
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
DEPARTMENT OF INFORMATION SYSTEMS
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

REVERSE TRACEROUTE
REVERSE TRACEROUTE

MASTER’S THESIS
DIPLOMOVÁ PRÁCE
AUTHOR Bc. RADIM HRAZDIL
AUTOR PRÁCE
SUPERVISOR Ing. MATĚJ GRÉGR, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2018

Abstract
This thesis deals with finding a reverse path between two hosts in the Internet. A tool
providing information about reverse path could be priceless in situations in which some
customers experience high latency when accessing a service. The standard tool for forward
path discovery is traceroute. Traceroute is described in a great detail along with its exten-
sions and limitations, especially in load-balanced environment. However, if the problem is
on the path from customers to a service provider, it may not be a trivial task to find it from
the provider’s side. Related projects dealing with packet tracing and network diagnostic
tools are studied. Integral part of this thesis is the design and implementation of a tool that
is able to approximate return path from an arbitrary host. Implemented tool is evaluated
using deployed test network as well as in real world conditions using a virtual private server
as a reference.

Abstrakt
Tato práce se zabývá problematikou zjišťování zpětných cest v Internetu. Nástroj, který by
byl schopen určit zpětnou cestu, by mohl být cenný v například v případech, kdy určitá část
zákazníků pozoruje zvýšenou latenci při využívání služby. Klasickým nástrojem pro analýzu
cesty k cílovému počítači je traceroute. Práce se detailně zabývá diagnostickým nástrojem
traceroute a jsou diskutovány nejen jeho rozšíření, ale také nedostatky v sítích, kde se
vyskytuje vyvažování provozu, a jejich možná řešení. Nicméně, pokud se problém nachází
ve směru od zákazníků k poskytovateli služby, pak odhalení problému může být problem-
atické. Dále je studován existující výzkum v oblasti zjišťování zpětných tras v Internetu a
nástroje pro diagnostiku sítě. Součástí práce je navržení a implementace nástroje, který je
schopen aproximovat zpětnou cestu s využitím vhodné RIPE Atlas sondy a získaná data
dále analyzovat. Implementovaný nástroj byl testován na vytvořené topologii i v reálném
provozu s využitím referenčního virtuálního serveru.

Keywords
traceroute, reverse traceroute, paris traceroute, traceroute anomalies, ripe, atlas

Klíčová slova
traceroute, reverzní traceroute, pařížský traceroute, traceroute anomálie, ripe, atlas

Reference
HRAZDIL, Radim. Reverse Traceroute. Brno, 2018. Master’s thesis. Brno University of
Technology, Faculty of Information Technology. Supervisor Ing. Matěj Grégr, Ph.D.

Rozšířený abstrakt
Tato diplomová práce má za cíl navrhnout a implementovat nástroj, který je schopen aprox-
imovat cestu, kterou je směrován datový provoz od vzdáleného počítače, ke kterému uživatel
nemá přímý přístup, k lokálnímu počítači.

Kapitola 2 se stručně zabývá historií vývoje síťových protokolů, vedoucí ke standardizaci
protokolu TCP/IP, jejíž verze IPv4 je dnes stále zdaleka nejpoužívanější. Jsou zde popsány
a vysvětleny hlavičky protokolů ICMP, TCP, UDP a IP, jejichž znalost je nutná k pochopení
mechanismů pro trasování datového provozu.

Těmito mechanismy se detailně zabývá kapitola 3. Je zde popsán algoritmus původní
verze programu traceroute využívající protokol UDP, později rozšířen i pro protokoly TCP
a ICMP, na jehož principu fungují i moderní implementace. K těm patří zejména Paris
traceroute a Dublin traceroute. Tyto nástroje se kromě zjištění cesty datového provozu
snaží vypořádat s moderními technologiemi, jejichž nasazení má negativní vliv na schopnost
původního algoritmu správně odhalit cestu, kterou jsou datagramy směrovány k danému
cíli. Jedná se především o vyvažování zátěže, kdy jsou datagramy směrovány k cíli vícero
cestami. Další často využívanou technologií je MPLS, kdy jsou datagramy při vstupu do sítě
"označkovány" hraničními routery, a uvnitř této sítě jsou pak směrovány pouze na základě
těchto značek. Tyto technologie vedou k různým anomáliím ve výstupu nástroje traceroute,
které jsou v této kapitole postupně popsány a ilustrovány. Čtenář se také dozví, jakým
způsobem se s těmito anomáliemi snaží vypořádat již zmíněná moderní implementace, Paris
traceroute. Nakonec jsou v této kapitole studovány řešení souvisejících projektů Reverse
traceroute a DisNETPerf.

Kapitola 4 popisuje možnosti, které nabízí organizace RIPE. Je zde popsána infrastruk-
tura RIPE Atlas, což je síť hardwarových sond, které jsou rozmístěny po celém světě a jsou
schopny provádět různá diagnostická měření, včetně Pařížšké verze nástroje traceroute. Je
zde také představena veřejně přístupná databáze RIPEstat, ze které je možné získat různé
informace k jakékoli registrované IP adrese. Zbývající část kapitoly se zabývá pokročilými
nástroji pro diagnostiku počítačových sítí – My Looking Glass a Mtr.

V kapitole 5 jsou analyzovány požadavky na nástroj postavený nad infrastrukturou
RIPE Atlas. Dále jsou v kapitole postupně navrženy jednotlivé kroky, které jsou nutné
k úspěšné aproximaci zpětné trasy od libovolného cílového počítače. Tyto kroky zahrnují
strategii výběru vhodné RIPE sondy, zvolení metody pro nalezení cest mezi dvěma počítači
v obou směrech a způsob, jakým se získaná data zpracují, analyzují a prezentují uživateli.
Následující kapitola 6 pak v obdobném sledu detailně popisuje, jak jsou tyto stavební
kameny implementovány.

Kapitola 7 se zabývá testováním a vyhodnocením implementovaného nástroje. Nejprve
je představena vytvořená testovací topologie, na které bylo sledováno chování použité
metody pro enumeraci cest a základní analytická funkčnost implementovaného nástroje.
Jelikož je implementovaný program do značné míry závislý na datech získaných z databáze
RIPEstat – například čísla autonomních jednotek, byl nástroj ve větším měřítku testován v
reálném provozu. K tomu byl jako referenční bod využit virtuální privátní server s možností
SSH přístupu. Získané výsledky jsou prezentovány i s patřičným komentářem.

Objevené nedostatky jsou shrnuty v kapitole 8, kde jsou také uvedeny možná vylepšení
a prostor pro další výzkum.

Reverse Traceroute

Declaration
Hereby I declare that this master’s thesis was prepared as an original author’s work under
the supervision of Ing. Matěj Grégr, Ph.D. All the relevant information sources, which
were used during preparation of this thesis, are properly cited and included in the list of
references.

. .
Radim Hrazdil

May 22, 2018

Acknowledgements
Hereby I thank to my supervisor Ing. Matěj Grégr, Ph.D for his time, numerous advice to
this thesis and help with deployment of the test network.

Contents

1 Introduction 3

2 Network Concepts 4
2.1 Network Architecture . 4
2.2 OSI model . 4
2.3 TCP/IP model . 5

3 Packet Path Discovery 9
3.1 Traceroute . 9
3.2 Network mechanisms affecting traceroute 10
3.3 Traceroute anomalies . 12
3.4 Traceroute extensions . 14
3.5 Paris traceroute . 15
3.6 Dublin traceroute . 18
3.7 Reverse traceroute . 18
3.8 DisNETPerf . 20

4 Network Diagnostics 22
4.1 RIPE Atlas . 22
4.2 My Looking Glass . 24
4.3 Mtr . 25

5 Rtraceroute Design 27
5.1 Specification analysis . 27
5.2 Atlas probe selection . 28
5.3 Proof of concept . 29
5.4 Path enumeration . 30
5.5 Path analysis . 31

6 Implementation 33
6.1 Probe selection . 33
6.2 Traceroute measurements . 34
6.3 Path analysis . 35
6.4 Graphical visualization . 37

7 Evaluation 39
7.1 Test topology . 39
7.2 Real world conditions . 40

1

7.3 Discovered issues . 43

8 Conclusion 44

Bibliography 46

A Content of the attached DVD 49

2

Chapter 1

Introduction

Traceroute is a widely used tool for analysis of network problems or even for assemblage
of Internet maps. Because of asymmetric routing in today’s Internet, traceroute cannot
provide information about the path taken by traffic coming from a distant host to a local
machine. A tool providing such information could be priceless in situations where customers
experience high latency connection, but from the server perspective, no problems can be
observed.

This thesis has the following structure. Chapter 2 describes brief history of network
architecture evolution and basic concepts of network communication are introduced. Header
fields of crucial protocols like ICMP, TCP and UDP are closely examined.

Chapter 3 explains basic idea behind the original traceroute tool and how it evolved over
the years. Several extensions developed to make traceroute more reliable or to provide more
pieces of information to better reflect new network technologies are described. Additionally,
known issues of using traceroute in a load-balanced environment are discussed and possible
solutions are presented. Related work that focuses on reverse path discovery is discussed
as well.

Chapter 4 introduces network diagnostic tools starting with the RIPE Atlas infras-
tructure of hardware probes scattered around the world. These probes can be used for
conducting various kinds of measurements and the resulting data are available for the pub-
lic to access. Subsequently, high-level diagnostic tools providing additional information and
real-time monitoring are introduced.

Chapter 5 analyzes requirements for forward and reverse path discovery and based on
these requirements presents design of a tool that utilizes Paris traceroute and Atlas probes
to discover forward and return path for an arbitrary host.

Implementation of the designed solution is thoroughly covered in chapter 6. The chapter
is structured similarly to chapter 5 and individual sections build on the presented ideas
which are further extended.

Evaluation of the implemented tool is presented and discussed in chapter 7. The im-
plemented tool is tested in an isolated network to observe its behaviour in load-balanced
environment as well as in real world conditions. To objectively assess the reported results, an
accessible virtual private server is used as a destination host for reference.

Chapter 8 summarizes results collected by the implemented tool and presents possible
improvements and a new space for future research.

3

Chapter 2

Network Concepts

In this chapter, basic models of network architecture are introduced. Namely, the Open
Systems Interconnect Reference Model defined by International Standards Organization
(OSI) is described. Although the OSI model has never been fully implemented and put
into use because of its complexity, it serves as a reference for the TCP/IP model which is
derived from the ISO/OSI and is widely used in today’s networks.

2.1 Network Architecture
Several network architecture models were developed in the evolution of computer networks.
AppleTalk was a proprietary suite of network protocols developed by Apple Computer Inc.
in 1985. AppleTalk allowed for local area networks to be connected without any prior
configuration, provided that names of all services in the connected network remain unique.
Another proprietary model developed by IBM was called Systems Network Architecture
(SNA). SNA was used to enable communication between host computers (IBM mainframes)
and peripheral nodes (IBM’s dedicated hardware boxes). Some businesses have invested
a big amount of money in the development of SNA applications and may therefore still
use a technology known as SNA/IP (“SNA over IP”) developed by IBM to preserve those
investments after TCP/IP model started to be used in the majority of networks [22]. Today,
TCP/IP is without any doubt the most used protocol suite.

The following sections introduce similarities and differences between ISO/OSI and TCP/IP
models.

2.2 OSI model
The OSI reference model is based on a proposal made by the International Standards
Organization as the first step towards international standardization of protocols used in
each layer. The OSI model has seven layers and can be seen in Figure 2.1. Description of
the purpose of each layer starting from the top in a brief manner follows [14].

∙ Application Layer contains protocols commonly needed by users – HTTP for ac-
cessing the World Wide Web or FTP for transferring files.

∙ Presentation Layer handles syntax and semantics of the transmitted data. In other
words, this layer allows for computers with different operating systems and different

4

application layer

presentation layer

session layer

transport layer

network layer

datalink layer

physical layer

application layer

application layer

transport layer

internet layer

network interface

layer

TCP, UDP

IP

Ethernet, Frame

Relay

HTTP, DNS, FTP
application

messages

segments

datagrams

frames

OSI model TCP/IP model

bits

Figure 2.1: Comparison of ISO/OSI and TCP/IP model. Names of data units sent on each
layer and example of well-known protocols operating on each layer (source: [15]).

architectures to exchange data. This is achieved by defining a variety of data formats
(ASCII, UTF-8), compressions and encodings.

∙ Session Layer manages connections between communicating machines (processes
running on them). It provides services to establish and terminate session, control
dialogue and synchronization.

∙ Transport Layer handles the end-to-end data transfer from the source to the
destination. All underlying layers interact only with direct neighbours. The transport
layer provides three types of transport connections – error-free transport, transport
with error detection and unreliable data transport.

