BRNO UNIVERSITY OF TECHNOLOGY

VYSOKE UCENIi TECHNICKE V BRNE

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMACNICH TECHNOLOGII

DEPARTMENT OF COMPUTER SYSTEMS
USTAV POCITACOVYCH SYSTEMU

DDOS MITIGATION CONFIGURATION TOOL

NASTROJ PRO KONFIGURACI POTLACENi DDOS UTOKU

BACHELOR'’S THESIS
BAKALARSKA PRACE

AUTHOR DALIBOR BENES
AUTOR PRACE
SUPERVISOR Ing. LUKAS SISMIS

VEDOUCI PRACE

BRNO 2022

Brno University of Technology
Faculty of Information Technology

Department of Computer Systems (DCSY) Academic year 2021/2022

Bachelor's Thesis Specification |||||\”L|M|i|!|||\|||\|

Student: Benes Dalibor

Programme: Information Technology

Title: DDoS Mitigation Configuration Tool
Category: Networking

Assignment:

1. Study techniques and approaches of Distributed Denial of Service (DDoS) attacks. Learn
and understand an application developed by CESNET that serves to protect hosts against
this type of attacks.

2. Explore currently available configuration possibilities that the application offers with
a specialized set of rules.

3. Design and propose a user interface and a tool that allows to configure the application and
obtain statistical information that describes the process of blocking the attacks.

4. Implement the proposed tool and evaluate its functionality.

5. Discuss the achieved results and further possibilities of the work.

Recommended literature:
¢ According to the instructions provided by the supervisor.
Requirements for the first semester:
e Completion of items 1 to 3.
Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/

Supervisor: Simi Lukas, Ing.

Consultant: Hutak Lukas, CESNET

Head of Department: ~ Sekanina Lukas, prof. Ing., Ph.D.
Beginning of work: November 1, 2021

Submission deadline: May 11, 2022

Approval date: October 29, 2021

Bachelor's Thesis Specification/24817/2021/xbenes56 Page 1/1

Abstract

Distributed Denial of Service (DDoS) attacks are a common security concern for computer
networks and the services using them. One of the forms of defence is to use the DCPro
DDoS Protector device developed by the CESNET association. The DDoS Protector ac-
tively mitigates ongoing attacks aimed at the protected network. The mitigation device
is configurable using so-called mitigation rules. The goal of this work was to design and
implement a command-line configuration tool for the DDoS Protector. A part of this work
involved the creation of a reusable configuration API in Python. The configuration tool
was implemented in Python using the API. It has been tested and successfully deployed as
a part of the DCPro DDoS Protector package.

Abstrakt

Utoky odepieni sluzby (DDoS) jsou v soucasné dobé astym bezpeénostnim rizikem pro
pocitacové sité a sluzby, které je vyuzivaji. Jednou z moznych forem ochrany je vyuziti za-
tizeni pro potlaceni DDoS itoki DCPro DDoS Protector vyvijeného sdruzenim CESNET.
Zazizeni DDoS Protector aktivné potlacuje probihajici utoky, které cili na chranénou sit.
Zarizeni je mozné konfigurovat pomoci takzvanych mitigaénich pravidel. Cilem prace bylo
navrhnout a implementovat konfiguracni nastroj pro zafizeni DDoS Protector s uzivatel-
skym rozhranim na pifkazové fadce. Cést prace zahrnovala vytvoreni znovupouzitelného
databdzového API v jazyce Python. Konfigura¢ni néstroj byl pomoci vyse zminéného API
implementovan v jazyce Python. Nastroj byl otestovan a nésledné tspésné nasazen jako
soucast balicku DCPro DDoS Protector.

Keywords

DoS, DDoS, DCPro Protector, DDoS Protector, DCPro DDoS Protector, CESNET, con-
figuration tool, Python, API design

Klicova slova

DoS, DDoS, DCPro Protector, DDoS Protector, DCPro DDOS Protector, CESNET, kon-
figuracni nastroj, Python, ndvrh API

Reference

BENES, Dalibor. DDoS Mitigation Configuration Tool. Brno, 2022. Bachelor’s thesis.
Brno University of Technology, Faculty of Information Technology. Supervisor Ing. Lukas
SiSmis

Rozsireny abstrakt

Mezi nezbytné soucasti navrhu a nasazeni informacnich systémii patii feseni prob-
lematiky bezpecnosti. S rozsitenim aplikaci a systémi, které spoléhaji na pfenos dat po siti
se tato otazka stava o to vice dilezitou. Z hlediska bezpecnosti existuje snaha, aby vyvijeny
systém splnoval tii zdkladni kritéria, kterymi jsou integrita, divérnost a dostupnost. Ne-
jvétsi nebezpedi pro zajisténi stalé dostupnosti v soucanosti predstavuji itoky vyuzivajici
odepreni sluzby (DoS) a distribuované odepfeni sluzby (DDoS). Cilem téchto ttoku byva
zahlceni cilového stroje nebo linky tak, aby se poskytovana sluzba stala ¢astecné nebo zcela
nedostupnou pro legitimni uzivatele. Tento druh utoku muze byt obzvlist nebezpecny,
pokud cili na integralni sluzby, jako jsou napriklad uzly paterni sité, nebo portaly a datova
ulozisté statnich instituci.

Jednou z moznych forem ochrany je potlaceni probihajiciho ttoku v redlném case. Tento
pristup je oproti ostatnim zplisobiim naro¢ny na zdroje, ovSem piinasi moznost pouziti
pokrocilych technik pro detekci a zachyt podezielého provozu. Tato prace se tzce tyka
zatizeni pro potlaceni DDoS tdtoktt DCPro DDoS Protector vyvijeného sdruzenim CESNET
v ramci projektu Ministerstva Vnitra Ceské Republiky V120192022137 a na néj navazujiciho
VB01000015.

Predmétem prace byly navrh a implementace konfigura¢niho néstroje pro zarizeni DCPro
DDoS Protector s rozhranim na prikazové fadce. Konfiguracni nastroj poskytuje uzivateli
pohodlny zpusob pro manipulaci s databazi, ze které zarizeni DCPro DDoS Protector za
béhu nacita svou konfiguraci ve formé takzvanych mitigacnich pravidel. Nastroj neumoznuje
pouze zménu nastaveni zarizeni, ale také zobrazovani statistik sbiranych zarizenim DDoS
Protector, které jsou ukladany do téze databéze jako konfigurace.

Realizace se sklada ze dvou ¢asti, znazornénych v Obrazku 1. Prvni z nich je znovupouzi-
telné aplika¢ni rozhrani (API) nad databdazi, kterd obsahuje konfiguraci a statistiky zarizeni
DCPro DDoS Protector. API je implementované v programovacim jazyce Python 3, ktery
byl vybran zejména pro co nejrychlejsi vyvoj. Databazové API poskytuje funkce, pomoci
kterych lze vytvaret, upravovat ¢i nacitat mitigacéni pravidla z databaze. Podobné také
zjednodusuje nacitani statistik, které jsou periodicky sbirdny zatfizenim DDoS Protector.
API usnadnilo vyvoj konfiguracniho néstroje a nadale umoznuje tvorbu dalsich aplikaci,
které ho mohou vyuzivat pro komunikaci s databazi.

Podeziely
provoz Statistiky P Databazové| _[Konfiguraéni
DCPro DDoS > PostgreSQL AP| sstroj
X <« < Databaze nastros
Protector | Konfigurace
Nelegitimni Uzivatel

Legitimni

provoz
provoz

Chranéna
sit’

Obrazek 1: Zapojeni konfigura¢niho néstroje v ramci zatizeni DCPro DDoS Protector.

Druhou c¢asti je samotny konfigura¢ni nastroj, ktery je postaven nad vyse zminénym
API. Diky tomu je konfigura¢ni néstroj taktéz implementovan v programovacim jazyce
Python. N&avrh néstroje se zaméril predevsim na rozsiritelnost o podporu novych typt
pravidel a piivétivé uzivatelské rozhrani. Nastroj uzivateli umoznuje provadét zakladni
operace s pravidly a jednoduché zobrazovani statistik, které byly nasbirany za poslednich
pét minut.

Konfigurac¢ni nastroj je také pripraven k pouziti ve skriptech a v ramci integrace s ostat-
nimi nastroji, které jsou vyvijené v ramci projektu DCPro DDoS Protector. Integrace
je predevsim ulehCena moznosti vypisu dat ve formdtu JSON namisto tabulky, kterd je
sice lépe Citelnd pro uzivatele, ale hure zpracovatelna programem. Dalsi funkce nastroje
vyuzitelnd pro skriptovani je takzvany transakcéni mdd. Ten umoznuje nacitat jednotlivé
prikazy ze standardniho vstupu, a tedy i ze souboru. Prikazy jsou nasledné provedeny
v rdmci jediné databazové transakce.

Konfigurac¢ni néstroj byl spolu s databdzovym API fadné otestovan, a to jak z hlediska
funkcionality, tak i uzivatelské privétivosti. Nastroj je ispésné nasazen jako soucast balicku
DCPro DDoS Protector, a v soucasnosti je vyuzivan napiiklad sdruzenim NIX.CZ, které
zajistuje jeden z paternich sitovych uzli v CR. Pfesto prace na dalsim rozvoji konfigura¢niho
néastroje neustava. Pristim planovanym krokem vyvoje je naptriklad pfidani podpory pro
konfiguraci vice instanci zafizeni DCPro DDoS Protector z jediné centralni databaze, za
pomoci shlukovani mitiga¢nich pravidel do skupin.

DDoS Mitigation Configuration Tool

Declaration

I hereby declare that this Bachelor’s thesis was prepared as an original work by the author
under the supervision of Ing. Luka$ Sismis. The supplementary information was provided
by Ing. Lukas Hutak. I have listed all the literary sources, publications and other sources,
which were used during the preparation of this thesis.

Dalibor Benes
May 11, 2022

Acknowledgements

I would like to express my gratitude to my supervisor Ing. Lukds Sismis for his enthusiastic
support and great patience. Many thanks go to the people who introduced me to CESNET’s
security research projects, namely Ing. Jan Kucera and Ing. Lukds Hutdk. I must also thank
my family for the emotional support, without which I would not be able to complete this
project.

Contents

1 Introduction
2 DCPro DDoS Protector
2.1 DDoS Attacks
2.2 Internal structureo
2.3 Mitigation Rules L
2.4 Statistics e,
3 Database API
3.1 Motivation e e e
3.2 Designo e
3.3 Implementation L L L
4 Configuration Tool Design
4.1 Current Status s
4.2 Specifications Lo
4.3 User Interface and Arguments L oL
5 Configuration Tool Implementation
5.1 Development Process e
5.2 Command Line Interface
5.3 Internal Structure
5.4 Argument Autocompletion
5.5 Installation
6 Conclusion
Bibliography

A Contents of the included storage media

B Configuration Tool Interface

B.1 Commands with Examples
B.2 Rule Type Specific Arguments

31
31
31
33

39
39
40
41
50
50

52

53

56

Chapter 1

Introduction

Ever since the birth and widespread expansion of the Internet, there have been attempts
to misuse the technology with malicious intent. Computer systems are being used by most
private companies and public institutions to store and process information and data. While
the connection of these systems to the outside world has been enormously beneficial for the
users, it also leaves them open to attack. The most devastating type of attack, which
involves the theft of sensitive information or outright taking of control of the system, is
rare, as it can only be done against systems with very poor security measures. Today,
DDoS or Distributed Denial of Service is a much more common kind of attack. A Denial of
Service attack does not target the internal structure of an Internet based system or service.
Instead, it tries to sever the connection the system has with the outside world, making
it impossible for the external users to access it. Although the aims of such attacks vary
greatly, the techniques are mostly identical. What makes them possible is the fact that any
computer system has its technical limits which can be overwhelmed, such as the number of
requests it can serve in a reasonable amount of time. Therefore, such an attack traditionally
involves flooding the victim with requests. Distributed attacks are more difficult to defend
against, as they use a large number of devices to launch an attack. This makes it more
difficult to identify the source of the attack, and to separate the legitimate user from the
attacker.

This thesis is concerned with active mitigation of an incoming DDoS attack with the use
of the DCPro DDoS Protector mitigation device described in Chapter 2, which is developed
as a project of the Czech operator of the national electronic infrastructure CESNET. Unlike
other, slightly more passive forms of defence, active mitigation involves real-time analysis
of incoming network traffic in search of suspicious patterns, which may indicate an ongoing
DDoS attack. The DDoS Protector can be dynamically configured at runtime, using so-
called mitigation rules. These rules contain the configuration for the various mitigation
modules, each of which is specifically designed to counter a single type of DDoS attack.
Currently, it is possible for the mitigation device to load those rules from a PostgreSQL
database that stores them. The database also collects statistical data produced by the
DDoS Protector.

The aim of this thesis is to provide a way for the administrator to configure the DDoS
Protector through the database. As of now, there is no application that would allow
comfortable access to the configuration data. A configuration tool with a simple command-
line interface was proposed to solve this problem. Chapter 3 details the creation of an API
for access to the configuration database, followed by Chapters 4 and 5, which describe the
design and implementation of the configuration tool, respectively.

Chapter 2

DCPro DDoS Protector

DCPro DDoS Protector is a software device developed by CESNET', with the goal of
protecting a network from external DDoS attacks [4]. It can filter incoming traffic with
bandwidth of up to 100 Gbps. The device was designed primarily to counter amplification
attacks. However, since SYN flood attacks comprise the majority of today’s DDoS attacks,
the device also implements the corresponding mitigation methods, as detailed in [9].

While the previous iteration of the DDoS Protector utilised hardware acceleration using
a programmable FPGA? board (more information in [19]), the current version uses common
network cards. For performance reasons, it is inefficient for the DDoS Protector to access
the network cards through the operating system, like any ordinary network application
would do. Instead, the DPDK framework® is used. In this way, the processing power of
the network card can be fully utilised without any delays caused by the overhead of the
different layers between the card and the application.

The work on the current version is still ongoing. Although the aim of the project is
not likely to change, it is important to take into account the possibility of changes to
already existing components. Therefore, one of the crucial tasks of designing supporting
applications is to ensure ease of expansion or modification.

Figure 2.1 illustrates the way the mitigation device protects a network. The router
which acts as the access point to the protected network redirects unverified traffic to the
DDoS Protector. If the traffic is safe, it is redirected back to the router and then to the
network. In the opposite case, the packets are dumped by the DDoS Protector and do not
enter the network.

2.1 DDoS Attacks

Denial of service (DoS), in the context of computer networks, has various definitions and
many dimensions. An example of a straightforward definition would be the one provided
by the International Telecommunications Union (ITU-I) recommendation X.800: [13]

denial of service: "The prevention of authorized access to resources or the delaying of
time-critical operations.’

"https://www.cesnet.cz
2Field-programmable gate array
3https://www.dpdk.org

https://www.cesnet.cz
https://www.dpdk.org

Mitigation
Rule
Database

Configuration of

Suspicious mitigation modules
traffic
Dangerous
Router 7 DDoS tr—afﬂc)x
Protector
Secqre Secure
traffic traffic Statistics collected
inside a mitigation

window

Protected
network

Mitigation

Statistics
Database

Figure 2.1: Schema of the link DDoS Protector has with the rest of the network.

