞′) ∈ ∆}. Algorithm 1 builds
the automaton 𝑁1 ∩𝑁2 as follows: the initial set 𝐼 is the combination of all possible initial
states in 𝑁1 and 𝑁2 (Line 1). We use this set to initialize the work list 𝑊 (Line 2). In the
main loop (line 3), until 𝑊 is empty, we take and remove one pair 𝑝 = (𝑞1, 𝑞2) from 𝑊 , the
pair 𝑝 is a new state of 𝑁1 ∩𝑁2 (Lines 4, 5). On Line 6, we check whether both states in 𝑝
are final (Line 7), if so then also 𝑝 is also final (in this step we ensure that strings must
be accepted by both 𝑁1 and 𝑁2). Next, we compute the next pairs of states (Lines 8, 9)
as combinations of successor of 𝑞1 and 𝑞2 in 𝑁1 and 𝑁2 and glue them together, obtaining
the pair 𝑝′ = (𝑞′1, 𝑞

′
2). Line 10 ensures termination of the algorithm (if some pair is in 𝑄,

then the pair was in 𝑊 , thus it is useless to put it again to 𝑊 ). On Line 12, we add the
transition (𝑞1, 𝑞2)−{𝑎}→(𝑞′1, 𝑞

′
2) to ∆.
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3.1.2 Symbolic Finite Automata

Recall that the difference between NFAs and SFAs is that the annotation of the transitions
in NFAs are single symbols in contrast to SFAs where the annotation of the transitions are
predicates that denote a set of symbols. Thus the algorithm for computation the intersection
of two SFAs works similarly as for NFAs. The changes are on Lines 8–13 in Algorithm 1 (and
the input/output of the algorithm are SFAs instead of NFAs), which are substituted by the
pseudo-code in Algorithm 2. The set ∆(𝑞) for 𝑞 ∈ 𝑄 is defined as {(𝑞′, 𝛼) | (𝑞, 𝛼, 𝑞′) ∈ ∆}.

Algorithm 2: Modification of Algorithm 1 (Lines 8–13) for intersection of SFAs
8 foreach (𝑞′1, 𝛼) ∈ ∆1(𝑞1), (𝑞

′
2, 𝛽) ∈ ∆2(𝑞2) do

9 if not 𝐼𝑠𝑆𝑎𝑡(𝛼 ∧ 𝛽) then
10 continue;
11 if (𝑞′1, 𝑞

′
2) /∈ 𝑄 then

12 𝑊 ←𝑊 ∪ {(𝑞′1, 𝑞′2)};
13 ∆← ∆ ∪

{︀(︀
(𝑞1, 𝑞2), 𝛼 ∧ 𝛽, (𝑞′1, 𝑞′2)

)︀}︀
;

14 return (𝑄,Σ, 𝐼, 𝐹,∆);

Let 𝑝 = (𝑞1, 𝑞2) be a pair taken from 𝑊 (Line 4 in Algorithm 1). For each (𝑞′1, 𝛼) ∈ ∆1(𝑞1)
and (𝑞′2, 𝛽) ∈ ∆2(𝑞2), we check the satisfiability of 𝛼 ∧ 𝛽 (Line 9). If 𝛼 ∧ 𝛽 is unsatisfiable,
then there is no way to go to 𝑞′1 from 𝑞1 via 𝛼 and to 𝑞′2 from 𝑞2 via 𝛽, simultaneously.
Otherwise, there are such symbols for which the previous is true. The set of these symbols
is are denoted by the label 𝛼 ∧ 𝛽 (Line 13). Line 11 has the same meaning as Line 10 in
Algorithm 1. For yet another method of computation intersection of SFAs, we refer the
reader to [15].

3.2 Simulation Relation
First, we define a notion of the simulation relation on NFAs and SFAs, respectively. Second,
we demonstrate an algorithm for computing simulation on NFAs [13]. The demonstrated
algorithm, called INY, is a slightly modified version of the algorithm from [18]. Finally, we
show two algorithms for the computation of a simulation on SFAs [13], called GlobINY
and NoCount.

In this section, we use the following notation. Let 𝐴1, . . . , 𝐴𝑛 be sets. If 𝑅 ⊆ 𝐴1×· · ·×𝐴𝑛
is an 𝑛-ary relation, for 𝑛 ≥ 2, then 𝑅(𝑥1, . . . , 𝑥𝑛−1) := {𝑦 ∈ 𝐴𝑛 | 𝑅(𝑥1, . . . , 𝑥𝑛−1, 𝑦)} for
any 𝑥1 ∈ 𝐴1, . . . , 𝑥𝑛−1 ∈ 𝐴𝑛−1. If 𝑛 = 2 and 𝐴 = 𝐴1 = 𝐴2, 𝑅 is called a binary relation
on 𝐴.

Definition 3.2. Let 𝑁 = (𝑄,Σ, 𝐼, 𝐹,∆) be an NFA. A binary relation 𝑆 on 𝑄 is a simulation
on 𝑁 if whenever (𝑞, 𝑟) ∈ 𝑆, then the following conditions hold:

(i) if 𝑞 ∈ 𝐹 , then 𝑟 ∈ 𝐹 , and

(ii) for all 𝑎 ∈ Σ and 𝑞′ ∈ 𝑄 such that 𝑞−{𝑎}→𝑞′ ∈ ∆, there is a state 𝑟′ such that 𝑟−{𝑎}→𝑟′ ∈ ∆
and (𝑞′, 𝑟′) ∈ 𝑆.

Definition 3.3. Let 𝑀 = (𝑄,𝒜, 𝐼, 𝐹,∆) be an SFA. A binary relation 𝑆 on 𝑄 is a simulation
on 𝑀 if whenever (𝑞, 𝑟) ∈ 𝑆, then the following two conditions hold:
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(i) if 𝑞 ∈ 𝐹 , then 𝑟 ∈ 𝐹 , and

(ii) for all 𝑎 ∈ 𝒟 and 𝑞′ ∈ 𝑄 such that 𝑞−{𝑎}→𝑞′ ∈ [∆], there is a state 𝑟′ such that
𝑟−{𝑎}→𝑟′ ∈ [∆] and (𝑞′, 𝑟′) ∈ 𝑆.

There exists a unique maximal simulation relation1 on 𝑁 , which is reflexive and transitive.
Such a unique maximal simulation relation on 𝑁 is called simulation preorder on 𝑁 . Similar
remarks also hold for SFAs. In fact, all demonstrated algorithms below compute the
simulation preorder on NFAs or SFAs.

3.2.1 Nondeterministic Finite Automata

In the following, we describe the INY algorithm [18], given as Algorithm 3. We use a slightly
modified version from [13].

Algorithm 3: INY
Input : An NFA 𝑁 = (𝑄,Σ, 𝐼,∆, 𝐹 )
Output : The simulation preorder ⪯𝑁

1 for 𝑝, 𝑞 ∈ 𝑄, 𝑎 ∈ Σ do
2 𝑁𝑎(𝑞, 𝑝)← |∆(𝑞, 𝑎)|;
3 𝑆𝑖𝑚← 𝑄×𝑄;
4 𝑁𝑜𝑡𝑆𝑖𝑚← 𝐹 × (𝑄 ∖ 𝐹 ) ∪ {(𝑖, 𝑗) | ∃𝑎 ∈ Σ : ∆(𝑖, 𝑎) ̸= ∅ ∧∆(𝑗, 𝑎) = ∅};
5 while 𝑁𝑜𝑡𝑆𝑖𝑚 ̸= ∅ do
6 remove some (𝑖, 𝑗) from 𝑁𝑜𝑡𝑆𝑖𝑚 and 𝑆𝑖𝑚;
7 for 𝑡−{𝑎}→𝑗 ∈ ∆ do
8 𝑁𝑎(𝑡, 𝑖)← 𝑁𝑎(𝑡, 𝑖)− 1;
9 if 𝑁𝑎(𝑡, 𝑖) = 0 then

10 for 𝑠−{𝑎}→𝑖 ∈ ∆ such that (𝑠, 𝑡) ∈ 𝑆𝑖𝑚 do
11 𝑁𝑜𝑡𝑆𝑖𝑚← 𝑁𝑜𝑡𝑆𝑖𝑚 ∪ {(𝑠, 𝑡)};
12 return Sim;

On Lines 1 and 2 we initialize all counters 𝑁𝑎(𝑞, 𝑝), individually for every triple (𝑝, 𝑞, 𝑎)
where 𝑝, 𝑞 ∈ 𝑄 and 𝑎 ∈ Σ. The value of the counter denotes the number of states 𝑟′ satisfying
the condition (ii) of Definition 3.2; at the start the value overapproximates the real value.
Initially, 𝑆𝑖𝑚 stores all pairs of states, but at the end of the algorithm 𝑆𝑖𝑚 contains the
simulation preorder (Line 3). The set 𝑁𝑜𝑡𝑆𝑖𝑚 stores all pairs (𝑖, 𝑗) in which we are sure
that 𝑖 is not simulated by 𝑗. In the beginning, 𝑁𝑜𝑡𝑆𝑖𝑚 contains all pairs (𝑖, 𝑗) such that
𝑖 ∈ 𝐹 and 𝑗 /∈ 𝐹 , because such pairs do not satisfy the condition (i) in Definition 3.2.
Since 𝑁 is not complete, we need to also add to 𝑁𝑜𝑡𝑆𝑖𝑚 all pairs (𝑖, 𝑗) for which the
condition (ii) in Definition 3.2 is not trivially satisfied. That is, the pair (𝑖, 𝑗) is added to
𝑁𝑜𝑡𝑆𝑖𝑚 if there is at least one symbol 𝑎 for which we can go from 𝑖 via 𝑎 to some other
state, but from 𝑗 there is no outgoing transition via 𝑎 (Line 4). Until 𝑁𝑜𝑡𝑆𝑖𝑚 is not empty,
we remove the pair (𝑖, 𝑗) from 𝑆𝑖𝑚 and 𝑁𝑜𝑡𝑆𝑖𝑚 (Line 5). By the definition of 𝑁𝑜𝑡𝑆𝑖𝑚, we
know that 𝑖 is not simulated by 𝑗. Thus for all states 𝑡 and symbols 𝑎 such that 𝑡−{𝑎}→𝑗 ∈ ∆,
we know that the state 𝑗 do not satisfies the condition (ii) of Definition 3.2, because 𝑖 is not
simulated by 𝑗. So, the counter 𝑁𝑎(𝑡, 𝑖) decreases (Lines 7, 8). If the counter 𝑁𝑎(𝑡, 𝑖) is zero

1The simulation relation 𝑆 on an NFA 𝑁 is maximal, if when there is another simulation relation 𝑆′

on 𝑁 , then we have 𝑆′ ⊆ 𝑆
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(Line 9), then we know that there is no states 𝑡′ such that 𝑡−{𝑎}→𝑡′ ∈ ∆ and 𝑖 is simulated
by 𝑡′. Thus we add all pairs (𝑠, 𝑡) to 𝑁𝑜𝑡𝑆𝑖𝑚 if 𝑠−{𝑎}→𝑖 ∈ ∆ because we know that 𝑠 is not
simulated by 𝑡, since we can go from 𝑠 to 𝑖 via 𝑎 and there is no transition 𝑡−{𝑎}→𝑡′ ∈ ∆ such
that 𝑖 is simulated by 𝑡′.

3.2.2 Symbolic Finite Automata

An SFA 𝑀 is globally mintermised if the set ΨΔ = {𝜙 | ∃𝑞, 𝑟 : 𝑞−{𝜙}→𝑟 ∈ ∆} of the predicates
appearing on its transitions forms a partition on

⋃︀
𝜙∈Δ [𝜙]. Every SFA can be made globally

mintermised (by process called global mintermisation) by replacing each 𝑞−{𝜙}→𝑟 ∈ ∆ with
the set of transitions {𝑞−{𝜔}→𝑟 | 𝜔 ∈ 𝑀𝑖𝑛𝑡𝑒𝑟𝑚𝑠(ΨΔ) and 𝐼𝑠𝑆𝑎𝑡(𝜔 ∧ 𝜙)} (see [10] for an
efficient algorithm).

Let 𝑀 be a globally mintermised SFA. Then 𝑀 has the following property: for any
predicate 𝛼, 𝛽 ∈ Ψ, if 𝛼 ̸= 𝛽 then [𝛼] ∩ [𝛽] = ∅. Hence we can look at the labels in
the transitions of 𝑀 as syntactic elements and apply Algorithm 3. The whole process is
demonstrated in Algorithm 4, called GlobINY [13]. Note that in this way any algorithm
for NFAs can be used also for SFAs.

Algorithm 4: GlobINY
Input : An SFA 𝑀 = (𝑄,𝒜, 𝐼,∆, 𝐹 )
Output : The simulation preorder ⪯𝑁

1 ∆𝐺 ← globally mintermised ∆;
2 return INY((𝑄,ΨΔ𝐺 , 𝐼,∆, 𝐹 ));

This approach is valid as shown in [13], but not the most efficient one. The problem is that
the number of minterms of the set Φ is in the worst case 2|Φ|. There exists a modification of
GlobINY using only local mintermisation the so-called algorithm LocalMin [13] (𝑀 is said
to be local mintermised if for every state 𝑞 ∈ 𝑄, the set ΨΔ,𝑞 = {𝜙 ∈ Ψ | ∃𝑟 : 𝑞−{𝜙}→𝑟 ∈ ∆}
of the predicates used on the transition starting from 𝑞 forms a partition). The advantage of
local mintermisation over the global is that the number of transitions grows only exponentially
to the maximum number of outgoing transitions of a state. Both methods GlobINY and
LocalMin for computing simulation preorder on SFAs are based on counting, which
requires that the SFAs are at least local mintermised. We introduce one more algorithm,
called NoCount, which is not based on counting. Experimental results in [13] show that
NoCount overall outperformed LocalMin and GlobINY.

Let 𝑀 = (𝑄,𝒜, 𝐼,∆, 𝐹 ) be an SFA. Let us define the formula 𝜙𝑠𝑖 for 𝑠, 𝑖 ∈ 𝑄 to denote⋁︀
(𝑠,𝜓,𝑖)∈Δ 𝜓. For a given set 𝑆 ⊆ 𝑄 and a state 𝑞 ∈ 𝑄, we use Γ(𝑞, 𝑆) to denote the

disjunction of all predicates that reach 𝑆 from 𝑞, i.e., Γ(𝑞, 𝑆) =
⋁︀
𝑠∈𝑆 𝜙𝑡𝑗 . We also write

𝑞 → 𝑆 to denote that there is a transition 𝑞−{𝜓}→𝑠 ∈ ∆ such that 𝑠 ∈ 𝑆.
Algorithm 5, called NoCount, works as follows. Similarly as in INY, initially, 𝑆𝑖𝑚

stores all pairs of states and 𝑁𝑜𝑡𝑆𝑖𝑚 stores all pairs (𝑖, 𝑗) such that 𝑖 is not simulated by 𝑗
(Lines 1, 2). Since 𝑀 is complete, the initial values of 𝑁𝑜𝑡𝑆𝑖𝑚 consists of only pairs (𝑖, 𝑗)
that do not satisfy the condition (i) in Definition 3.3. Until 𝑁𝑜𝑡𝑆𝑖𝑚 is empty (Line 3), we
proceed in the following way. By the definition of the set 𝑁𝑜𝑡𝑆𝑖𝑚 we know that each state
𝑗 ∈ 𝑁𝑜𝑡𝑆𝑖𝑚(𝑖) does not simulate 𝑖, hence all these states are removed from 𝑆𝑖𝑚(𝑖) (Line 5).
The information of 𝑁𝑜𝑡𝑆𝑖𝑚(𝑖) was processed, so we set 𝑁𝑜𝑡𝑆𝑖𝑚(𝑖) to ∅ (Line 6). For each
state 𝑡 ∈ 𝑅𝑚, which is defined on Line 4, we initialize the formula 𝜓 as the disjunction of
all predicates from 𝑡 to the states that are simulated by 𝑖 (Lines 7, 8). For each state 𝑠
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Algorithm 5: NoCount
Input : A complete SFA 𝑀 = (𝑄,𝒜, 𝐼,∆, 𝐹 )
Output : The simulation preorder ⪯𝑀

1 𝑆𝑖𝑚← 𝑄×𝑄;
2 𝑁𝑜𝑡𝑆𝑖𝑚← 𝐹 × (𝑄 ∖ 𝐹 );
3 while ∃𝑖 ∈ 𝑄 : 𝑁𝑜𝑡𝑆𝑖𝑚(𝑖) ̸= ∅ do
4 𝑅𝑚← {𝑡 | 𝑡→ 𝑁𝑜𝑡𝑆𝑖𝑚(𝑖)};
5 𝑆𝑖𝑚(𝑖)← 𝑆𝑖𝑚(𝑖) ∖𝑁𝑜𝑡𝑆𝑖𝑚(𝑖);
6 𝑁𝑜𝑡𝑆𝑖𝑚(𝑖)← ∅;
7 for 𝑡 ∈ 𝑅𝑚 do
8 𝜓 ← Γ(𝑡, 𝑆𝑖𝑚(𝑖));
9 for 𝑠−{𝜙𝑠𝑖}→𝑖 ∈ ∆ such that (𝑠, 𝑡) ∈ 𝑆𝑖𝑚 do

10 if 𝐼𝑠𝑆𝑎𝑡(¬𝜓 ∧ 𝜙𝑠𝑖) then
11 𝑁𝑜𝑡𝑆𝑖𝑚← 𝑁𝑜𝑡𝑆𝑖𝑚 ∪ {(𝑠, 𝑡)};
12 return Sim;

such that (𝑠, 𝑡) ∈ 𝑆𝑖𝑚 and 𝑠−{𝜙𝑠𝑖}→𝑖 ∈ ∆ (Line 9), we ask whether there is a symbol 𝑎 such
that we can make move from 𝑠 to 𝑖 and we cannot make move from 𝑡 to any state that is
simulated by 𝑖 (Line 10). If so, then the condition (ii) of Definition 3.3 is not satisfied. Thus
we add (𝑠, 𝑡) to 𝑁𝑜𝑡𝑆𝑖𝑚 (Line 11).

The reason for introducing 𝑅𝑚 on Line 4 is optimization. We could remove a single pair
(𝑖, 𝑗) from 𝑁𝑜𝑡𝑆𝑖𝑚 and 𝑆𝑖𝑚 and go to Line 7, similarly as in INY, but this is inefficient.
To see that, let 𝑗, 𝑗′ ∈ 𝑁𝑜𝑡𝑆𝑖𝑚(𝑖) and suppose there is a transition from 𝑡 to both 𝑗 and 𝑗′.
Then Lines 7–11 are independent of whether the pair (𝑖, 𝑗) or (𝑖, 𝑗′) is taken from 𝑁𝑜𝑡𝑆𝑖𝑚;
that is, the formula 𝜓 and 𝜙𝑠𝑖 are exactly the same in both iterations of (𝑖, 𝑗) and (𝑖, 𝑗′).
Thus it is only important whether there is some transition from 𝑡 to some state in 𝑁𝑜𝑡𝑆𝑖𝑚(𝑖),
i.e., 𝑡→ 𝑁𝑜𝑡𝑆𝑖𝑚(𝑖).

3.3 Inclusion Problem of NFAs
Let 𝑁1 and 𝑁2 be NFAs. Recall that the inclusion problem of 𝑁1 and 𝑁2 is the problem of
deciding whether ℒ(𝑁1) ⊆ ℒ(𝑁2). Note that

ℒ(𝑁1) ⊆ ℒ(𝑁2)⇔ ℒ(𝑁1) ∖ ℒ(𝑁2) = ∅
⇔ ℒ(𝑁1) ∩ ℒ(𝑁2) = ∅
⇔ ℒ(𝑁1) ∩ ℒ(𝑁2) = ∅.

The classical algorithm is based on the last equivalence—it builds the so-called product
automaton 𝑁1 ×𝑁2 of 𝑁1 and the complement of 𝑁2 and checks whether the language of
the product automaton is empty, i.e., searches for a final state. Since we do not need the
whole language of the product automaton, ℒ(𝑁1 ×𝑁2) = ℒ(𝑁1) ∩ ℒ(𝑁2), but we need to
only know whether such a language is empty, it is not necessary to build the whole product
automaton and then search for a final state. It can all be done on-the-fly using the fact
that if we encounter a final state, then the algorithm can stop, because we find a string 𝑤
such that 𝑤 ∈ ℒ(𝑁1) ∩ ℒ(𝑁2), thus we find that ℒ(𝑁1) ̸⊆ ℒ(𝑁2). For an example of such
an algorithm see [11, Section 4.2].
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Nevertheless, the inclusion problem of NFAs is PSPACE-complete, there are optimized
algorithms for the inclusion problem of NFAs that outperform the classical algorithm in many
cases (cf. [7]). These optimized algorithms using the simulation to prune out unnecessary
search path in the search for a final state. In this section, we demonstrate the optimized
algorithm from [7]. Before we give the optimized algorithm, we first introduce terminology
from [7, Sections 3,5].