∙ Network Layer ensures correct addressing and routing between networks. The layer
also deals with quality of service provided (delay, jitter) and handles congestion, when
too many packets are present in a network.

∙ Data Link Layer defines data transmission for specific transmission facility. Input
data from the upper layer is broken up into data frames.

∙ Physical Layer transmits raw bits over a communication channel. The main concern
of this layer is to make sure, that when one side sends a bit with a logical value of 1,
the other side receives this bit also as a logical 1 and vice versa.

2.3 TCP/IP model
The architecture used today in most networks all over the world is known as TCP/IP, after
its two primary protocols – Transmission Control Protocol (TCP) and Internet Protocol
(IP). It is a real-world implementation of the ISO model. Comparison of both models can

5

be seen in Figure 2.1. The TCP/IP model is built on four layers instead of seven, so it is
slightly simplified when compared to OSI model [14].

Application Layer

The Application Layer contains all the high-level protocols (HTTP, DNS, etc.). As session
and presentation layers were not considered to be necessary, applications have to include
any session and presentation functions that they may require.

Transport Layer

The Transport Layer handles end-to-end communication as it does in OSI model. This
layer relies on two protocols – TCP and UDP. TCP is a connection-oriented protocol that
ensures error-free delivery and also allows the receiving side to reassemble received segments
into original data in correct order. UDP, on the other hand, is a connection-less protocol
and does not provide error-correction nor does it ensure the data to be delivered in the
same order as it was sent. Thus, if error correction or other services are required, they
need to be handled by the communicating applications. As a result of this simplicity,
UDP has substantially less overhead than TCP, which makes it more suitable for certain
applications like Voice-over-IP (VoIP) or video streaming. In these applications, errors
cannot be effectively corrected, because the time consumed by retransmission would cause
the sound or video stream to break down. Detailed structure of TCP packet can be seen
in Figure 2.2. UDP header layout can be found in Figure 2.3.

Figure 2.2: Header layout of TCP (source: [22]).

At the beginning of TCP header, there are Source port and Destination port fields. Port
combined with an IP address uniquely identifies a process running on a host. The Sequence
number and Acknowledgement number are used to establish a connection (the Three-Way
Handshake) and to keep track of how much data has been sent and correctly received by
the receiving side.

The TCP header length tells how many 32-bit words are taken by the TCP header,
indicating where the data contained in a TCP packet start.

6

Next come eight 1-bit flags used to manage congestion in a network, establish, close and
reset connection and reject segments with errors.

The Checksum field is used to increase reliability and detect possible errors. It is calcu-
lated from Source address, Destination address, TCP Protocol number (6) and TCP Length
[10].

Next follows Options field. These options are of a variable length, so each option is
provided in Type-Length-Value format. An example of such option is Maximum Segment
Size, which is exchanged by communicating hosts when the connection is being established
so that the communication can be more efficient. Finally, Data field is occupied by the
actual data.

Structure of UDP header is very simple in comparison with TCP header. It only contains
fields necessary for a segment to be delivered to a correct endpoint (process), as is displayed
in Figure 2.3. Source port and Destination port have the same purpose like in TCP, UDP
length is the size of the UDP segment including the header itself and UDP Checksum is
calculated from the same pseudo header as it is in TCP, only the protocol number is different
(17).

Figure 2.3: Header layout of UDP (source: [22]).

Internet Layer

The Internet Layer is responsible for correct routing of IP datagrams (packets) to a destina-
tion. The Internet layer specifies packet format and a protocol called IP (Internet Protocol).
Additionally, supporting protocol called Internet Control Message Protocol (ICMP) is de-
fined to handle issues during IP datagram delivery (errors, time-to-live exceeded, etc.).
Header format of an IP datagram is displayed in Figure 2.4

Figure 2.4: The IPv4 header (source: [22]).

The Version field indicates which version of the protocol is used. Today the version 4
is still dominantly used, but according to Google statistics, the share of users accessing

7

Google services over IPv6 has reached 23% by the end of 2017.1 IHL indicates length of
the header in 32-bit words, since the maximum value is 15 the header length is limited to
60 bytes. Differentiated services fields is used to indicated service class the packet belongs
to and to give notice of possible congestion. Total length gives the size of the entire packet.
Identification and Fragment offset are used by the receiving host to reassemble received
fragments of the original packet.

Time to live is a counter used to limit the lifetime of packets. TTL is often initialized to
the value of 255 or 64, but it is entirely dependent on AS policies. The TTL value must be
decremented on each hop along the way. When the value reaches zero, a packet is discarded
and an ICMP message informing about such event (ICMP Time Exceeded) is sent to the
sender.

Protocol tells network layer which transport process to give the packet to when being
processed by the destination host.

Checksum is used to detect errors. It needs to be recalculated by each node because TTL
needs to be changed (decremented) at the least. Next come Source address and Destination
address used by intermediary nodes to correctly route the packet to its destination. Before
the actual data, the Options field follows. Originally, five options were specified: security,
strict source routing, loose source routing, record route and timestamp.

Security option indicates level of secrecy. Strict source routing is used to provide the
complete path to the destination. Loose source routing, as the name suggests, is only a list
of routers not to be missed. These options may be of use when routing tables have been
corrupted.

Record route option allows the route taken by the datagram to be recorded. It is worth
noting, that only the route taken by the first fragment is recorded, routes of possible other
fragments are not recorded. Each router along the path adds its IP address to the Options
field. The options data field can accommodate up to 9 addresses. Timestamp option allows
listing IP addresses of routers, which are requested to add a timestamp when processing
the packet. So it can be determined, whether the datagram has travelled trough certain
router or not.

However, according to [22], some routers may ignore these options. This and the fact,
that the room available to store data acquired by these options is limited renders them
difficult to use in today’s networks.

Link Layer

The Link Layer defines standards for accessing various physical transmission media (Ether-
net, FDDI, Frame Relay, etc.). This layer is responsible to encapsulate IP datagrams into
frames.

For the purposes of this project, the most important layers of TCP/IP model are the
internet layer and the transport layer, because these are the central piece of the layered
architecture. Application and Link layers are briefly introduced for the sake of completeness.

1https://www.google.com/intl/en/ipv6/statistics.html

8

https://www.google.com/intl/en/ipv6/statistics.html

Chapter 3

Packet Path Discovery

The first part of this chapter describes fundamentals of original traceroute implementation.
Description of commonly used mechanisms that may affect traceroute results are introduced
as well. Furthermore, advanced implementations are introduced, namely, Paris traceroute,
a tool trying to overcome most of the original traceroute flaws, and Dublin traceroute, a
more recent tool taking Paris traceroute’s idea a step further by detecting NATs. Finally,
existing research dealing with reverse path discovery is studied.

3.1 Traceroute
Traceroute is widely known and used computer network diagnostic tool to discover path
from a source host to a destination host. It was originally developed with the intention to
provide quick and dirty debugging tool, which could be used to determine which network
device, or at least which network segment, is causing problems. To achieve this, tracer-
oute utilizes the IP protocol’s TTL field and attempts to induce an ICMP Time Exceeded
response from each Layer 3 device along the path to the destination host [23].

Several variations of this tool have been implemented and all of them share the same
concept [21].

1. Source host sends a so-called probe packet toward a destination host with TTL value
of 1 and Destination Port value of 33434.

2. Each router along the path decrements the TTL of the probe packet.

3. If the value of TTL hits 0, the router discards the probe packet and sends an ICMP
Time Exceeded message to the source host. Note, that the Source address of the
ICMP Time Exceeded message is the ingress interface the probe packet was received
on.

4. The source host receives an ICMP Time Exceeded and prints a traceroute ”hop“.

5. The source host increments the TTL value and starts again from the step 1 until a
response from the destination host is received or a TTL limit is reached.

Original Unix traceroute implementations use UDP datagrams as the probes. The des-
tination port is set to a value allocated for traceroute – 334341. Most implementations

1https://www.iana.org/assignments/service-names-port-numbers

9

https://www.iana.org/assignments/service-names-port-numbers

increment the destination port for every next probe sent. As the default setting for maxi-
mum TTL is usually 32, the range of ports used would be in range 33434–33529. When the
destination host receives a UDP datagram destined to a port that no application listens
on, the ICMP Destination Unreachable response should be sent back to the sender.

Modern traceroute implementation (tcptraceroute) also supports TCP and ICMP pro-
tocols2. The reason for using these protocols are firewalls configured to filter datagrams
that are destined to unused or unlikely used ports. However, in many cases, these firewalls
will permit inbound TCP packets to specific ports that the hosts sitting behind the firewall
are listening on. If these packets were to be dropped, servers behind such firewall wouldn’t
be able to provide service, so it is in the system administrator’s best interest to have them
allowed. Example of such service is the World Wide Web with port 80.

When TCP protocol is used for packet probes, SYN packets are sent with TTL gradually
increased by 1. Using SYN packets is how any TCP connection is established during the
process called three-way handshake and therefore is not usually filtered. When a SYN
packet is delivered to the destination host, a SYN-ACK response packet is sent to the
source host. Upon receiving this response by the source host, the traceroute is complete.
This technique is often referred to as half-open scanning technique [24]. By sending TCP
SYN packets instead of UDP, traceroute is able to bypass most of the common firewall
filters. A proper traceroute implementation should send a FIN packet to the scanned hosts
so that the connections are not left open.

Another option usually available in traceroute implementations is to use ICMP probes.
In this case, traceroute sends ICMP Echo Request packet toward the destination with TTL
initially set to 1. Upon each ICMP Time Exceeded message, a traceroute ”hop“ is printed
and a new ICMP Echo Request is sent with incremented TTL value. This process repeats
until ICMP Echo Reply is received from the destination. The downside of this technique
is that ICMP Echo Reply messages are often being disabled by system administrators. For
example, Windows Firewall on Windows Server machines has blocked ICMP Echo Reply
messages by default since version 2012 R2 [13].

Similar problems may occur at intermediary routers as well, which results in an asterisk
(*) to appear in the traceroute output instead of an IP address. By default, three probes
are sent with the same TTL, so three asterisks (* * *) can be often seen in a traceroute
output. This means that probes on this router are either completely filtered or rate limited.
Traceroute offers additional configuration options to handle such situations. Normally
several probes are sent simultaneously, which generates the same number of reply messages
in a short time interval. Routers may be configured to throttle the rate of ICMP responses,
which then means that some probes are discarded without a reply. To avoid this, there
is usually an option to decrease the number of simultaneously sent probes. Another way
to improve traceroute result is to increase the delay between individual probes. On Linux
traceroute implementation, this can be done by -z y parameter, where y stands for time
interval in seconds. These settings should allow obtaining better results from traceroute
measurements but at the cost of longer measurement time.

3.2 Network mechanisms affecting traceroute
Unfortunately, not all problems can be solved by changing traceroute parameters. In this
section, mechanisms that may cause traceroute to report incorrect results, are described.

2https://www.freebsd.org/cgi/man.cgi?query=tcptraceroute&manpath=CentOS+7.1

10

https://www.freebsd.org/cgi/man.cgi?query=tcptraceroute&manpath=CentOS+7.1

Load Balancing

Traffic load balancing is a mechanism to distribute traffic among multiple paths and ac-
cording to authors of the Paris traceroute [3], load balancing occurs in 30% of the paths.
There are three categories of load balancing mechanisms [11].

∙ Per-flow load balancing distributes traffic according to their so-called flow. A flow
is defined as a unidirectional sequence of packets with some common properties that
pass through a network device [5]. As common properties are considered the source
and destination IP, source and destination port, protocol and time interval between
individual packets [15].

∙ Per-packet load balancing distributes each packet separately among all available
links. Usually, packets are distributed randomly or in a round-robin fashion.

∙ Per-destination load balancing distributes each packet based on its destination.
This mechanism doesn’t cause any problems to traceroute because each probe travels
through the same path.

At first sight, it may seem that per-flow load balancer doesn’t cause any problems to
traceroute, because all the probe packets should be recognized as one flow, but that is not
the case [2]. Traceroute systematically varies header fields that are not vital for the delivery
itself (Destination port in UDP probes or Sequence number in ICMP probes). The reason
for this is to measure round trip time of each probe individually, therefore each probe needs
to have a unique number. By randomly changing these numbers, per-flow load balancer
doesn’t recognize individual probes as one flow, which effectively results in a per-packet
load balancing.

The only kind of load balancing that doesn’t affect traceroute results is per-destination
load balancing. However, the downside of this strategy is that traffic will use the same path
leaving the other paths not utilized, if the majority of the traffic is destined to a specific
host.

Multiprotocol Label Switching

Multiprotocol Label Switching (MPLS) is a mechanism operating between layer 2 and layer
3 of TCP/IP model described in section 2.3. The idea behind an MPLS network is that it
can be used to tunnel multiple traffic types through the core of the network. The major
advantage of this tunnelling is that only edge routers need to understand the ’context’ of
the traffic carried by the tunnel [16].

