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Abstract. In this paper, a new methodology based on the
exponential filtering of singular values is adopted to solve the
linear ill-posed problem of microwave imaging. This tech-
nique filters out the insignificant singular values and works
as an efficient low pass filter to eliminate high-frequency
noise from the estimated solution. Standard Tikhonov regu-
larization has also proven to be a special case of this method.
To show the effectiveness of this approach, various numer-
ical examples of synthetic data and experimental data of
Fresnel’s Institute are considered for the study. The recon-
struction performance of this algorithm is quantified using
the mean square error (MSE) and Pearson’s correlation co-
efficient (PCC). Further, the effect of noise on these metrics
is presented. The results are compared with the standard
Tikhonov regularization method, and it is observed that the
proposed reconstruction algorithm provides accurate results
compared to the standard Tikhonov regularization method.
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1. Introduction
Microwave imaging (MI) is an important technology

for estimating unknown objects by interrogating microwave
signals [1]. It has wide applications in the fields of non-
destructive testing and evaluation, biomedical engineering,
subsurface sensing, hidden weapon detection, and remote
sensing [1–5]. In general, these problems are non-linear
and ill-conditioned in nature and require high computational
time [6]. In scientific literature, several solution strategies
have been proposed to solve such problems. Among them,
the Born approximation is one of the most popular frame-
works due to its speed and simplicity. This approach assumes
that the relation between scattered field and permittivity pro-
file is linear [7]. Therefore the imaging result is a solution
to an ill-conditioned linear problem. To solve such prob-
lems, a regularization scheme needs to be introduced that
stabilizes the solution by discarding the insignificant singular

values [1], [8]. The solution of the regularized problem is
well-behaved and close to the solution of the original ill-
conditioned problem. Several techniques are available in the
literature, such as spectral cutoff, Tikhonov regularization,
and exponential filtering [9]. These schemes are called reg-
ularization by filtering because the only difference between
them is the filter function. Since the main purpose of the fil-
tering is to prevent the amplification of error in the problem
due to insignificant singular values, the simplest approach to
do this is to eliminate the contribution of insignificant sin-
gular values. The spectral cutoff is one of the simplest ways
to do this. The main idea behind this method is to introduce
a tolerance, for which all singular values below that tolerance
are truncated [8]. However, finding the correct value of tol-
erance is a challenging task. The most commonly used regu-
larization technique in MI is based on the Tikhonov method,
which makes use of the L2-norm of the expected solution,
thereby reconstructing the smooth image. The Tikhonov
regularization method penalizes the residual norm and re-
duces the effect of small singular values. However, the ex-
ponential filtering system is considered to have very little
bias towards the regularization parameter and is not subject
to extra computational burden as it is implemented in the
Tikhonov regularization [10]. The Tikhonov regularization
method is an approximation of the exponential filtering tech-
nique [9]. Also, there is considerable literature on spectral
cutoff and Tikhonov methods. None of the previous studies,
however, investigated the exponential filtering method for the
applications in MI. Therefore to further improve the imaging
capabilities, this paper addresses this approach, which has
hitherto been lacking in the scientific literature.

In this work, the reconstruction capability of exponen-
tial filtering is studied by analyzing filter factors. Further, the
exponential filtering is applied to various numerical examples
of synthetic data generated with dielectric and metallic ob-
jects. The merits of this approach are studied by comparing
the results with standard Tikhonov regularization. Finally,
the proposed algorithm is validated against an experimental
database provided by the Institute of Fresnel, France [11].
In both cases, the results are encouraging and show improve-
ment compared to the standard Tikhonov regularization.
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2. Formulation
A schematic diagram of a two-dimensional (2D) mi-

crowave imaging configuration is shown in Fig. 1. The imag-
ing region is represented by D and the observation region is
represented by S. The unknown scatterer is illuminated us-
ing a set of incident fields generated by a single emitter (Tx)
moving around the target. The scattered fields are collected
with multiple receivers (Rx) located in the circular geometry
that encloses the cross-section of the targets. The inverse
scattering problem makes use of these measured scattered
fields to determine the contrast function distribution.

Let us consider a 2D microwave imaging problem of
transverse magnetic (TM) polarization. To determine the
relationship between the contrast function and the scattered
field, the scattering equations for non-magnetic materials can
be represented as [1],

et(r) = ei(r) + k2
0

∫
χ(r ′)et(r ′)G(r,r ′)dr ′, r,r ′ ∈ D (1)

es(r) = k2
0

∫
χ(r ′)et(r ′)G(r,r ′)dr ′, r ∈ S, r ′ ∈ D (2)