The actions that cause DoS can be malicious or accidental and may originate remotely
or locally, from the user or the server. The damage is caused by some form of resource
exhaustion at the target point, which has a negative effect on the availability of the provided
service. Such events pose a serious threat to security and dependability of integral services
(e.g. search engines).

DoS Attacks are any of these actions that are carried out with malicious intent. The
motivation for such attacks is not universal, and there is not even a single dominant factor.
[24] describes DoS attacks and the possible ways to defend against them in general.

Distributed Denial of Service (DDoS) attacks are a subgroup of DoS attacks. The
only difference is that they are launched using a large number of hosts. Most often, these
hosts are remotely controlled computers that are used without the knowledge of their own-
ers. Such computers are also called bots, as they only launch the attack when a command
is issued by a master entity, called a botnet. The distributed nature of botnets makes it
difficult to separate legitimate users from attackers.

[11] lists at least three basic categories of botnets, which include the Agent-handler
architecture, IRC-based architecture [31] and Peer-to-peer based architecture.

DDoS attacks target and abuse different resources at various layers of the TCP/IP
stack, which are listed in [32]. The targets, as shown in Figure 2.2, include networks and the
implementation of the various protocols, the operating systems and the data structures and
algorithms they use, and also the network-based applications. The TCP Internet protocol

Networks and network) Network based
protocols (TCP, IP, ...) Operating systems applications

.S a0 [

4

Figure 2.2: Targets of DDoS attacks

contains a number of vulnerabilities that are abused. Similarly, the HT'TP network protocol
uses XML structures to transport messages. XML can be exploited for an attack through
coercive XML parsing, oversize XML payload, and others described in [17] and [3].

There are multiple types of DDoS attacks, which come in two categories. The first are
semantic attacks, which exploit specific flaws in the implementation of certain protocols.
The resources required for carrying out such an attack are asymmetrical to the resources of
the victim, as the attacker may use a relatively weaker machine. An example of a semantic
attack is the land attack [28], which makes the victim machine communicate with itself
in an endless loop using a modified TCP SYN packet, until it runs out of resources to
allocate new connections. The other type of DDoS attack is high-rate flooding, also called
brute-force. High-rate flooding attacks consume a victim’s critical resource to deny the
legitimate user access to the provided service. These attacks require substantial resources
to be successful. Therefore, they are futher divided based on the technique they use to
gather more computing power.

Unlike semantic attacks, which can be stopped by fixing the flaws in the design and
implementation of certain protocols and network applications, the massive amount of re-
sources required for a successful execution of a flooding attack makes them much easier
to detect. As a result, the DCPro DDoS Protector can provide an effective active defence
against them. As stated in [15], the greatest problem lies in separating malicious traffic
from the legitimate one. The other ways to prevent or mitigate DDoS attacks are described
in [7]. They include making it harder for a host to become a part of a botnet, actively dis-
rupting the creation of a botnet, or providing the service with an abundance of resources, so
that the number of bots required for a successful attack becomes untenable. These actions
can be very effective in stopping small to mid-range DDoS attacks [23]. Even though DDoS
attacks are considered to be a form of crime, using legal methods for deterrence has been
proven mostly ineffective [12]. The methods for the mitigation of attacks implemented by
the various DDoS Protector modules are discussed in Section 2.3.

2.2 Internal structure

The main corpus of the DDoS Protector code is written in C. One distinguishing feature
is the implementation of the dependency injection technique. This means that the code
is composed of modules which offer an interface and multiple possible implementations
of the interface. For example, collecting statistics can be done either by exporting the
data to a database or by writing them into a simple file. This is done by using different
implementations of the same interface to export the data. Configuration is done through

a YAML structured file, where the user can specify which implementations of different
modules are to be used. This effectively makes the entire application modular and easily
expandable. Additionally, the implementations of different modules can be swapped during
runtime.

The core of the device is a packet processing pipeline. The device continuously receives
packets from a router that acts as a gateway to the protected network. These are first
disassembled, then analysed, and finally either passed back to the router or dumped. The
goal is to identify packets that show signs of an ongoing DDoS attack aimed at the protected
network and mitigate the threat. There are several modules that implement mitigation
methods, which correspond to specific types of DDoS attacks. These methods are configured
by mitigation rules, which provide crucial user-given data (filtering thresholds, etc.).

For performance reasons, the device can run multiple pipelines in parallel. Because some
rules depend on past collected data, there has to be a way to transfer these data to all the
pipelines. This is done using mitigation windows. A mitigation window is a time interval
during which the mitigation data are collected. The device operates with two alternating
mitigation windows. One is actively mitigating incoming attacks, while the other collects
and aggregates values from different counters across all the parallel pipelines. Every time
the windows switch status, all pipelines receive the same aggregated data. This approach
is also useful for the periodic transmission of statistical data. Figure 2.3 explains how the
two mitigation windows work and also what their role is in the internal structure of the
DCPro DDoS Protector.

2.3 Mitigation Rules

As mentioned in Section 2.2, the various mitigation modules are configured using mitigation
rules. A mitigation rule is internally a data structure that contains multiple fields with
configuration data. Every rule has a type corresponding to a specific mitigation method.
The rule type also specifies the data fields or attributes of the rule. Individual rule types
are described in [22]. The fields may contain threshold values, subnet IP addresses etc.
specified by the user. The user can create or modify rules based on observations of past
behaviour. However, Machine Learning techniques can be applied to effectively devise new
rules. This is described in detail in [14] and [8].

Mitigation rules have a common set of attributes. These include source and destination
ports and IP addresses the rule affects, the VLAN identifier, etc. Then there are type-
specific attributes, e.g. filter rules have a byte and packet threshold. A special attribute
is the priority of a rule. Rules of a certain type are all processed at the same time by the
respective mitigation module in a given order. More general rules should be given priority,
as they are more likely to cause the whole packet to be dumped, and therefore cut the time
spent processing it.

2.3.1 Rule Structure

As mentioned above, every mitigation rule is a data structure. The fields of the data
structure contain the specific configuration for the mitigation module. Each rule has a type,
which corresponds to a single DDoS Protector mitigation module it configures. The rule
types vary in some fields, which are used to mitigate an attack of a certain kind. Therefore,
there is a direct relationship between the types of attack, mitigation modules and the rules
used to configure them. As shown in Figure 2.4, a certain type of attack, SYN flood in

Mitigation module

~

Active mitigation window Filtered traffic

Analysed mitigation window

/Aggregated
Qounter values

Statistics

Statistics storage
(database)

Figure 2.3: Schema of the use of the two mitigation windows.

this case, is mitigated by a specific mitigation module, which was implemented precisely to
protect against it. The rules used for the configuration of this module are specific only to
it, as they differ in some fields from the other types of mitigation rules.

All types share common attributes. These include the following:

Rule identifier

Rule status

Dry-run mode status

VLAN identifier

Thresholds in packets and bytes per second
Source and destination subnet IP adresses

Source and destination L4 ports

The rule identifier is a numerical value which is unique for all rules of any type. It is
used to track changes to the rule and as a key in the mitigation rule database described in
Subsection 2.3.6.

SYN flood
attack

SYN Drop SYN Drop
mitigation rule mitigation module

Configuration

X

Figure 2.4: Relationship between the type of attack, mitigation module and mitigation rule.

Rule status means that the rule can be either enabled or disabled. Disabled rules are
not actively used by the mitigation device, but may still be present, so that they can be
turned on later.

The rule can also be in a dry-run mode. The dry-run mode stops the mitigation device
from dropping or generating packets. However, statistics are still produced, as if some
packets had been dropped. This allows the administrator of the DDoS Protector to test
rule configuration on actual traffic before it is put to use. The downside is that dry-run
mode cannot be effectively used on active methods, which involve the creation of response
packets to verify the incoming traffic as legitimate.

The VLAN identifier field makes the rule match packets with a specific VLAN ID. If
the value of the field is zero, the rule matches packets with any VLAN ID.

Thresholds activate the rule after reaching a given value of packets or bytes per second.
The packets are calculated on L2 without the Ethernet FCS field.

The rule may match only packets with destination and source IP addresses in given
subnets. Every rule may contain multiple IP addresses for different source and destination
subnets.

Similarly to subnets, the rule may also only match packets with a certain destination
or source port. If no ports are given, the rule applies to all packets.

The specific mitigation rule types are discussed in the following subsections.

2.3.2 Filter

The filter rule type provides configuration for a simple passive filter mitigation method.
Any packet matched by a filter rule is dropped.

In addition to the common fields mentioned in 2.3.1, filter rules may also include a list
of L4 protocols. Only packets transported using any of the given protocols can be matched
by the rule. In case the field is left empty, all protocols are matched.

Figure 2.5 shows a filter rule represented in YAML. The rule filters traffic with VLAN
200 coming from IP 10.66.0.15 to any destination IP and communicating with destination
port 80 (TCP)

id: 1
enabled: True
dry_run: False

vlan: 200
ip_src: 10.66.0.15
ip_dst: []

port_src: []
port_dst: 80
protocol: TCP

Figure 2.5: Example of a filter rule in YAML.

2.3.3 SYN Drop

SYN Drop is a passive mitigation method for protection against TCP SYN flood attacks,
which are described in [5]. Detailed information about the method implemented by the
DDoS Protector can be found in [29]. SYN flood attack is a brute-force attack, which
exploits the flaws in the implementation of the three-way handshake used by the TCP
protocol, described in Figure 2.6. In a normal TCP connection, the client first sends a TCP
SYN packet; the server then allocates resources for the new connection and replies with
a SYN/ACK packet, to which the client responds with a final establishing ACK packet. As
visualised by Figure 2.7, the attacker exploits this algorithm by sending a large number of
TCP SYN packets, which eventually causes the target machine to run out of resources, due
to all the half-open connections it keeps.

Client Server

T —sYN

ACK
T

Figure 2.6: Graph showing a TCP three-way handshake.

The mitigation module implementing this method is able to inspect and block only
the initial SYN-packets of a TCP three-way handshake. Therefore, it is best suited to
moderate traffic, when the number of SYN packets directed to devices in the protected
network exceeds the limit they can safely handle.

Client/Attacker Server

\——

——

\
SYN— |

SYN

SYN\
e
</SYN/AC><
SYNACK

SYN/AC

SYN/AC
. —

Figure 2.7: Graph showing a SYN flood attack.

SYN drop rules include two thresholds; a hard and a soft one. Soft threshold represents
the number of SYN packets that are allowed without receiving any ACK packets. Hard
threshold represents the total number of allowed SYN packets. If the hard threshold is
reached, all subsequent SYN packets are dropped, regardless of received ACK packets.

Whenever there is an outside attempt at establishing a TCP connection to a device
in the protected network, the first incoming SYN packet is dropped. This mechanism
provides protection in the situation, when an attacker is randomly spoofing a large number
of connections from different IP addresses. More information about IP spoofing in SYN
flood attacks can be found in [18]. The only downside is that it causes a negligible delay
for a legitimate user.

The following SYN packets are allowed, until the soft threshold is reached or an ACK
packet is sent by the the client. In other words, the soft threshold is the number of si-
multaneous connections, which may be pending before at least a single one is established.
All subsequent SYN packets are allowed until the hard threshold. The decision process
is summed up by Table 2.1, which shows whether an incoming SYN packet is allowed or
dropped by the rule, based on the number of previously received SYN and ACK packets.
The SYN and ACK counters for each host are reset every 4 and 20 seconds respectively,
so that active legitimate users are not blocked long-term. The counters for each host are
stored within a record table. The capacity of the record table is configurable for each rule,
through the third and last field specific to SYN drop rules — table exponent. Table exponent
is a numerical value between 10 and 30, which sets the size of the table using the formula:
size = 2% where x is the table exponent and size is the resulting size of the record table.
If the table runs out of capacity, some counters older records may be replaced with newer
ones, thus resetting those counters prematurely.

10

SYN
1 <2, soft> (soft, hard> (hard, inf)
0 Drop Allow Drop Drop
<1, inf) | Allow Allow Allow Drop

ACK

Table 2.1: SYN drop threshold decision table

2.3.4 Amplification

Amplification mitigation method protects from attacks of the same name. Amplification
attacks function by using an amplifier network as a middle man between the attacker
and the victim machine. The amplifier network is any newtork of computers that allows
for broadcast messages. This way a single broadcast packet can generate a much greater
response. This is shown in Figure 2.8 An example of an amplification attack would be the
Smurf attack [21], which abuses ICMP echo requests.

The mitigation method, which is described in [2], is passive. Its goal is to block traffic
from a number of greatest contributors whenever there is an unexpected traffic increase.
Amplification rules should be used to moderate traffic, when the amount of incoming packets
is larger than what the devices can safely handle or when the capacity of the network
connection is reached.

The method operates on a user-defined portion of traffic specified by the rule. In addition
to the packet and byte thresholds, which are common to all rule types, Amplification
rules also feature corresponding limits in bytes and packets per second. If a threshold is
reached, the method will block traffic coming from greatest contributors, until the total
traffic drops to the limit value. To determine the biggest contributors, the method starts
collecting packet or byte statistics for individual hosts (source IP addresses), when 70% of
the respective threshold is reached. This is called standby mode.

In addition to the limits, Amplification rule also contain a number of fields, which can
further reduce its scope. These fields include fragmentation, L4 protocols, packet lengths,
TCP flags and table exponent.

Fragmentation field allows to specify which packets are to be matched by the rule based
on the fragmentation point of view. The options include:

e ANY: any packet, fragmented or non-fragmented,

e NO: non-fragmented packets only,

e YES: fragmented packets only,

e FIRST: only first fragments of fragmented packets,

e LAST: only last fragments of fragmented packets,

o MID / MIDDLE: all fragments except FIRST and LAST,

o NOFIRST: MIDDLE and LAST fragments (i.e. all fragments except FIRST).

The rule can also be used to only match packets with specific L4 protocols. There is
support for matching only TCP, UDP, ICMP or SCTP packets. Multiple protocols are
allowed. In case no protocols are given, all supported L4 protocols are considered.

Packet lengths field makes it possible to match packets with certain size or length. The
length of a packet is considered to be the L2 packet length without the FCS field. Packet

11

Amplifier Network

Attacker —> Victim Host

9000

Figure 2.8: Schema of an attack involving an amplifier network.

lengths can be given as ranges. If the length of an incoming packet fits within the range, it
may be matched by the rule. If no lengths are given, all packets are considered.

TCP flags field allows to restrict the matched TCP packets to those, which either contain
or not contain certain flags. The function of the different TCP flags is explained in [6]. The
flags include:

e C: Congestion window reduced,
« E: ECN-Echo,

e U: Urgent,

o A: Acknowledge,

e P: Push,

e R: Reset,

e S: Synchronize,

e F': Finalize.

