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Abstract. An efficient numerical algorithm is presented for 
the numerical modeling of the propagation of ultrashort 
pulses with arbitrary temporal and frequency 
characteristics through linear homogeneous dielectrics. 
The consequences of proper sampling of the spectral phase 
in pulse propagation and its influence on the efficiency of 
computation are discussed in detail. The numerical 
simulation presented here is capable of analyzing the pulse 
in the temporal-frequency domain. As an example, pulse 
propagation effects such as temporal and spectral shifts, 
pulse broadening effects, asymmetry and chirping in 
dispersive media are demonstrated for wavelet 
decomposition. 
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1. Introduction 
Propagation of ultrashort optical pulses in a linear 

optical medium consisting of free space [1-5], dispersive 
media [6, 7], diffractive optical elements [8, 9], focusing 
elements[10-12] and apertures [13-16] has been exten-
sively studied analytically, though only a few isolated 
attempts have been made on numerical simulation. Most 
studies are based analytical calculations assuming a plane 
wave or TEM00 Gaussian transverse profile and a Gaussian 
temporal profile for the pulse. The change in the spectral 
properties of the pulse on propagation of the pulse was 
investigated analytically by Sheppard and Gan [3] taking 
special forms of Gaussian pulsed beams. Agrawal [4] con-
sidered spatial broadening of diffracted pulses assuming 
Gaussian transverse and temporal profile. However, ana-
lytical methods have the limitations of not being able to 
handle arbitrary pulse profiles. Also, closed form solutions 
are often obtained after certain levels of approximations. 
This has motive a few studies based on the use of numeri-
cal simulation techniques in the analysis of pulse propaga-
tion. For example, Kaplan [5] introduced numerical 
evaluation by fast Fourier transform to analyze pulses of 

arbitrary temporal profile and investigated on-axis tempo-
ral evolution of the pulse in the far field. In view of the 
recent advance in ultrashort pulse propagation, a strong 
need is felt for developing a numerical formalism capable 
of performing such a complete analysis of the issues in-
volved in pulse propagation. 

Here we introduce a numerical simulation tool for 
propagation of ultrashort pulses of arbitrary shape through 
linear homogeneous media based on wave optical field 
representation [17] which enables an easy evaluation for 
the merit functions of the pulsed field. This allows us to 
analyze the pulse in the time-frequency domain at any 
arbitrary plane. With this tool, we investigate the spectral 
and temporal evolution of ultrashort pulses at any arbitrary 
propagation distance. The propagation of the pulse is 
achieved in terms of its spectral equivalent. Further, we 
introduce certain sampling rules for the spectral phase so 
that the phase information is sampled properly when we 
move from one spectral component to another in the spec-
tral equivalent of the pulse. As a consequence, the algo-
rithm becomes computationally efficient since we only 
considered a small number of spectral components for 
simulation of pulse propagation. 

2. Ultrashort Laser Pulses 
One very important feature of ultrashort laser pulses 

is the close relation between the pulse duration, τ, and the 
spectral bandwidth, Δw. This relation is manifested in the 
time-bandwidth product: τ·Δw ≥ 2π·cB where cB is a con-
stant that depends on the shape of the pulse and w is the 
angular frequency related to the frequency f, and wave-
length, λ through 

λ
ππ cfw 22 ==  . (1) 

If follows directly from (1) that the minimum achiev-
able duration is limited by the spectrum of the pulse. In 
other words, in order to produce ultrashort pulses a very 
broad spectral bandwidth is needed. The shortest possible 
pulse, for a given spectrum, is known as the transform-
limited pulse duration. It should be noted that (1) is not 
equality, i.e. the product can very well exceed 2π·cB. If the 
product exceeds 2π·cB the pulse is no longer transform-
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limited and all frequency components that constitute the 
pulse do not coincide in time, i.e. the pulse exhibits fre-
quency modulation is very often referred to as a chirp.  

2.1 Mathematical Description of Laser Pulses 
Ultrashort laser pulses are coherent bursts of electro-

magnetic radiation, confined in time and space. They are 
characterized by several parameters: temporal coherence, 
spatial coherence (i.e. focusing ability), contrast, power, 
etc. Here the description is concentrated on their temporal 
aspects.  

In order to completely describe a laser pulse, the tem-
poral profile, the spectral profile and the phase of the pulse 
have to be known. However, time and frequency are re-
lated through a Fourier transform and it is therefore suffi-
cient to know only two of these parameters since the third 
can always be calculated from the other two. 