Packets carried over MPLS network have one or more MPLS headers applied to them
in order to be transported across the network. Structure of MPLS header is displayed in
Figure 3.1. Information in this header is used to route the packet to the correct egress
router, where the MPLS header is removed and the packet continues to be routed based on
its original IP header.

Label TC S TTL

Figure 3.1: MPLS header structure.

11

A packet is forwarded across the network based on the Label field. This value is used
as an index into the MPLS forwarding table. Traffic class (TC) field carries information
about the type of service contained in the packet. Stack bit (S) is set to logical 1, if the
header is the rightmost MPLS header (at the bottom of the MPLS header stack). Finally, a
new TTL value is set in each header and used within the MPLS network. Usage of custom
TTL field has great implications because this makes the internals of an MPLS network
completely transparent to traceroute.

3.3 Traceroute anomalies
The common traceroute anomalies and their possible causes are described in this section.
Most traceroute problems originate in load-balanced network topologies. The result, how-
ever, depends on what kind of load balancing is used and the network topology behind it.
Examples of common problematic situations are illustrated and provided with a commen-
tary.

Missing hops

This is a very common case. As was already mentioned, some routers may be configured
not to send ICMP Time Exceeded messages at all, or limit number of these responses. As
a result, traceroute cannot determine IP address of such node and outputs an asterisk for
each missing probe response. This can be seen in Figure 3.2. In some cases, the destination
host itself may be configured not to respond to ICMP Echo Requests or UDP/TCP probes
destined to unused ports.

Figure 3.2: Missing hops in traceroute output.

Another reason for missing hops are MPLS routers which do not take TTL value in
the IP header into consideration [16]. That means that ICMP Time Exceeded messages are
not sent by routers inside an MPLS network. In this case, it is very difficult to notice that
there are any hops missing. Once the probe packet leaves the MPLS area, the TTL value
is again decremented by next router and ICMP Time Exceeded is sent to the source host.
Thus the traceroute process has no way of knowing that the probe did more hops than it
was supposed to do according to its TTL value. Illustration of this situation is depicted in
Figure 3.3.

False links

This situations mostly occur on load balanced paths where each probe is routed on a
different path. As a result, a path that doesn’t exist in the network is reported by the
traceroute. An example of a situation where false links are reported is shown in Figure 3.4.

S in the figure depicts the source host that initiated traceroute towards E node. Circles
A - D and L stand for intermediary routers. Router L is configured to randomly distribute

12

SRC
R1

ICMP TTL Exceeded

DST
R2 R3 R4

TTL = 1
TTL = 2

ICMP TTL Exceeded

TTL = 3

ICMP Dest Unreachable

Figure 3.3: In an MPLS network, all probes travel to the end of the network (source: [21]).

Figure 3.4: False links reported by traceroute (source: [2]).

packets among A and B. Black squares represent probe packets sent by S. Probe packets
above the network diagram are routed through router A and the probes below are routed
through B.

On the right, there is a topology reported by traceroute if one probe is sent for each
TTL value. A false link was reported between routers A and D which doesn’t exist in the
real network. Moreover, routers C and B were not discovered.

Traceroute by default sends three probe packets for each TTL value, however, that is
not a solution. Authors in [2] present an example of what can happen if three probes are
sent, considering that L is a random per-packet load balancer. Probability that either A or
B is not discovered is 0.53 * 2 = 0.25. Probability that two devices are discovered at hop 7
or 8 is (0.75+ 0.25) * 0.75 = 0.9375. That is more than 93% chance that the reported path
will be ambiguous and difficult to use for troubleshooting.

Missing nodes

This anomaly causes the traceroute output path to miss some nodes and consequently links
as well. Root cause is usually a router configured to rate limit ICMP responses. Consider
that routers B and C in Figure 3.4 do not send ICMP Time Exceeded when TTL hits 0.
The result would be either path L → A → E or L → D → E. In both cases one of the
nodes is missing and therefore links like A → C or C → E cannot be inferred. Example of
this situation can also be observed in Figure 3.10.

Loops and circles

This is a more complicated anomaly, where some hops are missing and some are reported
multiple times. According to [11], the most common cause is load balancing for paths of
different lengths. This may also occur when misconfigured or faulty router doesn’t discard

13

a packet when its TTL hits zero. This phenomenon is usually easy to notice as is shown in
Figure 3.5, but if combined with any other of the above anomalies it could seem like a valid
network configuration problem. Example of a loop can also be observed in Figure 3.10.

Figure 3.5: Loop anomaly in traceroute output (source: [11]).

Diamonds

Diamonds appear in load balanced environment in situations where more than one probe
is sent for each hop. A pair of nodes is considered to be a diamond if there are two and
more interfaces between them. An example can be seen in Figure 3.6. Pairs (𝐿0, 𝐷0)
and (𝐵0, 𝐺0) are diamonds, whereas (𝐶0, 𝐺0) is not a diamond, because there is only one
interface between 𝐶0 and 𝐺0.

Figure 3.6: Diamonds in traceroute output (source: [2]).

With paths of greater lengths, the complexity of diamonds increases dramatically. If
lengths of load balanced paths differ, not even positions of hops in the resulting output are
correct, which makes interpretation much more difficult. Such output can only give an idea
about the visited set of nodes, not their relative position.

3.4 Traceroute extensions
Several extensions have been developed over the years with the intention to make traceroute
more reliable or to provide extra information. In this section, some of these extensions are
introduced.

14

Automatic ASN lookup

Traceroute in version 2.1.0 contains a feature performing ASN lookup for each hop re-
sponse. These AS numbers are printed after the corresponding addresses.3 To enable ASN
lookup on Linux implementation, command traceroute -A <hostname> can be used. Re-
sult of this command can be seen in Figure 3.7. Measurement was tested from O2 Telefonica
network.

Figure 3.7: Traceroute output with enabled AS number lookup.

The first AS number reported is 5610, which is indeed an AS number that belongs to
O2 Telefonica.

Extension for multi-protocol label switching

Extension defined in RFC4950 [6] decodes MPLS label information returned in ICMP error
packets. This extension allows to reveal situations where probe travels through an MPLS
network. This may be helpful in occasions MPLS-related anomalies are suspected or to find
out whether packets travel through an MPLS network or not. Output sample of traceroute
with this extension enabled can be seen in Figure 3.8. Changes to ICMP protocol itself are
also required and are described in RFC4884 [18]. An ICMP Extension structure is proposed
to be appended at the end of the ICMP message.

Figure 3.8: Traceroute output with enabled MPLS extension (source: [6]).

3.5 Paris traceroute
A new traceroute tool called Paris traceroute introduced in 2006 by Brice Augustin et al.
[2] promises to deal with most anomalies described in the previous section. Its main feature
is to actively control the probe packet header fields in a manner that allows all the probes
to follow the same path even if per-flow load balancing is present. Additionally, a user
can distinguish between per-flow and per-packet load balancing nodes. However, in case of
per-packet load balancing, Paris traceroute cannot reliably enumerate all possible paths,
because of its random nature.

3Source of the data may vary between traceroute implementations. In the Fedora 25 operating system,
traceroute collects AS numbers from whois queries sent to whois.arin.net.

15

Figure 3.9: Significant header fields varied by Paris traceroute (source: [2]).

Managing for each probe to follow the same path in per-flow load balancing nodes
is achieved by keeping constant values in header fields used by routers to identify flows.
Because Paris traceroute still needs to be able to identify responses of individual probes,
header fields that are within the first eight octets of the transport layer, are varied. These
fields are not used for load balancing and therefore can be used to identify which response
is related to which probe.

When TCP protocol is used to send probes, the situation is quite simple, because per-
flow load balancers use Source Port and Destination Port fields to identify flow. Sequence
Number field can be therefore conveniently used to identify responses as this field is encap-
sulated in the ICMP Time Exceeded message.

For UDP probes, the Source Port and Destination Port fields are used for flow identifi-
cation as well, but UDP header doesn’t specify Sequence Number field to identify response
to a respective probe. To overcome this, the Checksum field, calculated over the pseudo
header, UDP header and UDP payload, is varied by scrambling the payload in order to
yield the desired Checksum value.

For ICMP Echo probes, the Sequence Number field is varied to identify corresponding
ICMP Echo Reply message. To keep constant Checksum field, the Identifier field is varied.

The respective header fields used for flow identifier calculation are depicted in Figure
3.9. Header fields used for identifying specific probe replies are marked by a * symbol for
Paris traceroute and # symbol for classic traceroute.

Demonstration of Paris traceroute capabilities are shown in Figure 3.10. The real topol-
ogy was intentionally constructed to contain load balancers in situations, that classic tracer-
oute doesn’t handle. On the right side can be seen all the anomalies described in section
3.3. Paris traceroute is able to discover all links and nodes and construct the real topology.

Apart from the demonstrational topology, Paris traceroute was used to measure how
frequent are individual anomalies reported by classic traceroute. Authors created random
list of 5000 pingable IPs which covered about five percent of all ASes in 2006. Results

16

Figure 3.10: Paris traceroute demonstrational topology (source: [3]).

revealed, that loops and diamonds in packet routing are quite common. After comparing
results from Paris traceroute and classic traceroute, it was estimated, that about 85% of
loops and about 65% of the diamonds reported by classic traceroute were caused by per-flow
load balancing.

A snippet of Paris traceroute output can be found in Figure 3.11. This Paris traceroute
measurement was configured to use UDP packet probes with default ports and exhaus-
tive algorithm4, which dynamically changes number of packet probes sent for each hop
depending on number of hosts revealed.

Figure 3.11: Example of Paris traceroute output using UDP probes.

The first number denotes hop number, this is followed by P(x, y), where x stands for
number of responses received and y stands for number of probes sent. After that, hostname
(if not resolvable, IP address is used instead) and IP address are displayed. After IP address,
round trip time statistics follow. If a router drops a packet probe with the TTL value at
the time of receiving different from 1, a !Tz symbol can be found after round trip time
statistics. This can be observed in the example measurement in the Figure 3.11. The host
cz-brn-76tra-po4.dialtelecom.cz didn’t wait for the TTL value to hit 0, but dropped
the packet probe when the TTL value hit 1. Therefore at the time of receiving the packet
probe, its TTL value was equal to 2, which is why !T2 is displayed. If multiple routers are
detected within the same hop, the same information starting from hostname is repeated
for every next router revealed. In Figure 3.11, this can be observed in the hop number 8
(therefore can be stated that hop number 7 is load balancing UDP traffic). Additionally,
there is a comma separated list of probe packets after the IP address that says which packets
visited this interface. This allows to reconstruct all unique paths taken by the individual
probes from a source host to a destination host.

4For more information about available algorithms, refer to Paris traceroute manual pages or use parameter
--algo=help

17

3.6 Dublin traceroute
Dublin traceroute, written by Andrea Barberio, is a traceroute tool inspired by Paris tracer-
oute to be able to enumerate all possible paths from a source host to a destination host,
but also tries to go one step further and introduces a new technique for NAT detection.

To achieve that, Dublin traceroute varies the IP ID field in the probe packet and analyzes
the responses to detect whether or not a NAT box was encountered [1].

Another feature of Dublin traceroute is its capability to export enumerated paths into
DOT language and JSON. This allow much easier automated path analysis than in case of
Paris traceroute, as its output is not very convenient to parse. Dublin traceroute also offers
a Python library5 that can be used to issue measurements.

Unfortunately, at the time of writing this thesis, Dublin traceroute only supports ICMP
probes. Support for TCP and UDP probes is planned, but yet to be implemented. Because
of this, Dublin traceroute is not suitable for the task of path enumeration, because many
per-flow load balancers do not load balance ICMP traffic [4].

When the support of transport protocols is on par with Paris traceroute, this tool may
be the best all around tool for manual and automated running of traceroute measurements
as well as presenting collected data in well-arranged graphs.

3.7 Reverse traceroute
Although Paris traceroute is able to identify load balancers and multiple routes to a des-
tination host, it still comes with a fundamental limitation – it doesn’t provide information
about the reverse path. Because of policy routing and traffic engineering, paths are gener-
ally asymmetric [9]. Thus, the return path is completely invisible for traceroute [21].

The research of Ethan Kazt-Bassett’s team aims to address this restriction. A tool
that provides the same information as traceroute, but for the reverse path, from a distant
host to a local host, was implemented [12]. The reverse traceroute tool works similarly to
traceroute – it runs on a local machine, doesn’t require control of a destination host and
utilizes current Internet protocol specification.