where the spatial variables r,r ′ ∈ (x, y) are the Cartesian
coordinates of the measurement point and the source point,
respectively. The terms ei and et are the incident and the
total electric fields in D, while es is the scattered elec-
tric field in S. In equations (1) and (2), k0 denotes the
wavenumber of the background medium, G(r,r ′) is the free
space Green’s function, and χ denotes the contrast function
which carries information about the variation between the
scatterer and the homogeneous background. It is defined as
χ (r) = [εr (r) /εb − 1], where εr and εb denotes the relative
permittivities of an object and the background, respectively.
Equations (1) and (2) are solved by converting them to a dis-
crete form with the help of method moments (MoM) [12].
The resulting matrix equations can be written as

et = ei +GDetχ, (3)
es = GSetχ (4)

where GD and GS are internal and external radiation oper-
ators, respectively. The solution to find χ is non-linear [1].
Various methods are available in the literature to solve such
problems. In this work, we consider the Born approximation
(BA) model where the non-linear problem is approximated to
a linear model. The BA is applicable when the object under
test is a weak scatterer [5]. For strong scatterers, BA provides
morphological features only. With this approach, the scatter-
ing equation (4) can be linearized by approximating the total
field with the incident field, so that the only unknown in the
equation is χ. Thus the resulting scattered field equation can
be written as

es = GSeiχ. (5)

This equation is linear and ill-posed, with the unknown pa-
rameter χ. In practice, scattered field data is contaminated
by noise. Therefore, the direct inversion of this equation
produces erroneous results. In this case, the regularization
technique needs to be adopted to obtain a stable solution.

Fig. 1. Two-dimensional measurement configuration.

Let us consider a summarized linear problem as
Tχ = d , T ∈ CP×Q, d ∈ CP, χ ∈ CQ (6)

where T is the ill-conditioned system matrix, and d is the
scattered field vector. Here P represents the total number of
observation points, and Q represents the number of cells in
the test domain. In order to compute the optimal solution
for this problem, the regularization strategy is needed that
overcomes the instability of the problem. This work includes
a description of two such techniques: Tikhonov regulariza-
tion and exponential filtering. The characteristics of each
method are discussed individually in the following section.

2.1 Tikhonov Regularization
Tikhonov regularization is a widely adopted technique

for obtaining an approximate solution. In this regularization
process, instead of directly solving the matrix equation (6)
for the least-squares solution, we can solve the optimization
problem that minimizes the objective function [13]

min
χ

(
‖Tχ − d‖2

2 + α ‖χ‖
2
2

)
(7)

where ‖.‖2 denotes the L2-norm, α is the regularization pa-
rameter, α ‖χ‖2

2 denotes the penalty/ regularization term used
to obtain a stable solution that is more accurate and less sensi-
tive to noise. The solution vector after solving this objective
function can be written as

χ = (T∗T + αI)−1T∗d (8)

where ∗ denotes the conjugate transpose operator. By ap-
plying the singular value decomposition of system matrix as
T = USV∗, the regularized solution is given as

χ = VS†U∗d (9)

where U and V are orthogonal matrices and are called as
the left and right singular matrices of T, respectively, S is the
diagonal singular value matrix, and S† is the diagonal inverse
singular value matrix. We can rewrite the equation (9) as

χ =

γ∑
k=1
ψk

〈uk,d〉
σk

vk (10)
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where γ denotes the system matrix rank, σk is the k th singular
value available along the diagonal of S, uk and vk denotes
the k th left and right singular vectors respectively, and the
term ψk is called as the filter factor, which scales the solution
component in the direction of vk such that the effect of error
in the term 〈uk,d〉 is reduced. The filter factor for this method
is given by

ψTR
k =

σ2
k

σ2
k
+ α
. (11)

The resulting diagonal elements of S† for the Tikhonov
regularization approach is given by

(S†)kk =

{
σk

σ2
k
+α
, k = 1, · · · , γ

0, k = γ+1, · · · ,min (P, Q)
(12)

2.2 Exponential Filtering
Even though the Tikhonov regularization is a widely

used method, it is an approximation of the exponential fil-
tering, often referred to as the asymptotic regularization or
Showalter method [14]. The filter factor for this method is

ψEF
k = 1 − e−σ

2
k
/α . (13)

The eigenvector components corresponding to the in-
significant eigenvalues are dampened by ψEF

k
. The diagonal

elements of the inverse singular value matrix for this case is
given by

(S†)kk =

{
1−e−σ

2
k
/α

σk
, k = 1, · · · , γ

0, k = γ+1, · · · ,min (P, Q)
(14)

The value of the filter factor is a function of α. There-
fore, the selection of α is a key point for determining the
quality of the reconstructed images. In this work, the value
of α is evaluated using the state of the art regularized min-
imal residual method [15], [16], which solves the problem
iteratively, and bypasses the calculation of an inverse matrix.