Let 𝑁 = (𝑄,Σ, 𝐼, 𝐹,∆) be an NFA, recall that a set of states in 𝑁 is called a macro-state
(see also Section 2.1 for other related definitions). A macro-state 𝑅 is accepting if it contains
at least one state 𝑟 such that 𝑟 ∈ 𝐹 , otherwise 𝑅 is rejecting. For two macro-states 𝑃 and 𝑅,
we write 𝑃 ⪯∀∃ 𝑅 as a shorthand for ∀𝑝 ∈ 𝑃.∃𝑟 ∈ 𝑅 : 𝑝 ⪯ 𝑟. We use 𝑁⊆ to denote the set
of relations over the states of 𝑁 that imply language inclusion. Lemma 3.1 shows that any
simulation relation ⪯ on 𝑁 is in 𝑁⊆.

Lemma 3.1. Given a simulation ⪯ on an NFA 𝑁 , 𝑞 ⪯ 𝑟 =⇒ ℒ(𝑁)(𝑞) ⊆ ℒ(𝑁)(𝑟).

Let 𝑁1 = (𝑄1,Σ, 𝐼1, 𝐹1,∆1) and 𝑁2 = (𝑄2,Σ, 𝐼2, 𝐹2,∆2) be NFAs. A state in the
product automaton 𝑁1 ×𝑁2 is a pair (𝑝, 𝑃 ) where 𝑝 is a state in 𝑁1 and 𝑃 is a macro-state
in 𝑁2, such a pair (𝑝, 𝑃 ) is called a product-state. A product-state is accepting if 𝑝 is an
accepting state in 𝑁1 and 𝑃 is a rejecting macro-state in 𝑁2. The language of 𝑁1 is not
contained in the language of 𝑁2 iff there exists some accepting product state (𝑝, 𝑃 ) reachable
from some initial product-state. We use ℒ(𝑁1 ×𝑁2)(𝑝, 𝑃 ) to denote the language of the
product-state (𝑝, 𝑃 ) in 𝑁1 ×𝑁2. Note that ℒ(𝑁1 ×𝑁2)(𝑝, 𝑃 ) = ℒ(𝑁1)(𝑝) ∖ ℒ(𝑁2)(𝑃 ). The
union of 𝑁1 and 𝑁2 is the automaton 𝑁1 ∪ 𝑁2 = (𝑄1 ⊎ 𝑄2,Σ, 𝐼1 ∪ 𝐼2, 𝐹1 ∪ 𝐹2,∆1 ∪ ∆2).
Lemma 3.2 provides resources for the optimizations of the classical algorithm.

Lemma 3.2. Let 𝑁1, 𝑁2 be NFAs, (𝑝, 𝑃 ), (𝑟,𝑅) be two product-states, where 𝑝, 𝑟 are states
in 𝑁1 and 𝑃,𝑅 are macro-states in 𝑁2, and ⪯ be a relation in (𝑁1 ∪𝑁2)

⊆. Then, 𝑝 ⪯ 𝑟
and 𝑅 ⪯∀∃ 𝑃 implies ℒ(𝑁1, 𝑁2)(𝑝, 𝑃 ) ⊆ ℒ(𝑁1, 𝑁2)(𝑟,𝑅).

The first optimization, referred to as Optimization 1, is based on the following. Suppose
that we encounter a product-state (𝑝, 𝑃 ) in the process of building the product automaton.
Assume that a product-state (𝑟,𝑅) was already encountered. If we would know that
ℒ(𝑁1×𝑁2)(𝑝, 𝑃 ) ⊆ ℒ(𝑁1×𝑁2)(𝑟,𝑅), then we can stop searching from (𝑝, 𝑃 ) because every
string that takes (𝑝, 𝑃 ) to an accepting product-state will also take (𝑟,𝑅) to an accepting
product-state. But it is difficult to decide whether ℒ(𝑁1 ×𝑁2)(𝑝, 𝑃 ) ⊆ ℒ(𝑁1 ×𝑁2)(𝑟,𝑅)
before the whole product-automaton is built. For this purpose we can use Lemma 3.2—we
stop searching from the product-state (𝑝, 𝑃 ), if we already encountered a product-state
(𝑟,𝑅) with 𝑝 ⪯ 𝑟 and 𝑅 ⪯∀∃ 𝑃 . The simulation can be computed in polynomial time, but it
is incomplete—simulation implies language inclusion, but not vice versa. Nevertheless, we
obtain only partial information about state language inclusion using simulation, the results
in [7] show that this approach is more efficient than the classical algorithm.

Optimization 2 is based on the observation that ℒ(𝑁1, 𝑁2)(𝑝, 𝑃 ) = ∅ if there is a state
𝑝′ ∈ 𝑃 such that 𝑝 ⪯ 𝑝′. It follows from that ℒ(𝑁1)(𝑝) ⊆ ℒ(𝑁2)(𝑃 ) and so ℒ(𝑁1)(𝑝) ∖
ℒ(𝑁2)(𝑃 ) = ∅, if there is a state 𝑝′ ∈ 𝑃 such that 𝑝 ⪯ 𝑝′. Thus if we encounter a product-
state (𝑝, 𝑃 ) with such property, we do not continue generate other successors of (𝑝, 𝑃 ),
because they are all rejecting product-states.

Moreover, let 𝑝1, 𝑝2 ∈ 𝑃 . Note that (𝑝, 𝑃 ) ⪯ (𝑝, 𝑃 ∖ {𝑝1}) if 𝑝1 ⪯ 𝑝2. It follows from
Lemma 3.2, since 𝑃 ⪯∀∃ 𝑃 ∖ {𝑝1} and 𝑃 ∖ {𝑝1} ⪯∀∃ 𝑃 . Thus every product-state (𝑝, 𝑃 ) can
be reduced to (𝑝, 𝑃 ′) such that there is no 𝑝1, 𝑝2 ∈ 𝑃 ′ with 𝑝1 ⪯ 𝑝2 or 𝑝2 ⪯ 𝑝1. If the product-
state has such a property, then we say that it is in the minimal form. For any product state
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Algorithm 6: Language inclusion checking
Input : NFAs 𝑁1 = (𝑄1,Σ, 𝐼1, 𝐹1,∆1), 𝑁2 = (𝑄2,Σ, 𝐼2, 𝐹2,∆2), and a relation

⪯∈ (𝑁1 ∪𝑁2)
⊆

Output : TRUE if and only if ℒ(𝑁1) ⊆ ℒ(𝑁2).
1 if there is an accepting product state in {(𝑖, 𝐼2) | 𝑖 ∈ 𝐼1} then
2 return FALSE;
3 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑← ∅;
4 𝑊𝑜𝑟𝑘𝑙𝑖𝑠𝑡← 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒({(𝑖,𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒(𝐼2)) | 𝑖 ∈ 𝐼1})
5 while 𝑊𝑜𝑟𝑘𝑙𝑖𝑠𝑡 ̸= ∅ do
6 Pick and remove a product-state (𝑟,𝑅) from 𝑊𝑜𝑟𝑘𝑙𝑖𝑠𝑡;
7 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑← 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 ∪ {(𝑟,𝑅)};
8 foreach (𝑝, 𝑃 ) ∈ {(𝑟′,𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒(𝑅′)) | (𝑟′, 𝑅′) ∈ 𝑃𝑜𝑠𝑡((𝑟,𝑅))} do
9 if (𝑝, 𝑃 ) is an accepting product-state then

10 return FALSE;
11 if ̸ ∃𝑝′ ∈ 𝑃 such that 𝑝 ⪯ 𝑝′ then
12 if ̸ ∃(𝑠, 𝑆) ∈ 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 ∪𝑊𝑜𝑟𝑘𝑙𝑖𝑠𝑡 s.t. 𝑝 ⪯ 𝑠 ∧ 𝑆 ⪯∀∃ 𝑃 then
13 Remove all (𝑠, 𝑆) from 𝑊𝑜𝑟𝑘𝑙𝑖𝑠𝑡 ∪ 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 s.t. 𝑠 ⪯ 𝑝 ∧ 𝑃 ⪯∀∃ 𝑆;
14 𝑊𝑜𝑟𝑘𝑙𝑖𝑠𝑡←𝑊𝑜𝑟𝑘𝑙𝑖𝑠𝑡 ∪ {(𝑝, 𝑃 )};
15 return TRUE;

(𝑝, 𝑃 ), we write (𝑝,𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒(𝑃 )) to denote its minimal form. Using minimization we can
prune out some unnecessary search path, because 𝑃𝑜𝑠𝑡((𝑝,𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒(𝑃 ))) ⊆ 𝑃𝑜𝑠𝑡((𝑝, 𝑃 ))
where 𝑃𝑜𝑠𝑡((𝑝, 𝑃 )) is the post-image of the product-state (𝑝, 𝑃 ) defined as 𝑃𝑜𝑠𝑡((𝑝, 𝑃 )) =
{(𝑝′, 𝑃 ′) | ∃𝑎 ∈ Σ : (𝑝, 𝑎, 𝑝′) ∈ ∆1, 𝑃

′ = {𝑝′′ | ∃𝑝 ∈ 𝑃 : (𝑝, 𝑎, 𝑝′′) ∈ ∆2}}.
The classical algorithm augmented by the optimizations above is given as Algorithm 6,

following [7, Section 5]. If some initial product-state is accepting, then the language inclusion
of 𝑁1 and 𝑁2 does not hold (Lines 1, 2). In the set 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑, we store all visited product-
states (Line 3). The algorithm starts searching from the initial product-states, but these
initial product-states are first reduced to their minimal forms (Line 4). Until 𝑊𝑜𝑟𝑘𝑙𝑖𝑠𝑡 is
empty, we pick and remove a product-state (𝑟,𝑅) from 𝑊𝑜𝑟𝑘𝑙𝑖𝑠𝑡 (Line 6). The product-state
(𝑟,𝑅) is also moved to 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 (Line 7). On Line 8 we generate all successors (𝑝, 𝑃 ) of
(𝑟,𝑅), but, again, we reduce them to their minimal forms. If (𝑝, 𝑃 ) is accepting, then the
language inclusion does not hold of 𝑁1 and 𝑁2 (Lines 9, 10). In the standard algorithm, the
product state is always added to 𝑊𝑜𝑟𝑘𝑙𝑖𝑠𝑡, unless the product-state is not in 𝑃𝑟𝑜𝑐𝑐𝑒𝑠𝑠𝑒𝑑.
In the optimized version, we first ensure that there is no 𝑝′ ∈ 𝑃 such that 𝑝 ⪯ 𝑝′, otherwise
we can stop searching from (𝑝, 𝑃 ) by Optimization 2 (Line 11). Second, we ensure that
there is no product-state (𝑠, 𝑆) in 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 or 𝑊𝑜𝑟𝑘𝑙𝑖𝑠𝑡 such that 𝑠 ⪯ 𝑝 ∧ 𝑃 ⪯∀∃ 𝑆,
otherwise we can stop searching from (𝑝, 𝑃 ) by Optimization 1 (Line 12). If the previous two
conditions are satisfied, then we move (𝑝, 𝑃 ) to 𝑊𝑜𝑟𝑘𝑙𝑖𝑠𝑡 and also remove from 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑
and 𝑊𝑜𝑟𝑘𝑙𝑖𝑠𝑡 all product-states (𝑠, 𝑆) such that 𝑠 ⪯ 𝑝 and 𝑃 ⪯∀∃ 𝑆, because they are
useless by Optimization 1 (Lines 13, 14). If no generated product-state is accepting, then
we know that ℒ(𝑁1) ⊆ ℒ(𝑁2), thus we return TRUE.

For the correctness of the algorithm see [7, Section 5]. Algorithm 6 can be also used for
the universality problem of 𝑁2, if 𝑁1 is one-state NFAs with ℒ(𝑁1) = Σ*.
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Chapter 4

Emptiness problem of CAs

Recall that the emptiness problem of CA 𝑁 is the problem of deciding whether ℒ(𝑁) = ∅
(see Definition 3.1). Since any CA 𝑁 can be transformed to an NFA 𝑁 ′ by unfolding every
possible configuration in 𝑁 into part of states in 𝑁 ′, we can use all existing algorithms for
NFAs also for CAs. In particular, we can use the algorithm for testing the emptiness of
NFAs [11, Section 4.2], we call this solution trivial.

To the best of our knowledge, no general solution is known for the emptiness problem
of CAs except the trivial one. In this chapter, we are able to solve the emptiness problem
without unfolding the CAs to NFAs if the input CAs meet the given conditions. These
conditions then define a subclass of CAs. In Section 4.1, we introduce the subclass of CAs
from [14], the so-called monadic counting automata (MCAs), which naturally arise from
extended regular expressions. The solution for this subclass is straightforward, but it serves
some important observations, which we use later. Moreover, we show where lies the difficulty
in developing an algorithm solving the emptiness problem of general CAs. In Section 4.2,
we define a new subclass of CAs—looping counting automata (LCAs). This subclass is the
base case for the recursive definition of the another subclass of CAs, called advanced looping
counting automata (ALCAs), which are defined in Section 4.3. In both sections, we provide
the algorithm for the emptiness problem of LCAs and ALCAs, respectively. The examples
and figures in this chapter demonstrate that LCAs and ALCAs are capable of representing
more complex extended regular expressions (but still not beyond the regular languages).
Finally, we also conclude that ALCAs are a wider class than LCAs and LCAs are a wider
class than MCAs. In symbols, we can roughly write MCAs ⊂ LCAs ⊂ ALCAs. For the rest
of this chapter, let us fix Σ to be an alphabet.

4.1 Monadic Counting Automata
In this section, we introduce Monadic Counting Automata (MCAs) following the definition
in [14, Section 4.1]. Such automata naturally arise from the extended regular expressions
(eREs). The abstract syntax of eREs is

𝑅 ::= ∅ | 𝜀 | 𝜎 | 𝑅1𝑅2 | 𝑅1 +𝑅2 | 𝑅* | 𝜎{𝑚,𝑛}

where 𝜎 is a predicate denoting a set of alphabet symbols, and 𝑚,𝑛 ∈ N such that 𝑚 ≤ 𝑛.
The semantics is defined as in the standard regular expressions (REs), with 𝜎{𝑚,𝑛} denoting
a string 𝑤 with 𝑚 ≤ |𝑤| ≤ 𝑛 symbols each of them satisfying 𝜎.

Note that eREs still denote the class of regular languages, but in a more succinctly way
than the standard REs. Thus also MCAs denote the class of regular languages, but in

20



a more succinctly way than NFAs. For convenience, we write the elements from the set of
symbols that 𝜎 denotes within brackets [] unless the set contains only a single symbol. In
such case, the brackets are omitted (e.g., instead of the eRE [a]{0,2} we write a{0,2}).
Moreover, if 𝜎 is equal to ., then 𝜎 denotes the whole alphabet Σ. For example, the eRE
[abc]{5,5} denotes all strings of length 5 where each symbol is a, b, or c.

Definition 4.1. A (nondeterministic) monadic counting automaton (MCA) is a CA 𝑀 =
(𝑄,𝐶, 𝐼, 𝐹,∆) where the following holds:

1. The set of control states 𝑄 = 𝑄𝑠 ⊎𝑄𝑐, where 𝑄𝑠 is a set of simple states and 𝑄𝑐 is
a set of counting states.

2. The set of counters 𝐶 = {𝑐𝑞 | 𝑞 ∈ 𝑄𝑐} consists of a unique counter 𝑐𝑞 for every counting
state 𝑞 ∈ 𝑄𝑐.

3. All transitions containing counter guards or updates must be incident with a counting
state in the following manner. Every counting state 𝑞 ∈ 𝑄𝑐 has a single incre-
ment transition, a self-loop 𝑞−{𝜎,𝑐𝑞<max𝑞 ,𝑐′𝑞=𝑐𝑞+1}→𝑞 with the value of 𝑐𝑞 limited by the
bound max𝑞 of 𝑞, and possibly several entry transitions of the form 𝑟−{𝜎,𝑔,𝑐′𝑞=0}→𝑞
which set 𝑐𝑞 to 0, where 𝑔 is ⊤ or a counter guard containing only 𝑐𝑟 if 𝑟 is a counting
state. As for exit transitions, every counting state is either exact or range, where exact
counting states have exit transitions of the form 𝑞−{𝜎,𝑐𝑞=max𝑞 ,𝑓}→𝑠 and range counting
states have exit transitions of the form 𝑞−{𝜎,⊤,𝑓}→𝑠 with 𝑠 ∈ 𝑄 such that 𝑠 ̸= 𝑞, where 𝑓
is ⊤ or 𝑐′𝑠 = 0 if 𝑠 is a counting state.

4. The initial condition 𝐼 is of the form

𝐼 :
⋁︁
𝑞∈𝑄𝐼𝑠

s = 𝑞 ∨
⋁︁
𝑞∈𝑄𝐼𝑐

(s = 𝑞 ∧ 𝑐𝑞 = 0)

for some sets of initial simple and counting states 𝑄𝐼𝑠 ⊆ 𝑄𝑠 and 𝑄𝐼𝑐 ⊆ 𝑄𝑐, respectively.

5. The final condition 𝐹 is of the form

𝐹 :
⋁︁

𝑞∈𝑄𝐹𝑠 ∪𝑄𝐹𝑟

s = 𝑞 ∨
⋁︁
𝑞∈𝑄𝐹𝑒

(s = 𝑞 ∧ 𝑐𝑞 = max𝑞)

where 𝑄𝐹𝑠 ⊆ 𝑄𝑠 is a set of simple final states, 𝑄𝐹𝑟 ⊆ 𝑄𝑟 is a set of final range counting
states, and 𝑄𝐹𝑒 ⊆ 𝑄𝑒 is a set of final exact counting states.

More precisely, the MCAs arise from the extended regular expressions if the sub-
expressions 𝜎{𝑚,𝑛} appear only in the forms of 𝜎{𝑛, 𝑛} or 𝜎{0, 𝑛}. This is without loss of
generality since 𝜎{𝑚,𝑛} can be rewritten as 𝜎{𝑚,𝑚}𝜎{0, 𝑛−𝑚}. Usually we write 𝜎{𝑛}
instead of 𝜎{𝑛, 𝑛} (e.g., the last eRE [abc]{5,5} can be rewritten as [abc]{5}).

MCAs are a subclass of CAs, hence every MCA can be transformed into a clean CA
(see the procedure below Definition 2.9). Recall that this transformation preserves the
language of the automaton. Moreover, the transformation also preserves the conditions
in Definition 4.1 because after removing any transition from an MCA all conditions in
Definition 4.1 are still true. In other words, if we transform any MCA to a clean CA, then
the CA is again an MCA. An example of an MCA is in Figure 4.1.

We give a solution to the emptiness problem of MCAs. From the preceding paragraph, we
can assume without loss of generality that 𝑀 = (𝑄,𝐶, 𝐼, 𝐹,∆) is a clean MCA. Furthermore,
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𝑞⊤ 𝑟

{𝑐 = 𝑘}

⊤

l = 𝑎, 𝑐′ = 0

𝑐 < 𝑘, 𝑐′ = 𝑐+ 1

Figure 4.1: Example of an MCA 𝑀 denoting the same language as the eRE .*a.{k}, where
𝑘 ∈ N.

we can assume that for any transition 𝜙 ∈ [∆] we have [𝑠𝑦𝑚(𝜙)] = ⊤, which is justified by
Lemma 2.1.

In 𝑀 , each exit transition 𝜙 from a simple state or a range counting state is reachable,
because they do not contain counter guards, i.e., 𝑐𝑜𝑛𝑠(𝜙) = ⊤. It remains to check whether
the exit transitions from the exact counting states are reachable. The counting state 𝑞
has one incremental transition of the form 𝑞−{⊤,𝑐𝑞<max𝑞 ,𝑐′𝑞=𝑐𝑞+1}→𝑞 and possibly several
exit transitions of the form 𝑞−{⊤,𝑐𝑞=max𝑞 ,𝑓}→𝑠. Thus these transitions are also reachable.
Intuitively, we can execute the self-loop of 𝑞 as long as the condition 𝑐𝑞 = max𝑞 is not
satisfied, eventually the condition become satisfiable, so also the exit transitions (see Section
Acceleration of Self-loops for more details).

To find a final state 𝑞 ∈ 𝑄𝐹𝑠 ∪𝑄𝐹𝑟 ∪𝑄𝐹𝑒 we simply apply some searching algorithm on
𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛(𝑀) from the initial states in 𝑀 . If 𝑞 is found and 𝑞 is an exact counting state,
i.e., 𝑞 ∈ 𝑄𝐹𝑒 , then we also need to check whether its final condition is satisfiable. But we
know this already—the final condition is satisfiable—since the condition 𝑐𝑞 = max𝑞 in the
final condition of 𝑞 is the same as the counter guard in the exit transitions of 𝑞. Therefore,
if a final state is found, then ℒ(𝑀) ̸= ∅. Otherwise, ℒ(𝑀) = ∅. The time complexity of the
algorithm is 𝒪(𝑛+𝑚) where 𝑛 is the number of states and 𝑚 is the number of transitions
in 𝑀 .