The reverse traceroute tool uses the Record Route and Timestamp IP options as two
basic measurement primitives. IP options are included in reply messages from a destina-
tion host, therefore are processed by routers among the return path and collect their IP
addresses. More detailed description of these IP options can be found in section 2.3. These
IP options are used to create two types of probes:

∙ Record Route Ping: a source host sends an ICMP Echo Request probe to a desti-
nation host with Record Route option enabled. If free slots for IP addresses remain
when the probes reaches its destination, then routers on return path record some
portion of that route.

∙ Timestamp Ping: a source host sends an ICMP Echo Request probe to a destination
host D with Timestamp option enabled for the ordered pair of IP addresses D and
R. R is a router on the return path and will only record timestamp if visited after
destination host stamped the packet. Therefore, if source host receives a timestamp
for a router R, then R must be on the return path. To determine a set of possible
adjacent routers, public Internet mapping dataset, called iPlane, was used.6

5https://github.com/insomniacslk/python-dublin-traceroute
6https://labs.ripe.net/datarepository/data-sets/iplane-traceroute-dataset

18

https://github.com/insomniacslk/python-dublin-traceroute
https://labs.ripe.net/datarepository/data-sets/iplane-traceroute-dataset

More than 200 hosts from PlanetLab were used as vantage points. A step by step
description of the process it depicted in Figure 3.12.

Figure 3.12: Step by step illustration of incremental reverse path discovery (source: [12]).

At the beginning, all available vantage points are used to build an atlas of traceroutes to
the source host S. Then, the vantage points use Record Route Ping probes to incrementally
reveal new routers on the return path. Each Record Route Ping probe has spoofed Source
address, which is set to the IP address of the source host S. This step is repeated for each
new router revealed. In case that no vantage point is within 8 hops from currently last
(closest to the source host S) known router on the return path, the iPlane dataset is used
to generate a set of candidate routers. Timestamp Ping is then used by the source host S
to reveal, which of known adjacent routers is on the return path. If no router is found to
be on the return path, an ordinary traceroute is issued by the source host S and the last
link is considered to be traversed symmetrically. When a router that also appears in the
atlas is found, the rest of the path is already known.

To evaluate the performance and accuracy of the reverse traceroute, PlanetLab and
iPlane measurement results were used – known direct traceroute results were compared to
reverse traceroute results. It is worth noting, that in the median (mean), 87% (83%) of the
routers on reverse path were revealed for the PlanetLab dataset. For the iPlane dataset,
75% (74%) of the hops in the direct traceroute were revealed by reverse traceroute.

Accuracy of this solution is high, but this solution also has disadvantages. One disad-
vantage is the need to spoof IP address in Record Route Ping probes, so that these are
sent to the source host who initiated the reverse traceroute. Spoofing is often related to
malicious activity and Internet Service Providers (ISP) may drop packets with spoofed
Source address IP header fields. Another and probably even bigger issue is, that this im-
plementation of reverse traceroute heavily relies on IP options, which have poor support by
routers. Problem with available spoofing-enabled vantage points as well as support of IP

19

options is very unlikely to ever improve. On the contrary, packets with spoofed source IP
addresses and IP packets containing options like Record Route and Timestamp should be
by the current best practices dropped by all routers, security gateways and firewalls [7][8].

3.8 DisNETPerf
Similarly to Reverse traceroute tool, another project attempts to address the limitation
of traceroute. DisNETPerf (Distributed Internet Path Performance Analyzer) is a set of
scripts created with the intention to analyze routing performance anomalies between arbi-
trary hosts. To some extent, that includes the ability to run reverse traceroute.

This project, developed by S. Wassermann [26], is built on RIPE Atlas platform and
uses Atlas probes as vantage points. For a given host, DisNETPerf tries to find the nearest
Atlas probe based on topological and latency criteria.

The original purpose of this project is path performance monitoring from a server point-
of-view. For example, monitor RTTs behaviour from a media streaming service (YouTube,
Vimeo) toward customers throughout the day and analyze possible peaks, that may be
caused by misconfigured or insufficient load-balancing [25].

As already mentioned, DisNETPerf is implemented as a set of scripts in Python. All
heavily rely on RIPE Atlas Tools which is an Atlas official command line interface (CLI).
This CLI is further wrapped and made easier for a user to run traceroute measurements
with. The scripts are namely:

∙ find_psbox.py,

∙ launch_traceroutes.py,

∙ get_traceroute_results.py.

Find_psbox.py focuses on localization of near Atlas probe to a given IP address. The
usage is as follows:

python find_psbox.py −k <API−KEY> [−n <IP filename>] [−o <targetIP>].

Listing 3.1: Usage of find_psbox.py script.

Where the <API-KEY> is the API key generated in Atlas web interface, an <IP filename>
is a file with a new-line separated list of IP addresses for which the closest Atlas probe needs
to be found. If only one address is needed, a <targetIP> can be used instead.

Resulting format of the Find_psbox.py output is presented in Listing 3.2.

<targetIP> <psBox ID> <psBox IP> <AS number> <min RTT> <label>.

Listing 3.2: Output of find_psbox.py script.

First four items of the output are quite self-explanatory. The <min RTT> suggests that
probes within an AS (if there are more than one) are selected based on the lowest minimum
RTT. It is important to keep this in mind when using the tool, because minimum RTT
may vary significantly depending on current load. Additionally, selection based on RTT
measurements may also be affected by routing asymmetry or poor load-balancing that is
being studied.

20

The last item is the <label>, which may have three different values:

∙ [OK]: Atlas probe was selected from the same AS as target host or from any of the
neighbour ASes,

∙ [NO_AS]: target host IP could not be mapped to an AS, Atlas probe was selected
randomly,

∙ [Random]: no Atlas probes were found in target host AS or in any of the neighbour
ASes, Atlas probe was selected randomly.

The documentation7 doesn’t further elaborate on what is the random selection process.
Specifically, whether RTT or target geographical location is taken into consideration.

Launch_traceroutes.py, as the name suggests, focuses on launching traceroute mea-
surements. Usage of this script is similar to the find_psboxes.py. Newly, <dest IP>
specifying the host the traceroute measurements are issued to needs to be specified among
with <psBox ID>, which is the ID of the nearest located Atlas probe.

Additional options include <start time>, <stop time> and <time interval> between
individual measurements.

Last script get_traceroute_results.py takes path to a file with measurement IDs
as the only argument. Then the script collects results of issued measurements and finally
creates output file with processed results. Structure of created can be found in Listing 3.38.

PROBEID: <ID>
TIMESTAMP: <TS>
NBHOPS: <N>
HOP: <IP 1> [<avg RTT>]
...
HOP: <IP N> [<avg RTT>]
ASPATH: <ASHOP 1>...<ASHOP X>
IPPATH: <IPHOP 1>...<IPHOP Z>

Listing 3.3: Structure of composed output from collected measurements.

The output starts with ID of the Atlas probe that issued the measurement, followed
by Timestamp and number of hops taken from the Atlas probe to destination host. Enu-
meration of individual IP addresses followed by average RTT shows focus of performance
monitoring. Finally, AS path and IP path are listed.

7http://disnetperf.readthedocs.io/en/latest/find_psbox.html
8http://disnetperf.readthedocs.io/en/latest/get_traceroute_results.html

21

http://disnetperf.readthedocs.io/en/latest/find_psbox.html
http://disnetperf.readthedocs.io/en/latest/get_traceroute_results.html

Chapter 4

Network Diagnostics

In this chapter, RIPE Atlas infrastructure and its application interface is described. Rest
of the chapter deals with more advanced network diagnostic tools that are built on top of
technologies described in previous chapters. These tools try to provide more information
by combining multiple protocols and present the collected data in a more convenient way
for a user, for example by generating charts.

4.1 RIPE Atlas
RIPE Atlas is RIPE NCC’s Internet data collection system. RIPE Atlas measurement
infrastructure consists of probes and anchors scattered worldwide, and offers a set of tools
to evaluate Internet connectivity, reachability and performance.1 RIPE Atlas consists of
more than 10 000 (as of Jan 2018) hardware probes connected and active all around the
world. The number of probes is gradually growing every year. Probes support common
types of measurements like ping, traceroute, Paris traceroute, DNS, SSL/TLS, NTP and
HTTP to selective hosts. Conducted measurement data is sent to the RIPE NCC, where
it is aggregated and made publicly available.

Figure 4.1: Number of probes hosted per AS (source [26]).

Probes are hosted by volunteers all around the world. Anyone can apply to host RIPE
Atlas probe. Result of the application, however, depends on how many users already host a
probe within applicant’s autonomous system. RIPE aims to achieve high diversity, ideally

1https://atlas.ripe.net/about/probes

22

https://atlas.ripe.net/about/probes

to have an active probe in every AS in the world. Figure 4.1 depicts number of probes per
AS. It is clear, that most ASes (70%) are only covered by a single probe and about 96%
are covered by less than 10 probes. Only the biggest ASes have up to 350 probes.

Atlas API

RIPE Atlas provides an API that allows to access and conduct custom measurements. A
brief overview of the API features follows in this section. For more detailed explanation
and all possible options, refer to the API documentation manual or API reference page
containing all methods along with examples [19].

The API is designed to be used through the REST interface using standard HTTP
requests. To access all publicly available information, no authentication is required. The
API can be accessed as an anonymous user. To create custom measurements, authentication
is required. The easiest way to use the API is to create an API key using the RIPE web
interface.

Custom measurement consists of two basic arrays: definitions and probes. Definitions
array holds settings of a measurement that a probe needs to perform. These are the required
fields for all measurement types:

∙ description: a string used to refer to this measurement,

∙ type: defines what type of measurement is to be done – ping, traceroute, dns,
sslcrt or ntp,

∙ af: defines address family, either 4 or 6,

∙ target: denotes target of the measurement and is special, because this field is not
required for dns measurements.

Probes array serves for selecting probes to conduct the measurement described by the
definitions array. Following fields are required for each element in probes array:

∙ requested: the number of requested probes from the given region,

∙ type: the type of request. One of area, country, prefix, asn, probes and msm,

∙ value: the lookup value used against the given type.

Based on the above, it is possible to use API to create a traceroute measurement destined
to any host with public IP address, originating from any continent, country, city or specific
autonomous system.

Communication with Atlas API

RIPE organization develops and maintains several tools and libraries that can be used
to create measurements from probes and collect results in machine-readable format. The
following list presents relevant libraries and tools that may be used for working with the
Atlas API.

∙ RIPE Atlas Cousteau is a library implemented in Python that wraps Atlas API.
Library covers all API functionality, so all types of requests can be created. Func-
tionality for downloading results of created measurements is also implemented.

23

Results can be fetched either by direct download or by establishing a stream that un-
der the hood uses socket.io protocol. This way, the connected client receives updates
as soon as these are collected by the selected probe.

∙ RIPE Atlas Sagan is a library focused on parsing and presentation of collected
measurements. Results from all measurement types that can be created by Atlas
probes can be processed to obtain native Python object.

∙ RIPE Atlas Tools is a official command-line client for working with Atlas API.
This tool wraps functionality provided by Cousteau and Sagan libraries and creates
unified interface to all the features.

All the above mentioned libraries and tools require Python version 2.7 or higher and
setup of API key with correct permissions.

RIPEstat

RIPEstat is a web based interface that provides access to the RIPE Database, RIS (Routing
Information Service) and RIPE Atlas data.2 It is a large-scale information service and Open
Data platform managed by RIPE NCC.

Queries can be made either via REST API or using javascript widgets, where each widget
queries for a specific information. Not all information can be retrieved using widgets as
widgets do not cover all the API functionality. Available information includes the following.

∙ ASN neighbours – shows a list of last observed network neighbours for a given ASN.

∙ Atlas probes – provides information on the RIPE Atlas probes in a selected area.

∙ Country ASNs – provides information on a country’s registered and routed ASNs.

∙ Prefix overview – returns summarized information of the given prefix.

∙ Reverse DNS – returns details of reverse DNS delegations for IP prefixes.

∙ Whats my IP – returns IP address of the requestor.

∙ Whois – returns Whois information for a given resource.

The list is far from exhaustive, only information that may be relevant for this thesis is
presented. For the rest of available data and more detailed description of each request refer
to the RIPEstat Data API documentation [20].

4.2 My Looking Glass
My Looking Glass (myLG) is an open source command line utility for Unix based systems
that combines the functions of different network packet probes into one network diagnostic
tool. It can be obtained as an executable file from the official website3 or from GitHub
repository.4

2https://stat.ripe.net/data-sources
3https://mylg.io
4https://github.com/mehrdadrad/mylg

24

https://stat.ripe.net/data-sources
https://mylg.io
https://github.com/mehrdadrad/mylg

It was developed with the intention to provide all the necessary tools to streamline
troubleshooting process.

The list of available features is long, but some of them are worth mentioning.