2.1.1 Time-Domain Description 

Since in this paper the main emphasis is on the 
temporal dependence, all spatial dependence is neglected, 
i.e., E(x, y, z, t) = E(t), the electric field E(t) is a real quan-
tity and all measured quantities are real. However, the 
mathematical description is simplified if a complex repre-
sentation is used: 

tiwetAtE 0)(~)(~ −⋅=  (2) 

where Ã(t) is the complex envelope, usually chosen such 
that the real physical field is twice the real part of the com-
plex field, and w0 is the carrier frequency, usually chosen 
to the centre of the spectrum. In this way the rapidly vary-
ing is separated from the slowly varying envelope Ã(t).  
E(t) can be further decomposed into: 

))(()( 000 )(~)(~)(~ wtiitii eetEeetEtE −−− ⋅⋅=⋅⋅= Φϕϕϕ  (3) 

φ(t) is often referred to as the temporal phase of the pulse 
and φ0 the absolute phase, which relates the position of the 
carrier wave to the temporal envelope of the pulse (see 
Fig. 1). In Φ(t) the strong linear term due to the carrier fre-
quency, wt is omitted. The absolute phase is important 
mainly for pulses consisting of only a few cycles and has 
recently attracted a great deal of attention. The absolute 
phase has, for instance, been shown to be very important 
when generating high-order harmonics with few-cycle 
pulses.  

The instantaneous frequency w(t)  is given by the first 
derivative of the temporal phase 

( ) ( ) ( )
0w

dt
td

dt
tdtw −==

Φϕ  (4) 

which means that a nonlinear temporal phase yields a time-
dependent frequency modulation- the pulse is said to carry 
a chirp (illustrated in Fig. 2). 
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Fig. 1.  The electric field of an ultra-short lasers pulse consisting 

of only a few cycles. 
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Fig. 2. The electric field of an ultrashort lasers pulse with a 

strong positive chirp. Note the frequency variation as a 
function of time; at the leading edge (to the left) the 
wavelength is longer than at the trailing edge. 

2.1.2 Frequency-Domain Description 

It is usually more convenient to represent the pulse in 
the frequency domain rather than in the time domain. The 
frequency representation is obtained from the time domain 
by a complex Fourier transform, 

( ) ( ) dtetEwE iwt⋅= ∫
∞+

∞−π2
1  . (5) 

Just as in the time domain, E(w) can be written as 

( ) ( ) ( )wiewEwE ϕ~~ =  (6) 

where φ(w) now denotes the spectral phase. An inverse 
transform leads back to the time domain, 

( ) ( ) dwewEtE iwt⋅= ∫
∞+

∞−

~
2
1~
π

 (7) 

From (7) it is clear that E(t) can be seen as a superposition 
of monochromatic waves. 

The square of the spectral amplitude, |E(w)|2, repre-
sents the power spectrum, or spectral power density, which 
is the pulse parameter that is most easily accessible ex-
perimentally. It is commonly referred to as the spectrum of 
the pulse. 

The spectral phase can, in the same manner as the 
temporal phase, be decomposed into different parts. 
A common procedure is to employ Taylor expansion 
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It can be seen that the first two terms will not change 
the temporal profile of the pulse. A linear phase variation 
does not change the shape of the pulse, but only introduces 
a temporal shift of the entire pulse. Therefore, usually only 
the nonlinear part of the spectral phase is of interest. Any 
nonlinear addition to the phase will redistribute the 
frequency components and alter the temporal shape of the 
pulse. 

3. Propagation of a Light Pulse 
in a Transparent Medium 
What happens to a short optical pulse propagating in 

a transparent medium? Because of its wide spectral width 
and because of group velocity dispersion in transparent 
media, it undergoes a phase distortion inducing an increase 
of its duration. This happens with any optical element and 
needs to be properly corrected for in the course of 
experiments [18]. 

The frequency Fourier transform of a Gaussian pulse 
has already been given as 
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After the pulse has propagated a distance x, its 
spectrum is modified to 

( ) ( ) ( )[ ]zwikwEzwE ±= exp, , (10) 
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c
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where k(w) is now a frequency-dependent propagation 
factor. In order to allow for a partial analytical calculation 
of the propagation effects, the propagation factor is 
rewritten using a Taylor expansion as a function of the 
angular frequency, assuming that Δw << w0 (this condition 
is only weakly true for the shortest pulses). Applying the 
Taylor expansion to (11), the pulse spectrum becomes. 
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The time evolution of the electric field in the pulse is 
then derived from the calculation of the inverse Fourier 
transform of (13), 
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In the first exponential term of (14), it can be ob-
served that the phase of the central frequency w0 is delayed 
by an amount z/VΦ after propagation over a distance x. 
Because the phase is not a measurable quantity, this effect 
has no observable consequence. The phase velocity VΦ(w0) 
measures the propagation speed of the plane wave compo-
nents of the pulse in the medium. These plane waves do 
not carry any information, because of their infinite 
duration. 