Acceleration of Self-loops

Let 𝑀 = (𝑄,𝐶, 𝐼, 𝐹,∆) be a clean MCA. Suppose that 𝑞 ∈ 𝑄𝑐 is a counting state. By the
definition of MCAs we know that there is a self-loop of the form 𝑞−{𝜎,𝑐𝑞<max𝑞 ,𝑐′𝑞=𝑐𝑞+1}→𝑞.
Moreover, any entry transition from 𝑟 to 𝑞 is of the form 𝑟−{𝜎,𝑔,𝑐′𝑞=0}→𝑞. It is not hard to
see that the possible value of 𝑐𝑞 can be represented by the formula 0 ≤ 𝑐𝑞 ≤ max𝑞. Note
that there is no difference if 𝑞 is an exact or a range counting state. The only difference is
that we can leave the state 𝑞 only if 𝑐𝑞 = max𝑞 when 𝑞 is an exact counting state (and if
𝑐𝑞 ≤max𝑞 when 𝑞 is a range counting state).

The purpose of the preceding paragraph is noting that we do not need executing the
self-loop of 𝑞 one by one to decide whether an outgoing transition (or a final condition) of 𝑞
is satisfiable reachable. In the case of MCAs, it is trivial since the bounds of the self-loops
and the exit transitions of the exact counting states are the same (by the definition). But in
the general CAs, there is no hope that the bounds are always the same. Although they are
the same, the exit transition can be still unreachable for several reasons.

For example, suppose that 𝑞 has a self-loop of the form 𝑞−{𝜎,𝑐<max𝑐,𝑐′=𝑐+2}→𝑞 and the exit
transition of the form 𝑞−{𝜎,𝑐=max𝑐,𝑓}→𝑟 where max𝑐 ∈ N. It seems that the reachability of
the exit transition depends on whether max𝑐 is even or odd number, but this is not true.
The exit transition can be reachable for both even and odd value of max𝑐. It depends on
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whether we enter the state 𝑞 with even or odd value of 𝑐. The value of 𝑐 can be changed
anywhere in the CA. Thus we need to explore the whole CA (consider every configuration
of the CA) if no extra information is given. This example demonstrates a difficulty of the
emptiness problem of the general CAs. The same situation occurs in any problem of CAs,
which is based on deciding whether the outgoing transition of some state is reachable (e.g.,
the language inclusion of CAs).

The observation from the first paragraph of this section can be generalized. Suppose
that the value of 𝑐𝑞 is known if we are in a counting state 𝑞. Then the value of 𝑐𝑞 can be
updated by the formula

𝜙 = ∃𝑘 : (0 ≤ 𝑘 ≤max𝑞 ∧ 𝑐′𝑞 = 𝑐𝑞 + 𝑘 ∧ 𝑐′𝑞 ≤max𝑞).

Using this formula we can easily test whether 𝑐𝑞 can obtain a value 𝑛 ∈ N in 𝑞 by checking
𝐼𝑠𝑆𝑎𝑡(𝜙 ∧ (𝑐𝑞)

′ = 𝑛). In particular, we can test whether the exit transitions of an exact
counting state 𝑞 are reachable by putting 𝑛 = max𝑞. Because we do not have to execute the
self-loop one by one to obtain the information, we call this formula an acceleration formula
of the self-loop. Note that the length of the formula is independent on max𝑞.

4.2 Looping Counting Automata
In this section, we introduce looping counting automata (LCAs) in a similar way as MCAs
and give a solution to the emptiness problem of LCAs. The LCAs serve the basis of
the recursive definition of an advanced looping counting automata (ALCAs), which are
introduced in the following section. For the rest of this section let 𝑘1, . . . , 𝑘𝑛 ∈ N.
Definition 4.2. A looping counting automaton (LCA) is a CA 𝐴 = (𝑄,𝐶, 𝐼, 𝐹,∆) where
the following holds:

1. The set of control states Q is partitioned into non-empty sets 𝑄1, 𝑄2, . . . , 𝑄𝑛 for some
𝑛 ≥ 1, i.e., 𝑄 = 𝑄1 ⊎𝑄2 ⊎ · · · ⊎𝑄𝑛.

2. Each block 𝑄𝑖 is further partitioned into a set of simple states 𝑄𝑖𝑠, a set of counting
states 𝑄𝑖𝑐, and a set with the main state 𝑄𝑖𝑚 such that |𝑄𝑖𝑚| = 1. The only state in 𝑄𝑖𝑚 is
called the main state (or interface) of 𝑄𝑖𝑚 and is denoted by 𝑞𝑖*. So, 𝑄𝑖 = 𝑄𝑖𝑠⊎𝑄𝑖𝑐⊎𝑄𝑖𝑚.

3. The set of counters 𝐶 = 𝐶1 ⊎ 𝐶2 ⊎ · · · ⊎ 𝐶𝑛 where 𝐶𝑖 = {𝑐𝑞 | 𝑞 ∈ 𝑄𝑖𝑐 ⊎𝑄𝑖𝑚} consists
of a unique counter 𝑐𝑞 for every counting state and the main state in the block 𝑄𝑖.
The unique counter of the main state of 𝑄𝑖 is called the main counter of 𝑄𝑖 and is
denoted by 𝑐𝑖*.

4. If there is a transition from 𝑞𝑖 ∈ 𝑄𝑖 to 𝑞𝑗 ∈ 𝑄𝑗 such that 𝑖 ̸= 𝑗, then 𝑞𝑖 = 𝑞𝑖* and
𝑞𝑗 = 𝑞𝑗*, i.e., 𝑞𝑖 is the main state of 𝑄𝑖 and 𝑞𝑗 is the main state of 𝑄𝑗 . Such transitions
are called outside transitions. The other transitions are called inside transitions.

5. Let 𝐺 = (𝑄,𝐸) = 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛(𝐴). Let 𝐺𝑖 be a subgraph of 𝐺 induced by 𝑄𝑖 for each
𝑖 ∈ [𝑛]. Then no graph 𝐺𝑖 − 𝑞𝑖* contains a cycle.

6. For each 𝑖 ∈ [𝑛], the main state 𝑞𝑖* of 𝑄𝑖 has:

(I) possibly several entry outside transitions of the form 𝑞𝑗*−{𝜎,𝑔,𝑓}→𝑞𝑖* where 𝑞𝑗* is
the main state of 𝑄𝑗 with 𝑖 ̸= 𝑗 and 𝑓 := (𝑐𝑖*)

′ = 0 and possibly several entry
inside transition of the form 𝑞−{𝜎,𝑔,𝑓}→𝑞𝑖* where 𝑞𝑖* ̸= 𝑞 ∈ 𝑄𝑖 and 𝑓 := ⊤ or
𝑓 :=

(︀
(𝑐𝑖*)

′ = 𝑐𝑖* + 1
)︀
.
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(II) possibly several exit outside transitions of the form 𝑞𝑖*−{𝜎,𝑔,𝑓}→𝑞
𝑗
* where 𝑞𝑗* is the

main state of 𝑄𝑗 with 𝑖 ̸= 𝑗 and 𝑔 := (𝑐𝑖* = 𝑘𝑖) or 𝑔 := ⊤ and possibly several
exit inside transitions of the form 𝑞𝑖*−{𝜎,𝑔,𝑓}→𝑞 where 𝑞𝑖* ̸= 𝑞 ∈ 𝑄𝑖, 𝑔 := (𝑐𝑖* < 𝑘1),
and 𝑓 := ⊤ or 𝑓 := (𝑐′𝑞 = 0) if 𝑞 is a counting state.

(III) at most one incremental transition, a self-loop 𝑞𝑖*−{𝜎,𝑐𝑖*<𝑘𝑖,(𝑐𝑖*)′=𝑐𝑖*+1}→𝑞𝑖*, or a self-
loops of the form 𝑞𝑖*−{𝜎,⊤,⊤}→𝑞𝑖*.

7. For each 𝑖 ∈ [𝑛], all transitions containing counter guards or updates must be incident
with the main state as described in the point 6 above. or with a counting state in the
following manner. Every counting state 𝑞 ∈ 𝑄𝑖𝑐 has:

(I) possibly several entry inside transitions of the form 𝑟−{𝜎,𝑔,𝑓}→𝑞 where 𝑞 ̸= 𝑟 ∈ 𝑄𝑖
and 𝑓 := (𝑐′𝑞 = 0) or 𝑓 := (𝑐′𝑞 = 0 ∧ (𝑐𝑖*)

′ = 𝑐𝑖* + 1).
(II) possibly several exit inside transitions of the form 𝑞−{𝜎,𝑔,𝑓}→𝑟 where 𝑞 ̸= 𝑟 ∈ 𝑄𝑖

and 𝑔 := (𝑐𝑞 = max𝑞) if 𝑞 is an exact counting state or 𝑔 := ⊤ if 𝑞 is a range
counting state.

(III) a single incremental transition, a self-loop of the form 𝑞−{𝜎,𝑐𝑞<max𝑞 ,𝑐′𝑞=𝑐𝑞+1}→𝑞 or
𝑞−{𝜎,𝑐𝑞<max𝑞 ,𝑐′𝑞=𝑐𝑞+1∧(𝑐𝑖*)′=𝑐𝑖*+1}→𝑞.

8. The initial condition 𝐼 is of the form:⋁︁
𝑞𝑖*∈𝑄*

(︁
s = 𝑞𝑖* ∧

(︀
𝑐𝑖*
)︀′

= 0
)︁

where 𝑄* ⊆
⋃︀
𝑖∈[𝑛]𝑄

𝑖
𝑚.

9. The final condition 𝐹 is of the form:⋁︁
𝑞𝑖*∈𝑄*

1

(︁
s = 𝑞𝑖* ∧ 𝑐𝑖* = 𝑘𝑖

)︁
∨

⋁︁
𝑞𝑖*∈𝑄*

2

(︁
s = 𝑞𝑖*

)︁
where 𝑄*

1, 𝑄
*
2 ⊆

⋃︀
𝑖∈[𝑛]𝑄

𝑖
𝑚 such that 𝑄*

1 ∩𝑄*
2 = ∅.

Note that every LCA can be transformed into a clean LCA by the procedure given
below Definition 2.9 because after removing any transition from the LCA all conditions in
Definition 4.2 are still true. In Figure 4.2 are examples of an LCA and a non-LCA. Another
example of an LCA is in Figure 4.3.

We give a brief argument showing that the class of LCAs is wider than the class of
MCAs. Let 𝑀 = (𝑄,𝐶, 𝐼, 𝐹,∆) be an MCA and suppose that 1 ≤ |𝑄| = 𝑛. The set of
states 𝑄 can be partitioned into 𝑄1, . . . , 𝑄𝑛 such that |𝑄𝑖| = 1 for 𝑖 ∈ [𝑛]. Each state 𝑞𝑖 ∈ 𝑄
becomes the main state of the block 𝑄𝑖. The counter 𝑐𝑞 of 𝑞 becomes the main counter
of 𝑄𝑖. Since every main state must have the main counter, we add a new main counter
for each simple state. Note that using this construction (after adding some more technical
details) all conditions in Definition 4.2 are satisfied. In fact, we show that LCAs are at least
as wide as MCAs, the fact that LCAs are wider than MCAs is witnessed by the example in
Figure 4.2 (a). Before we solve the emptiness problem of LCAs, we need to define a property
of an LCA, which we use in the next section.

Definition 4.3. Let 𝑁 = (𝑄,𝐶, 𝐼, 𝐹,∆) be an LCA. We say that 𝑁 is single partitioned
if 𝑄 can be partitioned into a single block 𝑄1.
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𝑞1*
(︀
𝑐1*
)︀′
=0 {𝑐1* = 𝑘} 𝑟

l = 𝑎, 𝑐1* < 𝑘
𝑐′𝑟 = 0

l = 𝑏 ∨ l = 𝑐
𝑐𝑟 = max𝑟,

(︀
𝑐1*
)︀′

=
𝑐1* + 1

l = 𝑏 ∨ l = 𝑐
𝑐𝑟 < max𝑟, 𝑐′𝑟 = 𝑐+1

(a) A looping counting automaton

𝑞1*
(︀
𝑐1*
)︀′
=0 {𝑐1* = 𝑘} 𝑞2* 𝑟

l = 𝑎, 𝑐1* < 𝑘(︀
𝑐2*
)︀′

= 0

l = 𝑎, 𝑐2* = 𝑛(︀
𝑐1*
)︀′

= 𝑐1* + 1

l = 𝑏, 𝑐2* < 𝑛

l = 𝑐,
(︀
𝑐2*
)︀′

= 𝑐2* + 1

(b) A non-looping counting automaton

Figure 4.2: In (a) is an example of an LCA 𝑁1 accepting the same language as the regular
expression (a[bc]{n}){k} where max𝑟 = 𝑛−1 with 𝑛 ∈ N+ and 𝑘 ∈ N. In (b) is an example
of non-LCA 𝑁2 accepting the same language as the regular expression (a(bc){n}a){k}
where 𝑛, 𝑘 ∈ N. The semantics of (𝜎){𝑛} is defined inductively as (𝜎){𝑛} := 𝜎(𝜎){𝑛− 1}
and (𝜎){0} := 𝜀.

4.2.1 Emptiness problem of LCAs

Analogously to the emptiness problem of MCAs, we assume without loss of generality that
𝑁 = (𝑄,𝐶, 𝐼, 𝐹,∆) is a clean LCA and for any transition 𝜙 ∈ [∆] we have [𝑠𝑦𝑚(𝜙)] = ⊤.
We begin with several observations: (1) All transitions except the exit transitions from the
main states in 𝑁 are always reachable because these transitions are similar to the transitions
in the MCAs. The difference is that the inside transitions in the LCAs can also contain
an update on the main counter, but this update does not cause the transitions become
unreachable. (2) Only the transitions in a block 𝑄𝑖 can change the value of 𝑐𝑖*. (3) Only
the main states can be initial and final. Observations (2) and (3) follow directly from the
definition of LCAs.

To show that ℒ(𝑁) ̸= ∅ we need to find a reachable final state from the initial states
and check whether its final condition is satisfiable. To find a reachable final state we need to
decide whether the exit outside transitions from the main states are reachable, because only
these transitions lead to the other main states (and only these states can be final). The exit
outside transitions from the main states have the counter guard of the form 𝑐𝑖* = 𝑘𝑖 or ⊤.
Note that the final condition of the final state is also either 𝑐𝑖* = 𝑘𝑖 or ⊤ . Thus checking
whether the final condition is satisfiable is the same as checking whether the exit outside
transition is reachable. In other words, only one procedure, which decides whether the exit
transitions from the main state are reachable, is sufficient.

By the observation (2) only the transitions between the states in a block 𝑄𝑖 can change
the value of 𝑐𝑖*. Thus the reachability of the exit transition from 𝑞𝑖* depends only on the
block 𝑄𝑖. Suppose that the exit outside transition from 𝑐𝑖* has the counter guard of the
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form 𝑐𝑖* = 𝑘𝑖 (if the counter guard is ⊤, then this transition is clearly reachable). We
need to develop a procedure 𝐼𝑠𝑆𝑎𝑡(𝑄𝑖, 𝑘𝑖) that takes a block 𝑄𝑖 and the value 𝑘𝑖 ∈ N and
produces a TRUE or FALSE answer depending on whether it is possible to reach the main
state of 𝑄𝑖 such that the value of 𝑐𝑖* is equal to 𝑘𝑖. For a moment, assume that we have
such a procedure.

Since only the main states are initial and final by observation (3), it is sufficient to search
in the graph 𝐺* where 𝐺* is a subgraph of 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛(𝑁) induced by

⋃︀
𝑖∈[𝑛]𝑄

𝑖
𝑚. We apply

some search algorithm on 𝐺* starting from the initial states with the following modification.
Suppose that we are in the state 𝑞𝑖* ∈ 𝑉 (𝐺*). If there is an edge from 𝑞𝑖* to 𝑞𝑗*, then 𝑞𝑗* is
visited only if the exit outside transition from 𝑞𝑖* to 𝑞𝑗* in 𝑁 is reachable. Suppose that this
exit transition has the counter guard of the form 𝑐𝑖* = 𝑘𝑖, otherwise this transition is always
reachable. Then 𝑞𝑗* is visited only if 𝐼𝑠𝑆𝑎𝑡(𝑄𝑖, 𝑘𝑖) returns TRUE. We note that every state is
visited at most once. As proposed before, the same procedure is used for checking whether
the final condition of 𝑞𝑖* is satisfiable. If the final condition is ⊤, then we have immediately
ℒ(𝑁) ̸= ∅. So suppose that the final condition is 𝑐𝑖* = 𝑘𝑖. If 𝐼𝑠𝑆𝑎𝑡(𝑄𝑖, 𝑘𝑖) returns TRUE,
then ℒ(𝑁) ̸= ∅, otherwise we need to continue searching. If no final state with its satisfiable
final condition is found, then ℒ(𝑁) = ∅.

Algorithm 7: Checking whether the main counter may have the value 𝑘𝑖 if the
main state is reached

Input : A clean LCA 𝑁 = (𝑄,𝐶, 𝐼, 𝐹,∆), a partition 𝑄𝑖 ⊆ 𝑄, and 𝑘𝑖 ∈ N
Output : TRUE if and only if it is possible to reach the main state 𝑐𝑖* with the value

of 𝑐𝑖* = 𝑘𝑖
1 if 𝑞𝑖*−{𝑐𝑖*<𝑘𝑖,(𝑐𝑖*)′=𝑐𝑖*+1}→𝑞𝑖* ∈ ∆ then
2 return TRUE;
3 𝑊𝑜𝑟𝑘𝑙𝑖𝑠𝑡← {(𝑞𝑖*, 0, 0)};
4 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑← ∅;
5 while 𝑊𝑜𝑟𝑘𝑙𝑖𝑠𝑡 ̸= ∅ do
6 pick and remove (𝑞, 𝑙𝑜𝑤, ℎ𝑖𝑔ℎ) from 𝑊𝑜𝑟𝑘𝑙𝑖𝑠𝑡;
7 if 𝑞 is an exact counting state then
8 𝑙𝑜𝑤 ← 𝑙𝑜𝑤 + max𝑞;
9 ℎ𝑖𝑔ℎ← ℎ𝑖𝑔ℎ+ max𝑞;

10 if 𝑞 is a range counting state then
11 𝑙𝑜𝑤 ← 𝑙𝑜𝑤;
12 ℎ𝑖𝑔ℎ← ℎ𝑖𝑔ℎ+ max𝑞;
13 foreach 𝑞−{⊤,𝑔,𝑓}→𝑟 ∈ ∆ such that 𝑟 ∈ 𝑄𝑖 do
14 if 𝑓 contains the counter update (𝑐𝑖*)

′ = 𝑐𝑖* + 1 then
15 𝑙𝑜𝑤′ ← 𝑙𝑜𝑤 + 1; ℎ𝑖𝑔ℎ′ ← ℎ𝑖𝑔ℎ+ 1;
16 else
17 𝑙𝑜𝑤′ ← 𝑙𝑜𝑤; ℎ𝑖𝑔ℎ′ ← ℎ𝑖𝑔ℎ;
18 if 𝑟 = 𝑞𝑖* then
19 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑← 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 ∪ {(𝑙𝑜𝑤′, ℎ𝑖𝑔ℎ′)};
20 else
21 𝑊𝑜𝑟𝑘𝑙𝑖𝑠𝑡←𝑊𝑜𝑟𝑘𝑙𝑖𝑠𝑡 ∪ {(𝑟, 𝑙𝑜𝑤′, ℎ𝑖𝑔ℎ′)};
22 return 𝑠𝑜𝑙𝑣𝑒(𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑, 𝑘𝑖);
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From now, if we say that the transition 𝜙 ∈ [∆] is executed in 𝑁 , then we mean that
the current configuration 𝛼 of 𝑁 is replaced by the 𝑎-successor of 𝛼 where 𝑎 ∈ [𝑠𝑦𝑚(𝜙)].
The procedure 𝐼𝑠𝑆𝑎𝑡(𝑄𝑖, 𝑘𝑖) is implemented in Algorithm 7. First, if there is the increment
self-loop of 𝑞𝑖*, then we return TRUE because the self-loop of 𝑞𝑖* has the same structure as
the self-loop of a counting state in the MCAs (Lines 1, 2). If (𝑞, 𝑙𝑜𝑤, ℎ𝑖𝑔ℎ) ∈𝑊𝑜𝑟𝑘𝑙𝑖𝑠𝑡 ⊆
𝑄𝑖 × N × N, then there is a sequence of transitions from 𝑞𝑖* to 𝑞 in 𝑁 such that if we
execute these transitions, then the value of 𝑐𝑖* is increased by 𝑘 where 𝑙𝑜𝑤 ≤ 𝑘 ≤ ℎ𝑖𝑔ℎ.
If (𝑙𝑜𝑤, ℎ𝑖𝑔ℎ) ∈ 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 ⊆ N × N, then there is a sequence of transitions beginning
and ending with 𝑞𝑖* in 𝑁 such that if we execute these transitions, then the value of 𝑐𝑖* is
increased by 𝑘 where 𝑙𝑜𝑤 ≤ 𝑘 ≤ ℎ𝑖𝑔ℎ. Initially on Lines 3 and 4, 𝑊𝑜𝑟𝑘𝑙𝑖𝑠𝑡 stores only
a triple (𝑞𝑖*, 0, 0), since all entry outside transitions to 𝑞𝑖* have the update (𝑐𝑖*)

′ = 0. And
𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 is initialized to the empty set, since we have not found a non-empty sequence
starting and ending with 𝑞𝑖* yet.