∙ HTTP Ping probes a given URL and displays relevant statistics. The concept is similar
to ping based on ICMP Echo message, but instead of that, HTTP(S) protocol is used.
Additionally, trace option can be selected to display detailed latency metrics for each
ping.

∙ Trace is a network diagnostic tool for displaying the route (path) and measuring tran-
sit delays of packets through a network. Common features of traceroute described in
section 3.1 are provided. Moreover, real-time traceroute information can be displayed
including information like packet loss at each hop, best, worst and average round trip
times and ASN along with the holder name of the ASN. That is something that even
the traceroute with ASN lookup extension cannot provide.

∙ Dump command allows the user to display packets that are being transmitted or re-
ceived over a network. Berkeley packet filter syntax is supported so unrelated packets
can be filtered.

Example of trace output can be seen in Figure 4.2. Instead of IP addresses of individual
hops, hostnames are used instead for a better readability. AS number is displayed along
with its holder. Trace also keeps track of number of sent probes and received replies. Round
trip times are continuously measured as well.

Figure 4.2: Output of trace command toward www.fit.vutbr.cz.

Additionally, myLG provides a convenient web dashboard with real-time statistics from
ping and traceroute. Additionally, some extra information is presented, for example real-
time latency and jitter graphs. Web interface also allows to interactively switch between
TCP and UDP, so performance differences between these protocols can be easily observed.

More detailed description of all the provided features can be found in the project doc-
umentation, available on the official website.

4.3 Mtr
Mtr combines functionality of the ping and traceroute utilities in a single network diagnos-
tic tool [17]. In some Linux distributions, Mtr comes already preinstalled.5 Similarly to

5Verified in Fedora 25 and newer.

25

traceroute, Mtr supports probes using both transport layer protocols and ICMP probes.
Also, traceroute extensions introduced in section 3.4 are supported.

Advantage of Mtr over the original traceroute is support of real-time measurements. Mtr
is able to continuously calculate statistics like packet loss and round trip times. The output
is similar to myLG’s trace command. Collected data can be exported in machine-readable
format like CSV or XML. However, Mtr cannot display real-time charts like myLG does
and myLG also performs better in ASN lookup because Mtr can only provide AS numbers,
while myLG also provides holders of respective ASes. Example of Mtr output can be seen in
Figure 4.3. Command parameters are also shown because without providing the parameters,
only hostnames and statistics are displayed. Note that in the presented example there is
no space between autonomous system number and hostname at hops 6 – 8, but as was
mentioned, the report can be exported in CSV or XML so parsing is not an issue.

Figure 4.3: Output of mtr command toward www.fit.vutbr.cz.

26

Chapter 5

Rtraceroute Design

The first section of this chapter analyses specification of the rtraceroute tool that is to be
implemented and an abstract idea of a possible solution is suggested. Following sections
further elaborate on the suggested solution and recognize basic logical steps that need to
be taken by rtraceroute.

At first, different strategies for an Atlas probe selection are discussed and an experiment
conducted with the intention of increasing confidence in the suggested solution is presented.
Following sections cover selection of the approach to enumerate paths between a selected
pair of hosts and subsequent analysis of collected paths.

5.1 Specification analysis
The goal of this project is to create rtraceroute tool that would be able to find return path
for any given host with a public IP address without having a direct access. To avoid any
confusion, the host the return path originates from will be addressed as a destination host
and the host at the end of the return path (the host that initiated the measurement) will
be addressed as a source host.

Rtraceroute should be able to present collected results in a human-readable form, ideally
consistent with other traceroute tools. Additionally, discovered paths in both directions
should be presented in a well-arranged table to make manual inspection as easy as possible.
Rtraceroute should also analyze the collected paths and inform a user whether or not the
return path is symmetrical to the forward path. Measurements in both directions should use
traceroute algorithm capable of discovering load balanced paths to provide high accuracy.

Convenient feature would be an ability to generate graph of enumerated paths that
would highlight similarities or discrepancies between both directions.

Already existing solution of reverse traceroute, described in section 3.7, relies on the
IP options to incrementally reveal new routers among the return path. Due to the lack of
support of the used IP options, new solution should not rely neither on Record Route nor
Timestamp IP options. Instead, rtraceroute should be inspired by DisNETPerf studied in
3.8 and take advantage of the vastly distributed Atlas probe network.

The network of Atlas probes represents vantage points used in Reverse traceroute
project. The difference is that for any selected destination host it should be possible to
locate an Atlas probe, that is close to it. If such probe is located close enough to the des-
tination host, then a traceroute measurement issued from this probe should yield similar
path to a traceroute issued from the destination host.

27

To some extent, DisNETPerf can be used to discover the reverse path as well, but it
focuses mainly on monitoring routing performance, not the actual route itself. Moreover,
DisNETPerf is designed for running long-term measurements rather than one-off measure-
ments, because working with three scripts just to issue one traceroute is a bit cumbersome.
As this may discourage users from a day-to-day use, rtraceroute should offer command line
interface similar to the classic traceroute or Paris traceroute and make the usage of the
Atlas probes completely transparent.

This solution would only rely on destination-based routing and ability to locate Atlas
probe close enough to an arbitrary destination host.

5.2 Atlas probe selection
To achieve early unification of path from a destination host and an Atlas probe, the Atlas
probe needs to be in close distance to the destination host. It is important to define
criteria upon which this close distance will be measured. Following options are taken into
consideration:

1. geographical distance,

2. hop count or round trip time,

3. autonomous system.

Geographical distance

The first and probably the most obvious way to select the closest Atlas probe to an ar-
bitrary destination host is based on geographical distance. RIPEstat offers free access to
a database containing geographical data for any prefix that is registered in Routing Infor-
mation Service1 (RIS). Result of such database query includes coordinates pointing to a
geographical coordinates2. Atlas API supports probe query based on coordinates as well
so technically this is a possible solution.

Disadvantage of such solution is that accuracy of the returned coordinates is quite poor
with deviation measured in kilometres. Additionally, the geographical location does not
reflect routing characteristics.

Hop count or round trip time

In order to involve routing characteristics in the selection process, hop count or round trip
time (RTT) can be used. In combination with geographical location, a group of Atlas
probes could be selected based on destination host coordinates. The most suitable probe
could then be selected from this group based on the lowest hop count or RTT.

However, this solution may still fail in situations where destination host is relatively
close, but in a different network with different routing policies than selected Atlas probe.

1https://www.ripe.net/publications/docs/ripe-200
2https://stat.ripe.net/data/geoloc/data.json?resource=1.1.1.1

28

https://www.ripe.net/publications/docs/ripe-200
https://stat.ripe.net/data/geoloc/data.json?resource=1.1.1.1

Autonomous system

Routing policies are the same within Autonomous systems (AS), so to ensure that the same
routing policy is applied for measurement from a destination host and an Atlas probe, both
should be within the same AS.

Some ASes are so big that span over an entire continent or even the world, but this is
not the case for the majority of ASes. Selection based on AS therefore seems like the best
solution. Additionally, if more than one Atlas probe is available within one AS the one with
lower hop count distance can be chosen, because hop count based comparison within AS
gives more relevant information than hop count based comparison between different ASes.

The disadvantage of this approach is the fact that in spite of RIPE’s effort not all ASes
are covered by the Atlas network.

From the list of possible criteria, selecting Atlas probes based on the destination host
autonomous system should yield the most similar results to a traceroute measured from the
destination host itself.

5.3 Proof of concept
To verify that approach suggested in the previous section can work, a set of measurements
was created from a single AS toward multiple destinations to observe routing characteristics.
Virtual private server (VPS) was used to represent a destination host and an Atlas probe
from the same AS to represent a close vantage point. Example of the experiment can be
found in Figure 5.1.

(a) Atlas probe (b) VPS

Atlas
probe

VPS

...bee.forpsi.net192.168.1.1

3.216.forpsi.net

secondary.dog.forpsi.net XE-10-3-0-cz-pra-pop50-rb1.net.upc.cz

(c) Graphical representation

Figure 5.1: Paris traceroute toward wikipedia.org issued from two hosts within the same
autonomous system. Traceroute report in Figure 5.1a comes from an Atlas probe and report
in Figure 5.1b was obtained using a private server. Round trip time statistics are omitted.

As can be observed, the Atlas probe and the VPS are in different networks. The first
hop of the VPS is a router with IP address 192.168.1.1 followed by the router with hostname

29

bee.forpsi.net. Next hop is one of the edge routers of the Forpsi network with hostname
secondary.dog.forpsi.net.

The first hop of the Atlas probe is a router with IP address 195.181.216.3 assigned to
a hostname 3.216.forpsi.net and the next hop is again the Forpsi edge router that was
also reported by the VPS traceroute.

After that edge router, traffic from both devices was routed through the same path.
Other experiments conducted in a similar manner from another two autonomous systems
yielded similar results.

Clearly, it is not possible to ensure that traffic sent toward an arbitrary host, originating
from two or more devices connected within the same AS, will be routed through the same
path. The idea is to find a device (Atlas probe) that has a good chance of fulfilling this
requirement in most situations. Based on conducted experiments, selecting an Atlas probe
from a destination host AS seems to be the best selection strategy.

5.4 Path enumeration
After selecting a suitable Atlas probe, the next step is to run the traceroute measurements.
Based on chapter 3, Paris traceroute should be the most reliable tool for this task. Dublin
traceroute may offer a better output formatting, but lack of support for TCP and UDP
would be an issue because ICMP traffic is not as much load balanced. Another advantage
of using Paris traceroute is its availability in repositories of most Linux distributions and
it is also supported on Atlas probes.

Suggested scenario of the traceroute measurements is depicted in Figure 5.2.

S
P1

D

P2

P3

AS 1 AS 2

AS 4
AS 3

Forward path

Return path

Inferred return path

P3

Atlas probe

Figure 5.2: Illustration of forward and return path measurements.

Paris traceroute measurement will be issued from the source host S toward the desti-
nation host D and another measurement will be issued from the selected Atlas probe P3
toward the source host. Provided the Atlas probe is within the same AS as D, the traffic

30

from the probe is routed to the same edge router and rest of the path is the same. Atlas
probe measurement then needs to be collected and processed by the source host.

5.5 Path analysis
Collected and parsed paths in both directions should be then analyzed to find out whether
the return path was routed among the same routers as the forward path or not.

The collected paths can be studied on various levels. The first and probably the most ob-
vious are IP addresses. Other possibilities are domain names, autonomous system numbers
and possibly latency-related statistics.

At the first glance, comparing a path (𝐴 → 𝐵) with a path (𝐵 → 𝐴) based on IP
addresses may sound like a trivial task. However, it is not entirely so. As described in 3.1,
when TTL of an IP datagram hits 0, router forges an ICMP TTL Exceeded message, and
sends it to the sender. Source IP address of this ICMP message is set to the IP address
of the interface, the expired packet was received on. An illustration of this process can be
viewed in Figure 5.3.

R1
Host A Host B

192.168.0.5/30 192.168.0.1/30 .1 .2 .5 .6

TTL Exceeded, src: 192.168.0.5 TTL Exceeded, src: 192.168.0.1

Figure 5.3: Example of two host receiving TTL Exceeded message from different interfaces
of a single router.

As can be observed, Host A receives an ICMP TTL Exceeded message from a router
with IP address 192.168.0.5, whereas Host B receives the message from a router with IP
address 192.168.0.1. This is clearly a problem because when comparing two paths routed
in opposite direction, a single router would be recognized as two different routers.

In some cases, IP addresses of individual router interfaces may be mapped to a single
domain name. Example of such situation can be observed in Listing 5.1.

root@localhost: host pe−ant.net.vutbr.cz
pe−ant.net.vutbr.cz has address 147.229.254.150
pe−ant.net.vutbr.cz has address 147.229.254.233
pe−ant.net.vutbr.cz has address 147.229.254.89
pe−ant.net.vutbr.cz has address 147.229.254.25
pe−ant.net.vutbr.cz has address 147.229.252.205
...

Listing 5.1: Host command used to lookup DNS records for pe-ant.net.vutbr.cz.

When a response from any of the listed IP addresses is received, the domain name
pe-ant.net.vutbr.cz can be resolved. Such router can be then identified even when

31

responses are received from different interfaces. However, this is dependent on a respective
router and DNS configuration.

Autonomous system numbers (ASN) are more reliable in that respect, as for most
registered IP addresses can be found which ASN it belongs to. It is, however, impossible to
determine if two packets routed through the same ASes are also routed through the same
routers.

Typical IP addresses for which ASN is usually not found are addresses belonging to
peering nodes. An example of this can be viewed in Figure 4.3, where ASN of router
nix2-20ge.cesnet.cz was not resolved. This node is a part of Czech peering exchange
NIX.cz3.