The second term in (14) shows that, after propagation 
over a distance x, the pulse keeps a Gaussian envelope. 
This envelope is delayed by an amount z/Vg, Vg being the 
group velocity. 

The second term in (14) also shows that the pulse 
envelope is distorted during its propagation because its 
form factor Γ(z), defined as 
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depends on the angular frequency w through k’’(w) 
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This term is called the “Group Velocity Dispersion”. 

The temporal width of the pulse at point z: 
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3.1 Application in Silica 
The index of silica is given by the following 

expression [19] 
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where wi is the frequency of resonance and Bi is the 
amplitude of resonance 
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Bi  0.6961663  0.4079426  0.8974794  

λi(μm) 0.0684043 0.1162414    9.896161    

Tab. 1. Parameters for Bulk-fused silica. 

In the case of optical fibres, the parameters wi and Bi are 
obtained experimentally by fitting the measured dispersion 
curves to (19) with m = 3 and depend on the core 
constituents [20-21]. 

3.2 Parameter of Dispersion 
One can also define the coefficient CD  controlling the 

frequency shifts such as 

D
zCD =   with  

kz
D

′′⋅
=

2
0τΔ . (20) 

D is called parameter of dispersion. This parameter meas-
ures the relative importance of chromatic dispersion. z is 
the length of the medium crossed by the pulse laser [19]: 
If z < D, the group velocity dispersion is negligible. If 
z > D, it is necessary to take account of the dispersive 
effects. 
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Fig. 3. Variation of group velocity dispersion k” and dispersion 

parameter D (solid line) with wavelength for fused silica. 

We consider dispersions of orders two. The pulse broadens 
on propagation as a result of group velocity dispersion 
(GVD). In summary, the propagation of a short optical 
pulse through transparent medium results in a delay of the 
pulse, a duration broadening and a frequency chirp. 

       Pulse duration  in (fs) 

nm800=λ

 
Fig. 4. Temporal broadening of the transform-limited pulse for 

different values of the propagation distance z. 

3.3 Group Velocity Dispersion 
The Group Velocity Dispersion (GVD) is defined as 

the propagation of different frequency components at dif-
ferent speeds through a dispersive medium. This is due to 
the wavelength-dependent index of refraction of the dis-
persive material. GVD causes variation in the temporal 
profile of the laser pulse, while the spectrum remains un-
altered. A transform-limited pulse is also called short pulse 
or unchirped pulse. It is said that the initial short pulse will 
become positively chirped (or upchirped) after propagating 
through a medium with "normal" dispersion (e.g. silica 
glass). This corresponds to the situation when higher fre-
quencies travel slower than lower frequencies (blue slower 
than red). The opposite situation, where the pulse travels 
through a medium with "anomalous" dispersion, leads to a 
negative chirp (or downchirp). Here the bluer frequencies 
propagate faster than the redder frequencies. 

To the first place we limited only to the order two of 
the Taylor expansion of the phase. It is noticed that the 
analysis of Fourier remains valid only for durations of 
pulse which are higher than ≈ 60 fs. 

In addition media we consider all higher order disper-
sion, which completely describes the physical processes 
involved in ultrashort dispersive pulse dynamics. The pulse 
broadens in time and becomes asymmetric. In addition, the 
off axis pulse becomes wider than the pulse on axis [20]. 
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The various terms of the Taylor expansion to order n 
can be written in the shape of a matrix [A], which’s we can 
express various terms Aij 
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with p > 2. 

Analytically known and experimentally observed 
propagation effects such as spectral shift, pulse broadening 
and asymmetry in dispersive media can be easily brought 
out in the simulation using formalism presented here. In 
addition, such studies can be extended to pulses of arbi-
trary temporal shape without any further algorithmic com-
plexity by numerical simulation. Higher order dispersion 
effects can be handled easily in the numerical simulation 
unlike in the case of analytical calculation [22]. 

Discussion 

The Fourier theorem is the most classical approach 
for describing the propagation of electromagnetic signals 

Δt in (fs) 

Δτ0 
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through dispersive media. In the case of signals character-
ized by a slow temporal varying envelope, the phase is 
usually approximated by the Taylor expansion in the 
neighborhood of the central frequency of the input pulse. 
For shorter pulses, the concept of group velocity is irrele-
vant and the envelope distortion is a function of the higher 
order terms. Ultrashort pulses less than 10 fs are now 
available. Their envelope harmonic content is so high that 
the Taylor expansion of the phase is now more possible. 
There is no other way than a numerical computation of the 
Fourier integral. However this method does not permit a 
straightforward physical understanding of the envelope 
propagation and principally does not picture the fact that 
this is the group velocity dispersion which generates the 
ultrashort pulses distortions. Such a situation claims for 
another type of decomposition involving both a time and 
frequency dependence of the components. Numerous bidi-
mensional representations of acoustic and electromagnetic 
signals have already been suggested. We propose here a 
method derived from the Gabor transformation in order to 
decompose the signal into an infinite number of elementary 
components (wavelet) of the same duration (much longer 
than that of the original signal), each of them being cen-
tered at a frequency Ω belonging to the Fourier spectrum 
of the pulse. 
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Fig. 5.a The pulse broadens on propagation as a result of group 
velocity dispersion (GVD) (λ=800 nm, z=4 mm). 
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Fig. 5.b The pulse shape is no longer Gaussian and it becomes 

asymmetric due to higher order dispersion. 