Since a TCP packet header may contain any of these flags at the same time, these flags
may be combined together, so that only the packet with the specific header is matched.
An Amplification rule may contain multiple combinations of flags. Using these, a packet is
accepted only if the corresponding flag is set. It is possible to negate this, by using an ex-
clamation mark ’!’, which makes it so that a packet is accepted as long as the corresponding

12

flag is not set. For example, the combination [!C!E!U!P!RS!F], will match only SYN and
SYN+ACK packets.

Table exponent functions in an almost identical way to the one used in SYN drop rules.
As previously stated, Amplification rules keep a hash table of IP addresses together with
the byte and packet statistics for each of them. The table exponent field configures the
size of hash table. In case the capacity is insufficient, the older records may be replaced
by newer ones. This may lead to the blocking of wrong hosts, as the statistics will not be
complete.

2.3.5 TCP Authenticator

Unlike the other methods, TCP Authenticator is interactive. This means that it can gen-
erate its own network traffic as part of the DDoS mitigation algorithm. The method can
be used to counter SYN flood attacks, if passive methods, such as SYN drop prove to
be ineffective. However, it is much more computationally expensive and has some other
limitations.

When a TCP Authenticator rule is active, the protector acts on behalf of the protected
network or device by responding to SYN packets of TCP three-way handshake. The mod-
ule implements two different mitigation algorithms, SYN_AUTH (SYN Authentication) and
RST_COOKIES (Reset Cookies). Every TCP Authenticator rule may use only one algorithm.

Both algorithms are based on intentionally crafting a response to a SYN request and
analysis of the client’s reaction. Every SYN packet is first checked, whether it comes
from a previously authenticated host. Otherwise, the rule drops the request and generates
a response based on the algorithm it uses.

Reset Cookies

As shown in Figure 2.9, the RST_COOKIES algorithm responds to a SYN request with an
invalid SYN4+ACK packet. The response contains an authentication token with an ac-
knowledgement number. According to RFC 793 [1], the host is expected to respond with
a RST packet that contains the authentication token. If the token is the same, the host is
authenticated.

From the host’s perspective, the first attempt at establishing a connection always fails.
However, modern operating systems try to reestablish the connection after sending the RST
packet. Therefore, the only drawback is a negligible delay.

SYN Authentication

The SYN_AUTH algorithm responds to a SYN request with a valid SYN+ACK packet. Figure
2.10 describes the authentication of a legitimate user. The response contains an authenti-
cation token in form of a sequence number. According to RFC 793 [1], the host is expected
to respond with an ACK packet containing the token incremented by one. In case this is
done, the connection is authenticated. If it is so, the algorithm generates a RST response
to terminate the estalished TCP connection. Therefore, from the perspective of the host,
the first attempt at establishing connection always results in being reset by the server.

13

Client/Attacker DDoS Protector Protected Server

Ne———

——

[SYN——___ |

Invalid ——
<« SYN+ACK

. RST— (Client verified)

[SYN——_ |
[SYN——_ |

SYN+ACK— |
PR
. SYN+ACK |

(Communication continues normally)

Figure 2.9: Reset Cookies algorithm

Algorithm type is one of the fields of a TCP Authenticator rule. The other fields include
validity timeout, hard threshold and table exponent.

Validity timeout field contains a time interval, which has to be at least 1000 ms. This
interval sets the time, after which a previously authenticated host has to be re-validated,
so that there is no possible risk of an attacker using a spoofed authenticated IP address.

The records for each host are once again stored in a hash table. The size of the hash
table can be configured using the table exponent field. The table exponent follows the same
pattern as in SYN drop and Amplification rules. The possible values range from 10 to 30.
The size of the table is then determined using the formula size = 2%, where size is the
resulting table size and x is the table exponent.

In case there are still too many packets coming from already authenticated hosts, there
is the hard threshold, which sets the maximum number of possible connections for each
host. Any new attempts at establishing new connections will fail, as the SYN packets will
be dropped by the TCP Authenticator mitigation module.

2.3.6 Mitigation Rules Storage

Mitigation rules can be loaded from a file or from a database. During the initial phases of
development, loading rules from a JSON file was the preferred option because of the ease of
implementation. However, this approach has two issues. Firstly, it is not very well scalable,
as the files containing the rules have to be present on the same machine, and JSON files
are not optimised for storing large amounts of data. The other drawback is that there is no

14

Client/Attacker DDoS Protector Protected Server

—/

——

[SYN——___ |

Valid —]
<« SYN+ACK

- —ACK— (Client verified)
RST— |
L,

[SYN——_ |
[SYN——_]

. SYN+ACK |

. SYN+ACK |
(Communication continues normally)

Figure 2.10: SYN Authentication algorithm

easy way to consistently and immediately change the rules on multiple running instances
of the DDoS Protector. A database system solves both of these problems. On the other
hand, it is more difficult to implement.

The database management system used in this project is PostgreSQL®. The types of
mitigation rules are transformed into a schema of a relational database. This schema is
described by an ER diagram in Figure 2.11. The database can run on its own standalone
machine, and multiple instances of the DDoS Protector can load their mitigation config-
uration from the same source. Additionally, the DDoS Protector rule manager module
continuously listens for database notifications. Whenever a change is made, the user can
notify the device that the rules need to be reloaded. The rules are reloaded as a whole by
the mitigation device. The changes take effect in the first mitigation window after they are
processed.

“https://www.postgresql.org

15

https://www.postgresql.org

Subnet
PK subnetid int
FK ruleid int
direction enum
ip address inet
Port range
PK portrange id int
FK ruleid int
direction enum

lower bound int

upper bound int

L4 Protocol

PK
FK

protocol id int
rule id int

protocol enum

Priority

FK ruleid int

rank int

Figure 2.11: ER diagram describing the database schema used for mitigation rule storage.

2.4 Statistics

An important output produced by the DDoS Protector is the statistical data of its function-
ing. These data are crucial in analysing past traffic and devising changes to the configuration
of the device. As stated in Section 2.2, the export of statistics occurs every time a mitiga-
tion window becomes active, which is described in Figure 2.3. Statistics are exported for

dry run bool
threshold bps int
threshold pps int

vlan int

all mitigation rules loaded in the device.

16

TCP flags Packet lengths
FK ruleid int FK ruleid int
values int lower bound int
mask int upper bound int

¢ ¢
Rule base x Ex

PK rule id int Amplification
description text table exponent int
rule type enum limit bps int
enabled bool <]~_ limit pps int

fragmentation enum

SYN drop

table exponent int
threshold hard int
threshold soft int

TCP authenticator

table exponent int

threshold hard int

validity timeout interval

algorithm_type enum

Filter

2.4.1 Identified Statistical Parameters

Every statistical record is first headed by a timestamp and the duration of the monitored
interval. The primary statistical data are composed of the aggregated counter values the
mitigation window collects, together with the current rule status. The structure of a miti-
gation statistics record is explained in detail in Figure 2.12, which shows the values of the
different counters in both bytes and packets. These are actually separate fields but are
displayed here in one place for simplification.

Number of outgoing

10460 B / 15 pkts bytes/packets

6430 B / 9 pkts

Number of the
bytes/packets generated

J

N Timestamp of the
Statistical data \mitigation Windowj

collection interval Record

” | [2021-06-22 19:10:25-07 [Uniquerule |

| A

Number of incoming 2 seconds L Identifier

bytes/packets \ 10)

J

~_

RSN

s . 4 N
by the mitigation module) 0 B / 0 pkts Number of packets
which fit the rule
.) 8800 B / 11 pkts activation criteria
Rule status duringthe | | active N -
mitigation window (
/ off ——

Dry-run mode status}

\

Figure 2.12: Diagram detailing the structure of a mitigation statistics record.

Every statistical value is exported in both bits and packets. Some mitigation methods
become active only after receiving a certain number of packets that fit specific criteria.
Some modules of the DDoS Protector can also generate packets in response to suspicious
traffic. The rule can be in three different modes — idle, active, or on standby. These depend
on the internal functioning of the specific mitigation module. The dry-run mode allows
testing the functionality of a rule on actual incoming traffic without producing any actual
mitigating effect.

One more thing to consider is that there might be multiple DDoS Protector instances
running at the same time. Although multiple independent databases are possible, it is
definitely more convenient and efficient to use a single one instead. To allow for this, every
record can contain additional information about the specific device from which it comes
from.

2.4.2 Mitigation Statistics Storage

The modular structure of the DDoS Protector makes it possible to use multiple concurent
export modules. The basic way to display collected statistics is by using a log file. This
approach does not scale well and is generally not usable for a more thorough automated
analysis of the statistical data. As with the storage of mitigation rules, the better way is
to use a database management system. Because the data are collected as a time series, it
is most efficient to use a specialised system aimed at storing time series data. Several were

17

considered, such as InfluxDB® or OpenTSDB®. Finally, TimescaleDB” was chosen as the
database management system to be used. Although it offers basically identical functionality
to the other systems, the main advantage is that it is an extension of the PostgreSQL
database management system, which is already used for the storage of mitigation rules (see
Subsection 2.3.6). The result is that both the mitigation rules and the statistics can be
stored in a single database.

Shttps://www.influxdata.com
Shttp://opentsdb.net
"https://www.timescale.com

18

https://www.influxdata.com
http://opentsdb.net
https://www.timescale.com

Chapter 3

Database API

3.1 Motivation

The first step in mitigator configuration was the creation of a way to manage the database
that stores the mitigation rules and statistics. As already stated in 2.4.2, both can be
stored in a single instance of the PostgreSQL database management system. It is not
desirable to access the data directly from the final configuration tool. This is because
the database schema is still in development and, thus, subject to future changes. Instead,
it is a good practise to insert an additional abstraction layer that would handle database
manipulation. This layer should provide a way to connect the database query language with
the programming language of the configuration tool. The aim is to further encapsulate the
relatively complex series of required database operations and transform them into a simple
programming interface. This API should then enable the developer to write code centered
around mitigation rules instead of having to deal with SQL' queries to access the various
database tables and the relationships between them.

Since the DCPro DDoS Protector stores collected mitigation statistics inside the same
PostgreSQL database, the database API is also used for their retrieval.

Another significant factor for the creation of an API for mitigator database is that there
are multiple planned ways for the configuration of the mitigation device, not only using the
configuration tool discussed in this thesis but also using a REST? API or a similar service.
The database API therefore prevents the possible duplication of code, which manages the
same functionality and, in turn, makes the whole project easier to maintain and expand.

The role of the DCPro DDoS Protector database configuration API, or dcpro_cfg_api
is perhaps more clearly described in Figure 3.1, which shows the different layers, from the
mitigation rule and statistics database up to the final configuration tool. The API is here
to serve as a middle man, which translates abstract operations centered around mitigation
rules into actual database queries.

3.2 Design

The following sections describe in greater detail the requirements for the different use cases
of the database API, as well as a basic outline of their specific functionality.

IStructured Query Language
2Representational state transfer

19

Database Rule
queries manipulation

Mitigator Configuration

i Configuration
database § API

tool

Figure 3.1: Conceptual diagram of the inner layers of mitigator device configuration.

3.2.1 Rule Representation

Generally, it is reasonable to expect the individual rules to be represented by some kind
of a specialised data structure. The exact implementation depends on the programming
language chosen for the API. An object oriented language would enable the usage of ORM
3 which is a technique for converting data between relational database and object oriented
programming languages. This idea is further supported by the fact that the different
rule types can directly correspond to classes, if a class oriented language is chosen. The
benefits of ORM mainly include improved code maintainability and readability, as stated
in [30]. However, this results in slightly slower execution speed of the code, which may be
detrimental to time-critical applications. Since the configuration of the mitigation device
does not require precise timing, the positives of the ORM approach were taken into great
consideration when choosing the language for the implementation of the mitigator database
APL

3.2.2 Transactions

Even though the main task of the database API is to encapsulate individual database
operations, there exists a special requirement that it should still enable the developer to
execute the operations in a way that resembles a database transaction or session. A database
transaction is primarily defined as a sequence of database operations that satisfies the
ACID* properties. These basic concepts are discussed at length in [10].

There is also another consideration which needs to be taken into account. While the
configuration tool is not likely to feature running multiple threads, other planned services,
such as a REST API might want to reserve a thread for every received request. Because it
is unlikely that a single transaction would be used in handling more than one such request,
the implementation of the API should reflect that the transactions are not thread-safe and
are instead created specifically for every thread.

30bject Relational Mapping
4 Atomicity, consistency, isolation, durability

20

3.2.3 Rule manipulation

As stated above, the API should offer a number of basic operations for rule manipulation.
These can follow the established CRUD” pattern. CRUD defines operations that provide
complete control over the data in persistent storage while maintaining a minimal number
of them. This makes the API effective and yet simple to use by developers. The additional
positive feature of this pattern is the fact that it is commonly used in application frameworks
[27]. This fact primarily benefits the sustainability of both the API’s code and the code
using it.

To fit CRUD, the API must provide the following operations for rule manipulation:

e Create rule — Inserts a new rule into the database based on the rule attribute values
provided.

e Read rule — Retrieves a rule from the database based on a value specific to the rule,
e.g. its identifier.

o Update rule — Save updated values from a provided rule structure to the database.

e Delete rule — Deletes a rule based on a specific value of its attribute.

Because there are multiple types of rules, which contain different attributes, it is im-
portant to design the API code in a modular way, so that it allows for easy extension with
the support for an additional rule type.

3.2.4 Retrieval of statistics

The other main use of the API is to retrieve statistical data collected by the mitigation
device, which document the effectiveness of individual mitigation rules. This functionality
should not become complicated. The only task here is to hide the actual database queries
from the developer and return the raw data in a form native to the API programming
language.

3.3 Implementation

3.3.1 Programming Language Selection

Once the general outline of the database API was established, the most important task was
to choose the programming language for the implementation. The primary requirement
was the existence of a well-maintained, or in better case, official, library for connecting to
a PostgreSQL database. This is achieved by a number of modern programming languages,
including Java, C#, Python, and C. The C language provides the official PostgreSQL
library called libpg. The other need is that the language should offer high development
speed and readability for later expansion of functionality. This often comes at some expense
by reducing the execution speed of the code. However, performance is not a critical issue
for the configuration of the mitigation device. The only requirement is that the execution
of simple operations should not take more than two seconds, which is the proposed interval
for a mitigation window.

5Create, Read, Update and Delete

21

As was already discussed in Subsection 3.2.1, using an object-oriented class language
may result in a more compact and comprehensive code with the use of ORM. Because
of this, the Python programming language was eventually chosen as the language for the
implementation. The other qualities of Python were the speed of development, which is
higher than C# and Java, and also the fact that it is already being used in the DCPro
DDoS Protector project for automated testing. Due to this, it was also possible to decide
to use the Python 3.6 version, so that the whole project does not require the installation of
multiple Python interpreters.

3.3.2 psycopg?2

Python features a PostgreSQL connection library called psycopg2®, which implements
a low-level API for basic database operations. Most of its features consist of sending
SQL queries given by the developer to the database, fetching the results, and converting
the PostgreSQL data type to those native to Python.

The SQL queries are constructed from Python strings, which are passed to the psycopg2
API. The library escapes any special symbols and parses the queries in such a way as to
prevent SQL injection, be it an attack or a bug. The API allows for the creation of multi-
ple independent database connections. Any queries run inside them have to be committed
before they take a permanent effect. This behaviour is directly related to database trans-
actions and was used to achieve the same functionality for mitigation rule manipulation, as
discussed in Subsection 3.2.2.