The purpose of the main loop is to enumerate sequences starting and ending with 𝑞𝑖*
and remember how the value of 𝑐𝑖* is updated. In such sequences, every state appears at
most once (except the main states) because the self-loops of the states are accelerated. Until
𝑊𝑜𝑟𝑘𝑙𝑖𝑠𝑡 is empty, we take and remove (𝑞, 𝑙𝑜𝑤, ℎ𝑖𝑔ℎ) from 𝑊𝑜𝑟𝑘𝑙𝑖𝑠𝑡 (Lines 5, 6). If 𝑞 is
a counting state, then the incremental self-loop of 𝑞 can also contains the increment of 𝑐𝑖*
besides the increment of 𝑐𝑞. As shown in Section 4.1, the value of 𝑐𝑞 is between 0 and max𝑞
if 𝑞 is reached (the possible update of 𝑐𝑖* does not changed this observation). In other words,
the value of 𝑐𝑞 is increased by 𝑘 where 0 ≤ 𝑘 ≤max𝑞. Thus if the update of the self-loop
contains the increment of 𝑐𝑖*, then also 𝑐𝑖* is increased by 𝑘 where 0 ≤ 𝑘 ≤max𝑞. Suppose
that 𝑞 is an exact counting state. As shown in Section 4.1, we can leave the state 𝑞 if
𝑐𝑞 = max𝑞. Thus if we want the leave the state 𝑞 then the 𝑐𝑞 must be increased by the
value 𝑘 = max𝑞. Thus also 𝑐𝑖* is increased by max𝑞 (Lines 7–9). On other hand, if 𝑞 is
a range counting state, then we can leave the state for any value of 𝑐𝑞 ≤ max𝑞. In other
words, if we leave the state 𝑞 then the value of 𝑐𝑞 is increased by 𝑘 where 0 ≤ 𝑘 ≤ max𝑞.
By the same value of 𝑘 is increased the value of 𝑐𝑖* (Lines 10–12).

After we accelerate the self-loop of 𝑞, we enumerate all successors 𝑟 ∈ 𝑄𝑖 of 𝑞 (Line 13).
If the transition 𝑞−{𝜎,𝑔,𝑓}→𝑟 contains the update on 𝑐𝑖*, then the value of 𝑐𝑖* is increased by
one (Lines 14, 15). Otherwise, the value of 𝑐𝑖* is not changed (Lines 16, 17) If 𝑟 = 𝑞𝑖*, then
we found a sequence of transitions beginning and ending with 𝑞𝑖*. We also know how the
values of 𝑐𝑖* are changed if these transitions are executed—this information is stored in 𝑙𝑜𝑤
and ℎ𝑖𝑔ℎ. Thus the pair (𝑙𝑜𝑤, ℎ𝑖𝑔ℎ) is added to 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 (Lines 18, 19). Otherwise, we
add the triple (𝑟, 𝑙𝑜𝑤, ℎ𝑖𝑔ℎ) to 𝑊𝑜𝑟𝑘𝑙𝑖𝑠𝑡 (Lines 20, 21).

If 𝑊𝑜𝑟𝑘𝑙𝑖𝑠𝑡 is empty, then we enumerate all possible sequences (without repetition of
inner states in the sequence) of transitions starting and ending with 𝑞𝑖*. Every such sequence
of transitions is stored in 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 as pair (𝑙𝑜𝑤, ℎ𝑖𝑔ℎ). These sequences can be executed
several times in a different order. Thus we need to decide whether there is a sequence of
numbers 𝑥1, . . . , 𝑥𝑛 such that Σ𝑖∈[𝑛]𝑥𝑖 = 𝑘𝑖 and for every 𝑥𝑖 there is a pair (𝑙𝑜𝑤, ℎ𝑖𝑔ℎ) ∈
𝑃𝑟𝑜𝑐𝑐𝑒𝑠𝑒𝑑 such that 𝑙𝑜𝑤 ≤ 𝑥𝑖 ≤ ℎ𝑖𝑔ℎ. The purpose of function 𝑠𝑜𝑙𝑣𝑒(𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑, 𝑘𝑖) is
to find a sequence of 𝑥𝑖 satisfying the property above. If 𝑠𝑜𝑙𝑣𝑒(𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑, 𝑘𝑖) found the
sequence of 𝑥𝑖, then returns TRUE; otherwise returns FALSE (Line 20).

Let 𝑑 be the maximum out-degree of a state in 𝐺𝑖. The number of cycles in 𝐺𝑖 is bounded
above by |𝐺𝑖|𝑑. Each cycle corresponds to one sequence starting and ending with 𝑞𝑖*. The
time complexity of Algorithm 7 is 𝒪(𝑆(|𝐺𝑖|𝑑)) where 𝑆(·) is the function representing the
time complexity of 𝑠𝑜𝑙𝑣𝑒(𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑, 𝑘𝑖), which depends on the number of sequences and
the value of 𝑘𝑖.
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𝑞1*𝑐1*=0 {𝑐1* = 𝑘}

𝑟

𝑠

𝑡

𝑐1* < 𝑘, 𝑐′𝑟 = 0

𝑐𝑟 < 4
𝑐′𝑟 = 𝑐𝑟 + 1 ∧

(︀
𝑐1*
)︀′

= 𝑐1* + 1

𝑐𝑟 = 4, 𝑐′𝑠 = 0

𝑐𝑟 = 4, 𝑐′𝑡 = 0

𝑐𝑠 < 3
𝑐′𝑠 = 𝑐𝑠 + 1 ∧

(︀
𝑐1*
)︀′

= 𝑐1* + 1

𝑐′𝑡 = 0

𝑐𝑡 < 2
𝑐′𝑡 = 𝑐𝑡 + 1

𝑐𝑡 = 2

Figure 4.3: An example of LCA 𝑁 where 𝑘 ∈ N.

Example Demonstrating Algorithm 7

We demonstrate the solution to the emptiness problem of the LCA 𝑁 = (𝑄,𝐶, 𝐼, 𝐹,∆),
which is given in Figure 4.3. Since 𝑁 has a single partition, Algorithm 7 directly gives the
answer to the emptiness problem of 𝑁 .

We start with 𝑊𝑜𝑟𝑘𝑙𝑖𝑠𝑡 = {(𝑞1*, 0, 0)} and 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 = ∅. The number in the paren-
theses represents how many times we execute the body of the while loop. (1) We remove
(𝑞1*, 0, 0) from 𝑊𝑜𝑟𝑘𝑙𝑖𝑠𝑡. Since 𝑞1* is the main state without the self-loop, we process only
the exit transitions from 𝑞1*. There is only one transition from 𝑞1* to 𝑟. This transition does
not contain the update on 𝑞1*. Thus (𝑟, 0, 0) is added to 𝑊𝑜𝑟𝑘𝑙𝑖𝑠𝑡. (2) We remove (𝑟, 0, 0)
from 𝑊𝑜𝑟𝑘𝑙𝑖𝑠𝑡 where 𝑟 is an exact counting state. Note that 𝑟 has the incremental self-loop
containing the update on 𝑐𝑖* with the bound max𝑟 = 4. So the value of 𝑐𝑖* is increased
by 4. We examine all exit transitions from 𝑟. No transitions contain the update on 𝑐𝑖*,
hence 𝑊𝑜𝑟𝑘𝑙𝑖𝑠𝑡 = {(𝑡, 4, 4), (𝑠, 4, 4)}. (3) We remove (𝑡, 4, 4) from 𝑊𝑜𝑟𝑘𝑙𝑖𝑠𝑡. The state 𝑡 is
an exact counting state but does not contain an update on 𝑐𝑖*, so we only calculate exit
transitions from 𝑟. Since there is only one outgoing transition to 𝑞𝑖* without update on 𝑐1*,
we add (4, 4) to 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑. (4) In 𝑊𝑜𝑟𝑘𝑙𝑖𝑠𝑡 remains the triple (𝑠, 4, 4). Since 𝑠 is a range
counting state with the self-loop containing the update on 𝑐1* and the exit transition to 𝑡
does not contain the update on 𝑐1* we add (𝑡, 4, 7) to 𝑊𝑜𝑟𝑘𝑙𝑖𝑠𝑡. (5) We remove (𝑡, 4, 7) from
𝑊𝑜𝑟𝑘𝑙𝑖𝑠𝑡. Analogously to (3), the self-loop and the exit transition of 𝑡 do not change the
value of 𝑐1*, so (4, 7) is added to 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑.

After that 𝑊𝑜𝑟𝑘𝑙𝑖𝑠𝑡 = ∅ and 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 = {(4, 4), (4, 7)}. For example, let 𝑘 = 13.
Then there are several possible solutions, e.g., the sequences 7, 6 or 4, 4, 5 are both solutions.
Clearly, if 0 < 𝑘 < 4, then there is no solution. Moreover, it can be shown that for any
𝑘 ≥ 4 there exists a solution.

4.3 Advanced Looping Counting Automata
In this section, we extend the class of LCAs as follows. First, we define a new binary
automaton operation. Second, by using this operation we show how to construct a wider

28



𝑞1*𝑐1* = 0 {𝑐1* = 𝑘} 𝑠

l = 𝑎, 𝑐1* < 𝑘

l = 𝑎,
(︀
𝑐1*
)︀′

= 𝑐1* + 1

𝑞2*𝑐2* = 0 {𝑐2* = 𝑛} 𝑟

l = 𝑏, 𝑐2* < 𝑛

l = 𝑐,
(︀
𝑐2*
)︀′

= 𝑐2* + 1

Figure 4.4: Let 𝑘, 𝑛 ∈ N. On the left is an LCA 𝑁1 and on the right is an LCA 𝑁2. Note
that 𝑁1 and 𝑁2 are both single partitioned LCAs and also both are ALCAs.

subclass of CAs than LCAs, which is called advanced looping counting automaton (ALCAs).
Lastly, we give a solution to the emptiness problem of ALCAs, which is somewhat a repeated
application of Algorithm 7.

Definition 4.4. Let 𝑁 = (𝑄𝑁 , 𝐶𝑁 , 𝐼𝑁 , 𝐹𝑁 ,∆𝑁 ) and 𝐿 = (𝑄𝐿, 𝐶𝐿, 𝐼𝐿, 𝐹𝐿,∆𝐿) be a CA
and a single partitioned LCA, respectively, such that 𝑄𝑁 ∩ 𝑄𝐿 = {𝑞}, 𝐶𝑁 ∩ 𝐶𝐿 = ∅,
and 𝑞 is the main state of 𝑄𝐿. Then the (automaton) addition of 𝑁 and 𝐿 is the CA
𝑁 ⊕𝐿 = (𝑄𝑁 ∪𝑄𝐿, 𝐶𝐿 ∪𝐶𝑁 , 𝐼𝑁 , 𝐹𝑁 ,∆′

𝑁 ∨∆𝐿) where ∆′
𝑁 originates from ∆𝑁 by replacing

every disjunct of the form 𝑟−{𝜎,𝑔,𝑓}→𝑞 by 𝑟−{𝜎,𝑔,𝑓∧𝐼𝐿}→𝑞 and every disjunct of the form 𝑞−{𝜎,𝑔,𝑓}→𝑟
by 𝑞−{𝜎,𝑔∧𝐹𝐿,𝑓}→𝑟 where 𝑞 ̸= 𝑟 ∈ 𝑄𝑁 .

Definition 4.5. The class of all advanced looping counting automata (ALCAs) is defined
inductively as follows:

1. Every LCA is an ALCA.

2. Let 𝑁1 = (𝑄1, 𝐶1, 𝐼1, 𝐹1,∆1) be an ALCA, and 𝑁2 = (𝑄2, 𝐶2, 𝐼2, 𝐹2,∆2) be a single
partitioned LCA such that 𝑄1 ∩𝑄2 = {𝑞} and 𝐶1 ∩𝐶2 = ∅ where 𝑞 is the main of 𝑄2.
Then 𝑁1⊕𝑁2 is an ALCA. Moreover, the single state 𝑞 ∈ 𝑄1 ∩𝑄2 is called the bridge
state and the block 𝑄𝑖 with 𝑞 ∈ 𝑄𝑖 is extended to 𝑄𝑖 ∪𝑄2.

The main state and the main counter of 𝑄𝑖 are are still denoted as 𝑞𝑖* and 𝑐𝑖*.

We note that only main states in the ALCAs can be final (and initial), since the final (and
initial) condition is not changed through the construction. Clearly, the LCA in Figure 4.2 (a)
is an ALCA. Moreover, the non-LCA in Figure 4.2 (b) is also an ALCA (see Example 4.1).

Example 4.1. Let 𝑁1 and 𝑁2 be the LCAs in Figure 4.4. Since 𝑁1 is an LCA, it is also
an ALCA. Thus 𝑁1 ⊕ 𝑁2 is defined if the state 𝑠 in 𝑁1 is renamed to 𝑞2*. The resulting
automaton is depicted in Figure 4.2 (b). The state 𝑞 is the main state of the block {𝑞1*, 𝑞2*, 𝑟}
in 𝑁 and the main state 𝑞2* of {𝑞1*, 𝑟} in 𝑁2 is the bridge state in 𝑁 of the block {𝑞1*, 𝑞2*, 𝑟}.

4.3.1 Emptiness Problem of ALCAs

We begin with the following lemma, which we use to show that our approach is valid in
the end of this section. Lemma 4.1 shows that in some cases the addition operation is
commutative. For the rest of the section, let 𝑛,𝑚 ∈ N+.

Lemma 4.1. Let 𝑁 = (𝑄𝑁 , 𝐶𝑁 , 𝐼𝑁 , 𝐹𝑁 ,∆𝑁 ) be an ALCA and 𝐿1 = (𝑄1, 𝐶1, 𝐼1, 𝐹1,∆1),
𝐿2 = (𝑄2, 𝐶2, 𝐼2, 𝐹2,∆2) be single partitioned LCAs such that 𝑁 ⊕ 𝐿1 and 𝑁 ⊕ 𝐿2 are both
defined. If 𝑄1 ∩𝑄2 = ∅ and 𝐶1 ∩ 𝐶2 = ∅, then

𝑁 ⊕ 𝐿1 ⊕ 𝐿2 = 𝑁 ⊕ 𝐿2 ⊕ 𝐿1.
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Proof. Assume that 𝑄1 ∩𝑄2 = ∅ and 𝐶1 ∩ 𝐶2 = ∅. We know that 𝑄𝑁 ∩𝑄2 = {𝑞} where
𝑞 is the main state of 𝑄2, otherwise 𝑁 ⊕ 𝐿2 is not defined. Since 𝑄1 ∩ 𝑄2 = ∅, we have
(𝑄𝑁 ∪𝑄1)∩𝑄2 = {𝑞} where 𝑞 is the main state of 𝑄2. Moreover, (𝐶𝑁 ∪𝐶1)∩𝐶2 = ∅. Thus
𝑁 ⊕ 𝐿1 ⊕ 𝐿2 is defined. It can be also shown that 𝑁 ⊕ 𝐿2 ⊕ 𝐿1 is defined by interchanging
the subscript 1 and 2. The equality follows from the fact that union and disjunction are
both commutative operations.

Let 𝑁 = (𝑄,𝐶, 𝐼, 𝐹,∆) be a clean ALCA and 𝑄1, . . . , 𝑄𝑛 be the blocks of 𝑄. Suppose
that for any transition 𝜙 ∈ [∆] we have [𝑠𝑦𝑚(𝜙)] = ⊤. Analogously to the LCAs, only the
main states in 𝑁 can be initial and final. Therefore it is also sufficient to search for a final
state in the graph 𝐺* where 𝐺* is a subgraph of 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛(𝑁) induced by the set of the
main states, i.e., by the set

⋃︀
𝑖∈[𝑛]𝑄

𝑖
𝑚. We can apply the same procedure as described in

Section 4.2.1 but with the different implementation of 𝐼𝑠𝑆𝑎𝑡(𝑄𝑖, 𝑘𝑖) because the blocks are
more complex (note that only the transitions in the block 𝑄𝑖 can change the value of 𝑐𝑖*).

The implementation of 𝐼𝑠𝑆𝑎𝑡(𝑄𝑖, 𝑘𝑖) is straightforward if we know exactly how 𝑁 is
built. Suppose that 𝐿1, . . . , 𝐿𝑚 is the sequence of LCAs such that 𝑁 = 𝐿1⊕ · · · ⊕𝐿𝑚. Note
that 𝐿𝑖 is a single partitioned LCA for each 2 ≤ 𝑖 ≤ 𝑚.

Let 𝑖 := 𝑚, we implement 𝐼𝑠𝑆𝑎𝑡(𝑄𝑖, 𝑘𝑖) as follows. Suppose that 𝑞 is the main state
of 𝐿𝑖. We check whether the final condition of 𝐿𝑖 is satisfiable by Algorithm 7. If the
final condition is not satisfiable (the algorithm returns FALSE), then we remove 𝑞 (and all
transitions, which are connected with 𝑞) from 𝐿𝑗 for each 𝑗 < 𝑖, since we know that the
exit transitions from 𝑞 in 𝑁 are not unreachable. We set 𝑖 := 𝑛− 1 and repeat the process
until 𝑖 = 1. Finally, if 𝑖 = 1, then 𝐿1 is a general LCA. We use the solution described in
Section 4.2.1. Then ℒ(𝑁) = ∅ iff ℒ(𝐿1) = ∅.

In general, the process of how 𝑁 is constructed is not known. Our purpose is to use
the procedure described in the preceding paragraph. Thus we need to find a way how to
reveal the structure of 𝑁 . In particular, we develop an algorithm that reveals the structure
of a single block 𝑄𝑖. Then we apply this algorithm on all other blocks in 𝑁 to reveal the
structure of 𝑁 .

Let 𝑄𝑖 be a block in 𝑁 . The bridge states of 𝑄𝑖 are known or can be identified as
follows. Each bridge state contains the entry transitions with the update (𝑐𝑞)

′ = 0, the exit
transitions with the counter guard 𝑐 < 𝑘, and possibly the exit transitions with the counter
guard either 𝑐 = 𝑘 or ⊤. We note that the same structure of the transitions can have also
the main state of 𝑄𝑖. Thus we need to add the condition that the bridge state must not be
the main state.

Let 𝐺𝑖 be a subgraph of 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛(𝑁) induced by 𝑄𝑖. We simply apply the depth-first
search on 𝐺𝑖 starting from the main state of 𝑄𝑖 with the following modifications: (1) We
remember the sequences of visited states for each possible path. In other words, we generate
a tree representing these paths. Hence the root of the tree is the main state of 𝑄𝑖. (2) We
stop searching in a particular search path if we encounter on the bridge state or the main
state for the second time. We note that it is impossible to encounter a state 𝑞 twice if 𝑞 is
not the main or bridge state (if such state 𝑞 appears, then 𝑁 is not an ALCA).

Suppose that we have such a tree 𝑇 for 𝐺𝑖. Recall that the leaves of 𝑇 are either the
bridge states or the main state. For each leaf ℓ𝑖 we create a set 𝐿𝑖 = {ℓ𝑖} (note that we can
create fewer sets than the number of leaves since some leaves can be the same). For each ℓ𝑖
we proceed from the leaf to the root such that each state 𝑞 is added to 𝐿𝑖 until 𝑞 = ℓ. Then
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Figure 4.5: The graph 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛(𝑄𝑖) of a block 𝑄𝑖 of some ALCA with the main state 1 ∈ 𝑄𝑖.
The colours of the states indicate how the block 𝑄𝑖 is built where the outer colour denotes
the original colour of the state (e.g., we see that the yellow state 2 was replaced by the blue
states 2, 5, and 6).

every 𝐿𝑖 represents the set of states of a particular LCA. It remains to define the sequence
of 𝐿𝑖, in which 𝑁 was constructed.

We start the sequence 𝑆 with 𝐿𝑞𝑖* . Suppose that we have already created the sequence 𝑆.
Then we add to 𝑆 all 𝐿𝑖 such that they are not already in 𝑆 and have a non-empty intersection
with some set, which is already in 𝑆 (the exact order between these 𝐿𝑖 is not important by
Lemma 4.1). This algorithm for a single block of 𝑁 is demonstrated in Example 4.2.