4. Time-Frequency Decomposition 

4.1 Wavelet Theory 
In 1983 geophysicist Jean Morlet proposed a revolu-

tionary process, the analysis and the synthesis by the 
wavelet, which makes it possible to analyze signals effec-
tively or combine very different phenomena of scales. 

The wavelets are very particular elementary func-
tions, these are the shortest vibrations and most elementary 
that one can consider. One can say that the wavelet east 
carries out a zooming on any interesting phenomenon of 
the signal which place on a small scale in the vicinity of the 
point considered [23]. 

4.2 Wavelet Techniques 
Starting with a signal e(t), in the plane z = 0, we 

define a wavelet centered at  Ω  by 
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We calculate the electric field associated with the wavelet 
θ(Ω, z = 0). 
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In time, the pulse is also Gaussian, of parameter 

Γγ
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+

. 

The maximum of amplitude of the wavelet θ(t, z = 0)  
varies with Ω [22]. 

Ω  

)(Ωθ  

0wΔ  

wδ  

 

 

 
Fig. 6. Gaussian envelope decomposed into a number of 

wavelets. 
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The signal propagates in the positive x direction in a 
linear dispersive and transparent medium, which fills the 
half space z > 0 and whose refractive index is n(w). After 
propagation, the wavelet θ(Ω, x) may be written as 
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As already mentioned, τwavelet is large enough to ensure that 
analyzing function has only non negligible values over a 
spectral range lying in the neighborhood of Ω in Fig. 6. 
Under these circumstances, we have 
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Neglecting the higher terms in (28) 
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We calculate the temporal electric field associated with the 
wavelet  θ(Ω,z).  
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The amplitude of the incident Ω wavelet is given  
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This wavelet is characterized by a Gaussian envelope. 
This decomposition is valid only for the values of Δw 
much larger than δw (Δw  >> δw ). 

The delay of group of the wavelet [t + z/Vg(Ω)] is 
characterized by a Gaussian envelope which is the tempo-
ral width.  

The delay of group of the wavelet is inversely 
proportional to the velocity of group its envelope 
propagates without deformation [22]. 

4.3 Simulations 
Parameters of the simulations  

Initial pulse:                Δτ0 = 5 fs   

Wavelength :              λ = 800 nm 

Pulse of the wavelet:  Δτwavelet = 1000 fs  

Length of the silica :  z = 5 cm 

To describe the propagation of the pulse, we only consider 
the propagation of the maximum of each wavelet in a three 
dimensional representation. 
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Fig. 7. (a) Initial pulse, (b) Initial wavelet, (c) Contour of the 

initial wavelet, (d) Pulse after propagation of 5 cm in the 
fused silica, (e) the wavelet representation, and (f) 
contour of the wavelet after propagation of 5 cm in the 
fused silica. 
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Fig. 8. (a) Contour of the initial wavelet, (b) contour of the 

wavelet after propagation of 2 cm in the fused silica, (c) 
contour of the wavelet after propagation of 5cm in the 
fused silica. 

5. Conclusions 
In conclusion, we have demonstrated here the possi-

ble decomposition of an ultrashort pulse into an infinite 
number of longer Fourier transform limited wavelets which 
propagate without any deformation through a dispersive 



RADIOENGINEERING, VOL. 17, NO. 1, APRIL 2008 63 

medium. After propagation through the medium, the pulse 
may be visualized in a three dimensional representation by 
the locus of the wavelet maxima. This representation per-
mits the evaluation of the broadening suffered by the pulse. 
For a transparent medium, the propagation of the Ω wave-
let is described by the convolution of the incident Ω wave-
let with a θ(Ω) distribution centered at the group delay 
relative to Ω. 

The application to absorbing media is relatively 
straightforward and will be presented in a further publica-
tion, as well as a generalization to nonlinear media. The 
time-frequency representation is peculiarly suitable to the 
latter case for which the refractive index is phenome-
nological time dependent. 

Although this technique represents a vast improve-
ment in our ability to describe such pulses, they require 
additional effort, both in the apparatus and in the extraction 
of the pulse intensity and phase from the experimental 
trace. 
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