Using Whois service, IP addresses can be also translated to a prefix (a portion of IP
addresses) under which the IP address belongs to. The prefix itself is not of much use in
cases where ASN could be found, because one ASN typically uses the same prefix. But in
situations where ASN cannot be resolved, the prefix may be valuable. For example, when
a packet is routed through a peering node in both directions the prefix may be able tell to
whether it is the same peering exchange or not.

3https://www.nix.cz/index.php/services

32

https://www.nix.cz/index.php/services

Chapter 6

Implementation

This chapter is devoted to the actual implementation of the rtraceroute tool designed in
the previous chapter. The structure of this chapter is similar to the previous one, as it is
also divided into the main steps that need to be taken by rtraceroute to provide the desired
results. In this chapter, however, description of individual steps goes into more detail.
To take advantage of already existing libraries described in section 4.1, implementation of
the designed tool was done in Python. Specifically in Python 2.7 in accordance to PEP8
guidelines1 (except for line length, which was extended to 120 characters).

6.1 Probe selection
The first step is to select a suitable Atlas probe. As described in the previous chapter,
probe selection is crucial for an accurate approximation of the path from the selected Atlas
probe to the path from the selected destination host.

As was discussed in chapters 3 and 5, the best criteria to select upon seems to be the
AS. Traffic originating from the same AS has the best chance to meet at the AS edge router
and then continue through the same path.

For that, the ASN of the destination host needs to be obtained. This functionality
is implemented in the Whois class. Python package ipwhois is used to forge the actual
request as it is cleaner to use a native Python package instead of calling a shell command.
The received ASN is then returned in the following format: AS<AS_number>. This format is
used consistently throughout the application including the output. In case the ASN cannot
be resolved, a default value AS??? is used instead.

If no responsive probe is found in the target AS, rtraceroute attempts to search for
suitable probes in neighbour ASes. Class AsnNeighbours implements this functionality.
Neighbour ASes are looked up in the RIPEstat database. If more than one neighbour ASes
are found, they are searched in descending order by the power attribute.

In case none of the searched ASes yields an active Atlas probe, 10 random probes are
selected from the country where the destination host is located and the one with the best
average RTT is used. It is anticipated that results obtained from such probe will likely be
far from accurate. A user is therefore informed that measurement is running with an Atlas
probe selected based on RTT. It is considered a better solution to provide at least some
results, than exit without running any measurements.

1https://www.python.org/dev/peps/pep-0008/

33

https://www.python.org/dev/peps/pep-0008/

D
P1

AS 1

(a)

D
P1

AS 1

AS 3

P3

P2

AS 2

(b)

Figure 6.1: Atlas probe selection process. In situation 6.1a, a responsive Atlas probe is
found in the target AS. Image 6.1b depicts a situation where no Atlas probe is found in the
target AS or none of the found probes are responsive. Suitable probe is then selected from
neighbour ASes.

6.2 Traceroute measurements
With a suitable probe acquired, the next phase of issuing the traceroute measurements can
start.

Issuing traceroute measurement from the selected Atlas probe toward source host (the
return path) is implemented in the ReverseTraceroute class. The only parameter, that is
required is the destination host IP address. Remaining parameters (source host IP address,
number of probes, protocol, description and verbosity) are optional and default values will
be used if not specified.

If source host IP address is not provided, the tool attempts to infer the address auto-
matically. This functionality is implemented in the IP class. The address is inferred by
contacting an online service api2 that replies with a response containing Source address
found in the packet header of the sent request. This means, that if the source host is sitting
behind a NAT, the IP address used to issue the traceroute measurement toward, will be
the address of the NAT interface connected to the Internet. If rtraceroute is being used
on a machine with multiple interfaces, it is recommended to provide the IP address of the
desired target interface.

With source host IP address obtained, the measurement from the Atlas probe can be
created. The Atlas Cousteau library provides three classes to define the measurement
type, the measurement sources and finally create the measurement. The Traceroute class
specifies, among others, IP version, a target host IP address, a protocol and if the Paris
version of traceroute should be used.

The probes for the traceroute measurement are selected by specific IDs, that were
collected during the selection process, using the AtlasSource class.

2http://checkip.dyndns.com/

34

http://checkip.dyndns.com/

Finally, when the measurement is fully specified, the AtlasCreateRequest class is used
to create the actual measurement. Traceroute measurements are created as one-off, meaning
they will be triggered only once. Although the documentation of the Cousteau library says,
that start time can be set to the current UTC time, it (very) rarely leads to an error saying
that the measurement start time is in the past. To avoid this, the start time is set to the
current UTC time plus one second.

Fetching the measurement results can be done using two methods. The first method is
basically polling. A request for results a measurement of given ID using AtlasResultsRequest
returns results in JSON that are available at the time of receiving the request.

The second method is connection-oriented and allows receiving results as those are
reported by the selected probes to the RIPE database. As this method is more suitable for
long-term measurements, polling was used instead.

Traceroute measurements from the source host toward the destination host (the forward
path) are done using Paris traceroute or Mtr. Paris traceroute is the preferred option, but
it requires root privileges. In case running the tool with root privileges is not possible for
a user, Mtr is used instead, as it can still provide some relevant information – at least on
AS and prefix level.

Paris traceroute is set to use the exhaustive algorithm in order to reveal as many load-
balanced paths as possible.

Both forward and return path traceroute measurements are run simultaneously.

6.3 Path analysis
With the raw data collected from the measurements, the phase of path analysis may begin.
At first, collected data needs to be parsed and transformed to a common data type. For
that, a class representing single hop response depicted in Figure 6.2 was defined.

Hop

+ hop_number: string
+ ip: string
+ hostname: string
+ asn: string
+ rtt: int
+ domain: string
+ packet_numbers: [int]
+ mpls_label: string

+ __eq__(Hop): bool

Figure 6.2: Hop class representing a router response to a probe packet.

The hop_number relates to the TTL value of the probe packet against which the response
was generated. The ip attribute is the IP address of the router interface which received the
packet probe and was then used as a Source address in the response packet header. The IP
address is then used to resolve hostname using the gethostbyaddr method. In cases where

35

hostname cannot be resolved, an asterisk symbol is used. The domain indicates reverse
DNS domain. If reverse DNS domain cannot be resolved, a prefix in which the IP address
belongs to is used instead. The packet_values attribute is a list of integers that indicates
which probe packets visited which router interface. Another way to look at these packet
numbers is that each packet number identifies a separate flow. These flow identifiers are
provided only by Paris traceroute (depicted in Figure 3.11), so if Mtr needs to be used due
to insufficient permissions, all packet_numbers lists contain only number 0.

The Hop class also implements an __eq__ method so that Hop instances can be easily
compared. Hops are considered the same, when ip and hop_number attributes are the
same. This comparison is used for identifying duplicate paths revealed withing forward or
return path traceroute measurements.

Parsing of Paris traceroute, Mtr and Atlas probe results are implemented in Renderers
module. Classes representing all of the mentioned traceroute tools inherit from a base class
BaseRenderer, which implements method render. Using this method ensures that results
obtained from any of the supported traceroute tools are printed in a consistent manner.
Additionally, to add a new traceroute tool it is only necessary to create a new class with a
method for parsing the tool results and inherit from the BaseRenderer.

During the parsing phase, various bits of information need to be additionally collected,
because results from different tools contain slightly different information. For example, re-
sults from Atlas probes don’t contain hostnames or AS numbers. A parsed path is then
represented by a list of lists of hops as for each TTL value, multiple hops may be found.
List of hops therefore represents a single line in the traceroute output. The list of these
lines represents the whole output.

With the results parsed and all supplementary information collected, discovered paths
can be further analyzed. The first part of the analysis focuses on the AS paths. For
that, ASNs are extracted from the parsed forward and return paths. It is important to
mention, that one IP address may be resolved in multiple ASNs. In theory, multiple ASNs
may be visited within one hop as a result of load-balancing, although the odds are remote.
To account for all possible situations, ASNs for each hop number are represented as lists.

Before the actual comparison, ASNs are grouped so that sequence of occurrences of
the same AS is taken only once. This is done to allow packets to visit more or fewer
routers within a certain AS. Grouped ASNs are than compared in the direction from the
destination host to the source host. If the only discrepancies are found within the first
quarter of both paths, AS paths are considered symmetrical. In situations where there are
unresolved ASNs, which is typically a peering exchange, the AS??? placeholders are used.
If the position of unresolved ASNs matches, then these hops are considered symmetrical.

The second part of the path analysis studies hostnames. Again, hostnames are extracted
from the collected paths and compared in the direction from the destination host to the
source host. As many routers with different hostnames may respond within one hop, all
combinations are tested. Finding at least one match is sufficient. If a hostname cannot
be resolved, asterisk symbol is used as a placeholder. Hostname paths are considered
symmetrical if they unify within the first half of the paths.

The results of the path analysis are printed to the standard output along with the
compared data. ASNs are printed in columns side by side so that user can easily inspect
both AS paths.

As hostnames tend to be quite long, printing both paths side by side would often be
unreadable. For that reason, first are provided hostnames in the forward path and then
hostnames in the return path.

36

6.4 Graphical visualization
Inspired by Dublin traceroute ability to create graphs of issued measurements, a similar
feature was implemented in this project as well.

Pydot3, the Python interface to Graphviz’s Dot language, was used in conjunction with
networkx4. Networkx is a python library that allows manipulation with complex networks.

Each node displayed in a graph contains hop number, hostname (IP address if hostname
cannot be resolved) and ASN.

When a graph is generated, the packet_numbers attribute of each Hop object is used to
create all the paths taken by the packet probes. Each discovered node contains hop number,
hostname (or IP address if the hostname is not resolvable) and ASN. If ASN cannot be
resolved, reverse DNS domain is provided instead. In case not even that can be resolved,
IP prefix is displayed.

The graph is created from the source host point-of-view, information about the return
path is reflected in the graph by coloured nodes in orange or green. If node in the graph
is orange, it means that a router with the same ASN was discovered in the return path.
Green colour indicates that router with the same hostname was discovered in the return
path. Nodes without any colour are routers for which no hostname or ASN matching
router was discovered in the return path. Example of a created graph can be found in
Figure 6.3. The presented graph was slightly rearranged and some less important nodes at
the beginning are omitted to make the graph more compact. The graph is studied in more
detail in the following chapter.

3https://github.com/erocarrera/pydot
4https://networkx.github.io/

37

https://github.com/erocarrera/pydot
https://networkx.github.io/

1: gateway
(None)

2: 10.14.154.1
(None)

3: 46-33-112-65.infos.cz
(AS29208)

4:
()

7: 82.119.246.185
(AS29208)

9: cz-prg-asbr2-ae1.dialtelecom.cz
(AS29208)

10: nix2-20ge.cesnet.cz
(16.210.91.in-addr.arpa)

11: r50-r97.cesnet.cz
(AS2852)

12: rt-ant.net.vutbr.cz
(AS15935)

13: pe-ant.net.vutbr.cz
(AS197451)

14: bd-boz.net.vutbr.cz
(AS197451)

15: www.fit.vutbr.cz
(AS197451)

9: cz-prg-asbr2-ae2.dialtelecom.cz
(AS29208)

Figure 6.3: A graph created from a UDP measurement toward www.fit.vutbr.cz. The
orange nodes represent hops with the same ASN in the forward and return path. The green
nodes represent hops with the same hostname in the forward and return path.

38

Chapter 7

Evaluation

This chapter deals with an analysis of the results reported by the implemented rtraceroute
tool. A network topology deployed with the intention to observe rtraceroute behaviour
is presented. Additionally, real-world usage examples of running the measurements are
analyzed and discussed.

7.1 Test topology
A test topology was deployed to verify basic functionality of rtraceroute and ability to
correctly discover routers in a load-balanced environment. The topology is depicted in
Figure 7.1

10.1.12.0/24

10.1.14.0/24
R1

10.1.45.0/24

R4

10.1.23.1.0/24

R2
10.1.35.0/24

R3
10.1.56.0/24

10.1.59.0/24
R5

10.1.91.0/24

R9

10.1.67.0/24

10.1.68.0/24

R6

10.1.78.0/24 R7

10.1.81.0/24 R8

10.1.22.1/24

R10

S

.2

.1

10.1.11.0/24

.1

.1

.2

.2

.1 .2

.1

.1

.2

.2

.1

.1

D.2

.2 .1

.2

.1

.1

.1

.2
.2

.1

.1

.2

.2

.2

Figure 7.1: Test topology used to observe the ability to cope with a load-balanced environ-
ment.

Routers R1, R5 and R6 employ per-packet load-balancing. Routers R6 and R8 additionally
apply MPLS labels based on which R7 switches the packets.