Since the API implemented by psycopg2 handles the transmission of data between the
database and the application using it, the DDoS Protector database API can use it as
a lower layer. As illustrated in Figure 3.2, psycopg2 manages the communication between
the database and the database API, while the database API acts as the upper layer, which
translates mitigation rule manipulation into appropriate SQL queries.

Data storage Low level interface High level interface Applications

configuration
. . . tool
PostgreSQL psycopg2 > dcpro_cfg_api
database
REST API
Data SQL queries Mitigation
transmission rules

Figure 3.2: Diagram showing the relationship between psycopg2, dcpro_cfg_api and the
other layers.

3.3.3 Rule Representation and Object Relation Mapping

Once the issue of data access layers has been resolved, the next step was to decide the
format of the mitigation rules. As was previously discussed in the design Subsection 3.2.1,
it is preferable to utilise the object oriented nature of Python, and use some sort of ORM.

Shttps://pypi.org/project/psycopg2/

22

https://pypi.org/project/psycopg2/

Firstly, several ORM frameworks for Python were considered. The most promising
were those mentioned in [26], Django and SQLAlchemy. The paper also provided useful
information on the execution speed of different ORM frameworks and libraries across the
programming languages discussed during the design phase. The important fact is that the
speed of all the frameworks is around the same magnitude. This further justifies the use
of Python as the language for the implementation. However, the discussed ORM libraries
could not be utilised in the end, as one of the features of both Django and SQLAlchemy is
that they define their own database schemas and tables. This was unwanted, as database
schemas for storing mitigation rules and mitigation statistics were already created and in
use, as descibed in Subsections 2.3.6 and 2.4.2. Instead, a custom way for basic ORM had
to be created.

Although ordinary Python classes could be used to represent the various types of miti-
gation rules, after some considerations, it was decided that the pydantic’ library would be
used instead. The main reason for this was the concurrent development of a REST API,
which would eventually use the database API as its base. The REST API was designed to
use the FastAPI® framework, which can utilise pydantic classes for the representation of
the data it works with. The primary use of pydantic is for type checking and conversions,
as well as additional value constraints for the different attributes. This behaviour was also
deemed useful for the configuration tool.

The pydantic library allows for the creation of supporting classes, which can provide
useful functionality, such as value enumeration. To illustrate this, the code for the custom
RuleType, Uint16Range, and L4Protocol classes is included below:

from enum import Enum
from typing import NamedTuple
from pydantic.types import conint, conlist

class Uintl16Range (NamedTuple) :
low: conint(ge=0, le=65535)
high: conint(ge=0, 1e=65535)

class RuleType(str, Enum):
amplification = "amplification"
syn_drop = "syn_drop"
filter = "filter"
tcp_authenticator = "tcp_authenticator"

class L4Protocol(str, Enum):

UDP = ’UDP’
TCP = ’TCP’
SCTP = ’SCTP’

IGMP = ’IGMP’
ICMP = ’ICMP’
OTHER = °’0THER’

Thttps:/ /pydantic-docs.helpmanual.io
Shttps:/ /fastapi.tiangolo.com

23

https://pydantic-docs.helpmanual.io
https://fastapi.tiangolo.com

The Uint16Range contains values of the special data type introduced by the pydantic
library called conint. Its name is an abbreviation of constrained integer. As the name
suggests, it allows for adding additional constraints to what values the attribute can contain.

The primary pydantic classes are constructed by inheritance from the BaseModel class.
There is support for more layers of inheritance, which is beneficial in avoiding code dupli-
cation, since the rule types share a common base. This base can be constructed into its
own class, which can be shared by the classes which represent the different rule types.

As an example, the following is the code for the class which represents the mitigation
rule type filter:

from pydantic import BaseModel
from pydantic.networks import IPvAnyInterface

class RuleModel(BaseModel, validate_assignment=True):
id: Optional[int] = Nomne
rule_type: RuleType
description: Optional[str]
enabled: bool = True
dry_run: bool = False
threshold_bps: conint(ge=0)
threshold_pps: conint(ge=0)
vlan: conint(ge=0, 1e=4095)
ip_src: List[IPvAnyInterface] (]
ip_dst: conlist(IPvAnyInterface, min_items=1) = []
port_src: List[Uint16Range] = []
port_dst: List[Uintl6Range] = []
priority: Optionall[int]

o n
o O O

class FilterRule(RuleModel):
protocol: List[L4Protocol] = []
rule_type = RuleType.filter

All of the classes representing rule types, including the FilterRule class, directly cor-
respond to database tables described in Subsection 2.3.6.

3.3.4 Data Access Layer

With the mitigation rule representation defined, it was necessary to create an inner data
access layer of the database API, which would transform the data stored in the mitigation
rule object into SQL queries for the psycopg?2 library and back. This layer should not be
directly accessed by the developer using the API. Instead, this should be done by a different
module, which would provide the public interface.

Since the database schemas for storing the mitigation rules and the statistics are sepa-
rate, the data access layer is split into two parts. One part contains the code for accessing
the mitigation rules, the other for accessing statistics. Both use the psycopg2 library in
a similar way, but statistics are retrieved from it in a raw form and do not go through any
additional conversions, unlike mitigation rules.

Figure 3.3 provides an overview of all components of the data access layer and their
dependencies. The RepositoryExtensionInterface is implemented by as many extensions
as there are supported mitigation rule types, so only two are explicitly listed for illustration.

24

StatisticsRepository RuleRepository

+ get_single_rule_records(rule_id) + get_rule(rule_id)
+ get_multiple_rule_records(id_list) + new_rule(rule_type, attributes)
+ update_rule(rule)

Uses
v
«interface»
RepositoryExtensioninterface

FilterExtension SynDropExtension

+ insert_extension(rule) + insert_extension(rule)
+ update_extension(rule) | |+ update_extension(rule)

Figure 3.3: Code structure of the API data access layer

Future extension of support to additional rule types was taken into consideration. Be-
cause of this, the structure of the mitigation rule data access layer is much more modular.
The core of the functionality is contained in the RuleRepository class. This class im-
plements database operations common to all rule types, such as inserting the base of the
rules or retrieving it. The queries specific for the various rule types are implemented by
classes inheriting from the RepositoryExtensionInterface abstract class, which acts as
the interface for rule repository extensions, e.g., FilterExtension for the Filter rule type.
The extension classes are registered, and whenever there is a need for rule type specific
operations, such as retrieving the rest of the rule that is not contained in the common rule
base, the appropriate extension for the rule type is used. This ensures that adding support
new rule types is easily done by implementing a simple interface. The methods provided
by the RuleRepository class roughly correspond to those described in Subsection 3.2.3.

Changes to rule priority affect all rules, as the priority ranks are an uninterrupted series
of numbers, starting with 0 and ending with the value of C' — 1, where C' is the rule count.
Because of this, priority modification does not fit the CRUD pattern. Instead, it is done
through different methods than ordinary rule modification.

StatisticsRepository class implements methods for retrieving raw statistical records.
It is possible to retrieve records belonging to a single rule, or to all the rules. Because the
total number of records can be very high, there are also optional parameters to define the
bounds of an interval in which the records were collected. Records that were collected
outside of this interval are not included in the data returned by the method, as the total
number of records can quickly grow to a significant figure and may take a long time to fully
load. For most use cases, the user only needs to see the statistics for the last few minutes.
Therefore, it is more efficient to allow for the retrieval of only those statistics, which fit into
a specific time window.

25

TransactionGenerator

connect(DSN: str) — Transaction
' + get_transaction() + get_rule()

+ update_rule()
Uses + delete_rule()

+ new_rule()

\ 4 \4 + get_stats_by_id()
StatisticsRepository RuleRepository + commit()
+ get_single_rule_records() + get_rule() + rollback()

Figure 3.4: Database API code structure

3.3.5 Public Interface

As shown in Figure 3.4, the starting point of the whole API is the connect () function. It
takes a DSNY string as its only parameter. This string is used by the psycopg?2 library to
connect to a single specific running database instance. The function creates and returns an
instance of the TransactionGenerator class, which, as the name suggests, generates new
instances of the Transaction class and may be used across multiple threads, as its state is
immutable.

Transactions

The Transaction class has two primary tasks. Firstly, it contains the public interface of
the API implementation, which is accessed through its methods. The other one is that
it mimics database transaction functionality. All the database operations executed by
the data access layer are done using a psycopg2 database connection created when the
Transaction class is instantiated. The connection object is passed to the data access layer
repositories at their instantiation. Thanks to this, the Transaction class simply propagates
the psycopg2 commit () and rollback() methods into identically named methods of the
Transaction class. Simiarly to an actual database transaction, any changes done to the
data stored in the database using the methods provided by the Transaction class must be
confirmed by commit () to take permanent effect. If the application is interrupted or the
rollback() method is called, all changes are lost. For better optimisation, Transaction
can be instantiated with the optional argument read_only. If it is set to true, the database
connection does not allow for any data modification, but it can run much faster, as it does
not have to ensure there are no conflicts caused by concurrent transactions.

Transaction concurrency is allowed. The psycopg2 database connection can work under
several different isolation levels. These include the possibility of reading data modified by
other transactions, may it be already commited or even uncommited. However, due to the
use case of the database API, the Serialization isolation level was chosen, which makes
the database emulate serial transaction execution, as if transactions were executed one after
another. This makes it impossible to read changes done from other transaction after the

9Data Source Name

26

transaction begun. The downside is that there is a possibility of a serialization error being
raised whenever the same data is modified by two concurrent transactions. In that case,
one of the users simply has to wait and try again.

Methods for Rule Modification

The methods for mitigation rule modification, which are exposed by the API through the
Transaction, primarily offer the operations listed in Subsection 3.2.3. The only difference
is that there are separate methods for modifying rule priority. The reasoning for this was
discussed in Subsection 3.3.4.

The different methods and their inner implementations are shown in Figure 3.5. As
was stated in Subsection 3.1, the database operations are wrapped up into the API. The
set_priority() method is an abstraction of the various methods which deal with rule
priority. The methods provided by the API include:

e new_rule() — Used for the creation of a new rule. The rule attributes are passed
using keyword arguments. The only universally required argument is the rule type.
The other arguments may or may not be required as well, depending on the given
rule type. Additionally, different rule types may have one or more attributes, which
are specific only to them or are shared with only some other rule types. In case
of any conflict, an exception is raised. On successful rule creation, an appropriate
instance of a mitigation rule class is returned, based on the specified rule type. This
instance contains the rule identifier and priority, which cannot be explicitly given and
are instead automatically assigned at rule creation.

e update_rule() — Used for saving modified attribute values of an already existing rule.
To retrieve a rule, it is advised to only use the new_rule() and get_rule() methods
provided by the API. Using a rule object explicitly instantiated by the user is possible,
but there is the possibility of raising an error if no rule with such identifier currently
exists in the database. The rules are distinguished by their unique identifiers. If
the identifier of a rule object is directly changed by the user, the API has no way of
registering it. Any modification done by passing such a rule to the method will result
in the change of data belonging to the rule with the newly given identifier. Such an
action is up to the discretion of the user, and therefore not handled by the API in
any other way. Changing the rule type is not allowed, and it results in an exception.
This is due to the rule types having different attributes.

e delete_rule() — Used for removing a certain rule from the database. The implemen-
tation of this method is quite straightforward. The only argument it requires is the
identifier of the rule to be deleted. There is no need for a whole object to be passed, if
the user stores the identifiers externally from the application. An exception is raised
if no such rule exists. For optimisation, there is a special method delete_many(),
which removes either all rules or those which have a certain attribute value specified
by a keyword argument.

e get_rule() — Used for retrieving rules stored in the database. Similarly to the
delete_rule() method, the rule identifier is the only required argument. Another
identical feature is the existence of a special get_many () method, which functions in
the same way as delete_many(), only the rules are retrieved instead of deleted. A
significant difference from other methods is that there is no exception raised if the

27

rule with the given identifier does not exist in the database. In that case, None is
returned instead. Because of this, the get_rule () method should be used for checking
if a given rule exists. The method returns an instantiated rule with all the attribute
values retrieved from the database.

e set_priority() — Used for modifying the priority of a single rule. While it is listed
here as a single method, there are actually four methods with very similar func-
tion. Functions set_rule_priority_first() and set_rule_priority_last() take
a single rule identifier as the argument and place the rule at the first or the last place
in the priority ranking respectively. Functions set_rule_priority_before() and
set_rule_priority_after() take two arguments. The first is the identifier of the
rule to be moved and the other is the identifier of the target rule. The moved rule is
inserted either before or after the target rule, based on the method.

The rule objects instantiated by these methods can be used across different transactions.
The only danger is that the data may have been concurrently modified, which could lead
to a serialization error, as was already stated.

Methods for Retrieving Statistics

The retrieval of statistical records is served by two methods, get_stats_by_id() and
get_stats_many(). As stated in Subsection 3.3.4, the age of the returned records can
be restricted by specifying a lower and/or upper bound. The bounds are represented by
datetime or timedelta objects. The difference is that datetime contains an absolute
timestamp, while timedelta is an interval translated into relative time before now.

3.3.6 Installation

A special setup.py file was included to to install the database API as a Python module
using the setuptools library with pip or a similar Python installation tool. Because of
this, it was necessary to add the special __init.py__ Python directory files, to include the
subdirectories in the installed module. The API is used as an internal library in the DCPro
DDoS Protector project, for the creation of supporting Python applications and tools.

The setup.py file adds useful information about the Python module, such as descrip-
tion, version number and used libraries. Thanks to this, Python installation tools can
implicitly download the required packages, without the need for the user to specify them
directly.

28

APl endpoints Database
type=filter
ip_dst=192.168.0.1

Table

given parameters PKid

i

new_rule() are inserted data .
inside respective tables e
FilterRule() data
PK id
data
FilterRule() —
k_) The values in the PK id
3 database which differ Table
update_rule() from those in the ey
object get updated. data

no difference

.

.
* = o u| Table

PKid

data

rule_id=12

Table

All database records PK id

K—) delete_rule()

belonging to the given

Table

rule are removed.

PKid
data
PKid
data
rule_id=12 Table
A new instance of the rule PKid
get_rule() class is filled with the Table
- data belonging to the _
given rule id. :K N
. Tabl ata
FilterRule() -
PKid
data
rule_id=12 —
- Priority

Sets the rule priority,
maintains the special
priority table, so that no
conflicts emerge

\-> set_priority()

PK id

rank

Figure 3.5: Diagram explaining the function of the different API methods.

29

3.3.7 Directory Structure

The directory structure of the dcpro_cfg_api implementation is shown in Figure 3.6.

dcpro_cfg_api/

setup.py
dcpro_cfg_api/
__init__.py

transaction.py
exceptions.py
rule_models.py
DAL/
__init__.py
stats_repository.py
rule_repository.py
rule_repository_extensions/
__init__.py
rule_repository_extension_interface.py
filter_extension.py
amplification_extension.py
tcp_authenticator_extension.py
syn_drop_extension.py

Figure 3.6: Directory structure of the database API.