Briefly, we show why this algorithm works. Clearly, every state in 𝑄𝑖 is in some 𝐿𝑖 and
𝐿𝑖 ⊆ 𝑄𝑖. The path from the leaf 𝑞 to the next appearance 𝑞 identifies the cycle in 𝐺𝑖. Thus
states appearing in this path must be in the one single partitioned LCA. All paths from the
leaf 𝑞 to the next appearance of 𝑞 identify all possible cycles in the LCA. Thus if we take all
these states in the paths, then we obtain all states specifying one particular LCA. These
states are exactly stored in 𝐿𝑗 for some 𝑗. It should be mentioned that there is a possibility
to have the states in a single partitioned LCA from which there is no way to get back to the
main state. If such states appear, then these states can be omitted without change of the
language of the automaton since these states are not final. The order of the 𝐿𝑖 is obvious.
Different order of 𝐿𝑖 leads to undefined operation of ⊕ or it not change anything by the
existence of Lemma 4.1.

Using the algorithm, we find the single partitioned LCAs from which 𝑄𝑖 is built, but
we also find all sequences starting and ending with the main state of the particular LCA.
Thus if we modify the algorithm to remember how the value of the main counter of the
LCA is changed, then we can use immediately 𝑠𝑜𝑙𝑣𝑒(𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑, 𝑘𝑖) (we suppose that this
information is again stored in 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑). Then the time complexity of such an algorithm
is the same as the time complexity of Algorithm 7 times the number of LCAs from which
the ALCAs is built, i.e., the number of the sets 𝐿𝑖.

Example 4.2. Let 𝑄𝑖 be a block of some ALCAs such that the 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛(𝑄𝑖) is depicted
in Figure 4.5. The tree 𝑇 that is generated from 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛(𝑄𝑖) by the algorithm described
in this section is depicted in Figure 4.6. From 𝑇 we see that 2, 6, and 5 are bridge states
of 𝑄𝑖. Moreover, 𝐿1 = {1, 2, 3, 4}, 𝐿2 = {2, 5, 6}, 𝐿5 = {5, 7, 8, 9}, and 𝐿6 = {6, 10, 11}.
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Figure 4.6: The tree generated from the graph of Figure 4.5 by the algorithm described in
Section 4.3.1.
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Chapter 5

Language Inclusion Problem of
Monadic CAs

In this chapter, we introduce our algorithm for solving the language inclusion problem of
MCAs, which are defined in Section 4.1. Recall that any CA can be transformed to an
equivalent NFA. In particular, the language inclusion problem of MCAs can be transformed
in terms of NFAs, so we can apply the solution given in Section 3.3. We present the main idea
of our algorithm from which the structure of this chapter follows. The language inclusion
problem of MCAs 𝑀1 and 𝑀2 is to decide whether ℒ(𝑀1) ⊆ ℒ(𝑀2), or, equivalently,
ℒ(𝑀1) ∩ ℒ(𝑀2) = ∅ where 𝑀2 is the complement of 𝑀2. The automaton that recognizes
such a language is called a product automaton of 𝑀1 and 𝑀2, written 𝑀1 ×𝑀2. Our
algorithm is based on building the product automaton and checking whether some final state
in the product automaton is reachable and its final condition is satisfiable. We note that our
algorithm for solving the inclusion problem of MCAs leads to a different method for solving
the inclusion problem of eREs, i.e., whether the language of the first eRE is included in the
second eRE. The method is based on transforming the eREs to the MCAs and applying our
algorithm for the inclusion problem of MCAs. In Chapter 6, we experimentally evaluate
the method based on MCAs and compare them with the method based on NFAs (eREs
are transformed into NFAs and applying an algorithm for testing the language inclusion of
NFAs).

Before we can construct the product automaton, we need to know how to complement 𝑀2.
The complementation of 𝑀2 is based on the determinization of 𝑀2. For that reason, we
present in Section 5.1 a determinization algorithm for MCAs [14, Section 4.2]. Checking
whether a final state of the product automaton is reachable (and its final condition is
satisfiable) is the same as testing whether the language of the product automaton is empty.
Similarly, as we accelerate the self-loops in MCAs (see Section 4.1), we need to know how
to accelerate the self-loop in determinized MCAs. The accelerations are used to speed
up testing whether the language of the product automaton is empty (Section 5.2). In
Section 5.3, we give a procedure that builds the product automaton 𝑀1 ×𝑀2. Finally, in
Section 5.4 we provide a procedure for testing emptiness of the product automaton.

5.1 Determinization of Monadic CAs
A general algorithm for determinization of CAs is developed in [14]. They also provide
a more efficient algorithm if the input is an MCA. In this section, we briefly introduce this

33



algorithm for determinization of MCAs (see [14, Section 4.2] for a complete discussion).
Since the resulting automata of the algorithm are still somewhat restricted as we show in
Section 5.2, we called these automata determinized monadic CAs (DMCAs), sometimes they
are also called determinized MCAs.

Let 𝑀 = (𝑄,𝐶, 𝐼, 𝐹,∆) be an MCA. Suppose that 𝑞 is a counting state. Note that the
counter guards on 𝑐𝑞 appear only on the transitions leaving 𝑞 (including the self-loop of 𝑞).
That is, the value of 𝑐𝑞 has no influence on the 𝑎-successors of the current configuration of
𝑀 for any 𝑎 ∈ Σ if the configuration is not in 𝑞. To represent different variants of 𝑐𝑞, we
use parameters of the form 𝑐𝑞[𝑖] obtained by indexing 𝑐𝑞 by an index 𝑖, for 0 ≤ 𝑖 ≤max𝑞,
while enforcing the invariant 𝑐𝑞[𝑖] ̸= 𝑐𝑞[𝑗] whenever 𝑖 ̸= 𝑗. Recall that the values of 𝑐𝑞 are
between 0 and max𝑞, thus at most max𝑞 + 1 variants of 𝑐𝑞 are needed.

Since we need to remember only the variants of 𝑐𝑞 if we are in 𝑞 and no other variants of
the different counters than 𝑐𝑞, the states can be represented by the sphere:

Ψ :=
⋁︁
𝑞∈𝑄′

𝑠

s = 𝑞 ∨
⋁︁
𝑞∈𝑄′

𝑐

(︀
s = 𝑞 ∧

⋁︁
0≤𝑖≤max′

𝑞

𝑐𝑞 = 𝑐𝑞[𝑖]
)︀

(1)

for some 𝑄′
𝑠 ⊆ 𝑄𝑠, 𝑄′

𝑐 ⊆ 𝑄𝑐, and max′
𝑞 ≤max𝑞. That is, a sphere Ψ records which states

may be reached in the original MCA when Ψ is reached in the determinized MCA and also
which variants of the counter 𝑐𝑞 may record the value of 𝑐𝑞 when 𝑞 is reached.

From the structure of MCAs it follows that the variants of 𝑐𝑞[𝑖] stay sorted. That is,
we have 𝛼(𝑐𝑞[𝑖]) < 𝛼(𝑐𝑞[𝑗]) in every configuration 𝛼 of determinized MCA whenever 𝑖 < 𝑗.
Since the variants 𝑐𝑞[𝑖] are sorted, it is easy to see that the variant of 𝑐𝑞 with the highest
index, called the highest variant, has the highest value. This, together with the invariant
that every 𝑐𝑞 is bounded by max𝑞 and mutual distinctness of value of variants of 𝑐𝑞, means
that the highest variant is the only one that may satisfy the condition 𝑐𝑞 = max𝑞 on the
exit transitions or fail the condition 𝑐𝑞 < max𝑞 on the self-loop.

Moreover, if the state 𝑞 is a range counting state, then only the smallest variant of 𝑐𝑞
(the one with the smallest index) is important. Intuitively, suppose that we are in the
state 𝑞 with the variants 𝑐𝑞[𝑖] and 𝑐𝑞[𝑗] such that 𝑖 < 𝑗. Then every move from 𝑞 with the
variant 𝑐𝑞[𝑗] can be simulated by some move from 𝑞 with the variant 𝑐𝑞[𝑖], since every exit
transition from 𝑞 has the counter guard equal to ⊤ and the increment self-loop has the
counter guard 𝑐𝑞 < max𝑞 (note that 𝑐𝑞[𝑖] < 𝑐𝑞[𝑗]). Furthermore, if 𝑞 is a final state, then
both variants satisfy the final condition (the final condition is equal to ⊤). Note that the
smallest variant of 𝑐𝑞 can be always stored in 𝑐𝑞[0].

In the determinization algorithm, we will represent the sphere by a multiset of states.
By a slight abuse of notation, we use Ψ for the sphere itself as well as for its multiset
representation Ψ : 𝑄→ N. The fact that Ψ(𝑞) > 0 means that 𝑞 is present in the sphere,
i.e., s = 𝑞 is a predicate in the sphere (1), and for a counting state 𝑞, the counters
𝑐𝑞[0], . . . , 𝑐𝑞[Ψ(𝑞)− 1] are the Ψ(𝑞) variants 𝑐𝑞 tracked in the sphere, i.e., max′

𝑞 = Ψ(𝑞) in
the sphere (1).

Determinization Algorithm of MCAs

Let 𝑀 = (𝑄,𝐶, 𝐼, 𝐹,∆) be an MCA. The algorithm, which is introduced in [14, Section 4.2],
produces a language equivalent DMCA 𝐷 = (𝑄𝐷, 𝐶𝐷, 𝐼𝐷, 𝐹𝐷,∆𝐷) in the following way.
The high-level description of the algorithm is written in Algorithm 8.

The initial sphere Ψ𝐼 assigns 1 to all initial states in 𝑀 (and 0 to all non-initial states).
The initial condition 𝐼𝐷 ensures that we start from the initial sphere Ψ𝐼 with initialized
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Algorithm 8: MCA determinization algorithm
Input : An MCA 𝑀 = (𝑄,𝐶, 𝐼, 𝐹,∆)
Output : A DMCA 𝐷 = (𝑄𝐷, 𝐶𝐷, 𝐼𝐷, 𝐹𝐷,∆𝐷) such that ℒ(𝑀) = ℒ(𝐷)

1 𝑄𝐷 ← ∅; ∆𝐷 ← ⊥;
2 Ψ𝐼 ← {𝑞 ↦→ 1 | 𝑞 is an initial state in 𝑀};
3 𝐼𝐷 ← s = Ψ𝐼 ∧

⋀︀
𝑞 ↦→1∈Ψ𝐼 𝑐𝑞[0] = 0;

4 𝑊𝑜𝑟𝑘𝑙𝑖𝑠𝑡← {Ψ𝐼};
5 while 𝑊𝑜𝑟𝑘𝑙𝑖𝑠𝑡 ̸= ∅ do
6 pick and remove Ψ from 𝑊𝑜𝑟𝑘𝑙𝑖𝑠𝑡;
7 𝑄𝐷 ← 𝑄𝐷 ∪ {Ψ};
8 foreach 𝜇 ∈𝑀𝑖𝑛𝑡𝑒𝑟𝑚𝑠(∆Ψ) do
9 compute the exit transition Ψ−{𝜎,𝑔,𝑓}→Ψ′;

10 ∆𝐷 ← ∆𝐷 ∨Ψ−{𝜎,𝑔,𝑓}→Ψ′;
11 if Ψ′ /∈ 𝑄𝐷 then
12 𝑊𝑜𝑟𝑘𝑙𝑖𝑠𝑡←𝑊𝑜𝑟𝑘𝑙𝑖𝑠𝑡 ∪ {Ψ′};
13 𝐶𝐷 ← all variants of counters found in 𝑄𝐷;
14 𝐹𝐷 ←

⋁︀
Ψ∈𝑄𝐷 s = Ψ ∧ ∃∃ 𝐶, s : (Ψ ∧ 𝐹 );

15 𝐼𝐷 ← 𝑔𝑟𝑜𝑢𝑛𝑑(𝐼𝐷); ∆𝐷 ← 𝑔𝑟𝑜𝑢𝑛𝑑(∆𝐷);
16 return (𝑄𝐷, 𝐶𝐷, 𝐼𝐷, 𝐹𝐷,∆𝐷);

values of counters— 𝐼𝐷 assigns 0 to 𝑐𝑞[0] for each initial counting state 𝑞 in 𝑀 (Lines 2, 3).
The set 𝑊𝑜𝑟𝑘𝑙𝑖𝑠𝑡 stores all spheres which are not processed yet (we do not compute the exit
transitions from these spheres). Thus, initially, only the sphere Ψ𝐼 is in 𝑊𝑜𝑟𝑘𝑙𝑖𝑠𝑡 (Line 4).
Until 𝑊𝑜𝑟𝑘𝑙𝑖𝑠𝑡 is empty, we pick and remove the sphere Ψ from 𝑊𝑜𝑟𝑘𝑙𝑖𝑠𝑡. Moreover, this
sphere is added to 𝑄𝐷 (Lines 5–7).

Let ∆Ψ denote the set of transitions of 𝑀 originating from the states 𝑞 with Ψ(𝑞) > 0.
We remove the counter guard 𝑐𝑞 < max𝑞 from every self-loop of an exact counting state 𝑞
in ∆Ψ (since this counter guard has no semantic effect, i.e., the language of 𝑀 remains the
same).

Subsequently, we compute the set of minterms of the set of symbol and counter guard
formulae of the transitions in ∆Ψ, we denote this set by 𝑀𝑖𝑛𝑡𝑒𝑟𝑚𝑠(∆Ψ). Each minterm 𝜇 ∈
𝑀𝑖𝑛𝑡𝑒𝑟𝑚𝑠(∆Ψ) then corresponds to a transition Ψ−{𝜎,𝑔,𝑓}→Ψ′ of 𝐷 (Line 8). The symbol
and counter guard formulae 𝜎 and 𝑔, assignments formula 𝑓 , and the target sphere Ψ′ are
constructed from 𝜇 as follows (Line 9).

First, the symbol and counter guards 𝜎 and 𝑔 are obtained from the minterm 𝜇 by
replacing every occurrence of 𝑐𝑞 by 𝑐𝑞[Ψ(𝑞)] for each 𝑞 ∈ 𝑄𝑐. In other words, we replace every
occurrence of 𝑐𝑞 by the highest variant of 𝑐𝑞 (recall that only the highest variant of 𝑐𝑞 may
satisfy the condition on the exit transition or fail the condition on the increment self-loop).
Second, we initialize the target sphere Ψ′ as the empty multiset {𝑞 ↦→ 0 | 𝑞 ∈ 𝑄}. The
set ∆𝜇 consists of all transitions from ∆Ψ that are compatible with the minterm 𝜇. Third,
the assignment formula 𝑓 is obtained and the target sphere Ψ′ is modified by processing the
transitions of ∆𝜇 in the following three steps.

Step 1 (simple states). For every simple states 𝑞 with an entry transition in ∆𝜇, we
define Ψ′(𝑞) = 1.

Step 2 (increment self-loops). For every exact counting state 𝑞 with the increment
transition in ∆𝜇, we set Ψ′(𝑞) to Ψ(𝑞) − 1 if an exit transition of 𝑞 is in ∆𝜇, and to Ψ(𝑞)
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{𝑞 ↦→ 1}⊤ {𝑞 ↦→ 1, 𝑟 ↦→ 1} {𝑝0 = 1} {𝑞 ↦→ 1, 𝑟 ↦→ 2}{𝑝1 = 1}

l ̸= 𝑎

l = 𝑎
𝑝′0 = 0

l ̸= 𝑎, 𝑝0 < 1
𝑝′0 = 𝑝0 + 1

l = 𝑎, 𝑝0 = 1
𝑝′0 = 0

l ̸= 𝑎
𝑝0 = 1

l = 𝑎, 𝑝0 < 1
𝑝′0 = 0, 𝑝′1 = 𝑝0 + 1

l ̸= 𝑎, 𝑝1 < 1
𝑝′0 = 𝑝0 + 1, 𝑝′1 = 𝑝1 + 1

l = 𝑎, 𝑝1 = 1
𝑝′0 = 0, 𝑝1 = 𝑝0 + 1

l ̸= 𝑎, 𝑝1 = 1
𝑝′0 = 𝑝0 + 1

Figure 5.1: The DMCA generated from the MCA in Figure 4.1 for 𝑘 = 1 by the determiniza-
tion algorithm of MCA (Section 5.1) [14].

otherwise. For every range counting state 𝑞 with the increment transition in ∆𝜇, we set Ψ′(𝑞)
to 1. Then the assignment formula 𝑓 is the conjunction of 𝑐𝑞[𝑖]′ = 𝑐𝑞[𝑖] + 1 for each
0 ≤ 𝑖 < Ψ′(𝑞), since the variants that take the self-loop are incremented.

Step 3 (entry transitions). For each counting state 𝑞 with an entry transition in ∆𝜇, Ψ′(𝑞)
is incremented by 1 and the assignment 𝑐𝑞[0]′ = 0 of the fresh variant of 𝑐𝑞 is added to 𝑓 . If
the increment causes that the value of Ψ′(𝑞) exceeds max𝑞 + 1, then the whole transition is
discarded, since 𝑐𝑞 cannot have more that max𝑞 + 1 variants of 𝑐𝑞. If 𝑞 is an exact counting
state, then 𝑓 must be updated to preserve the invariant of sorted and unique values of 𝑐𝑞: all
increments of variant 𝑐𝑞 (except the one added in this step) are right-shifted to make space
for the fresh variant—each conjunct 𝑐𝑞[𝑖]′ = 𝑐𝑞[𝑖] + 1 in 𝑓 is replaced by 𝑐𝑞[𝑖+ 1]′ = 𝑐𝑞[𝑖] + 1.
If 𝑞 is a range counting state and the assignment 𝑐𝑞[0]′ = 𝑐𝑞[0] + 1 is present in 𝑓 , then we
remove this assignment from 𝑓 , since only the smallest variant of 𝑞 is important and 0 is
the smallest possible variant.

After the symbol, counter, assignment formulae, and the target sphere are constructed,
we added the transition Ψ−{𝜎,𝑔,𝑓}→Ψ′ to ∆𝐷 (Lines 10). If the target sphere Ψ′ is new (i.e.,
Ψ′ /∈ 𝑄𝐷), then we need to process the exit transitions from Ψ′. Thus we add Ψ′ to 𝑊𝑜𝑟𝑘𝑙𝑖𝑠𝑡
(Lines 11, 12).

Finally, we collect the set 𝐶𝐷 of all variants of counters of 𝐷 used in the spheres of 𝑄𝐷
(Line 13). The final condition 𝐹𝐷 of 𝐷 considers all spheres in 𝑄𝐷 by restricting them to
valuation where the original final formula 𝐹 is satisfied. Moreover, we quantify out the
original counters (this is the meaning of the symbol ∃∃ ). In this way, the final constraints
in the final condition get translated to constraints over counters in 𝐶𝐷 (Line 14). The
constructed automaton 𝐷 can be nondeterministic due to unused and unconstrained counters.
This nondeterminism is resolved by the function 𝑔𝑟𝑜𝑢𝑛𝑑, which we apply on 𝐼𝐷 and ∆𝐷

(Line 15). The application of 𝑔𝑟𝑜𝑢𝑛𝑑 on 𝐼𝐷 adds conjuncts of the from 𝑐 = 0 for every
𝑐 ∈ 𝐶𝐷 that is so far unconstrained in 𝐼𝐷. And the application of 𝑔𝑟𝑜𝑢𝑛𝑑 on ∆𝐷 modifies
every transition 𝜙 as follows. The function 𝑔𝑟𝑜𝑢𝑛𝑑 adds conjuncts of the from 𝑐 = 0 for
every 𝑐 ∈ 𝐶𝐷 that is so far unconstrained in 𝜙. Moreover, 𝑔𝑟𝑜𝑢𝑛𝑑 introduces a reset 𝑐′ = 0
for every counter 𝑐 that is so far not assigned in 𝜙. If we apply Algoritm 8 on the MCA in
Figure 4.1 for 𝑘 = 1, then we obtain the DMCA in Figure 5.1.

5.2 Structure of Determinized Monadic CAs
In the last section, we introduced the determinized MCAs (DMCAs). The goal of this
section is to investigate their structure. If the structure of DMCAs is known, then we can
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use this knowledge to accelerate the self-loops of states in the DMCAs, i.e., how the values of
the variants of counters are changed if the self-loop is executed several times. The structure
of DMCAs is not given by the definition like the structure of MCAs but it follows from the
determinization algorithm, which was introduced in the last section (see Algorithm 8).

Determinized MCAs may not be again MCAs as witnessed by the DMCA in Figure 5.1.
Moreover, a state of DMCAs may have several self-loops (see Figure 5.1) in the contrast to
MCAs, where each state has at most one self-loop. Nevertheless, the fact that a DMCA
may not be an MCA, the structure of DMCAs is still somewhat restricted as we show in
this section. We are mostly interested in the forms of the self-loops in DMCAs.