Experiments revealed that anomalies described in section 3.3 do not occur. Data for
running the path analysis was collected by issuing Paris traceroute from host S toward host
D and vice versa. As Paris traceroute is also used by Atlas probes, it is the same as having
an Atlas probe instead of the D host.

Using the collected data, it was verified that given all the router hostnames are known,
the return path is successfully matched. However, extensive testing of rtraceroute in an
isolated network is rather complicated because it relies on a connection with the RIPE

39

database. Clearly, it is not possible to resolve ASNs for private addresses. The following
section deals with the measurement analysis under real world conditions.

7.2 Real world conditions
Objective evaluation of rtraceroute under real-world conditions is not always possible, be-
cause, in order to compare path approximated by the selected Atlas probe and the real
return path from the destination host, it is necessary either to have an access to the desti-
nation host or to have knowledge of the destination host AS routing policies.

The following measurement was created using UDP protocol toward www.fit.vutbr.cz.
Source host was connected to the Internet from Infos ISP network. Collected results are
presented in Listing 7.1 and the generated graph can be viewed in Figure 6.3.

Forward path:
Hop Host (Asn) Avg RTT
1 gateway 192.168.0.1 (AS???)
2 10.14.154.1 (AS???)
3 46−33−112−65.infos.cz 46.33.112.65 (AS29208)
4 * (AS???)
5 cz−brn−76tra−po4.dialtelecom.cz 82.119.245.85 (AS29208)
6 82.119.246.121 (AS29208)
7 82.119.246.185 (AS29208)
8 cz−prg−asbr1−be6.dialtelecom.cz 82.119.246.22:0,2,3,5,8,9 (AS29208),

82.119.246.230 :1,4,6,7,10 (AS29208)
9 cz−prg−asbr2−ae2.dialtelecom.cz 82.119.246.30:0,2,3,5,8,9 (AS29208),

cz−prg−asbr2−ae1.dialtelecom.cz 82.119.246.238:1,4,6,7,10 (AS29208)
10 nix2−20ge.cesnet.cz 91.210.16.190 (AS???)
11 r50−r97.cesnet.cz 195.113.157.161 (AS2852)
12 rt−ant.net.vutbr.cz 213.195.192.136 (AS15935)
13 pe−ant.net.vutbr.cz 147.229.253.236 (AS197451)
14 bd−boz.net.vutbr.cz 147.229.254.218 (AS197451)
15 www.fit.vutbr.cz 147.229.9.23 (AS197451)

Return path:
Hop Host (Asn) Avg RTT
1 irf−ant.vutbr.net 147.229.242.2 (AS197451)
2 pe−ant.net.vutbr.cz 147.229.252.205 (AS197451)
3 rt−ant.net.vutbr.cz 147.229.253.233 (AS197451),

* :2 (AS???)
4 213.195.192.247 (AS15935)
5 nix2.dialtelecom.cz 91.210.16.99 (AS???)
6 cz−prg−asbr1−be4.dialtelecom.cz 82.119.246.29 (AS29208)
7 cz−prg−p1sit−be1.dialtelecom.cz 82.119.246.21 (AS29208)
8 cz−brn−76tra−po1.dialtelecom.cz 82.119.246.186 (AS29208)
9 * :0 (AS???) :0 ,

82.119.246.122 :1 (AS29208)
10 cz−brn−76brn−po4.dialtelecom.cz 82.119.245.86 (AS29208)
11 212.24.154.75 (AS29208)
12 radio5.infos.cz 46.33.112.71 (AS29208)

Forward AS path:
AS??? −> AS29208 −> AS??? −> AS29208 −> AS??? −> AS2852 −> AS15935 −> AS197451
Return AS path:
AS197451 −> AS197451,AS??? −> AS15935 −> AS??? −> AS29208 −> AS???,AS29208 −> AS29208

Listing 7.1: Rtraceroute output of a UDP traceroute measurement toward www.fit.vutbr.cz.

We can observe that the forward and return paths meet at the pe-ant.net.vutbr.cz
router, which is the second hop in the return path. The next hop in the return path is
rt-ant.net.vutbr.cz, which is the same in the forward path as well. However, at this

40

hop, the paths diverge. Responses of the next hop (the fourth in return path and eleventh in
the forward path) come not just from interfaces with different IP addresses and hostnames,
but also different ASNs. The reason behind this is that the VUT University network treats
traffic of commercial partners differently than traffic of the students. In this case, the Atlas
probe happens to be connected to the commercial network which is why the return path
is routed through a different path. It is difficult to estimate, how often such situations
occur that the routing policy within an AS is different for different IP ranges. It is certain
though, that it happens and it is one of the causes of routing asymmetry.

Another example of routing asymmetry was observed in traceroute measurement toward
a VPS connected to the Forpsi network. Source host the measurement originates from is
connected behind the NAT radio5.infos.cz, so the return path measurement is issued
toward this host. The output of the measurement can be viewed in Listing 7.2.

Forward path:
Hop Host (Asn) Avg RTT MPLS Labels
1 gateway 192.168.0.1 (AS???)
2 10.14.154.1 (AS???)
3 46−33−112−65.infos.cz 46.33.112.65 (AS29208)
4 ms.bsc−net.cz 212.24.154.73 (AS29208)
5 cz−brn−76tra−po4.dialtelecom.cz 82.119.245.85 (AS29208) MPLS Label 727 TTL=1
6 82.119.246.121 (AS29208) MPLS Label 306560 TTL=1
7 82.119.246.185 (AS29208) MPLS Label 24025 TTL=1
8 cz−prg−asbr1−hunge0−2−0−0.dialtelecom.cz 82.119.246.101 (AS29208)
9 pni−prg−aorta.dialtelecom.cz 82.119.252.106 (AS29208)
10 cz−prg01a−ra4−ae12−0.aorta.net 84.116.146.101:0,2,8,16,17,23 (AS6830) MPLS Label 317590 TTL=1,

cz−prg01a−ra4−ae9−0.aorta.net 84.116.137.17:1,3,12,13,14,15,22 (AS6830) MPLS Label 317590 TTL=1,
cz−prg01a−ra4−ae0−0.aorta.net 84.116.136.170:4,5,20,25,26 (AS6830) MPLS Label 317590 TTL=1,
cz−prg01a−ra4−ae2−0.aorta.net 84.116.136.186:6,9,10,21 (AS6830) MPLS Label 317590 TTL=1,
cz−prg01a−ra4−ae8−0.aorta.net 84.116.137.49:7,11,18,19,24 (AS6830) MPLS Label 317590 TTL=1

11 cz−pra−pop115−rb1−vla2067.net.upc.cz 84.116.223.17:0,3,4,6,7 (AS6830) MPLS Label 301637 TTL=1,
cz−pra−pop115−rb1−vla2119.net.upc.cz 84.116.221.77:1,2,5,10 (AS6830) MPLS Label 301637 TTL=1

12 Cz−pra−pop50−rb1−vla2121.net.upc.cz 84.116.221.94 (AS6830)
13 internetcz.cust.net.upc.cz 62.240.163.10 (AS6830)
14 secondary.bee.forpsi.net 81.2.192.2 (AS24806)
15 169.216.forpsi.net 195.181.216.169 (AS24806)

Return path:
Hop Host (Asn) Avg RTT MPLS Labels
1 192.168.1.1 :0 (AS???) 8.084 ms
2 ant.forpsi.net 81.2.197.91:0 (AS24806) 2.136 ms
3 secondary.dog.forpsi.net 81.2.192.4:0 (AS24806) 5.449 ms
4 nix.dialtelecom.cz 91.210.16.9:0 (AS???) 7.601 ms
5 cz−prg−p1sit−hunge0−1−0−0.dialtelecom.cz 82.119.246.102:0 (AS29208) 9.244 ms
6 cz−brn−76tra−po1.dialtelecom.cz 82.119.246.186:0 (AS29208) 9.232 ms MPLS Label 306512 TTL=1
7 82.119.246.122 :0 (AS29208) 9.783 ms,

* :2 (AS???)
8 cz−brn−76brn−po4.dialtelecom.cz 82.119.245.86:0 (AS29208) 9.958 ms MPLS Label 345 TTL=1
9 212.24.154.75 :0 (AS29208) 10.519 ms
10 radio5.infos.cz 46.33.112.71:0 (AS29208) 10.029 ms

Forward AS path:
AS??? −> AS29208 −> AS6830 −> AS24806
Return AS path:
AS29208 −> AS??? −> AS29208 −> AS??? −> AS24806 −> AS???

Listing 7.2: Rtraceroute output of a UDP traceroute measurement toward a VPS.

We can observe that the forward path is routed through an MPLS network at hops
10 and 11. Hop 9 (pni-prg-aorta.dialtelecom.cz) is the edge router of the MPLS
network and assigns MPLS labels to the routed packets. At the same time, the routed

41

traffic is load-balanced among five MPLS routers discovered at hop 10. The Forpsi network
is then entered from the UPC network at hop 14 (secondary.bee.forpsi.net).

When compared with the return path, the Atlas probe was selected from the same AS
as the VPS (AS24806). However, the return path is routed to a different edge router at
hop 3 (secondary.dog.forpsi.net) after which is routed to the NIX peer exchange. The
paths are therefore asymmetrical.

Notice the *:2 (AS???) at hop 7 in return path. This either means that at hop 6 is
a load balancer and one of the load balanced nodes at hop 7 doesn’t respond or the node
82.119.246.122 sent responses for the first two probes and ignored the third probe (:2
indicates the third probe as probes are indexed from zero). The latter case is more likely.

The accuracy of the return path approximation can be compared with the Paris tracer-
oute measurement issued from the VPS itself, which is presented in Listing 7.3.

traceroute [(195.181.216.169:33456) −> (46.33.112.71:33457)], protocol udp, algo exhaustive, duration 20 s
1 P(6, 6) 2.216.forpsi.net (195.181.216.2) 3.555/69.617/179.964/54.415 ms
2 P(6, 6) secondary.dog.forpsi.net (81.2.192.4) 4.114/4.443/4.883/0.291 ms
3 P(6, 6) nix.dialtelecom.cz (91.210.16.9) 4.708/4.990/5.646/0.328 ms
4 P(6, 6) cz−prg−p1sit−hunge0−1−0−0.dialtelecom.cz (82.119.246.102) 7.881/7.962/8.075/0.064 ms

MPLS Label 24022 TTL=1
5 P(6, 6) cz−brn−76tra−po1.dialtelecom.cz (82.119.246.186) 7.881/7.910/7.970/0.033 ms

MPLS Label 306512 TTL=1
6 P(4, 6) 82.119.246.122 (82.119.246.122) 8.105/8.163/8.296/0.078 ms
7 P(6, 6) cz−brn−76brn−po4.dialtelecom.cz (82.119.245.86) 8.148/8.526/10.199/0.749 ms

MPLS Label 345 TTL=1
8 P(6, 6) 212.24.154.75 (212.24.154.75) 9.167/9.252/9.353/0.074 ms
9 P(6, 6) radio5.infos.cz (46.33.112.71) 8.677/8.811/9.034/0.117 ms

Listing 7.3: Paris Traceroute output of a UDP traceroute measurement toward a VPS.

As can be observed, both paths meet at hop secondary.dog.forpsi.net after which
the rest of the path is identical, so the Atlas probe approximated the return path quite
well.

Both rtraceroute measurements conducted so far discovered asymmetric routing. Figure
7.2 shows an example of a rtraceroute measurement toward Wedos hosting server that is
on AS level routed symmetrically. Only the part of the rtraceroute output with the AS
paths is provided as the rest of the output is similar to the outputs of already presented
measurements.

Figure 7.2: Rtraceroute measurement toward Wedos hosting server using ICMP packet
probes.

42

As can be observed in Figure 7.2, rtraceroute evaluated both paths as symmetrical
despite the number of hops visited in AS 6830 in forward and reverse path is different. The
number of hops with unresolved ASN is also different in the reverse path. This is a desired
behaviour described in section 6.3 as the order of visited ASes is the same.

From the presented measurements can be also observed, that comparison based on
hostnames is problematic. The reason is that most router interfaces have a unique hostname
that is mapped to its IP address. This can be observed in UPC network as well as Infos
network. Situations where multiple router interfaces can be resolved to a single hostname
do not seem to be common. To some extent, this may be overcome by implementing some
kind of partial match method that would tolerate small differences, for example, one digit or
character. This way would be, for example, routers discovered at hop 10 in the forward path
in Listing 7.3 recognized as one router. Whether it really is one router is, however, difficult
to tell. The similarity in naming suggests that these may be interfaces on the same router
or at least routers with a similar role.