As described in Subsection 3.3.6, the __init__.py files are special files, which are used
by the Python module installation tools to designate the directories, which are part of
the module or library. The setup.py packaging file must be at the top of the directory
hierarchy. Because of this, the dcpro_cfg_api/ directory contains a subdirectory with an
identical name. This subdirectory is installed as the Python library by the installation
tools, therefore, it needs to bear the name of the APIL.

The topmost module contains the transaction.py file, which reveals the public API
described in Subsection 3.3.5 through the Transaction class. Custom exceptions are de-
fined externally in the exceptions.py file. The rule classes defined using the pydantic
library described in Subsection 3.3.3, and all utility classes, such as port ranges and TCP
flags, are contained inside rule_models.py. The data access layer, which was described in
Subsection 3.3.4 is contained in the DAL/ directory. This is because StatsRepository and
RuleRepository classes are defined inside individual files named stats_repository.py
and rule_repository.py, respectively. The practise to place the definition of different
classes into separate files is used throughout the project. The reason for this is that it
improves the readability and modularity of the code.

The RuleRepository class utilises extension classes, which implement the Repository-
ExtensionInterface. The interface and the classes that implement it are located in sep-
arate files in the rule_repository_extensions/ subdirectory. These files again follow
the same naming convention recommended by [25], using the same name as the class, but
written in the lower_case_with_underscores style instead of CamelCase

30

Chapter 4

Configuration Tool Design

One of the most needed features of the DCPro DDoS Protector is finding a suitable and
user-friendly way of manipulating the data stored in the configuration database. Using raw
SQL queries may be sufficient for a developer working on a project. However, it may prove
too difficult for an end user who needs to periodically access the data in a small number
of defined use cases. The solution is to create a configuration tool for the DCPro DDoS
Protector, or dcproctl. The dcproctl configuration tool has two basic functions. First,
it acts as an additional abstraction layer over the data. Second, it presents a user-friendly
encapsulation of data manipulation.

4.1 Current Status

Currently, the DDoS Protector project (described in Chapter 2) does not offer a way to
properly modify the database data. The previous iteration of the project used to include
a configuration tool with a command line user interface. Unfortunately, the present version
is entirely different in its internal structure. The former tool also suffered from design
shortcomings that posed an obstacle to its extensibility.

As of this day, the project developers have to use raw SQL to access and modify the
data. The situation has been partially alleviated with the introduction of the API discussed
in Section 3. However, this is still an inadequate solution for the end user, as there must
exist an application which would interface with the user. Therefore, the use of the API
helps with the development of a new iteration of the configuration tool, which has already
existed in previous versions.

4.2 Specifications

To better understand the task of designing the configuration tool, it is useful to review
the required specifications. The previous iteration of the configuration tool provided only
a basic command-line interface with a custom argument parser and minimal functionality.
The new dcproctl configuration tool provides an expanded number of functions, such as
displaying statistics, displaying rules by their attributes, working in transaction mode etc.
The dcproctl is still based on a command-line interface, which enables its use in scripting
and on machines that do not support complex graphical interfaces.

The general goal of the application is to allow easy and straightforward configuration
of the DDoS Protector using mitigation rules and a way to display the produced statistics,

31

Add rule

Delete rule

Set rule
priority

User

Figure 4.1: Simplified use-case diagram for the configuration tool.

to see if the configuration is correct. These use cases are shown in a use case diagram in
Figure 4.1. The aforementioned API helps to provide an easy way to access the data saved
in a PostgreSQL database. The API is further described in Subsections 2.3.6 and 2.4.2. To
use the API efficiently, the code for the tool should preferably be written in Python, as this
is the language of the API.

In the following subsections, several focal points of the design are discussed in detail.

4.2.1 Extensibility

The previous iteration of the tool was designed in such a way that made it relatively difficult
to modify it. This is in part the reason why developing a completely new configuration tool
is needed, instead of only improving the previous one.

Extensibility should be one of the primary concerns of this project. The reason is that
there is a great possibility that additional mitigation modules will be added to the DDoS
Protector. These new mitigation modules would then be configured using rule types specific
to them. The code of the tool should be structured in a way that makes it easy to add
support for any new rule type.

4.2.2 Basic Rule Manipulation

The core functionality of the tool should revolve around the manipulation of mitigation
rules. The user should be able to comfortably add new rules, edit or delete existing rules,
and change their priority. Special care should be taken to find an effective way to display
the rules. Rules can contain attributes which consist of lists of variable length (e.g. list of
source IP addresses to be matched). The length of those lists should not be much greater
than ten items at most. This can also be an issue when editing rules. There should exist a
way to modify the attributes inside a list directly instead of overwriting the whole list.

32

4.2.3 Displaying Statistics

The other main task is to provide a way to display the mitigation statistics. The primary
use of the configuration tools is to be making minor changes to the DDoS Protector con-
figuration or preparing scripts for later execution. Therefore, the administrator is expected
to want to check if a rule functions correctly after modifications. It makes little sense to
show tables of raw data, or even data collected in large intervals. Instead, there only needs
to be a summary of statistics collected in the recent few minutes.

4.2.4 Transaction Mode

Lastly, there exists a requirement for a transaction mode. It should allow for multiple
commands to be done as part of a single transaction. That means that either all are
successfully completed or none are. The slower step-by-step configuration of the DDoS
Protector device would result in a period of unwanted behaviour, within which incoming
attacks might not be effectively mitigated. To counter this, a transaction could be prepared
inside a file or written to the standard input and then executed at once. If the execution of
a transaction from a file was supported, it would allow the user to prepare the configuration
for the DDoS Protector in advance. Different sets of configurations could then easily be
switched on and off. This, in turn, would make the job of the administrator much easier
and open the possibility of simple automation.

4.3 User Interface and Arguments

The most important task of the dcproctl configuration tool is to include all the main
required features identified in Section 4.2 and provide them through a simple but effective
command-line user interface. There should be some separation of functionality using dif-
ferent subcommands for mitigation rule manipulation and the display of statistics. The
design of the user interface also greatly influenced the choice of an argument parser library
for the eventual implementation.

4.3.1 Design Process

The design process of the user interface went through several iterations before any work
on the actual implementation began. The first issue was to cover all the use cases of the
configuration tool, which were already partially identified thanks to the development of the
database API (dcpro_cfg_api). These included basic operations over mitigation rules and
the display of statistics.

A proposal on the possible format of different commands and arguments was discussed
with the DCPro DDoS Protector development team. use the configuration tool in their fu-
ture work. The provided feedback proved to be invaluable in identifying the basic command
structure that would be comfortable to use.

4.3.2 Basic Principles

The first principle was to divide the commands into those used for operations with miti-
gation rules and those for displaying statistics at a sufficiently high level. This eventually
allowed for relatively separate development of both functionalities and also for the different

33

parts of the implementation to be fully isolated, which made it easier for code review and
debugging.

It was also decided to use as little of the dash -’ character as possible, so that the
commands are visually clean.

Attributes of the mitigation rule, which allowed multiple values, such as various L4
protocols, were given special consideration. Naturally, it was concluded that the respective
arguments need a way for the insertion of multiple values. There was also the case for
attributes that cover ranges, such as the destination and source ports. These are defined by
their bounds. Therefore, it was decided that there should be a way to add not only single
ports, but also whole ranges.

4.3.3 Mitigation Rule Manipulation

The proposed rule commands for the configuration tool follow the same pattern as the
methods provided by the dcpro_cfg_api. It was also decided that there should be the
option to display a detailed help message at every level of the subcommand hierarchy. This
is because the number of commands is quite large, and there is the possibility of expanding
the configuration tool with additional functionality. To achieve this, it was concluded that
the argument help should exist for each command, e.g.:

dcproctl help
or
dcproctl rule help

for mitigation rule related commands. Then this pattern should follow for all other com-
mands.

Rule Access and Identification

Before any proposed commands provided by the tool’s command-line interface are listed,
it is important to consider the way mitigation rules are accessed. It was decided that the
mitigation rules should be accessed using their unique identifier number. Using priority
ranks was also considered, as it may be more natural for the users. However, the priority of
rules changes often, especially as setting the priority of a single rule as the first may move
every other rule by one place. Therefore, it makes more sense to access the rules using the
identifier which is not only unique, but also constant.

Rule Creation
For the creation of a new rule, there is the rule add command:
dcproctl rule add <type> <arguments>
This command requires that the first argument is the rule type. This is because the

additional arguments correspond to the rule attributes, which are different for each rule
type. Due to this, the command:

dcproctl rule add <type> help

34

should list the specific attributes of the given rule type.

The command should execute a simple dcpro_cfg_api transaction, during which a sin-
gle rule is created from the arguments passed to the tool. The tool should then display the
identifier of the newly created rule, which is dynamically assigned by the database. The
rule is also placed at the lowest priority.

A concrete example of its use would be the following:

dcproctl rule add filter dstip 192.168.0.0 protocol TCP,UDP dport 40-83, 9

When this command is executed, a new filter type rule should be created. The rule
should filter packets with destination IP addresses in the 192.168.0.0 subnet, with L4 pro-
tocols TCP or UDP and the destination port 9, and any ports between 40 and 83. Ports
can be given either as single port numbers, or as whole ranges.

Rule Modification

The rule edit command should exist for the modification of an already existing rule. As
discussed previously, the specific rule is accessed using its identifier. The commands should
allow for setting a new value to any of the rule attributes using identical arguments as rule
creation:

dcproctl rule edit <id>

Because all rules contain at least one attribute, which may contain more than one value,
there have to be subcommands, which would allow for additional values to be added. These
arerule edit add and rule edit delete, which add and delete any attribute values from
the given arguments, respectively.

Therefore, all possible commands for rule modification include the following:

dcproctl rule edit <id> set
dcproctl rule edit <id> add
dcproctl rule edit <id> delete

Examples of their actual use would include:

dcproctl rule edit 1 add dport 200-600, 5432 sport 0-4400
dcproctl rule edit 1 delete dstip 127.0.0.0

dcproctl rule edit 1 set threshold-bps 120 disabled
dcproctl rule edit 1 set dstip 127.0.0.0, 192.168.0.0

The use cases for the add and delete subcommands are relatively straightforward. The
given values are added or deleted from the specific rule attributes. The set subcommand
is a bit different. It allows for setting single-value attributes, such as the value of the bytes
per second threshold, turning the rule enabled or disabled, etc. However, it also makes it
possible to overwrite the already existing values of a multivalue attribute with brand new
values.

35

Displaying Rules

Displaying the mitigation rules and the values of their attributes is one of the most impor-
tant use cases of the configuration tool. It is perhaps more useful than the other commands,
since rule management is probably going to be mostly automated using machine learning or
other such techniques, which would determine the most optimal mitigation rules. Instead,
the administrator of the DCPro DDoS Protector will only need to check on the correct
functioning of these mechanisms.

The rule values should be displayed inside formatted tables. It would be preferable to
have two types of tables: an overview and a detailed one. The overview table can list only
certain rule attributes that are common to all the rule types. This is so that it can display
a large number of rules clearly and efficiently. The detailed table should function in the
exact opposite manner. Its aim is to show all the attributes and their values of a specific
rule.

The rule show command can be used to display the rules. The different variants of the
command should include the following:

dcproctl rule show id <id>
dcproctl rule show all
dcproctl rule show <arguments>

The first is the rule show id command, which is used to display a detailed table containing
the attributes of a single rule.

The rule show all command lists all the rules in an overview table. There is the
possibility of adding the detailed argument, which would make the tool show the rules in
individual detailed tables. This functionality is not specifically required as it is not going
to be used very often, especially once the number of rules grows larger.

Because the number of mitigation rules stored in the database may grow to hundreds,
even a simplistic overview table would quickly fill up the space of the terminal window.
One solution would be to provide support for paging. However, the sheer number of records
might still be overwhelming to the user. Instead, it was decided to provide a way to list
only certain rules based on the values of their attributes. This is done by using the rule
show command with additional arguments, which directly correspond to the different rule
attributes, for example:

dcproctl rule show dstip 127.0.0.0 threshold-bps 150
dcproctl rule show protocol IGMP, ICMP

The rules are then to be filtered, based on whether their attributes contain the given values.
The number of these rules may be very high, so by default they are displayed in an overview
table. However, this case would benefit the most from the option of using detailed tables
instead, as some specific configurations will be used only by a handful of rules.

Rule Deletion

Rule deletion is relatively simpler compared to the other use cases of the configuration tool.
The proposed commands are similar to the ones used to display the rules:

dcproctl rule delete id <id>

36

dcproctl rule delete all

The possibility of deleting rules based on the values of their attributes was also consid-
ered. The only issue is that a new rule with a certain attribute value may be created in the
meantime between displaying the rules and deleting them. This would then result in the
unintended deletion of an unknown rule. Instead, it was proposed to delete the rules based
on their immutable identifiers only. The other use case is to remove all the mitigation rules
from the database. In actual deployment, this command would be rarely used. However,
it may be beneficial during the development of the mitigation device and in some other
specific situations.

Rule Priority

As was discussed in Subsection 3.3.5, changes to the priority order of the mitigation rules
are different from simple rule modification in that they also affect other rules. Because of
this, the dcpro_cfg_api provides methods for changing the priority of a rule separately
from updating the other rule attributes. The command-line interface of the rule directly
mirrors this.

The following commands were proposed:

dcproctl rule priority set <id> first
dcproctl rule priority set <id> last
dcproctl rule priority set <idl> before <id2>
dcproctl rule priority set <idl> after <id2>

Setting the priority rank of a rule to the first or last place, which signify highest and
lowest priority, respectively, is a simple operation which should be possible by using the
priority set first and priority set last commands.

The priority set before and priority set after commands are a little more com-
plicated. In either case, the other rule accessed using the identifier <id2> is not directly
modified. Instead, it acts as a sort of reference point to set the priority rank of the rule
with the identifier <id1>. Setting the priority before makes the <id1> rule directly precede
the rule <id2>, thus it becomes exactly one rank higher in priority. The priority set
after command works the other way, setting the priority of rule <id1> to be exactly one
rank below rule <id2>.

Transaction Mode

As discussed in Subsection 4.2.4, the configuration tool should also present a transaction
mode, in which the commands mentioned above could be linked together and executed at
a single moment. This functionality is already present in the dcpro_cfg_api, which should
result in a rather simple implementation.

The main question was how to input the individual commands in transaction mode. In
the end, it was decided that instead of passing the commands as command-line arguments,
it would be more effective to use standard input instead. Thanks to this, it would be
possible to either input the commands dynamically at the time the configuration tool is
executed or prepare them beforehand in a file and pass the file in place of the standard
input.

37

As an example:

cat transaction_file
add filter dstip 127.0.0.1
edit 5 set threshold-bps 120

dcproctl rule transaction < file

The contents of transaction_file could also have been given after simply executing
the command by itself:

dcproctl rule transaction

Note that the commands given in transaction mode no longer need to specify the rule
subcommand, as there are currently no plans to use this mode in the display of statistical
data. Moreover, it is also not allowed to display mitigation rules in the transaction mode,
as the operations are yet to be successfully committed.