Let 𝑀 = (𝑄,𝐶, 𝐼, 𝐹,∆) be an MCA and 𝐷 = (𝑄𝐷, 𝐶𝐷, 𝐼𝐷, 𝐹𝐷,∆𝐷) be a normalized
DMCA that is obtained from 𝑀 by Algorithm 8. Let 𝑅 = {𝑞1 ↦→ 1, 𝑞2 ↦→ 1, · · · , 𝑞𝑛 ↦→
𝑘} ∈ 𝑄𝐷 be a sphere where only 𝑞𝑛 is a counting state (𝑞𝑖 is a simple state for each
1 ≤ 𝑖 ≤ 𝑛− 1) and 𝑘 > 0. We assume that all increment and exit transitions 𝜙𝑖 from 𝑞𝑖 have
𝑠𝑦𝑚(𝜙𝑖) = 𝜎. Later we show that this assumption is not necessary. Let 𝜙 = 𝑅−{𝛼}→𝑃 ∈ [∆𝐷]
be a transition. The structure of 𝛼 depends on whether 𝑞𝑛 is a range counting state or 𝑞𝑛 is
an exact counting state. Moreover, we define the label of a transition 𝑅−{𝛼}→𝑃 to be 𝛼.

Range Counting State

Suppose that 𝑞𝑛 is a range counting state. By the determinization algorithm we must
have 𝑘 = 1. Thus 𝑅 is equal to {𝑞1 ↦→ 1, 𝑞2 ↦→ 1, · · · , 𝑞𝑛 ↦→ 1}. In Figure 5.2 (a), we
see a part of the original automaton 𝑀 (it follows from the structure of the sphere 𝑅).
The determinization algorithm computes the following set of minterms (here we use the
assumption that all exit transitions from 𝑞𝑖 in 𝑅 have the same symbol guards)

Φ = {𝜎 ∧ 𝑐𝑞 < max𝑞𝑛 ,¬𝜎 ∧ 𝑐𝑞 < max𝑞𝑛 , 𝜎 ∧ 𝑐𝑞 ≥max𝑞𝑛 ,¬𝜎 ∧ 𝑐𝑞 ≥max𝑞𝑛}.

The possible outgoing transitions 𝑅−{𝛼}→𝑃 have labels of the following forms, where 𝛿 is
either 𝜎, ¬𝜎, or ⊤:

(Ia) 𝛼 = (𝛿, 𝑐𝑞[0] < max𝑞𝑛 , 𝑐𝑞[0]′ = 𝑐𝑞[0] + 1),

(IIa) 𝛼 = (𝛿, 𝑐𝑞[0] < max𝑞𝑛 , 𝑐𝑞[0]′ = 0),

(IIIa) 𝛼 = (𝛿, 𝑐𝑞[0] ≥max𝑞𝑛 , 𝑐𝑞[0]′ = 𝑐𝑞[0] + 1),

(IVa) 𝛼 = (𝛿, 𝑐𝑞[0] ≥max𝑞𝑛 , 𝑐𝑞[0]′ = 0).

Note that (IIIa) cannot be a label of a self-loop on 𝑅 (we can be sure that 𝑅 ̸= 𝑃 ).
The reason is the following: if 𝑐𝑞[0] ≥max𝑞𝑛 , then the counter guard of the self-loop of 𝑞𝑛
in 𝑀 is unsatisfiable. Moreover, there is no entry transition coming to 𝑞𝑛 from 𝑞𝑖, for
1 ≤ 𝑖 ≤ 𝑛− 1, otherwise we would have 𝑐𝑞[0]′ = 0 by the algorithm. Hence the target sphere
contains 𝑞𝑛 ↦→ 0. Therefore the source and target sphere of the transitions must be different
(the source sphere has 𝑞𝑛 ↦→ 1), i.e., this transition cannot be a self-loop on 𝑅.

In general, all increment and exit transitions 𝜙𝑖 from 𝑞𝑖 have 𝑠𝑦𝑚(𝜙𝑖) = 𝜎𝑖. Then the
set of minterms Φ is computed from the set {𝜎1, . . . , 𝜎𝑛, 𝑐𝑞 < max𝑞𝑛}. Again, all self-loops
of 𝑅 are of the form (Ia), (IIa), or (IVa) where 𝛿 =

⋀︀𝑛
𝑖=1 𝛿𝑖 such that 𝛿𝑖 is either 𝜎𝑖 or ¬𝜎𝑖.

Since 𝐷 is normalized, 𝑅 has at most three self-loops, each of which is of the form (Ia), (IIa),
or (IVa). It should be mentioned that not all combinations of the forms are allowed, because
of the determinism of 𝐷. For example, if 𝑅 contains two self-loops of the form (Ia) and (IIa)
where 𝛿 is the same in both, then it contradicts that 𝐷 is deterministic.
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𝑞 𝑡

𝜎, 𝑐𝑞 < max𝑞, 𝑐′𝑞 = 𝑐𝑞 + 1

𝜎,⊤, 𝑓

(a)

𝑞 𝑠

𝜎, 𝑐𝑞 < max𝑞, 𝑐′𝑞 = 𝑐𝑞 + 1

𝜎, 𝑐𝑞 = max𝑞, 𝑓

(b)

Figure 5.2: On the left is a part of some MCA with a range counting state 𝑞. We see the
structure of the self-loop of 𝑞 and the exit transition from 𝑞. In general, there is more
than one exit transition from 𝑞, but always there is only one self-loop of 𝑞. On the right is
depicted the same situation for an exact counting state 𝑞.

Exact Counting State

We repeat the process from the preceding subsection for the case if 𝑞𝑛 is an exact counting
state. Now, the value of 𝑘 in 𝑅 is an arbitrary positive integer. In Figure 5.2, we see
a part of the original automaton 𝑀 . Using the determinization algorithm, we compute the
following set of minterms

Φ = {𝜎 ∧ 𝑐𝑞 = max𝑞𝑛 ,¬𝜎 ∧ 𝑐𝑞 = max𝑞𝑛 , 𝜎 ∧ 𝑐𝑞 ̸= max𝑞𝑛 ,¬𝜎 ∧ 𝑐𝑞 ̸= max𝑞𝑛}.

The possible outgoing transitions 𝑅−{𝛼}→𝑃 have labels of the following forms, where 𝛿 is
either 𝜎, ¬𝜎, or ⊤:

(Ib) 𝛼 = (𝛿, 𝑐𝑞[Ψ(𝑞𝑛)− 1] = max𝑞𝑛 ,
⋀︀Ψ(𝑞𝑛)−2
𝑖=0 𝑐𝑞[𝑖]

′ = 𝑐𝑞[𝑖] + 1),

(IIb) 𝛼 = (𝛿, 𝑐𝑞[Ψ(𝑞𝑛)− 1] ̸= max𝑞𝑛 ,
⋀︀Ψ(𝑞𝑛)−1
𝑖=0 𝑐𝑞[𝑖]

′ = 𝑐𝑞[𝑖] + 1),

(IIIb) 𝛼 = (𝛿, 𝑐𝑞[Ψ(𝑞𝑛)− 1] = max𝑞𝑛 , 𝑐𝑞[0]′ = 0 ∧
⋀︀Ψ(𝑞𝑛)−2
𝑖=0 𝑐𝑞[𝑖+ 1]′ = 𝑐𝑞[𝑖] + 1),

(IVb) 𝛼 = (𝛿, 𝑐𝑞[Ψ(𝑞𝑛)− 1] ̸= max𝑞𝑛 , 𝑐𝑞[0]′ = 0 ∧
⋀︀Ψ(𝑞𝑛)−1
𝑖=0 𝑐𝑞[𝑖+ 1]′ = 𝑐𝑞[𝑖] + 1).

Note that (Ib) cannot be a label of a self-loop of 𝑅 because from the structure of the
counter update we know that there is no incoming transition to 𝑞𝑛 from 𝑞𝑖, for 1 ≤ 𝑖 ≤ 𝑛− 1.
Moreover, the counter guard of the self-loop of 𝑞𝑛 is unsatisfiable. It follows from the
determinization algorithm that the target sphere contains 𝑞𝑛 ↦→ 0 (the source sphere has
𝑞𝑛 ↦→ 𝑘 where 𝑘 > 0). Therefore the source and the target spheres are different.

It is not hard to see that (IVb) cannot be a label of the self-loop of 𝑅. The justification
is the following: the label 𝛼 creates a new variant of the counter 𝑐𝑞 and the highest variant
of 𝑐𝑞 satisfies the counter guard of the self-loop of 𝑞. So the target sphere works with
one more variant of 𝑐𝑞 than the source sphere, i.e., the target sphere contains 𝑞𝑛 ↦→ 𝑘 + 1.
Therefore the source and the target spheres are different (the source sphere has 𝑞𝑛 ↦→ 𝑘).

Analogously as for the range counting states, the assumption that all outgoing transitions
from 𝑞𝑖 have 𝑠𝑦𝑚(𝑞𝑖) = 𝜎 is not necessary. Thus 𝑅 has at most two self-loops, each of which
is of the form (IIb) or (IIIb). Again, not all combinations of self-loops on 𝑅 are possible
because 𝐷 is deterministic.

Acceleration of Self-loops in a DMCA

In the preceding two subsections, we investigated the forms of self-loops on a sphere
𝑅 = {𝑞1 ↦→ 1, 𝑞2 ↦→ 1, · · · , 𝑞𝑛 ↦→ 𝑘} containing only single counting state. We found out that
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there are five possible forms of self-loops on 𝑅 depending on whether 𝑞𝑛 is a range or an
exact counting state. Because some forms are special cases of other cases, it is reasonable to
reduce the number of such forms to the minimum.

First, note that 𝑐𝑞[𝑖] < max𝑞 and 𝑐𝑞[𝑖] ̸= max𝑞 are equivalent, for any 𝑖, because there
is not a possibility to have 𝑐𝑞[𝑖] > max𝑞 by the definition of CAs. Second, 𝑐𝑞[𝑖] ≥ max𝑞
and 𝑐𝑞[𝑖] = max𝑞 are equivalent by the same reason. It follows that (Ia) is a special case
of (IIb), and (IVa) is a special case of (IIIb). Finally, we write the possible forms (without
duplicates) of self-loops on 𝑅:

(I) 𝛼 = (𝛿, 𝑐𝑞[0] < max𝑞𝑛 , 𝑐𝑞[0]′ = 0),

(II) 𝛼 = (𝛿, 𝑐𝑞[Ψ(𝑞𝑛)− 1] < max𝑞𝑛 ,
⋀︀Ψ(𝑞𝑛)−1
𝑖=0 𝑐𝑞[𝑖]

′ = 𝑐𝑞[𝑖] + 1),

(III) 𝛼 = (𝛿, 𝑐𝑞[Ψ(𝑞𝑛)− 1] = max𝑞𝑛 , 𝑐𝑞[0]′ = 0 ∧
⋀︀Ψ(𝑞𝑛)−2
𝑖=0 𝑐𝑞[𝑖+ 1]′ = 𝑐𝑞[𝑖] + 1).

Since we already know the structure of the self-loops of the states in DMCAs, we are ready
to give the acceleration formulae of such self-loops. Note that there is no need to accelerate
the self-loops of the form (I), since every execution of the self-loop set 𝑐𝑞[0] to 0. In other
words, the acceleration formula is the same as the counter guard and assignment formula of 𝛼.
The self-loops of the form (II) have a similar structure as the increment self-loops in MCAs
(see Section 4.1). The only difference is that the self-loops of the form (II) increment more
variants of the counter. Thus the acceleration formula of self-loops of the form (II) is a simple
extension of the acceleration formula of the increment self-loops in MCAs. The acceleration
formula can look like ∃𝑘 :

(︀
0 ≤ 𝑘 ≤ max𝑞 ∧

⋀︀Ψ(𝑞)−1
𝑖=0 (𝑐𝑞[𝑖]

′ = 𝑐𝑞[𝑖] + 𝑘 ∧ 𝑐𝑞[𝑖]′ ≤ max𝑞)
)︀
.

Using the fact that the highest variant of 𝑐𝑞 has the highest value, we obtain the final version
of the acceleration formula of self-loops of the form (II):

∃𝑘 :
(︁

0 ≤ 𝑘 ≤max𝑞 ∧
Ψ(𝑞)−1⋀︁
𝑖=0

(︀
𝑐𝑞[𝑖]

′ = 𝑐𝑞[𝑖] + 𝑘
)︀
∧ 𝑐𝑞[Ψ(𝑞)− 1]′ ≤max𝑞

)︁
. (5.1)

Note that if we have Ψ(𝑞) = 1 in the formula (5.1), then we obtain the acceleration formula
of the increment self-loop in MCAs.

The acceleration formula of the self-loops of the form (III) is a little bit more complicated.
First, note that if Ψ(𝑞)− 1 = max𝑞, then the self-loop do not have to be accelerated. The
reason is the following: we know that 𝑐𝑞[Ψ(𝑞)− 1] = max𝑞. Since every variant of 𝑐𝑞 has
distinct (nonnegative) value, we know that 𝑐𝑞[𝑖+1] = 𝑐𝑞[𝑖]+1 for every 1 ≤ 𝑖 ≤ Ψ(𝑞)−2 and
𝑐𝑞[0] = 0. If the previous is not true, then there are two distinct variants having the same
values, which contradict the invariant of unique value of variants. Thus after executing the
self-loop of the form (III) we obtain the same value as before the execution. Thus suppose
that Ψ(𝑞) < max𝑞. It is not hard to see that after 𝑘 > 0 iterations of the self-loop of the
form (III) the 𝑘-th lowest variant of 𝑐𝑞 has the value 𝑘− 1 (note that the 𝑘-th lowest variant
is the one with the index 𝑘 − 1), the (𝑘 − 1)-th lowest variant of 𝑐𝑞 has the value 𝑘 − 2, and
so on. The new value of the variant with the index 𝑖 > 𝑘 is obtained from the value of the
variant 𝑐𝑞[𝑖−𝑘]+𝑘, since the value of 𝑐𝑞[𝑖−𝑘] is 𝑘 times shifted to the right and in each shift
the variant is increased by one. It remains to determine how many times such a self-loop
can be executed. Intuitively, if the self-loop is executed once, then 𝑐𝑞[Ψ(𝑞)− 1] = max𝑞. If
twice, then we must have 𝑐𝑞[Ψ(𝑞)− 2] + 1 = max𝑞, since after one execution of the self-loop
the highest variant has the value 𝑐𝑞[Ψ(𝑞)− 2] + 1. In general, if the self-loop is executed 𝑘
times, then 𝑐𝑞[Ψ(𝑞) − 𝑘] + 𝑘 − 1 = max𝑞. Moreover, there is always an option that the
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self-loop does not have to be executed. In this case, the new values of variants are the same
as the old ones. This all can be write into a single formula:

∃𝑘 :
(︁

0 < 𝑘 ≤ Ψ(𝑞) ∧
(︀
𝑐𝑞[Ψ(𝑞)− 𝑘] + 𝑘 − 1

)︀
= max𝑞 ∧

𝑘−1⋀︁
𝑖=0

𝑐𝑞[𝑖]
′ = 𝑖

∧ −
Ψ(𝑞)−1⋀︁
𝑖=𝑘

𝑐𝑞[𝑖]
′ = 𝑐𝑞[𝑖− 𝑘] + 𝑘

)︁
. (5.2)

General Form of Sphere in a DMCA

In the previous sections, we discussed the forms of self-loops of a sphere where only one
state in the sphere was counting. In general, the sphere may consist of several counting
states. Let 𝑅 = {𝑞1 ↦→ 𝑘1, . . . , 𝑞𝑗 ↦→ 𝑘𝑗 , 𝑞𝑗+1 ↦→ 1, . . . , 𝑞𝑛 ↦→ 1} ∈ 𝑄𝐷 be a sphere where 𝑞𝑖
are counting states (either range or exact) with 𝑘𝑖 > 0 for 1 ≤ 𝑖 ≤ 𝑗 and the rest are simple
states. Suppose that 𝑅−{𝛼}→𝑃 ∈ [∆𝐷], we again investigate the forms of the label 𝛼 and
identify which of them can be a self-loop on 𝑅.

The symbol and counter guards of 𝛼 originate from the set of minterms Φ, which
are computed from the set 𝑆 = {𝑐1 ⊗ max𝑞1 , . . . , 𝑐𝑗 ⊗ max𝑞𝑗 , 𝜎}, where ⊗ is either <
or = depending on whether 𝑞𝑖 is a range or an exact counting state, respectively. Thus
a minterm 𝜇 ∈ Φ is of the form 𝛿 ∧

⋀︀𝑗
𝑖=1 𝜙𝑞𝑖 where 𝛿 is either 𝜎 or ¬𝜎 and 𝜙𝑞𝑖 is 𝑐𝑖 ⊗max𝑞𝑖

or its negation. The counter assignment formula of 𝛼 with the guard 𝜇 is computed by
precessing the transitions from ∆𝑅 that are compatible with 𝜇 (see Section 5.1). Using
the determinization algorithm, the counter assignment formula can be written in the form
𝜓𝑞1 ∧ · · · ∧ 𝜓𝑞𝑗 , where 𝜓𝑞𝑖 updates only the variants of counter 𝑐𝑞𝑖 . Thus the label 𝛼 of 𝑅
can be divided in the conjuncts as 𝛿 ∧ 𝜙𝑞1 ∧ · · · ∧ 𝜙𝑞𝑗 ∧ 𝜓𝑞1 · · · ∧ 𝜓𝑞𝑗 where 𝛿 ∧ 𝜙𝑞𝑖 ∧ 𝜓𝑞𝑖 is of
one the forms (Ia)–(IVa), (Ib)–(IVb). Let Ω𝑖 denote the formula 𝛿 ∧ 𝜙𝑞𝑖 ∧ 𝜓𝑞𝑖 .

If any Ω𝑖 is not of the form (I)–(III), then the transition 𝑅−{𝛼}→𝑃 cannot be a self-loop of 𝑅
(for one of the reasons described in the above sections). Otherwise, each Ω𝑖 is of the form (I)–
(III) and 𝑅−{𝛼}→𝑃 may be a self-loop. Suppose that 𝑅−{𝛼}→𝑃 is a self-loop, i.e., 𝑃 = 𝑅. From
the preceding paragraph, we know that 𝛼 can be divided in 𝛿 ∧𝜙𝑞1 ∧ · · · ∧𝜙𝑞𝑗 ∧𝜓𝑞1 · · · ∧𝜓𝑞𝑗
where Ω𝑖 is of one the forms (I)–(III). If there is a self-loop with the label Ω𝑖, then from the
previous sections the acceleration formula of a such self-loop is known. Then the acceleration
formula of 𝑅−{𝛼}→𝑅 is the conjunction of the partial acceleration formula of Ω𝑖 while ensuring
that the bounded variables by the existential quantifiers are the same. Formally, let 𝜒𝑖 be
the acceleration formula of Ω𝑖 with the bounded variable 𝑘𝑖. The acceleration formula of
𝑅−{𝛼}→𝑃 is

⋀︀𝑛
𝑖=1 𝜒𝑖 ∧ 𝑘1 = 𝑘2 = · · · = 𝑘𝑛 (we assume that each variable 𝑘𝑖 is bounded by the

existential quantifier also in the second conjunct).
Lastly, we note that the assumption that all transitions 𝜙𝑖 have the same symbol guard is

not necessary. The only difference is that the set 𝑆 contains more 𝜎𝑖 for each 𝑠𝑦𝑚(𝜙𝑖) = 𝜎𝑖.
Thus we obtain more minterms, but it has no impact on the counter guards and updates
(the detailed consequences are described in the section Range counting state above).

5.3 Product Construction of MCA and DMCA
Let 𝑀1,𝑀2 be MCAs. In this section, we give an algorithm for building the product
automaton of 𝑀1 and the complement of 𝑀2, denoted by 𝑀1 ×𝑀2. The language of such
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an automaton is ℒ(𝑀1)∩ℒ(𝑀2). The states of the product automaton are sometimes called
product-states.

Before we start building the product automaton, we need to compute the complement
of 𝑀2, written 𝑀2, which accepts a string 𝑤 ∈ Σ* iff 𝑀2 does not accept 𝑤, i.e., ℒ(𝑀2) =
ℒ(𝑀2). The main idea is to make the states in 𝑀2 final only if the states are not final in 𝑀2

and vice versa. This approach works only if 𝑀2 is deterministic and complete, since we
need to have exactly one 𝑤-successor of 𝛼 for all configurations 𝛼 and strings 𝑤 ∈ Σ* . How
to make 𝑀2 deterministic and complete is described in Sections 5.1 and 2.2.3, respectively.
Using this methods, we obtain a complete determinized MCA 𝑀 ′

2 = (𝑄𝐷, 𝐶𝐷, 𝐼𝐷, 𝐹𝐷,∆𝐷)
with the same language as 𝑀2. Now, to complement 𝑀 ′

2 we just complement its final
condition, i.e., 𝑀2 = (𝑄𝐷, 𝐶𝐷, 𝐼𝐷,¬𝐹𝐷,∆𝐷). We define the function 𝑐𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡 that
takes an MCA and produces a DMCA as described above.