By performing the exponential series expansion, filter
factors can be represented as

ψEF
k = 1− e−σ

2
k
/α = 1−

[
1−
σ2
k

α
+

(
−σ2

k
/α

)2

2!
+ · · ·

]
. (15)

By ignoring the higher-order terms for a case of σ2
k



α, we can rewrite the equation (15) as

ψEF
k �

σ2
k

α
. (16)

By applying the similar approximation to the Tikhonov
filter factors of equation (11), we obtain

ψTR
k =

σ2
k

σ2
k
+ α
=

1
1 + α

σ2
k

�
σ2
k

α
. (17)

This implies that the exponential filter factors reduce to
Tikhonov filter factors when σ2 
 α, which is the case for
the last filter factors. Thus, Tikhonov regularization can be
seen as a special case of exponential filtering.

2.2.1Comparison of Filter Factors
The filter factors for Tikhonov regularization and expo-

nential filtering are plotted as a function of singular values
in Fig. 2. Filter factors vary depending on how quickly they
reach saturation. Slow convergence indicates the significant
smoothing in the obtained solution. A comparison plot shows
that ψEF

k
provides less smoothing than ψTR

k
, and this implies

that the solution obtained using exponential filtering is of
higher quality than the Tikhonov regularized solution. Also,
the effect of the regularization parameter is studied by con-
sidering different values of α (0.01, 0.1, and 0.5). It is quite
evident from the figure that, for small values of α, the filter
factors rate of attaining the saturation level (unity) is faster.
This condition directly produces an inverse solution, but it
results in inadequate filtering also. On the other hand, the
value of α too high leads to a smooth curve, whose rate of
reaching saturation is slower, and it yields in oversmoothing.
The stability of the solution is ensured by the filter factor
and the accuracy is controlled by the value of α. Thus the
selection of proper values of ψk and α is very crucial.

The filter factors are also plotted as a function of σ2/α
in Fig. 3. Here, a regularization parameter of 0.01 is used.
The figure clearly shows that the Tikhonov and exponential
filtering become identical when σ2 
 α (i.e. σ2/α 
 1).
Both Tikhonov and Exponential filtering methods exhibit low
pass filter characteristics. The limitation of Tikhonov regu-
larization is that it filters out some of the significant singular
values in the transition band. Hence, the obtained image is
less accurate. In the transition band, the exponential filtering
follows similar to the low pass filter. As a result, most sig-
nificant singular values are passed, which contribute towards
obtaining a more accurate solution.

Fig. 2. Filter factors comparison between Tikhonov regulariza-
tion and exponential filtering.

Fig. 3. Filter factors for Tikhonov regularization and exponential
filtering as a function of σ2/α.

By ignoring the higher-order terms for a case of
we can rewrite the equation (15) as
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3. Simulation Results
In this section, the performance of the proposed al-

gorithm is validated through various numerical examples of
synthetic and experimental data consisting of metallic as well
as dielectric objects. In all the inversion examples, we will
reconstruct the profiles for their location, shape as well as
permittivity using the proposed reconstruction algorithm.

3.1 Synthetic Data Results
In this section, we show some reconstructions obtained

using simulated data. The domain of interest is a 20 cm ×
20 cm square, and it is divided into 2601 cells (51 × 51).
In all the following examples, the measurement domain con-
sists of 36 receivers that are uniformly placed in a circular
geometry. The operating frequency can be chosen to be the
frequency at which the length of the investigation domain is
approximately one wavelength [17]. However, the resolution
is improved when a higher frequency is used. Therefore,
an operating frequency of 3 GHz is used.

The accuracy of the results can be quantified using the
following figures of merit.

• Mean Square Error (MSE):
It is a measure of reconstruction quality based on com-
parison with the reference profile [18]. This error pa-
rameter is defined as

MSE =
‖χ − χ̂‖2

‖χ‖2 (18)

where χ and χ̂ denotes the actual and estimated contrast
function values, respectively.

• Pearson Correlation Coefficient (PCC):
This coefficient represents the accurate detectability
of the object by measuring the degree of correlation
between the reference profile and the estimated pro-
file [10]. It is given as

PCC(χ, χ̂) =
cov(χ, χ̂)
s(χ) s(χ̂)

(19)

where cov represents the covariance, and s represents
the standard deviation. PCC value ranges from –1 to 1.
Reconstructed images require a higher value of PCC.

3.1.1Two Dielectric Objects
In this case, the value of εr is selected in such a way

that
��GDχ

�� < 1 for the frequencies considered. Therefore,
the target can be treated as a weak scatterer, and the BA can
be applied for better reconstruction results [19]. As shown
in Fig. 4(a), this example consists of two identical, circular
cylinders of 2 cm radius and separated by a distance of 3 cm
in free space (εb = 1). The scatterers are dielectric with the
permittivity value of εr = 1.3 (χ = 0.3). Here, α is calcu-
lated using the regularized minimal residual method [15]. In
this method, the residual is calculated at each iteration and
the solution is updated accordingly. This process is repeated

until the relative residual becomes less than or equal to τ =
10−5. At every iteration, the value of α is automatically
chosen using Matlab’s one-dimensional minimizer function
fminbnd, which attempts to find the minimum of a single-
variable function within a fixed interval (here, the interval is
between 0 to 1 for the considered examples).