Additionally, it was proposed to include a special token, which would allow the modi-
fication of a previously given rule. Since the identifier is dynamically assigned to a newly
created rule by the database, it cannot be passed as an argument to the rule edit or rule
priority command. Instead, the identifier can be replaced by a PREVIOUS_RULE token,
which is assigned the value of the previously created rule, for example:

cat transaction_file
add filter dstip 127.0.0.1
edit PREVIOUS_RULE set threshold-bps 120
priority set PREVIOUS_RULE first

dcproctl rule transaction < transaction_file

This is especially useful as the priority of a rule is also assigned during rule creation,
and thus this is the only way to set the priority of a rule created inside a transaction.

4.3.4 Statistics Commands

The commands concerning the display of statistical data are comparably simpler than those
dealing with mitigation rules. As the user only needs to check if a rule is currently properly
functioning, a single command was suggested:

dcproctl stats show <id>

This command shows the statistics of a single rule with the given identifier <id>, which
were collected within a five minute window. There should also be information on the
most recent record, which describes the ongoing mitigation done by the rule. Therefore,
the complex functionality provided by the dcpro_cfg_api remains largely unused by the
configuration tool and will only be used by the REST API and any more sophisticated
application developed in the future.

38

Chapter 5

Configuration Tool Implementation

5.1 Development Process

The development of the DCPro DDoS Protector configuration tool or dcproctl was car-
ried out in several iterations. Although these iterations were not complete in the sense of
complex testing, they served as a way to explore the options for the implementation and
identify the shortcomings of different approaches. After the initial design phase, a fully
functional application was created for demonstration and feedback purposes. This applica-
tion indicated the need for a separate database manipulation layer, which eventually led to
the creation of the dcpro_cfg_api described in Chapter 3.

Already during the first design iteration, Python was chosen as the language for the im-
plementation. There were several reasons for this. Even before the dcpro_cfg_api database
API was created, it was already decided that several utility and automated testing tools in
the DCPro DDoS Protector project would use Python 3.6 as the implementation language
because of its relatively simple integration with the PostgreSQL database, and also because
of the speed of development it provides over C or other commonly used languages. The ar-
guments made for choosing Python as the implementation language for the dcpro_cfg_api,
which were made in Subsection 3.3.1 are also valid for the dcproctl configuration tool.

The first is, as already stated, the speed of development. Since Python code contains
fewer lines of code than many other programming languages, as stated in [20], it is suggested
that it has somewhat better development speed and also maintainability than languages,
which need more lines of code to express the same functionality. On the other hand, because
Python is an interpreted scripting language, geared towards fast development, it does not
utilise many of the features which make compiled static languages faster. Because of this,
[16] describes ways to optimise performance of Python code. A prime example of such
optimisation is that Python libraries are often wrapping C code, which is relatively much
faster to execute. Since the configuration of the DDoS Protector is not time-constrained,
execution times of up to 1 second can be tolerated, which is the minimal duration of a
mitigation window, as described in Section 2.2. The new configuration is loaded by the
DDoS Protector only when the mitigation windows switch status.

During development and user interface testing, performance issues were never encoun-
tered. Therefore, Python remains the optimal language for the configuration tool, and there
are currently no plans for any large-scale optimisation effort, such as implementing whole
modules in C.

39

5.2 Command Line Interface

Because the primary reason for the creation of the dcproctl configuration tool is to act as
the user interface for the configuration database, the implementation of the command-line
user interface was one of the crucial points of the implementation as a whole. At first, it was
attempted to stay as close to the design proposal described in Section 4.3 as possible. To
do this, a custom argument parser had to be created. However, the custom implementation
of an argument parser soon proved to be untenable, especially since established libraries
already exist, which handle this matter well.
The following libraries for parsing arguments were considered:

o Argparse! — Integrated as part of core Python libraries. Allows for complex com-
mands, which can be constructed from multiple layers of subcommands. This is
achieved by creating an argument parser object, which can produce additional sub-
parsers, which are used to parse the different subcommands. This effectively creates
a hierarchy. Arguments can be added to any parser at any level. Positional arguments
differ from optional arguments only in the - or —- prefix. Allows for type casting dur-
ing the parsing of the argument string. Automatically adds a -h/--help argument
to every parser, which outputs a formatted description of any subcommands and ar-
guments that can be used. The arguments are then stored inside a Namespace object
as key-value pairs. Well scalable, but a bit more complicated API than the other
compared libraries.

« Docopt’ — Python implementation of the Docopt command-line description language.
Relatively simple, uses a string formatted in a similar way as a argparse help mes-
sage. This makes it somewhat more complicated to maintain, especially with the
large number of commands the dcproctl configuration tool is supposed to support.
Because of this, the problem with the mandatory -- prefix remains for optional ar-
guments. The parsed arguments are then returned for processing in the form of an
ordinary Python dictionary object.

e Click® — A third-party Python library for argument parsing. Instead of using ob-
jects as in argparse or strings as in docopt, the API of the click library provides
decorators for functions. These decorators are used to define the command and any
arguments which the functions can then access as ordinary local variables and, there-
fore, very easily process. Nested commands and subcommands must be defined in
a way similar to argparse, by registering them with the functions that manage the
parent command. This makes the code a little more complicated as there are two
different concepts used, one for registering commands and the other for registering
arguments.

After some consideration, the choice finally settled on the argparse library. The other
two libraries proved to be much less scalable to the number of arguments and the complex-
ity of commands required by the dcproctl configuration tool. Maintaining a very large
string or of multiple decorated functions and the relationships between them would require
significant effort. On the other hand, while the argparse API may be too complex for

"https://docs.python.org/3/library /argparse.html
http://docopt.org
3https://click.palletsprojects.com /en/8.1.x/

40

https://docs.python.org/3/library/argparse.html
http://docopt.org
https://click.palletsprojects.com/en/8.1.x/

simple applications, here multiple commands may be added in layered tree, where every
node represents a subparser, which manages a single command, and its arguments. This hi-
erarchy may be put into a number of compact functions, each managing a single subparser.
This eventually proved to be reasonably scalable and maintainable, as new functionality
was gradually introduced to the dcproctl configuration tool during the many iterations of
development.

In the end, it also became obvious that if either library is chosen, the format for the
optional arguments suggested in Section 3.3.5 is unattainable, as all the discussed libraries
use the -- prefix to distinguish between positional and optional arguments. Thus, this
format was abandoned, and the -- prefix was introduced for all the optional arguments.
On the other hand, it was possible to use the proposed command structure in its entirety
without any significant changes.

5.2.1 Final Interface Implementation

To reiterate, the commands proposed during the design phase, as described in Subsection
4.3, could be used by an argparse argument parser in almost identical format.

The only change made to the commands is that the by-attributes subcommand was
added to the rule show command. Unlike the proposed variant, the argparse library
does not provide an effective way to ensure mutual exclusivity of arguments and subcom-
mands. Due to this, if the original proposal was implemented, the other variants of the
rule show command would have access to the same arguments. Although this could be
solved later during argument processing, the argument parser would produce misleading
help messages. Therefore, it was simpler to assign mutually exclusive arguments under
separate subcommands.

The implemented interface is shown in Appendix B.

The arguments, which correspond to the attributes of the different rules, are used in the
rule add, rule edit and rule show by-attributes commands. These arguments are
used to set the values of a newly created rule or a modified rule or, in the case of the rule
show by-attributes command, to display rules based on the value of their attributes.

Because all types of mitigation rules differ slightly from each other in the attributes
they have, the corresponding arguments are also different for every rule type. The rule
types and the arguments, which can be used in the creation, modification, or display of the
rules of those types, are listed below:

As was already stated in the introductory paragraphs, the primary difference from the
proposed argument format is the addition of the -- prefix in front of every argument.
This is because the arguments are not positional and can be given in any order. Most of
those arguments are also optional only, and in the case that they are not given, a default
value is used instead. The argparse argument parser provides only one way to achieve the
functionality needed for both of these cases, which is to specify these arguments as optional.
However, optional arguments in argparse always require the —- prefix, so that they can be
distinguished from the positional arguments or their values.

5.3 Internal Structure

The internal structure of the dcproctl code follows the use of the argparse library used for
argument parsing. The functionality concerning the configuration of the argument parser
and their later processing is separated. The mitigation rule manipulation and display of

41

statistics is also fully separated. Due to this, it was possible to implement the functionality
step-by-step in the individual iterations of development.

5.3.1 Directory Structure

There are separate directories for the manipulation of mitigation rules and for reading and
displaying statistical data. Compared to the dcpro_cfg_api database API, there are also
additional files used to build and install the dcproctl configuration tool.

The root directory contains files for the building and installation of the application.
The dcproctl/ subdirectory contains the files with the actual Python code. The tool.py
contains the main() function, which acts as the entry point for the whole configuration
tool. The other files are discussed in the following subsections, together with the function
they fulfil. The functionality related to mitigation rules and statistics is separated into the
rule/ and stats/ directories. The directory graph shown in Figure 5.1 serves primarily as
a way to give a better sense of the internal structure of dcproctl, as the number of files is
somewhat higher than in dcpro_cfg_api.

dcproctl/
Pipfile
Pipfile.lock
build.sh
setup.py
dcproctl/
| __init__.py
| __main__.py
| tool.py
| parser_types.py
. _rule/
__init__.py
parser.py
processing.py
rule_type_handlers/
__init__.py
rule_type_handler_interface.py
filter_handler.py
amplification_handler.py
tcp_authenticator_handler.py
syn_drop_handler.py
| _stats/
__init__.py
parser.py
processing.py

Figure 5.1: Directory structure of the configuration tool source code.

42

5.3.2 Argument Types

The argparse library allows for the type conversion of arguments during their parsing. The
arguments are converted from raw string form using callback functions or class constructors.
The arguments can be supplied with custom-made callback functions, which may convert
the argument based on the value. This is useful in cases such as IP addresses, which use
different classes for the representation of IPv4 and IPv6 addresses.

However, the most important feature is the formatted error message that the argparse
library produces if the given argument could not be converted. This can be further utilised
in checking the value of the argument, and not only the type. The callback typing functions
print an error message every time a TypeError or ValueError exception is raised. For
example, rule identifiers use the standard int class, which is the native way to represent
any integer values in Python, and which is also used by the dcpro_cfg_api and psycopg?2
libraries. To make the rule identifier be represented using the int class, while also making
sure the value is always positive, there has to be a typing callback function, which first
checks that the argument does not contain a non-positive integer, and then casts the string
as an int value.

Typing Functions

The parser_types.py file contains custom typing callback functions, which are specific to
the arguments used in the dcproctl configuration tool.

Whenever a rule identifier is an expected argument, a special typing function is used,
which may or may not include the special PREVIOUS_RULE string token, which was discussed
in Subsection 4.3.3, as a valid value, in addition to any positive integer. While it would
theoretically be possible to check if a rule with the given identifier already exists in the
database, the argparse documentation recommends that the typing functions should re-
main simplistic and be concerned primarily with type conversion and basic value checking.
Any complex functionality can be handled later when the parsed arguments are processed.

The Amplification rule attribute TCP flags is a special case. The task of the dcpro_cfg-
_api database API is to transfer data from Python to a PostgreSQL database and back. In
both the database schema and the rule classes, the TCP flags are internally represented as
two 8 bit fields, one containing the values of the flags and the other the mask, which specifies
which flags are contained in the specific collection. This means that every TCP flags object
can contain from one to eight flags, depending on the mask, which can be either allowed or
forbidden, depending on whether the value bits corresponding to the mask are either 1 or 0.
Although this format can be efficiently handled by the mitigation device, it can be confusing
for a human user. Instead, the argument is given as a combination of capital letters which
represent the abbreviations of the different flags. Multiple different flags can be given as a
single argument value. Any flag can be prefixed with an exclamation mark ’!’, negating
the following flag. The whole conversion from the textual to the values-mask form is done
by a typing function. For example the argument —-tcp-flags S!U is converted into the
database representation, with values 0b00000010 and mask 0b00100010, which identifies
the considered flags. As can be seen, the U or Urgent TCP flag is represented by the third
highest bit in both the values and mask fields.

All rule types also have fields that contain destination and source ports. These are inter-
nally represented using ranges, which are defined by their lower and upper bounds. The re-
spective argument values can be given as either a single port identifier, which is an unsigned
16 bit integer, or a range of ports, which has the <lower_bound>-<upper_bound> format,

43

where the bounds are port identifiers. The typing function then creates a dcpro_cfg_api
Uint16Range object from the given bounds. If only one port identifier is given, it is given
as both the lower and upper bound of the Uint16Range object.

Other fields of mitigation rules contain primarily integer values. However, these fields
differ in the size of the integers they contain, with some values being unsigned 16 bit, 32
bit or even 64 bit. To manage this without the need to create multiple typing functions, a
special function constrained_integer () was created. This function takes the constraints
as arguments and produces a callback function, which can be used by the argument parser.
This resulted in a more compact code and increased readability.

5.3.3 Argument Parsing

Due to the reasons discussed previously in Section 5.2, the argparse library was chosen
for argument parsing. This subsection details the implementation itself, and not the indi-
vidual arguments, which were described in the section explaining the choice of the library.
Although the format of the arguments in general was clear even before the work on the
implementation itself began, there still was the problem of deciding the proper way, which
would allow for efficient code maintenance and the possibility of expanding the functionality
of the configuration tool.

The argparse argument parsing library provides an API using ArgumentParser ob-
jects. A parser object has to be instantiated at the beginning. The object then contains
methods for adding arguments or subparsers, which are also ArgumentParser objects. The
subparsers are used to parse the different subcommands. These can provide the essentially
same command structure as described in Subsection 5.2.1, as they can be nested indef-
initely. Therefore, the subparsers create a hierarchy, which can also be represented by
a tree. Most optional arguments were only added to the subparsers at the bottom of the
hierarchy, since there is almost no overlap of functionality between the different commands.
If any arguments were added to a subparser in the middle part of the parser hierarchy,
the argument could only be given in between the commands on the command line, and
the argument would be shared by all the commands which use the specific subcommand
corresponding to the subparser. This approach was used only once, in the case of the rule
edit command, where a positional argument <id> is given before the final subcommand.
This is precisely because all of the subcommands for rule modification have rule identifier
as a required argument.

The root ArgumentParser object is instantiated as part of the entry point inside the
tool.py. Thanks to this, it is possible to create fully separated modules, which can then use
subparsers created from the root argument parser. This makes the dcproctl configuration
tool more extensible, as it is easy to separate the functionality.

Both mitigation rules and mitigation statistics have a parser.py module within their
respective directories, which were mentioned in Subsection 5.3.1. These modules follow
a simple pattern: There is a function for every added subparser, inside which new subparsers
are called and their respective functions are called, or there are arguments added to the
parser object. Figure 5.2 illustrates how every level of subcommands and their possible
arguments is contained within a single function. If a command uses multiple subcommands,
the nested functions branch out. It can therefore be said that the functions for adding
subparsers and arguments are modelled after the same hierarchy as the commands and
subcommands defined in Subsection 5.2.1 follow.