Example 5.1. Let 𝐷 = (𝑄,𝐶, 𝐼, 𝐹,∆) be the same DMCA as in Figure 5.1. We compute
the complement of 𝐷 by the method described above. Since 𝐷 is already deterministic, we
need to only make 𝐷 complete. Using the method given in Section 2.2.3 we obtain 𝐷′ =
(𝑄∪{𝑞𝑠𝑖𝑛𝑘}, 𝐶, 𝐼, 𝐹,∆′) where ∆′ : ∆∨𝑞𝑠𝑖𝑛𝑘−{⊤,⊤,⊤}→𝑞𝑠𝑖𝑛𝑘∨{𝑞 ↦→ 1, 𝑟 ↦→ 2}−{l̸=𝑎,𝑝1<1,⊤}→𝑞𝑠𝑖𝑛𝑘.
Then we complement the final formula of 𝐷′, which can be equivalently written as

¬𝐹 : s = {𝑞 ↦→ 1}∨
(︀
s = {𝑞 ↦→ 1, 𝑟 ↦→ 1}∧𝑝0 ̸= 1

)︀
∨s = {𝑞 ↦→ 1, 𝑟 ↦→ 2}∧

(︀
𝑝1 ̸= 1∨s = 𝑞𝑠𝑖𝑛𝑘

)︀
.

Algorithm 9 builds the product automaton 𝑀1×𝑀2 as follows. We are given MCAs 𝑀1

and 𝑀2 with distinct sets of states and counters. First, we complement 𝑀2 using the function
𝑐𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡 (Line 1). The product-states of the output automaton 𝑁 = (𝑄,𝐶, 𝐼, 𝐹,∆) are
pairs (𝑞,𝑅), where 𝑞 ∈ 𝑄1 and 𝑅 ∈ 𝑄𝐷, i.e., 𝑄 ⊆ 𝑄1 × 𝑄𝐷. The set of counters of 𝑁 is
𝐶 ⊆ 𝐶1 ∪𝐶𝐷 (some counter might not be needed if its corresponding state is not reachable,
see below the function 𝑔𝑟𝑜𝑢𝑛𝑑). The initial formula 𝐼 of 𝑁 labels pairs of states as initial if
both states are also initial in 𝑀1 and 𝑀2, respectively (Line 2). Formally, we transform
𝐼 = 𝐼1 ∧ 𝐼𝐷 into disjunctive normal formal such that each part of disjuncts of the form
s = 𝑞 ∧ s = 𝑅 is replaced by s = (𝑞,𝑅).1 The initial values of counters are then the
combinations of initial values of 𝑀1 and 𝑀2. This transformation is denoted by 𝑑𝑛𝑓 , so
𝐼 = 𝑑𝑛𝑓(𝐼1 ∧ 𝐼𝐷). On Line 3, we initialize the set 𝑄 and 𝑊𝑜𝑟𝑘𝑙𝑖𝑠𝑡 by the product-states
that appear in 𝐼. The rest of the product automaton is built by processing the states (𝑞,𝑅)
from 𝑊𝑜𝑟𝑘𝑙𝑖𝑠𝑡 and creating new states (𝑞′, 𝑅′) that originate by combining the target states
of outgoing transitions from 𝑞 and 𝑅. In detail, until 𝑊𝑜𝑟𝑘𝑙𝑖𝑠𝑡 is empty, we pick and remove
the product-state (𝑞,𝑅) from 𝑊𝑜𝑟𝑘𝑙𝑖𝑠𝑡 (Lines 4, 5). The outgoing transitions from (𝑞,𝑅)
are created by combing the label 𝛼1 and 𝛼2 of outgoing transitions from 𝑞 and 𝑅, respectively
(Line 6). The outgoing transitions are combined only if the conjunction of 𝑠𝑦𝑚(𝜙1) and
𝑠𝑦𝑚(𝜙2) is satisfiable (Line 9). If the state (𝑞′, 𝑅′) generated from (𝑞,𝑅) by the transition
with the label 𝛼1 ∧ 𝛼2 is new, then we add (𝑞′, 𝑅′) to both 𝑊𝑜𝑟𝑘𝑙𝑖𝑠𝑡 and 𝑄 (Lines 11, 12).
Moreover, we add (𝑞,𝑅)−{𝛼1∧𝛼2}→(𝑞′, 𝑅′) to ∆ (Line 13). The set of counters 𝐶 in 𝑁 consists
of used counters from 𝐶1 ∪ 𝐶𝐷. That is, we take 𝐶1 ∪ 𝐶𝐷 and remove all counters that do
not appear in any guards of 𝐼 and ∆ (Line 14), which is performed by the function 𝑔𝑟𝑜𝑢𝑛𝑑.
The final formula 𝐹 of 𝑁 is computed analogously as 𝐼 (Line 15), with the difference that
we need to remove from 𝐹 product-states that are not in 𝑄, which is the purpose of 𝑔𝑟𝑜𝑢𝑛𝑑
in this case.

1If we have 𝜙 := (s = 𝑞) ∧ 𝜓 ∧ (s = 𝑅), then we transform 𝜙 to (s = 𝑞) ∧ (s = 𝑅) ∧ 𝜓 by using the
commutative law. Similarly, if 𝜙 := (s = 𝑅)∧ 𝜓 ∧ (s = 𝑞) we can use the commutative law to get the correct
order of s = 𝑞 and s = 𝑅.
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Algorithm 9: Product automaton of an MCA and a DMCA
Input : MCAs 𝑀1 = (𝑄1, 𝐶1, 𝐼1, 𝐹1,∆1), 𝑀2 = (𝑄2, 𝐶2, 𝐼2, 𝐹2,∆2)

with 𝑄1 ∩𝑄2 = 𝐶1 ∩ 𝐶2 = ∅
Output : A CA 𝑁 = 𝑀1 ×𝑀2 such that ℒ(𝑁) = ℒ(𝑀1) ∩ ℒ(𝑀2)

1 (𝑄𝐷, 𝐶𝐷, 𝐼𝐷,¬𝐹𝐷,∆𝐷)← 𝑐𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡(𝑀2);
2 𝐼 ← 𝑑𝑛𝑓(𝐼1 ∧ 𝐼𝐷); ∆← ∅;
3 𝑄←𝑊𝑜𝑟𝑘𝑙𝑖𝑠𝑡← {(𝑞,𝑅) | s = (𝑞,𝑅) appears in 𝐼};
4 while 𝑊𝑜𝑟𝑘𝑙𝑖𝑠𝑡 ̸= ∅ do
5 pick and remove (𝑞,𝑅) from 𝑊𝑜𝑟𝑘𝑙𝑖𝑠𝑡;
6 foreach 𝜙1 = 𝑞−{𝛼1}→𝑞′ ∈ ∆1 and 𝜙2 = 𝑅−{𝛼2}→𝑅′ ∈ ∆𝐷 do
7 Let 𝜎1 = 𝑠𝑦𝑚(𝜙1);
8 Let 𝜎2 = 𝑠𝑦𝑚(𝜙2);
9 if 𝐼𝑠𝑆𝑎𝑡(𝜎1 ∧ 𝜎2) then

10 if (𝑞′, 𝑅′) /∈ 𝑄 then
11 𝑊𝑜𝑟𝑘𝑙𝑖𝑠𝑡←𝑊𝑜𝑟𝑘𝑙𝑖𝑠𝑡 ∪ {(𝑞′, 𝑅′)};
12 𝑄← 𝑄 ∪ {(𝑞′, 𝑅′)};
13 ∆← ∆ ∪ {(𝑞,𝑅)−{𝛼1∧𝛼2}→(𝑞′, 𝑅′)};
14 𝐶 ← 𝑔𝑟𝑜𝑢𝑛𝑑(𝐶1 ∪ 𝐶𝐷);
15 𝐹 ← 𝑔𝑟𝑜𝑢𝑛𝑑(𝑑𝑛𝑓(𝐹1 ∧ ¬𝐹𝐷));
16 return (𝑄,𝐶, 𝐼, 𝐹,∆);

We note that some pairs of states in the product automaton might not be reachable,
because we only combine transitions 𝜙1 ∈ ∆1 and 𝜙2 ∈ ∆𝐷 for which 𝑠𝑦𝑚(𝜙1) ∧ 𝑠𝑦𝑚(𝜙2)
is satisfiable and completely ignore the counter guards, which can cause that the transition
is unreachable—this is purpose of the next section.

Self-loops in the Product of an MCA and a DMCA

We already know how to accelerate the self-loops on the general states in MCAs and DMCAs.
Finally, we will take a look on how the self-loops in the product automaton of an MCA and
a DMCA can be accelerated. Suppose that 𝑀1,𝑀2 are normalized MCAs. Let (𝑞,𝑅) be
a product-state in 𝑀1×𝑀2. The state (𝑞,𝑅) has at least one self-loop iff 𝑞 has one self-loop
in 𝑀1 and 𝑅 has at least one self-loop in 𝑀2. Thus the number of self-loops in 𝑀1 ×𝑀2 is
equal to the number of self-loop in 𝑀2.

Let (𝑞,𝑅)−{𝛼1∧𝛼2}→(𝑞,𝑅) be a self-loop in 𝑀1 × 𝑀2 such that 𝑞−{𝛼1}→𝑞 and 𝑅−{𝛼2}→𝑅
are self-loops in 𝑀1 and 𝑀2, respectively. From the last section we know the acceleration
formulae 𝜙1 and 𝜙2 of the self-loops 𝑞−{𝛼1}→𝑞 and 𝑅−{𝛼2}→𝑅, respectively. Since the formula 𝛼1

updates different counters than 𝛼2, we can use the same approach as in the acceleration
of the self-loop on the general sphere in DMCAs. That is, the acceleration formula of
(𝑞,𝑅)−{𝛼1∧𝛼2}→(𝑞,𝑅) is conjunction of the partial acceleration formulae 𝜙1 and 𝜙2 while
enforcing that the bounded variables in 𝜙1 and 𝜙2 have the same value. Formally, let 𝑘1 be
a bounded variable in 𝜙1 and let 𝑘2 be any bounded variable in 𝜙2 (in general, 𝜙2 has several
bounded variable). The acceleration formula of (𝑞,𝑅)−{𝛼1∧𝛼2}→(𝑞,𝑅) is 𝜙1 ∧ 𝜙2 ∧ 𝑘1 = 𝑘2
(we assume that the variables 𝑘1 and 𝑘2 are bounded by the existential quantifier also in the
last conjunct).
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5.4 Language Inclusion Algorithm for MCAs
The main idea of the algorithm for testing language inclusion of MCAs has been already
developed. That is, we are given two MCAs 𝑀1,𝑀2 and the question whether ℒ(𝑀1) ⊆
ℒ(𝑀2). To answer this question we build the product automaton 𝑀1 ×𝑀2 and search
for a reachable final state with a satisfiable final condition. If a final reachable state is
found (with a satisfiable final condition), then it means that there is a string such that
𝑤 ∈ ℒ(𝑀1) and 𝑤 /∈ ℒ(𝑀2), i.e., ℒ(𝑀1) ̸⊆ ℒ(𝑀2). To compute the product automaton, we
use Algorithm 9. It remains to provide an algorithm for testing reachability of states—this
is the purpose of this section.

For a state 𝑞, the formula 𝛽𝑞 denotes the possible known values of counters if 𝑞 is
reached. For example, if 𝛽𝑞 = ∃𝑘 : (0 ≤ 𝑘 ≤ 5 ∧ 𝑐𝑞 = 𝑘), then the possible values of 𝑐𝑞
if 𝑞 is reached are represented by the set [𝛽𝑞] = {0, 1, 2, 3, 4, 5}. Let 𝜙 be a formula, and
let 𝐶 = {𝑐1, . . . , 𝑐𝑛} be the free variables in 𝜙. The projection of 𝜙 on 𝐶 is the formula
∃𝑐1, . . . ,∃𝑐𝑛 : 𝜙.

In Section 5.3, we describe how the self-loops on the states in the product automaton can
be accelerated. In fact, we give the acceleration formula that describes how the counters are
changed if the self-loop is executed any number of times. But how to obtain the new values
of counters? We present a more general technique. Let 𝜙 = (𝑞,𝑅)−{𝛼}→(𝑞′, 𝑅′) be a transition.
We describe how 𝛽(𝑞′,𝑅′) is updated if the transition 𝜙 is used. The formula 𝛽(𝑞,𝑅) denotes
the possible values of counters if (𝑞,𝑅) is reached. The formula 𝛼 describes for which
values of counters the transition is satisfiable, and if so then how the values are changed.
Thus the formula 𝛽(𝑞,𝑅) ∧ 𝛼 restricts the values of 𝛽(𝑞,𝑅) for which the transition with the
label 𝛼 is satisfiable and only these values the formula updates. In such a formula, there are
two types of counters: unprimed and primed (e.g., 𝑐 is unprimed and 𝑐′ is primed). The
unprimed counters denote old (or current) values, and the primed counters denote the new
(or future) values. To obtain the new values in terms of unprimed counters we proceed as
follows. First, we make the projection of 𝛽(𝑞,𝑅) ∧ 𝛼 on all unprimed counters used in the
formula and then we eliminate all existential quantifiers. Now in the unprimed counters
are new values. Second, we replace each primed counter by a corresponding unprimed
counter. Suppose that the resulting formula is 𝜓. Then the formula 𝛽(𝑞′,𝑅′) is updated by
setting 𝛽(𝑞′,𝑅′) := 𝛽(𝑞′,𝑅′) ∨ 𝜓, since we want to retain the previous known values of counters
if (𝑞′, 𝑅′) is reached. This process is demonstrated in Example 5.2. Moreover, we define
the function 𝑢𝑛𝑝𝑟𝑖𝑚𝑒 that takes a formula 𝜙 and replaces every primed counter in 𝜙 by
its corresponding unprimed counter. Thus we can write 𝑢𝑛𝑝𝑟𝑖𝑚𝑒(𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛(𝛽(𝑞,𝑅) ∧ 𝛼))
to denote the new values of 𝛽(𝑞′,𝑅′) if the outgoing transition (possibly self-loop) with the
label 𝛼 from (𝑞,𝑅) to (𝑞′, 𝑅′) is used (the projection is implicitly on all unprimed counters
in 𝛼).

Since we do not exclude the possibility of (𝑞,𝑅) = (𝑞′, 𝑅′), this process is also applicable
for updating the values of 𝛽(𝑞,𝑅) by using the self-loops on (𝑞,𝑅), but it is strongly inefficient
(see Example 5.2). We are interested in how the values of counters are changed after any
possible number of executions and not only by a single execution. Of course we can apply this
technique several times (we refer to this approach as trivial acceleration), but it is sufficient
to replace 𝛼 by its acceleration formula (the acceleration exactly describes what happens if
the self-loops are executed several times) and use the approach in the last paragraph.

Example 5.2. Let 𝑀1 be the the same MCA as in Figure 5.2 (b) with the initial state 𝑞
and the initial condition 𝐼 : s = 𝑞 ∧ 𝑐𝑞 = 0. For simplicity, suppose that 𝑀2 is a one-state
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MCA such that ℒ(𝑀2) = Σ*. Then the product automaton 𝑀1×𝑀2 has the same structure
as 𝑀1. Let 𝑛 = max𝑞, we demonstrate the process of updating values of 𝛽𝑞.

The initial formula gives 𝛽𝑞 = (𝑐𝑞 = 0). First, we use the trivial acceleration. We take
𝛽𝑞 ∧ (𝑐𝑞 < 𝑛 ∧ 𝑐′𝑞 = 𝑐𝑞 + 1) and apply projection on 𝑐𝑞 followed by the 𝑢𝑛𝑝𝑟𝑖𝑚𝑒 function.
The projection on 𝑐𝑞 results in the formula 𝑐′𝑞 = 1 and the application of 𝑢𝑛𝑝𝑟𝑖𝑚𝑒 gives
𝑐𝑞 = 1. The new value of 𝛽𝑞 is then 𝑐 = 0∨ 𝑐 = 1. In the next step, we proceed exactly as in
the previous step. We take 𝛽𝑞 ∧ (𝑐𝑞 < 𝑛 ∧ 𝑐′𝑞 = 𝑐𝑞 + 1) and apply projection on 𝑐𝑞 followed
by the 𝑢𝑛𝑝𝑟𝑖𝑚𝑒 function. The resulting formula is 𝑐𝑞 = 1 ∨ 𝑐𝑞 = 2. The new value of 𝛽𝑞 is
(𝑐𝑞 = 0 ∨ 𝑐𝑞 = 1 ∨ 𝑐2 = 2). We continue in a similar manner and after next 𝑛− 2 steps we
obtain 𝛽𝑞 = (𝑐 = 0 ∨ · · · ∨ 𝑐 = 𝑛). The next iteration of this approach does not change the
value of 𝛽𝑞.

As proposed above, if we replace the self-loop of 𝑞 by its acceleration formula and
apply the same approach, then we obtain the result after one iteration. That is, we take
𝛽𝑞 ∧ ∃𝑘 : (0 ≤ 𝑘 ≤ 𝑛 ∧ 𝑐′𝑞 = 𝑐 + 𝑘 ∧ 𝑐′𝑞 ≤ 𝑛) and apply projection on 𝑐𝑞 followed by the
𝑢𝑛𝑝𝑟𝑖𝑚𝑒 function. The resulting formula is (𝑐 = 0 ∨ · · · ∨ 𝑐 = 𝑛) and the new value of 𝛽𝑞 is
(𝑐 = 0 ∨ · · · ∨ 𝑐 = 𝑛). Using this approach we save 𝑛− 1 iterations (note that 𝑛 can be large
in practice).

Algorithm 10 searches for a reachable final state with a satisfiable final condition in
the product automaton 𝑀1 ×𝑀2. The algorithm is an application of breath-first search
on 𝑀1 ×𝑀2 where the starting points are the initial states. Thus we add all initial states
to the set 𝑊𝑜𝑟𝑘𝑙𝑖𝑠𝑡 (Line 1). Before the main while loop, we initialize the formula 𝛽(𝑞,𝑅)

for each product-state (𝑞,𝑅) (Line 2). If (𝑞,𝑅) is an initial state, i.e., (𝑞,𝑅) ∈ 𝑊𝑜𝑟𝑘𝑙𝑖𝑠𝑡,
then the possible values of counters in this state are given by the initial condition, this
extraction is done by the function 𝑖𝑛𝑖𝑡 (Lines 3, 4). For other states that are not initial, i.e.,
(𝑞,𝑅) /∈𝑊𝑜𝑟𝑘𝑙𝑖𝑠𝑡, the possible values are unknown, thus we set 𝛽𝑞 = ⊥ (Lines 5, 6).

Until 𝑊𝑜𝑟𝑘𝑙𝑖𝑠𝑡 is empty, we take a product-state (𝑞,𝑅) from 𝑊𝑜𝑟𝑘𝑙𝑖𝑠𝑡 (Lines 7, 8). The
formula 𝛽(𝑞,𝑅) can be immediately updated if (𝑞,𝑅) has self-loops. The function 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑒
updates 𝛽(𝑞,𝑅) according to the self-loops on (𝑞,𝑅) (Line 9). We show how 𝛽(𝑞,𝑅) is updated
if the state contains only one self-loop. But what happened if (𝑞,𝑅) has several self-loops?
Let 𝜙1, . . . , 𝜙𝑛 be self-loops on (𝑞,𝑅) in an arbitrary, but fixed, order. For each self-loop 𝜙𝑖
we know its acceleration formula 𝜓𝑖. Thus we also know how 𝛽(𝑞,𝑅) is updated. Suppose
that 𝜒𝑖 = 𝑢𝑛𝑝𝑟𝑖𝑚𝑒(𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛(𝜓𝑖 ∧ 𝛽(𝑞,𝑅))). If [𝜒𝑖] ⊆ [𝛽(𝑞,𝑅)], then we say that 𝛽(𝑞,𝑅) is
not updated. The function 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑒 works as follows: we update 𝛽(𝑞,𝑅) by processing the
acceleration formula of the self-loops 𝜓1, . . . , 𝜓𝑛 repeatedly until last 𝑛 acceleration formulae
do not update 𝛽(𝑞,𝑅). Intuitively, if 𝛽(𝑞,𝑅) is updated, then the new values can be again
changed by other self-loops (thus 𝛽(𝑞,𝑅) can be updated). But if 𝑛 consecutive acceleration
formulae of self-loops do not update 𝛽(𝑞,𝑅), then we know that any acceleration formula 𝜓𝑖
also does not update 𝛽(𝑞,𝑅) because it also does not update in previous precessing of 𝜓𝑖. We
note that 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑒 does not update the formula 𝛽(𝑞,𝑅) if (𝑞,𝑅) has no self-loop.