7.3 Discovered issues
During the tool evaluation, a certain issue was discovered when using Paris traceroute with
TCP or UDP protocol. On occasions, Paris traceroute doesn’t receive SYN, ACK or ICMP
Host Unreachable response of the target destination. For UDP probes, the most likely reason
is a firewall configured to drop packets destined to unused ports. When inspecting TCP
traffic it was discovered, that Paris traceroute doesn’t use the destination port specified
by the -d parameter, but uses a default traceroute port instead. Fixing the problem in
Paris traceroute source code, however, did not solve the problem. Even TCP packet probes
destined to port 80 (HTTP) sometimes do not yield responses. The resulting output is
depicted in Listing 7.4.

...
9 P(6, 6) wedos−sitel.kaora.cz (94.124.104.78) 13.662/14.680/16.104/0.848 ms
10 P(6, 6) 46.28.104.42 (46.28.104.42) 14.227/14.921/15.787/0.545 ms
11 P(0, 6)
12 P(0, 6)
13 P(0, 6)

Listing 7.4: Missing final hops when using TCP/UDP protocol.

It was suspected that the probes are dropped because Paris traceroute by default sends
multiple SYN packet probes, which may be perceived as a malicious activity (opening too
many connections leading to DoS). However, setting Paris traceroute to send only one probe
per hop did not solve the problem either.

The issue was then overcome by running an ICMP in parallel to TCP or UDP traceroute
and inspecting whether or not the destination host responded. If the destination host is
not discovered, the ICMP traceroute results are used to complete the missing part of the
path.

43

Chapter 8

Conclusion

The aim of this thesis was to design and implement a tool capable of finding a reverse path
between two hosts in the Internet.

Basic concepts of today’s networks were described in chapter 2 and used to understand
mechanisms developed to track paths taken by packets when being routed toward a des-
tination. Traceroute tool was studied in a deep detail in chapter 3 including some of its
extensions, developed with the aim of making traceroute more reliable, provide more infor-
mation or reflect new technologies deployed in the Internet – for example MPLS. However,
none of the described extensions effectively deals with a load-balanced environment. Load
balancing causes classic traceroute to report incorrect paths with loops, missing nodes, miss-
ing and even false links. An innovative approach of Paris traceroute, capable of maintaining
a static path for each probe through a load-balanced network, was described. Because Paris
traceroute can be considered the number one tool to trace packet path through the Inter-
net, it is used for all traceroute measurements in the project led by Ethan Katz-Bassett,
that aims to discover a return path from a distant host.

Their implementation of reverse traceroute is able to incrementally stitch together path
from a distant host to a source host by using vantage points scattered around the world.
The advantage of the designed reverse traceroute is its accuracy, as it’s able to discover
entire return path from a distant host all the way to a source host. The main disadvantage
is that the reverse traceroute relies on spoofing source IP addresses and Record Route and
Timestamp IP options. Because most IP options proved not to be very useful, support of IP
options by routers is rather poor. Moreover, it is considered a best practice to drop every
packet that contains either Record Route or Timestamp because of their malicious potential.
Another existing project called DisNETPerf, implemented with the aim to monitor routing
performance between a pair of arbitrary hosts using RIPE Atlas was described.

The design of rtraceroute tool was covered in Chapter 5. Rtraceroute utilizes RIPE
Atlas infrastructure that consists of more than ten thousand active probes and anchors
distributed worldwide. For an arbitrary destination host is selected a suitable Atlas probe
that is used to approximate its return path by issuing Paris traceroute measurement to the
source host.

Implementation of rtraceroute was described thoroughly in chapter 6. Evaluation of the
implemented tool was covered in chapter 7. Test network was deployed to evaluate the Paris
traceroute ability to cope with a load-balanced environment and, to a limited extent, the
network was used to test that collected data are correctly parsed, analyzed and displayed.
Because the implemented tool works with data collected from the RIPE Database, the full
scale tests were conducted in a real world conditions.

44

The tests discovered two causes of routing asymmetry. In the first case, the asymmetry
was caused by different routing policies for the packets sent by different hosts within the
same AS. The second cause of routing asymmetry was that the packets in the return
path were routed through a peering exchange. Direct comparison with Paris traceroute
measurement issued from the reference destination host showed that the selected Atlas
probe approximated the reverse path very accurately with only the first hop being different.
An example of symmetric routing was also observed where packet probes traveled through
the same ASes in both directions.

The tests also revealed, that comparing hops in forward and return path by hostnames
fails in most cases, because hostnames are often mapped to a single IP address of the
respective interface.

There are several possibilities for improvements. The hostname analysis may be im-
proved by being more tolerant to a small differences because only rarely are router interfaces
mapped to a single hostname. The generated graphs may be improved to show both, the
return path and the forward path with highlighted matching nodes on AS and hostname
levels.

Additionally, more research should be done in the field of router fingerprinting, as this
project would greatly benefit from a technology that would be able to detect if two or more
IP addresses belong to interfaces on a single router.

45

Bibliography

[1] Andrea, B.: Dublin traceroute.
https://github.com/insomniacslk/dublin-traceroute. 2018.

[2] Augustin, B.; Cuvellier, X.; Orgogozo, B.; et al.: Avoiding Traceroute Anomalies with
Paris Traceroute. In Proceedings of the 6th ACM SIGCOMM Conference on Internet
Measurement. IMC ’06. New York, NY, USA: ACM. 2006. ISBN 1-59593-561-4. pp.
153–158. doi:10.1145/1177080.1177100.
Retrieved from: http://doi.acm.org/10.1145/1177080.1177100

[3] Augustin, B.; Friedman, T.; Teixeira, R.: Exhaustive path tracing with Paris
traceroute. 2006.
Retrieved from: https://paris-traceroute.net/images/conext2006_poster.pdf

[4] Augustin, B.; Friedman, T.; Teixeira, R.: Measuring Load-balanced Paths in the
Internet. In Proceedings of the 7th ACM SIGCOMM Conference on Internet
Measurement. IMC ’07. New York, NY, USA: ACM. 2007. ISBN 978-1-59593-908-1.
pp. 149–160. doi:10.1145/1298306.1298329.
Retrieved from: http://doi.acm.org/10.1145/1298306.1298329

[5] B. Claise, E.: Cisco Systems NetFlow Services Export Version 9. RFC 3954. RFC
Editor. October 2004.
Retrieved from: http://www.rfc-editor.org/rfc/rfc3954.txt

[6] Bonica, R.: ICMP Extensions for Multiprotocol Label Switching. RFC 4950. RFC
Editor. August 2007.
Retrieved from: http://www.rfc-editor.org/rfc/rfc4950.txt

[7] Ferguson, P.; Senie, D.: Network Ingress Filtering: Defeating Denial of Service
Attacks which employ IP Source Address Spoofing. RFC 2827. RFC Editor. May
2000.
Retrieved from: https://tools.ietf.org/html/bcp38

[8] Gont, F.; Atkinson, R.; Networks, U.-F. . S.: Recommendations on Filtering of IPv4
Packets Containing IPv4 Options. RFC 7126. RFC Editor. February 2014.
Retrieved from: https://tools.ietf.org/html/rfc7126

[9] He, Y.; Faloutsos, M.; Krishnamurthy, S.; et al.: On routing asymmetry in the
Internet. In GLOBECOM ’05. IEEE Global Telecommunications Conference, 2005.,
vol. 2. Nov 2005. ISSN 1930-529X. pp. 6 pp.–. doi:10.1109/GLOCOM.2005.1577769.

46

https://github.com/insomniacslk/dublin-traceroute
http://doi.acm.org/10.1145/1177080.1177100
https://paris-traceroute.net/images/conext2006_poster.pdf
http://doi.acm.org/10.1145/1298306.1298329
http://www.rfc-editor.org/rfc/rfc3954.txt
http://www.rfc-editor.org/rfc/rfc4950.txt
https://tools.ietf.org/html/bcp38
https://tools.ietf.org/html/rfc7126

[10] Institute, I. S.: Transmission Control Protoclol. RFC 793. RFC Editor. September
1981.
Retrieved from: https://tools.ietf.org/html/rfc793#section-3.1

[11] Jobst, M. E.: Traceroute Anomalies. Technical report. Department for Computer
Science. Technische Universität München. August 2012.

[12] Katz-Bassett, E.; Madhyastha, H. V.; Adhikari, V. K.; et al.: Reverse Traceroute. In
Proceedings of the 7th USENIX Conference on Networked Systems Design and
Implementation. NSDI’10. Berkeley, CA, USA: USENIX Association. 2010. pp. 15–15.
Retrieved from: http://dl.acm.org/citation.cfm?id=1855711.1855726

[13] Krause, J.: Windows Server 2012 R2 administrator cookbook : over 80 hands-on
recipes to effectively administer and manage your Windows Server 2012 R2
infrastructure in enterprise environments. Birmingham, UK: Packt Publishing. 2015.
ISBN 9781784394226.

[14] Kurose, J.: Computer networking: a top-down approach. Boston: Pearson. 2013.
ISBN 978-0-13-285620-1.

[15] Matoušek, P.: Síťové služby a jejich architektura. Publishing house of Brno University
of Technology VUTIUM. 2014. ISBN 978-80-214-3766-1. 396 pp.
Retrieved from:
http://www.fit.vutbr.cz/research/view_pub.php.cs.iso-8859-2?id=10567

[16] Minei, I.; Lucek, J.: MPLS-Enabled Applications: Emerging Developments and New
Technologies. Wiley Publishing. third edition. 2011. ISBN 0470665459,
9780470665459.

[17] Mtr - a network diagnostic tool. July 2014.
Retrieved from: https://linux.die.net/man/8/mtr

[18] R. Bonica, J. N., D. Gan: Extended ICMP to Support Multi-Part Messages. RFC
4884. RFC Editor. April 2007.
Retrieved from: http://www.rfc-editor.org/rfc/rfc4884.txt

[19] RIPE Atlas APIs Manual.
Retrieved from: https://atlas.ripe.net/docs/api/v2/manual/

[20] RIPEstat Data API Manual.
Retrieved from: https://stat.ripe.net/docs/data_api

[21] Steenbergen, R.: A Practical Guide to (Correctly) Troubleshooting with Traceroute.
2017.
Retrieved from:
https://www.nanog.org/sites/default/files/10_Roisman_Traceroute.pdf

[22] Tanenbaum, A.: Computer networks. Boston: Pearson Prentice Hall. 2011. ISBN
0-13-212695-8.

[23] Traceroute - print the route packets trace to network host. October 2006.
Retrieved from: https://linux.die.net/man/8/traceroute

47

https://tools.ietf.org/html/rfc793#section-3.1
http://dl.acm.org/citation.cfm?id=1855711.1855726
http://www.fit.vutbr.cz/research/view_pub.php.cs.iso-8859-2?id=10567
https://linux.die.net/man/8/mtr
http://www.rfc-editor.org/rfc/rfc4884.txt
https://atlas.ripe.net/docs/api/v2/manual/
https://stat.ripe.net/docs/data_api
https://www.nanog.org/sites/default/files/10_Roisman_Traceroute.pdf
https://linux.die.net/man/8/traceroute

[24] de Vivo, M.; Carrasco, E.; Isern, G.; et al.: A Review of Port Scanning Techniques.
SIGCOMM Comput. Commun. Rev.. vol. 29, no. 2. April 1999: pp. 41–48. ISSN
0146-4833. doi:10.1145/505733.505737.

[25] Wassermann, S.; Casas, P.: Reverse Traceroute with DisNETPerf, a Distributed
Internet Paths Performance Analyzer. In Proc. Demonstrations of the 41th Annual
IEEE Conference on Local Computer Networks (LCN-Demos 2016). 2016. pp. 1–3.

[26] Wassermann, S.; Casas, P.; Donnet, B.; et al.: On the Analysis of Internet Paths
with DisNETPerf, a Distributed Paths Performance Analyzer. In 2016 IEEE 41st
Conference on Local Computer Networks Workshops (LCN Workshops). Nov 2016.
pp. 72–79. doi:10.1109/LCN.2016.031.

48

Appendix A

Content of the attached DVD

∙ Source code of the implemented tool in directory /src.

∙ Readme file in /src/README.md.

∙ This technical report including LATEX source code in /tz

49

	Introduction
	Network Concepts
	Network Architecture
	OSI model
	TCP/IP model

	Packet Path Discovery
	Traceroute
	Network mechanisms affecting traceroute
	Traceroute anomalies
	Traceroute extensions
	Paris traceroute
	Dublin traceroute
	Reverse traceroute
	DisNETPerf

	Network Diagnostics
	RIPE Atlas
	My Looking Glass
	Mtr

	Rtraceroute Design
	Specification analysis
	Atlas probe selection
	Proof of concept
	Path enumeration
	Path analysis

	Implementation
	Probe selection
	Traceroute measurements
	Path analysis
	Graphical visualization

	Evaluation
	Test topology
	Real world conditions
	Discovered issues

	Conclusion
	Bibliography
	Content of the attached DVD