44

ArgumentParser()

!

configure_argument_parser()

rule/parser.py

Vs

» add_rule_subcommands() ’

_

» add_subparser_for_rule_creation()

add_subparser_for_rule_deletion()

~N

» add_subparser_for_displaying_rules()

\ 4

add_subparser_for_rule_modification()

J

> add_subparser_for_rule_modification_set()

> add_subparser_for_multivalue_add()

\ 4

add_subparser_for_multivalue_delete()

stats/parser.py

Vs

\ 4

add_stats_subcommands()

*{ add_subparser_for_showing_stats()]

Figure 5.2: Hierarchy of functions for configuration of the argument parser.

45

5.3.4 Argument Processing

Once the argument parser is configured to include the arguments and commands, it can be
used for parsing. The argparse argument parser either returns a Namespace object which
contains the parsed arguments and commands, or terminates the application after printing
out a formatted error message. The parsed arguments have already been converted to the
required data types using the typing functions described in Subsection 5.3.2.

The returned Namespace object then needs to be processed, so that the action attributed
to the command can be performed. Processing of parsed arguments is done in a similarly
to how the subparsers and arguments were added to the argument parser. The commands
form a tree structure, where the actual database operations involving dcpro_cfg_api are
performed at the end nodes. Similarly to how Figure 5.2 describes the hierarchy of functions
for adding arguments to the argument parse, the processing. py files provide functions that
each process a single subcommand layer of a given command by calling another function
for dealing with the lower level. Only at the bottom level are actual operations that
involve mitigation rules or statistics executed. These include rule creation, modification,
the display of statistics, or any of the use cases discussed in Section 4.2 and implemented in
the command-line interface, which was described in Subsection 5.2.1. The dcpro_cfg_api
Transaction object is created at a higher level, at the time it is clear that the used command
will be able to modify any database data, or if the transaction can remain in the read-only
mode. Thanks to this, the functions at the bottom, which execute the actual commands,
can be used twice, once in the normal mode and also in the transaction mode, which is
explained below.

The processing of commands, which deal with rule creation, modification or deletion
is straightforward. The respective methods of the dcpro_cfg_api are called, with the
processed arguments used as the parameters. The display of mitigation rules and statistics
did require some more consideration, to find the most optimal way of showing the data
to the user. The thought processes and the resulting implementation is discussed in the
following subsections.

Display of Rules

As discussed in Section 5.2.1, which dealt with the implemented command-line interface,
the rules can be displayed using three commands, in two table formats.

The rule show by-id displays an explicit number of rules based on the given identifiers.
Therefore, the default action here is to present the user with a detailed table, such as the
one shown in Figure 5.3, for every given rule. The detailed table lists every attribute of
the rule and its value. In case of multivalue attributes, they are listed in ascending order
of value.

The rule show all and rule show by-attributes commands can display a previ-
ously unknown number of rules, especially if multiple users have access to the same database
simultaneously, or if there is some way for automated rule management. Therefore, the de-
fault for these commands is to display an overview table for every rule type. The rules in
the overview table are listed according to their priority. This makes the overview tables
useful for checking any rule priority changes.

All commands have the option to use the other type of table instead, which may be
beneficial in certain cases.

In addition to that, there is also the option of printing a JSON representation of the
rules. This is made simpler by the fact, that the pydantic library, which is used for

46

e e +
| Id | 1 |
e o +
| Priority | 0

| Type | tcp_authenticator |
[Description | None

I Enabled | True I
Dry-run	on
VLAN	0
Threshold bps	0
Threshold pps	0
I Source ip	
Destination ip	10.55.0.0/16
I Source ports	
Destination ports	0-1000

| Validity timeout | 0:01:00 I
| Threshold hard | 0 I
| Table exponent | 18

| Algorithm type | RST_COOKIES |
e e +

Figure 5.3: Example of a detailed rule table.

rule representation by the dcpro_cfg_api, provides its objects with a built-in method,
which returns their JSON representation inside a Python string, ready to be printed. The
JSON representation is much easier for automated parsing, and it makes the dcproctl
configuration tool much more useful for scripting and integration with any other tools,
which may be devised as part of the larger DCPro DDoS Protector project.

Display of Statistics

As discussed in Subsection 4.2.3, it was decided that the tool should have a limited scope
of showing statistics for a single rule at a time. As shown in Figure 2.12, the displayed
table contains the statistical values of the last record, aggregates from the last minute, and
aggregates from the last five minutes. The aggregate values should include the average
per second, maximum per second, and total sum of the values collected inside the whole
window.

5.3.5 Rule Type Handlers

One of the identified aspects that the newly created dcproctl configuration tool should
feature was modularity and extensibility. The part of the tool, which is most likely subject
to changes, is the one managing the needs of the different mitigation rule types, which
primarily include adding and processing rule type specific arguments.

As illustrated by Figure 5.5, the operations that needed to be implemented separately for
each rule type formed a single interface. This interface was eventually explicitly declared in
a RuleTypeHandlerInterface abstract class. The classes inheriting from the abstract class,

47

S3TQD ¢0°¢cC
S31TAD L¥'¥C

S3TAY 2GS 6.LY

S319H LV ¥T
S319H LV $T
s3di L6°0G
s3di 26°0G
s3d 00°078
s3di L6°0G
sadi 26°0G

sdan 06° 0SS
sdan 17°2T9
sdgsy §8° 0%
sdan 17°2T9
sdaW TT°2T9
sddi gz'1
sddy 8z'1
sdd 00°69
sddy gz'1
sddy gz 1

“RJRP [ROI)SIIRIS JUDAI SUIUIRIUO0D d[qe) © Jo o[durexy :f'G oIII

sdan §8°T1.C
sdan 90°zoe
sday z6°9

sdan L0°z0E
sdaW L0°z0ge
sddy 6z 629
sddy 6z 629

sdd 00° 01
sddy

sddy

S3TQD ¢0°¢cC
SATAD LY ¥C

S3TAY ¢S 6.LY

S319H LV ¥T
S3199 LV $T
s3di L6°0G
s3di L6°0G
saxd 00078
s3di L6°0G
sadi 26°0G

sdan 06° 0SS
sdan 17°219
sday §8° 0%
sdan 17°2T9
sdaW TT1°2T9
sddy gz 1
sddi gz 1T
sdd 00°69
sddy gz 1
sddy gz 1

sdaW 2z eLe
sdan 69 %1%
sday €1°8

sdan 0L %1%
sdaW 0L ¥T¥
sddy $6°£98
¥6°£98
€L €T

€98
€98

sddy

sdd
sddy
sddy

||||||||||||| e e T
| sdaw €8°86% | s31q pejersuss _
| sdaW sz %595 | s31q peddoip _
| sdax $0°6€ | s31q pessed _
| sdaW 62 %SG | S3TQ UOT3IRATIOR _
| sdaW 62°%59S | s3tq 3ndut _
| sddy g1°1 | saexoed pejeasusl |
| sddy g1°1 | saexyoed paddoap _
| sdd ge'Gg9 | saexoed pessed _
| sddy g1°1 | saexoed uorqeatrioe |
| sddy g1°1 | saexoed andut _

||||||||||||| e e T
| pIoO®X 3SEBT | SenTeA I9JUNOD [

||||||||||||| e S T &

JJo :unx Lap
®AT1D® :Snaels oTnI
Sp6°(Q :pIodSI 3seT °ours pesdere oWI

SOT]STJRlS OTNI AUBIINY)

48

<<Abstract class>>
RuleTypeHandlerinterface

+ add_rule()

+ print_rule_detail()
+ add_rule_specific_arguments()

T

FilterHandler AmplificationHandler TCPAuthenticatorHandler SynDropHandler

Figure 5.5: Rule Type Handler Interface class

or rule type handlers, implement the interface by providing methods for the manipulation
with a single rule type.

There are two basic ways the functions can operate. The first is by extending the basic
functionality. This is the case in adding arguments to the various subparsers that are needed
for rule creation, modification, or display of rules by attributes. This is always done for all
the rule types at once, so it only makes sense to include the rule type specific arguments in
the methods implemented by the handler classes. The common base of arguments is added
separately by a function located in the parser.py file, and then the respective methods of
all the handlers are called to add the rule specific arguments to the argument parser.

The other case is processing the arguments for rule creation, modification or display.
These also include a common base, so that there is no code duplication between the handler
classes. However, this base is implemented by the RuleTypeHandlerInterface class. The
handlers use the methods of the parent class as part of their implementation. This is due
to the fact that whenever a new rule is created, or an already existing rule is modified, only
one method, specific to the rule type, needs to be called.

The benefit of using this pattern became apparent already during development, when
a new rule type was introduced to the mitigation device, the TCP Authenticator. Adding
support for a new rule type proved to be swift and effective, which is very important for
any future expansion of the set of mitigation rule types.

5.3.6 Transaction Mode

The transaction mode, which was already discussed several times, such as in Subsection
4.2.4, allows the execution of several commands inside a database transaction, so that they
either all succeed or the whole transaction is aborted and no permanent changes are made.

Commands are given using the standard input instead of command-line arguments. The
transaction is executed after the end of file special character is read. This makes it possible
to use files to prepare transactions in advance or to make them reusable.

The commands themselves are separated from each other by a newline character. In
case the line containing the command and the arguments is too long, it is possible to escape
the line break by placing a slash / character at the end of the line.

Arguments are parsed in the same way as if they were ordinary command-line arguments.
The built-in Python library shlex manages to produce a list of arguments similar to the

49

one passed to the application from the command line from an ordinary Python string. This
approach solves any possible edge cases, such as escaping special characters.

Due to the fact that the Transaction object is instantiated at the time when the
higher level of the command is processed, such as rule edit or rule add, the functions at
the lower level, which process the arguments into new mitigation rules or modify already
existing rules, can be reused in processing the transaction mode as well. This makes the
implementation significantly simpler, as the functionality specific only to the transaction
mode includes only the parsing of the arguments from the standard input stream and the
processing of top-level commands.

5.4 Argument Autocompletion

Since the number of arguments used for the creation of a new rule or the modification of
an already existing one is quite high, there was a need to improve the user experience. The
argparse library provides a useful feature in the -h/-help argument, which is automat-
ically added to any command and, if passed to the application, displays all the possible
subcommands and arguments that can be used.

However, there is also an issue with the command and argument names. These are too
long to be typed quickly, especially since the arguments use the rule attribute names in the
original form without any use of shortening or abbreviations. Although this approach makes
the identification of the corresponding argument-attribute pairs clear, the time needed to
type those long names can become a matter of frustration for the user.

To remedy both problems at once, it was decided to use the package bash-completion,
which provides the bash shell with the ability to autocomplete command line arguments
with the press of the <TAB> key. There is a third-party Python library called argcomplete,
which provides a wrapper for the argparse argument parser, so it is compatible with
bash-completion. The argcomplete library also comes with commands, which can be used
to create bash-completion scripts for specific CLI applications using the argparse library
for argument parsing. The changes needed to make the dcproctl tool compatible were
minimal; the argcomplete library needed to be added as a dependency and the argparse
parser had to be wrapped with a autocomplete() function coming from the argcomplete
library at the place in the code after it is configured, right before the arguments are parsed.
This happens at the top level, in the tool.py file, so the change affects all the possible
arguments and commands that the tool supports.

5.5 Installation

Similarly to the dcpro_cfg_api, it is possible to build and install the tool manually using
pip. The __main__.py file makes the installed Python package executable through the
interpreter, through the -m dcproctl argument. The setup.py file exists to manage the
requirements for the dependencies, but unlike the dcpro_cfg_api, it also includes the
option to install the dcproctl as a command-line application.

After the tool was implemented and tested in an isolated environment, some consider-
ation was given to the way the tool is integrated within the larger DCPro DDoS Protector
project. This included providing additional user support, such as writing a manual that
could be used alone or as a part of the manual for the entire DDoS Protector mitigation
device.

50

However, the more important issue was to find a way to build and install the dcproctl
tool, so that it was easy to deploy and distribute. The DCPro mitigation device project
uses CMake’ to automatically generate a Makefile for the compilation of the code and the
creation of the executables for the mitigation device and also any additional utility tools,
which also include the dcproctl.

The project can then be distributed as an RPM®° package. The most difficult task
was the integration of the Python tool into the RPM package. Python applications and
libraries are traditionally packaged using Python native tools, such as pip, which also
manage any dependencies. However, there is also the possibility of installing the dcproctl
configuration tool as a self-contained application using the shiv® utility. Thanks to this, it
can be distributed as a standalone application without the need for the user to manually
install any other dependencies.

The build.sh script builds the dcproctl configuration tool as a shiv application using
a pipenv virtual environment. Pipenv uses the files Pipfile and Pipfile.lock to manage
dependencies. The main advantage of using pipenv is that it allows for the stabilisation of
versions of the various dependencies. Thus, it removes the possibility of conflicting versions
of dependencies to be installed. The CMake configuration includes a custom command for
building the dcproctl shiv executable using build.sh. This file is packed into an RPM
package, together with a bash-completion script created using an argcomplete command.

The resulting RPM package can be unpacked using a package management tool such as
yum. The self-contained dcproctl is installed as a command-line application. Autocomple-
tion of arguments is also possible right away if the bash-completion package is installed,
since the argcomplete script is installed into the /etc/bash_complete.d/ directory.

“https://cmake.org
Shttps://rpm.org
Shttps://shiv.readthedocs.io/en/latest/

51

https://cmake.org
https://rpm.org
https://shiv.readthedocs.io/en/latest/

Chapter 6

Conclusion

The goal of the thesis was to design and implement an application with a command-line
user interface, which would make it possible to configure the DDoS Protector mitigation
device by creating and modifying a set of mitigation rules, which are contained within
a PostgreSQL database. The mitigation rules contain specific configuration for the various
DDoS Protector modules, which deal with the mitigation of different types of DDoS attacks.
The database contains not only the mitigation rules, but also the statistical data created
by the DDoS Protector, which are collected for every mitigation rule used.

Instead of creating a single monolithic application, the work aimed at providing a mod-
ular framework that could be easily expanded with additional functionality. This effort
resulted in the creation of a separate database API written in Python, which encapsulates
complex database queries into a simple programming interface. The API made it possi-
ble to create other applications for manipulation with the database containing the DDoS
Protector configuration, other than the proposed CLI configuration tool. The API was
tested using unit tests, which became a part of the automated continuous integration in
the development of the DCPro DDoS Protector project.

The configuration tool was designed with the aim of providing a comprehensive user
interface for the management of mitigation rules and a limited way to display certain statis-
tical data. There was also a focus on making the inner structure of the code maintainable,
in case support for additional mitigation rule types needs to be added. The configura-
tion tool was then implemented using the Python programming language and the database
API mentioned above. The user interface was continuously tested by potential users, who
provided feedback on its improvements during the iterations of development. However,
automated unit tests for the configuration tool are yet to be introduced. Finally, the tool
was integrated within the DCPro DDoS Protector project, with solutions for packaging and
deployment.