After accelerating self-loops on (𝑞,𝑅) and updating 𝛽(𝑞,𝑅), we check whether (𝑞,𝑅)
is a final state with a satisfiable final condition. If 𝐼𝑠𝑆𝑎𝑡(𝛽(𝑞,𝑅) ∧ 𝐹 ), then we return
FALSE (Lines 10, 11). Otherwise we continue; we process all satisfiable outgoing transitions
from (𝑞,𝑅) that are not self-loops (Lines 12, 13). If a transition is satisfiable, then we update
the formula of the target state 𝛽(𝑞′,𝑅′) as described above (Line 14). If [𝜓] ⊆ [𝛽(𝑞′,𝑅′)], then
we do not get any new information about the values of counters in (𝑞′, 𝑅′). So there is no
reason to add (𝑞′, 𝑅′) to 𝑊𝑜𝑟𝑘𝑙𝑖𝑠𝑡 because if some outgoing transition from (𝑞′, 𝑅′) was
unsatisfiable before, then it will be also now. Otherwise, we add (𝑞′, 𝑅′) to 𝑊𝑜𝑟𝑘𝑙𝑖𝑠𝑡 and
update the formula 𝛽(𝑞′,𝑅′) in order to reflect the new obtained information (Lines 16, 17).
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Algorithm 10: Reachability of final states
Input : The product automaton 𝑀1 ×𝑀2 = (𝑄,𝐶, 𝐼, 𝐹,∆)
Output : TRUE if and only if ℒ(𝑀1) ⊆ ℒ(𝑀2)

1 𝑊𝑜𝑟𝑘𝑙𝑖𝑠𝑡← {(𝑞,𝑅) | s = (𝑞,𝑅) appears in 𝐼};
2 foreach (𝑞,𝑅) ∈ 𝑄 do
3 if (𝑞,𝑅) ∈𝑊𝑜𝑟𝑘𝑙𝑖𝑠𝑡 then
4 𝛽(𝑞,𝑅) ← 𝑖𝑛𝑖𝑡(𝐼);
5 else
6 𝛽(𝑞,𝑅) ← ⊥;
7 while 𝑊𝑜𝑟𝑘𝑙𝑖𝑠𝑡 ̸= ∅ do
8 pick and remove (𝑞,𝑅) from 𝑊𝑜𝑟𝑘𝑙𝑖𝑠𝑡;
9 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑒(𝛽(𝑞,𝑅));

10 if 𝐼𝑠𝑆𝑎𝑡(𝛽(𝑞,𝑅) ∧ 𝐹 ) then
11 return FALSE ;
12 foreach (𝑞,𝑅)−{𝜙}→(𝑞′, 𝑅′) ∈ ∆ such that 𝑞 ̸= 𝑞′ or 𝑅 ̸= 𝑅′ do
13 if 𝐼𝑠𝑆𝑎𝑡(𝛽(𝑞,𝑅) ∧ 𝜙) then
14 𝜓 ← 𝑢𝑛𝑝𝑟𝑖𝑚𝑒(𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛(𝛽(𝑞,𝑅) ∧ 𝜙));
15 if [𝜓] ̸⊆ [𝛽(𝑞′,𝑅′)] then
16 𝑊𝑜𝑟𝑘𝑙𝑖𝑠𝑡←𝑊𝑜𝑟𝑘𝑙𝑖𝑠𝑡 ∪ {(𝑞′, 𝑅′)};
17 𝛽(𝑞′,𝑅′) ← 𝛽(𝑞′,𝑅′) ∨ 𝜓;
18 return TRUE ;

If 𝑊𝑜𝑟𝑘𝑙𝑖𝑠𝑡 is empty, then it means that there is no reachable final state in 𝑀1 ×𝑀2. Thus
we return TRUE (Line 18).

We note that states (𝑞,𝑅) can appear in 𝑊𝑜𝑟𝑘𝑙𝑖𝑠𝑡 more than once. But always the
semantics of the formula 𝛽(𝑞,𝑅) gets larger if the state (𝑞,𝑅) appears again in the 𝑊𝑜𝑟𝑘𝑙𝑖𝑠𝑡
(Line 17). Since the number of possible configurations of the product automaton is finite
(the product automaton is still an CA), the state (𝑞,𝑅) cannot be added to 𝑊𝑜𝑟𝑘𝑙𝑖𝑠𝑡 infinite
number of times. Therefore, the algorithm always terminates.

Finally, we point out that it is not necessary to build the whole product automaton and
after that search for a reachable final state with a satisfiable final condition. The purpose of
such a presentation was the simplification of our reasoning. In practice, we build the product
automaton on-the-fly and if we encounter a reachable final state (with a satisfiable final
condition), then we can stop. In this step, we have ℒ(𝑀1) ∩ ℒ(𝑀2) ̸= ∅, or, equivalently,
ℒ(𝑀1) ̸⊆ ℒ(𝑀2). Eventually, we stop if we build the whole product automaton and we do
not encounter on any final state (with a satisfiable final condition). In other words, we
combine Algorithms 9 and 10 together.
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Chapter 6

Experiments and Evaluation

In the previous chapter, we designed an algorithm solving the inclusion problem of MCAs.
We implemented this algorithm in C++ and used the Z3 SMT solver [4] for the manipulation
of formulae in our implementation (for more details see Section Implementation below). We
recall that our algorithm can be used in a new method for testing inclusion problem of
eREs—whether the language of the first eRE is included in the language of the second eRE.
For transforming eREs into MCAs and determinizing of MCAs, we use Microsoft’s Automata
library [3]. Then we apply our implementation of the algorithm solving the inclusion problem
of MCAs. In this chapter, we experimentally evaluate the performance of this method
(denoted as MCA in the following) and compare it with the naive method (denoted as
NFA), which is based on transforming eREs into NFAs (we used the implementation in
Augeas Automata library [1]).

Nevertheless, the syntax of eREs is formally restricted by our definition (see Section 4.1),
there is no problem transform any eREs appearing in practice into MCAs (all operators
that are not in our definition can be simulated by only those operators used only in our
definition) and still maintain the succinct representation. Since the implementation of the
determinization algorithm of MCAs in [3] does not work properly for all cases, we restricted
ourselves on the eREs where the counting is on the character class only in the forms 𝜎{𝑛}
or 𝜎{𝑛, }1. We note that our implementation should also work for the general case where
the counting is of the form 𝜎{𝑚,𝑛}.

For the experiments, we took a subset of 1014 eREs used in the experimental evaluation of
determinization algorithm in [14]—namely, those used in network intrusion detection systems
(Snort [20]: 260 eREs, Yang [24]: 102 eREs, Bro [22]: 403 eREs, HomeBrewed [9]: 36 eREs),
the Microsoft’s security leak scanning system (Industrial: 7 eREs), the Sagan log analysis
engine (Sagan [6]: 1 eRE), and the patter matching rules from RegExLib (RegExLib [5]: 205
eREs). We note that each eRE contains at least one counting operator. In the following,
this set of eREs is denoted by 𝑅 and the same set without the eREs from Bro is denoted
by 𝑅−𝐵𝑟𝑜.

In this chapter, we provide three experiments. In Section 6.1, we present an experiment
where we randomly choose two eREs from 𝑅 and check whether the language inclusion
between them holds. In the experiment in Section 6.2, we again randomly choose two eREs
but now we construct from them two other eREs in which the language inclusion holds.
In the experiment in Section 6.3, we will take a look on ”artificial“ pairs of eREs. These
pairs are created by us motivated from the theoretical point of view or from practice. All

1Formally, the expression 𝜎{𝑛, } is an abbreviation of 𝜎{𝑛}𝜎*.
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experiments were run on an Intel Core i7-7500U CPU@2.70GHz with 8GiB of RAM. Unless
stated otherwise, the timeout in the experiments is 60 seconds.

Implementation

We are not going deep into implementation details. We only summarize the main points
and identify the most inefficient part of our implementation. Overall, the implementation is
a straightfroward combination of Algorithms 9 and 10 (see the last paragraph of Section 5.4),
but instead of MCAs we used the so-called symbolic MCAs (see Example 2.4) with the
algebra BV16 (see Example 2.2).

Recall that we use the Z3 SMT solver [4] for any manipulation with formulae in our
implementation. For transforming input eREs to MCAs and determinization of MCAs
we use Microsoft’s Automata library [3]. Since Microsoft’s Automata library provides an
interface in .NET and our algorithm is implemented in C++, the automata generated by
the library must be passed to our implementation via text interface. In fact, we use the
DGML format for representing CAs [2]. For parsing DGML, we use PUGI XML [19] and the
particular lines from DGML files we parse manually since we need to extract information
such as names of counters or types of self-loops.

It is not efficient to save already constructed data structures to a file and from this file
create the same data structures in C++. Thus there is a huge potential to improve the
performance of our algorithm by integrating it into Microsoft’s Automata library. Moreover,
it is possible to modify the implementation of the determinization algorithm of MCAs in
Microsoft’s Automata library to determine the forms of self-loops already in the construction
of DMCAs. The second possibility to improve the performance of our algorithm is to use
the BDD16 algebra (see Example 2.1) instead of BV16. Furthermore, without an argument,
our implementation has many opportunities for optimization.

Unfortunately, we are not able to implement the acceleration formula of the form III
in Z3 using only linear integer logic. Thus if we encounter a self-loop containing a part of
the form III, then we need to use the trivial acceleration of such a self-loop. Although, in
practice (at least in our experiments), there are more self-loops of forms I and II than III,
we think that this also increases the performance of the implementation.

6.1 Random Pairs of Extended Regular Expressions
In the first experiment, we randomly chose 500 pairs (𝑟1, 𝑟2) of eREs from 𝑅. In general,
if a random pair is chosen, then the language inclusion of 𝑟1 and 𝑟2 does not hold, i.e.,
ℒ(𝑟1) ̸⊆ ℒ(𝑟2). In fact, there were only 2 pairs among the 500 pairs in which the language
inclusion holds. In Figure 6.1, we compare the running times of MCA and NFA on testing
inclusion of the 500 chosen pairs of eREs. In the experiment were 29 NFA cases and
20 MCA cases where the algorithms timeouted (13 cases is the overlap). All cases that
timeouted are plotted at the time 60 seconds.

Although MCA is less prone to explode than NFA, NFA outperforms MCA in every
case when NFA finishes. Figure 6.1 (b), which gives the times without including the time
needed to construct the automata, shows that the reason why NFA outperforms MCA is
not only because of combining C++ and .NET via text interface. It generally holds that
working with symbolic representation is slower than with explicit representation for easy
cases. On average, each eRE used in this experiment has 1.64 counting operators with
bound 111. The eREs with such a property are still not the hardest cases for us.
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Figure 6.1: In (a) is a comparison of running times of MCA and NFA solving the inclusion
problem of 500 random pairs of eREs. In (b) is the same comparison as in (a) where the
time for constructing automata is subtracted. The time is given in milliseconds and the
axes are logarithmic.

In Figure 6.1 (a), we also see that almost no experiment of MCA finishes within one
second. This feature is not only in this experiment, but appears also in the next experiments.
This is the cost of combining .NET and C++ via text interface.

6.2 Pairs of Extended Regular Expressions in which Inclu-
sion Holds

In the second experiment, we will take a look on pairs of eREs in which language inclusion
holds. Since it is tough to find two distinct eREs from 𝑅 in which language inclusion holds,
we created our own pairs of eREs. Again, all cases that timeouted are plotted at time 60
seconds.

Figure 6.2 compares the running time of MCA and NFA on testing the 589 pairs of
eREs of the form (𝑟, 𝑟) where 𝑟 is selected from 𝑅−𝐵𝑟𝑜. There is no big difference from the
experiment of the 500 random pairs of eREs from the preceding section. The most interesting
for us are the pairs that originate from Snort (see Section 6.3 for the structure of such eREs),
because NFA timeouted in 28 cases and MCA only in 9 cases (the overlap is 4 cases). In
all other pairs (different from Snort) NFA never timeouts but MCA timeouted in the next
13 cases (overall, MCA timeouted in 22 cases). Also in this experiments NFA outperforms
MCA for all cases when NFA finished. One of the reason why NFA is faster is that the
eREs are still relative easy—on average, each eRE from 𝑅 contains 1.62 counting operators
with the bound 112. Moreover, the product automaton constructed in NFA has 207 states
on average (and it has 20 states on average in MCA).

In Figure 6.3, we compare the running times of MCA and NFA on testing inclusion
of the 289 pairs of eREs where the second eRE from the pairs differs from the first eRE
by the addition of the suffix .*. In other words, we testing the inclusion of the pairs (𝑟, 𝑟.*)
where 𝑟 is randomly chosen from 𝑅. The addition does not significantly change the result of
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Figure 6.2: In (a) is a comparison of running times of MCA and NFA solving the
inclusion problem of 589 (𝑟, 𝑟) pairs of eREs where 𝑟 is chosen from 𝑅−𝐵𝑟𝑜. In (b) is the
same comparison as in (a) where the time for constructing automata is subtracted. The
time is given in milliseconds and the axes are logarithmic.

the graph, but it changed the number of timeouts. In particular, there were 10 NFA cases
and 30 MCA cases where the algorithms timeouted (5 cases is the overlap.).

6.3 Artificial Pairs of Extended Regular Expressions
In this section, we consider ”artificial“ eREs, which were created by us motived from the
theoretical point of view or from the interesting eREs from the preceding sections. Namely, we
examined pairs of eREs that originate from the following four pairs (𝑟1, 𝑟2), (𝑠1, 𝑠2), (𝑡1, 𝑡2),
and (𝑝1, 𝑝2) of eREs by varying k over N+:

𝑟1 = .*a.{k} 𝑟2 = .*a.{k-1,},
𝑠1 = a{k} 𝑠2 = a{k-1,},
𝑡1 = .*[aA][^\x0a]{k} 𝑡2 = .*[aA][^\x0a]{k-1,},
𝑝1 = .*[aA][bB][cC][dD][^\x0a]{k} 𝑝2 = .*[aA][bB][cC][dD][^\x0a]{k-1,}.

For each pair (𝑟, 𝑟′) ∈ {(𝑟1, 𝑟2), (𝑠1, 𝑠2), (𝑡1, 𝑡2), (𝑝1, 𝑝2)}, we test ℒ(𝑟) ⊆ ℒ(𝑟′) for various
value of k by using the algorithms MCA and NFA (note that the inclusion in the pair (𝑟, 𝑟′)
holds for any positive k). Moreover, we justify the selection of such a pair. The timeout
is 120 seconds except in the experiment with the pair (𝑠1, 𝑠2) where the timeout is still 60
seconds as in the preceding sections.

(I) .*a.{k} and .*a.{k-1,}

Consider the first pair of eREs (𝑟1, 𝑟2). The eRE 𝑟1 is a well-known example where the
smallest equivalent DFA has 2k+1 states and the smallest equivalent DMCA has k + 2
states. Note that the smallest DFA and DMCA equivalent to 𝑟2 have 2k and k + 1 states,
respectively. Although the size of DFAs grow exponentially with k, the experiment shows
that NFA outperform MCA for any k. In particular, the timeout in MCA already expired
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Figure 6.3: In (a) is a comparison of running times of MCA and NFA solving the inclusion
problem of 289 pairs

(︀
𝑟, 𝑟.*

)︀
of eREs where 𝑟 is randomly chosen from 𝑅. In (b) is the

same comparison as in (a) where the time for constructing automata is subtracted. The
time is given in milliseconds and the axes are logarithmic.

when k = 5 and in NFA when k = 15 (due to the small value of k we do not plot the graph
in this experiment).

Each state (except the initial) in the DMCA equivalent to 𝑟2 that is generated by the
determinization algorithm (see Section 5.1) has two self-loops of the form II and III. Since
we are not able to implement the acceleration formula of type III, the underlying formulae
are too large. We suppose that implementation of the acceleration formula of type III helps
to increase the performance of our implementation in this experiment.

(II) a{k} and a{k-1,}

The second pair (𝑠1, 𝑠2) is interesting because the running time of MCA is constant
regardless of the value k (we were only limited by the range of the integer in Z3, that is
231 − 1) as shown in Figure 6.4 where we limit the value of k by 50000. Note that NFA is
better for all cases when k is less than 5000. The constant running time of MCA is given
by the fact that the MCA for 𝑠1 and the DMCA for 𝑠2 have a constant number of states (in
particular 2 and 3, respectively). Thus the formulae in the product automaton have the
same structure and differ only by the value of k.

(III) .*[aA][^\x0a]{k} and .*[aA][^\x0a]{k-1,}
(IV) .*[aA][bB][cC][dD][^\x0a]{k} and .*[aA][bB][cC][dD][^\x0a]{k-1,}

The fourth pair (𝑝1, 𝑝2) is a representation of eREs from Snort where MCA significantly
outperforms NFA in the experiments in Section 6.2. The general format is the following:
eRE starts with .*, followed by a sequence of symbols or character classes without counting,
and finished by a character class with counting [^\x0a]{k}. The biggest value of k found
was 1024. One real example from Snort is the eRE

.*[pP][aA][sS][sS] [^\x0a]{100}.
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Figure 6.4: The running times of MCA and NFA solving the inclusion problem of a{k}
and a{k-1,} where k starts from 100 and is incremented by 100 until the algorithm timeouts
or k is equal to 50000. The vertical axis is logarithmic.

The third pair (𝑡1, 𝑡2) is a special case of this general format.
In Figure 6.5 is plotted how running times of MCA and NFA depends on k in solving the

inclusion problem of 𝑡1 and 𝑡2. We see that NFA timeouts for k = 5 while MCA timeouts
for k = 1199. In Figure 6.6 is plotted how running times of MCA and NFA depends
on k in solving the inclusion problem of 𝑝1 and 𝑝2. Now NFA timeouts for k = 27 and
MCA timeouts for k = 563. Note that the value of k when NFA timetous increases but the
value decreases when MCA timeouts. By observation this trend continues—the difference
of performance between MCA and NFA decreases if the number of symbols between .*

and [^\x0a]{k} are growing.
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Figure 6.5: The running times of MCA and NFA solving the inclusion problem of
.*[aA][^\x0a]{k} and .*[aA][^\x0a]{k-1,} where k starts from 1 and is incremented
by 2 until the algorithm timeouts. The vertical axis is logarithmic.
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Figure 6.6: The running times of MCA and NFA solving the inclusion problem of
.*[aA][bB][cC][dD][^\x0a]{k} and .*[aA][bB][cC][dD][^\x0a]{k-1,} where k starts
from 1 and is incremented by 2 until the algorithm timeouts. The vertical axis is logarithmic.
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Chapter 7

Conclusion

In this thesis, we efficiently solved the emptiness and inclusion problems of MCAs by
imitating the solution to the inclusion problem of NFAs. To be able to imitate such
a solution we had to find answers to the following: how to complement an MCA, how to
construct the product automaton of an MCA and the complement of an MCA, and how to
determine unreachable states in the product automaton. We also develop an intuition about
why the emptiness and inclusion problems of general CAs require transformation to the
NFAs. Moreover, we extended the class of MCAs to two larger subclasses of CAs. As we
provided in examples, these subclasses are capable of representing more complex extended
regular expression—we are not limited only to the counting on character classes, but for
example, we can have counting on sequences of symbols. For these two subclasses of CAs,
we gave an efficient solution to the emptiness problem.

We combined our implementation of the algorithm solving the inclusion problem of MCAs
with the existing implementation of transforming eREs into MCAs and determinization of
MCAs provided in Microsoft’s Automata library [3]. This combination gives a new method
for testing inclusion of eREs. We experimentally evaluated such a method on eREs from
a wide range of applications and compared it with the naive method, which is based on
transforming eREs into NFAs. Despite our implementation of the inclusion problem of
MCAs is not optimized and we are not able to implement one acceleration formula of the
self-loops in the determinized MCAs using only linear integer logic in the Z3 SMT solver [4],
the experiments show that the method based on MCAs is less prone to explode. This holds
especially, if the MCAs arise from the eREs that are used in the Snort [20] network intrusion
detection system. Moreover, the method based of MCAs significantly outperforms the naive
method in eREs where the counting operators have large bounds. On other hand, in the
easy cases from practice (where the eREs have 1.6 counting operators with the bound 110
on average), the naive method is faster because it uses explicit representation.

Besides the designed algorithms and subclasses of CAs, we thoroughly investigated the
structure of determinized MCAs that are the result of the application of determinization
algorithm of MCAs in [14, Section 4.2]. This knowledge was used to accelerate the solution
of the inclusion problem of MCAs, but the same approach can be used in minimization
of determinized MCAs (for the purpose of removing unreachable states). Moreover, we
think that the existing determinization algorithm of MCAs can be modified to generate only
reachable states by using a similar method that we use in the acceleration of the inclusion
problem.

Although we found all acceleration formulae of the self-loops in determinized MCAs,
we were not able to implement one acceleration formula in the Z3 SMT Solver using only
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linear integer logic. We hope that the existence of such an implementation increases the
performance of our implementation of the inclusion problem of MCAs. It would be great
to try a more efficient algebra for the representation of symbol guards in (determinized)
MCAs than the algebra used in our implementation since the used algebra is not the most
efficient one. We also believe that the approach in the language inclusion of MCAs can be
also applicable to a larger class than MCAs. Moreover, we see an opportunity to integrate
our algorithm inside to Microsoft’s Automata Library, which already provides an algorithm
for determinizing MCAs.

Last but not least, there exist several solutions for the inclusion problem of NFAs. The
simplest one (but not the most efficient) is based on the subset construction. The more
complex approaches to solve the inclusion problem of NFAs use simulation (see Section 3.3)
or antichains (when simulation is the identity relation in Section 3.3). The simulation or
antichains are then used to prune out the unnecessary search path in searching for a final
state. Our solution to the inclusion problem of MCAs can be categorized as the solution
based on the subset construction. We see here a possibility to extend our solution to use
the antichains approach since it does not need to have a special algorithm for computing
simulation on MCAs.
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