The configuration tool is currently being deployed as part of the DCPro DDoS Protector
package. Nevertheless, the work does not cease, as there is still some room for small
improvements, such as the addition of new ways to display the statistical data. There is
also ongoing work on providing support for configuring multiple running instances of the
DDoS Protector from the same database. Thanks to the option for JSON outputs and file
input for the transaction mode, the configuration tool is also set to be smoothly integrated
with other DCPro DDoS Protector utility tools, which are currently being developed.

52

Bibliography

1]

[10]

[11]

Transmission Control Protocol [RFC 793]. RFC Editor, september 1981. DOI:
10.17487/RFC0793. Available at: https://www.rfc-editor.org/info/rfc793.

Amplifikacni modul [online]. Liberouter [cit. 2022-05-07]. Available at:
https://redmine.liberouter.org/projects/ddos-protector/wiki/Amplifikaéni_modul.

CHONKA, A.) ZHou, W. and XIANG, Y. Defending Grid Web Services from XDoS
attacks by SOTA. In:. April 2009, p. 1 — 6. DOI: 10.1109/PERCOM.2009.4912895.

DDoS Protector [online]. Liberouter [cit. 2022-05-05]. Available at:
https://www.liberouter.org/technologies/ddos-protector/.

Eppy, W. TCP SYN Flooding Attacks and Common Mitigations [RFC 4987]. RFC
Editor, august 2007. DOI: 10.17487/RFC4987. Available at:
https://rfc-editor.org/rfc/rfc4987.txt.

ForouzaN, B. A. TCP/IP protocol suite. 4th ed.th ed. Boston: McGraw-Hill Higher
Education, 2010. ISBN 978-0-07-337604-2.

GENG, X. and WHINSTON, A. Defeating distributed denial of service attacks. IT
Professional. 2000, vol. 2, no. 4, p. 36-42. DOI: 10.1109/6294.869381.

GOLDSCHMIDT, P. Mitigation of DoS Attacks Using Machine Learning. Brno, CZ,
2021. Diplomova préace. Vysoké uceni technické v Brné, Fakulta informac¢nich
technologii. Available at: https://www.fit.vut.cz/study/thesis/23613/.

GoLDSCHMIDT, P. and KUCERA, J. Defense Against SYN Flood DoS Attacks Using
Network-based Mitigation Techniques. In: Proceedings of the IM 2021 - 2021
IFIP/IEEE International Symposium on Integrated Network Management.
International Federation for Information Processing, 2021, p. 772-777. ISBN
978-3-903176-32-4. Available at:
https://www.fit.vut.cz/research/publication/12359.

GRAY, J. and REUTER, A. Transaction Processing: Concepts and Techniques. 1stth
ed. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1992. ISBN
1558601902.

HoQUE, N., BHATTACHARYYA, D. K. and KAvriTA, J. K. Botnet in DDoS Attacks:
Trends and Challenges. IEEE Communications Surveys Tutorials. 2015, vol. 17,
no. 4, p. 2242-2270. DOI: 10.1109/COMST.2015.2457491.

53

https://www.rfc-editor.org/info/rfc793
https://redmine.liberouter.org/projects/ddos-protector/wiki/Amplifika�n�_modul
https://www.liberouter.org/technologies/ddos-protector/
https://rfc-editor.org/rfc/rfc4987.txt
https://www.fit.vut.cz/study/thesis/23613/
https://www.fit.vut.cz/research/publication/12359

[12]

[14]

[15]

[21]

[22]

Hui, K.-L., KM, S. H. and WANG, Q.-H. Cybercrime Deterrence and International
Legislation: Evidence from Distributed Denial of Service Attacks. MIS Quarterly:
Management Information Systems. june 2017, vol. 41, p. 497-523. DOI:
10.25300/MISQ/2017/41.2.08.

INTERNATIONAL TELECOMMUNICATION UNION. Data communication networks:
Open systems interconnection (OSI); security, structure and applications-security
architecture for open systems interconnection for CCIT applications:
Recommendation X.800. Geneva, Switzerland: Telecommunication Standardization
Sector of I'TU, 2008.

JACKO, D. Odvozovdni pravidel pro mitigaci DDoS utoku. Brno, CZ, 2021.
Bakalaiskd prace. Vysoké uceni technické v Brné, Fakulta informacnich technologii.
Available at: https://www.fit.vut.cz/study/thesis/23920/.

Jun, J.-H., OH, H. and KiMm, S.-H. DDoS flooding attack detection through a
step-by-step investigation. In: 2011 IEEE 2nd International Conference on
Networked Embedded Systems for Enterprise Applications. 2011, p. 1-5. DOL:
10.1109/NESEA.2011.6144944.

JuN, L. and LING, L. Comparative research on Python speed optimization strategies.
In: 2010 International Conference on Intelligent Computing and Integrated Systems.
2010, p. 57-59. DOI: 10.1109/ICISS.2010.5655011.

KARNWAL, T., SIVAKUMAR, T. and AGHILA, G. A comber approach to protect cloud
computing against XML DDoS and HTTP DDoS attack. In: 2012 IEEE Students’
Conference on FElectrical, Electronics and Computer Science. 2012, p. 1-5. DOL:
10.1109/SCEECS.2012.6184829.

KAVISANKAR, L. and CHELLAPPAN, C. A mitigation model for TCP SYN flooding

with IP spoofing. In: 2011 International Conference on Recent Trends in Information
Technology (ICRTIT). 2011, p. 251-256. DOI: 10.1109/ICRTIT.2011.5972435.

KukA, M., VoJANEC, K., KUCERA, J. and BENACEK, P. Accelerated DDoS Attacks
Mitigation using Programmable Data Plane. In: 2019 ACM/IEEE Symposium on
Architectures for Networking and Communications Systems, ANCS 2019. Institute of
Electrical and Electronics Engineers, 2019, p. 1-3. DOL:
10.1109/ANCS.2019.8901882. ISBN 978-1-7281-4387-3. Available at:
https://www.fit.vut.cz/research/publication/12068.

KuMAR, A. and PANDA, S. A Survey: How Python Pitches in I'T-World. In: 2019
International Conference on Machine Learning, Big Data, Cloud and Parallel
Computing (COMITCon). 2019, p. 248-251. DOL:
10.1109/COMITCon.2019.8862251.

KUMAR, S. Smurf-based Distributed Denial of Service (DDoS) Attack Amplification
in Internet. In: Second International Conference on Internet Monitoring and
Protection (ICIMP 2007). 2007, p. 25-25. DOI: 10.1109/ICIMP.2007.42.

KUCERA, J., VIKTORIN, J., HUTAK, L., KROBOT, P. et al. DCPro Protector Manual.
2022 [cit. 2022-05-07].

54

https://www.fit.vut.cz/study/thesis/23920/
https://www.fit.vut.cz/research/publication/12068

23]

[24]

[25]

[26]

[27]

[28]

[30]

[31]

32]

Liu, S. Surviving Distributed Denial-of-Service Attacks. IT Professional. 2009,
vol. 11, no. 5, p. 51-53. DOI: 10.1109/MITP.2009.109.

RAGHAVAN, S. and DAWSON, E. An Investigation into the Detection and Mitigation
of Denial of Service (DoS) Attacks: Critical Information Infrastructure Protection.
January 2011. ISBN 978-81-322-0276-9.

RossuM, G. van, WARSAW, B. and COGHLAN, N. Style Guide for Python Code. PEP
8. 2001. Available at: https://www.python.org/dev/peps/pep-0008/.

SIVAKUMAR, V., BALACHANDER, T., LOGU and JANNALI, R. Object Relational
Mapping Framework Performance Impact. Turkish journal of computer and
mathematics education. Trabzon: Karadeniz Technical University Distance Education
Research and Application Center. 2021, vol. 12, no. 7, p. 2516-2519. ISSN 1309-4653.

STANOJEVIC, V., VLAJIC, S., MILIC, M. and OGNJANOVIC, M. Guidelines for
framework development process. In: 2011 7th Central and Eastern European Software
Engineering Conference (CEE-SECR). 2011, p. 1-9. DOLI:
10.1109/CEE-SECR.2011.6188465.

SULTANA, S., NASRIN, S., Lip1, F. K., HOSSAIN, M. A., SULTANA, Z. et al. Detecting
and Preventing IP Spoofing and Local Area Network Denial (LAND) Attack for
Cloud Computing with the Modification of Hop Count Filtering (HCF) Mechanism.
In: 2019 International Conference on Computer, Communication, Chemical,
Materials and Electronic Engineering (IC4ME2). 2019, p. 1-6. DOL:
10.1109/IC4AME247184.2019.9036507.

SYN flood modul [online]. Liberouter [cit. 2022-05-07]. Available at:
https://redmine.liberouter.org/projects/ddos-protector/wiki/SYN_flood_modul.

VIAL, G. Lessons in Persisting Object Data Using Object-Relational Mapping. [IEFEE
software. Los Alamitos: IEEE. 2019, vol. 36, no. 6, p. 43-52. ISSN 0740-7459.

Zuu, W. and LEE, C. Internet security protection for IRC-based botnet. In: 2015
IEEE 5th International Conference on Electronics Information and Emergency
Communication. 2015, p. 63-66. DOI: 10.1109/ICEIEC.2015.7284488.

ZLOMISLIC, V., FERTALJ, K. and SRUK, V. Denial of service attacks: An overview.
In: 2014 9th Iberian Conference on Information Systems and Technologies (CISTI).
2014, p. 1-6. DOI: 10.1109/CISTI.2014.6876979.

55

https://www.python.org/dev/peps/pep-0008/
https://redmine.liberouter.org/projects/ddos-protector/wiki/SYN_flood_modul

Appendix A

Contents of the included storage
media

The root directory of the included storage media is structured in the following way:

root directory

source/ Source code

tdcpro_cfg_api/ Database API library
dcproctl/ Configuration tool source code

bin/ Executable files

tdcproctl Configuration tool shiv executable
dcproctl-completion Bash autocompletion script

man/ Manual page source code

doc/ Thesis source code

thesis.pdf Thesis text

README.md README file

56

Appendix B

Configuration Tool Interface

B.1 Commands with Examples

Rule Creation

dcproctl rule add <type> <rule_attributes>

dcproctl rule add filter --ip-dst 192.168.0.0/16 --disabled

Rule Modification

dcproctl
dcproctl
dcproctl

=+

dcproctl
dcproctl
dcproctl

+*

Displaying Rules

dcproctl
dcproctl
dcproctl

*H+

dcproctl
dcproctl
dcproctl

H+

rule
rule
rule

rule
rule
rule

rule
rule
rule

rule
rule
rule

edit
edit
edit

edit
edit
edit

show
show
show

show
show
show

<id> set <rule_attributes>
<id> add <multi_value_attributes>
<id> delete <multi_value_attributes>

1 set --ip-dst 2001:db8::/32 --enabled
2 add --ip-dst 127.0.0.0/24
3 delete --protocol UDP IGMP

by-id <id1> [<id2>, ...] [--overview | --json]
all [--detail | --json]
by-attributes <rule_attributes> [--detail | --json]

by-id 1 2 3 --json

all --detail
by-attributes --type filter --ip-dst 192.168.0.0/16

57

Rule Deletion

dcproctl rule
dcproctl rule

dcproctl rule
dcproctl rule

delete by-id
delete all

delete by-id
delete all

Rule Priority Modification

dcproctl rule
dcproctl rule
dcproctl rule
dcproctl rule

H OH H H

**

dcproctl rule
dcproctl rule

priority
priority
priority
priority

priority
priority

Rule Transaction

set
set
set
set

set
set

dcproctl rule transaction

<id1> [<id2>, ...]

<id> first
<id> last
<id1> before <id2>
<id1> after <id2>

3 first
2 before 1

dcproctl rule transaction < prepared_file

Displaying Statistics

dcproctl stats show <id> [--json]

dcproctl stats show 1

58

B.2 Rule Type Specific Arguments

Filter
Single value arguments/flags:

--enabled | --disabled
--description <description>
--dry-run {on,off}
--threshold-bps <threshold_bps>
—--threshold-pps <threshold_pps>
--vlan <vlan>

Multi value arguments:

—--port-dst <port_dst> [<port_dst> ...]
--port-src <port_src> [<port_src> ...]
—--ip-src <ip_src> [<ip_src> ...]
--ip-dst <ip_dst> [<ip_dst> ...]

--protocol {TCP,UDP,SCTP,ICMP,IGMP} [{TCP,UDP,SCTP,ICMP,IGMP} ...

Amplification
Single value arguments/flags:

--enabled | --disabled

--description <description>

--dry-run {on,off}

--threshold-bps <threshold_bps>

--threshold-pps <threshold_pps>

--vlan <vlan>

--fragmentation {ANY,YES,NO,FIRST,LAST,MIDDLE,NOFIRST}
--limit-bps <limit_bps>

--limit-pps <limit_pps>

--table-exponent <table_exponent>

Multi value arguments:

--port-dst <port_dst> [<port_dst> ...]

—--port-src <port_src> [<port_src> ...]

--ip-src <ip_src> [<ip_src> ...]

--ip-dst <ip_dst> [<ip_dst> ...]

--protocol {TCP,UDP,SCTP,ICMP} [{TCP,UDP,SCTP,ICMP} ...]
--packet-lengths <packet_lengths> [<packet_lengths> ...]
-—tcp-flags <tcp_flags> [<tcp_flags> ...]

59

Syn Drop
Single value arguments/flags:

--enabled | --disabled

--description <description>

--dry-run {on,off}

--threshold-bps <threshold_bps>
--threshold-pps <threshold_pps>

--vlan <vlan>

--threshold-syn-soft <threshold_syn_soft>
--threshold-syn-hard <threshold_syn_hard>
--table-exponent <table_exponent>

Multi value arguments:

--port-dst <port_dst> [<port_dst> ...]
—--port-src <port_src> [<port_src> ...]
—--ip-src <ip_src> [<ip_src> ...]
--ip-dst <ip_dst> [<ip_dst> ...]

TCP Authenticator

Single value arguments/flags:

--enabled | --disabled

--description <description>

-—dry-run {on,off}

--threshold-bps <threshold_bps>
--threshold-pps <threshold_pps>

--vlan <vlan>

--validity-timeout <validity_timeout>
--threshold-syn-hard <threshold_syn_hard>
--table-exponent <table_exponent>
--algorithm-type {RST_COOKIES,SYN_AUTH}

Multi value arguments:

--port-dst <port_dst> [<port_dst> ...]
-—port-src <port_src> [<port_src> ...]
--ip-src <ip_src> [<ip_src> ...]
--ip-dst <ip_dst> [<ip_dst> ...]

60

	Introduction
	DCPro DDoS Protector
	DDoS Attacks
	Internal structure
	Mitigation Rules
	Statistics

	Database API
	Motivation
	Design
	Implementation

	Configuration Tool Design
	Current Status
	Specifications
	User Interface and Arguments

	Configuration Tool Implementation
	Development Process
	Command Line Interface
	Internal Structure
	Argument Autocompletion
	Installation

	Conclusion
	Bibliography
	Contents of the included storage media
	Configuration Tool Interface
	Commands with Examples
	Rule Type Specific Arguments