Figure 4(b) shows the plot of the solution process using
this method. The iterative process ends when the stopping
condition is satisfied. It shows that the objective function
value drops to a very low level after the 5th iteration and
remains approximately constant at 0.04279 after 15th itera-
tion. The value of α obtained after convergence is used in
the inverse solution. The results of reconstruction are pre-
sented in Figs. 4(c)–(e). Figure 4(e) shows the one dimen-
sional cross-sectional plot, which gives the contrast function
value retrieved along the x-axis (y = 0). Here, TR and EF
symbolize Tikhonov regularization and exponential filtering,
respectively. The results indicate that the accuracy of the
exponential filtering is better than the standard Tikhonov
method.

Although the results obtained using the proposed
method are visually excellent, to objectively show the same,
the figures of merit (MSE and PCC) are presented in
Tab. 1. Here, the effect of noise on the quality of recon-
struction is inspected by corrupting the simulated data with

-10 10-1.5 1.5

10

-2

2

-10
x(cm)

y(
cm

)

-5.5 5.5

(a) (b)

(c) (d)

(e)

Fig. 4. Results for two dielectric objects, (a) Actual profile, (b) It-
erative solution process using regularized minimal resid-
ual method, (c) Reconstruction using Tikhonov regular-
ization, (d) Reconstruction using exponential filtering,
(e) 1D plot along x-axis.

In this section, we show some reconstructions obtained 
using simulated data. The domain of interest is a 20 × 20 cm 
square and it is divided into 2601 cells (51 × 51). In all the 
following examples, the measurement domain consists of 36 
receivers that are uniformly placed in a circular geometry. 
The operating frequency can be chosen to be the frequency 
at which the length of the investigation domain is approxi-
mately one wavelength [17]. However, the resolution is im-
proved when a higher frequency is used. Therefore, an oper-
ating frequency of 3 GHz is used.
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SNR 5 dB 10 dB 15 dB 20 dB 25 dB
PCCTR 0.8617 0.8697 0.8723 0.8732 0.8734
PCCEF 0.8636 0.8712 0.8736 0.8743 0.8746
MSETR 0.9526 0.9425 0.9370 0.9340 0.9324
MSEEF 0.5251 0.5137 0.5091 0.5072 0.5063

Reduction
in error [%] 81.41 83.47 84.05 84.15 84.16

Tab. 1. PCC and MSE of two dielectric objects for different
noise levels.

Gaussian noise with five different levels of SNR (5 dB, 10 dB,
15 dB, 20 dB, and 25 dB), and the corresponding PCC and
MSE values are reported in Tab. 1. Here, the reduction in
error is calculated by

(
MSETR−MSEEF

MSEEF

)
× 100%. As can be

seen, the PCC values for both methods are very close. This
implies that the detectability of the proposed approach is al-
most identical to the standard Tikhonov method. However,
the MSE values indicate that the proposed method is very
much helpful in terms of improving the image accuracy. We
observe that in all the cases, there is a reduction in error of
approximately 83% for the proposed approach.

3.1.2Austria Profile
In this example, the applicability of the proposed algo-

rithm is tested on the Austria profile, which is the well-known
target configuration in the inverse scattering community. Fig-
ure 5(a) shows the Austria profile (εr = 1.3) with a homoge-
neous background (εb = 1). It consists of two disks and one
ring structure. The ring is centered at (0, –2) cm and the disks
are located at (–3.5, 7) cm and (3.5, 7) cm. The radius of each
disk of 2 cm, whereas the ring has an outer radius of 6 cm and
an inner radius of 4 cm. With reference to Fig. 5(b)–(c), it is
clear that the algorithm yields good reconstruction in terms
of image accuracy. The MSE for the exponential filtering
(0.8020) is less than the Tikhonov regularization (1.1422).
Thus the proposed method achieves a statistically significant
improvement compared to the standard Tikhonov method.
Also, the PCC value is 0.7723 for the Tikhonov method and
0.7725 for exponential filtering.

3.1.3Multilayer Dielectric Object
The multilayer dielectric cylinder configuration is often

used for inversion procedures imaging applications. An ex-
ample consists of two-layer circular non-concentric cylin-
ders with radii of inner and outer cylinders, 2 cm and 6 cm,
respectively. Furthermore, the relative permittivity values
of the inner and outer cylinders are equal to 1.35 and 1.15,
respectively, and are centered at (2, 0) cm and (0, 0) cm.

The actual profile of the non-concentric circular cylin-
der is given in Fig. 6(a), and the final reconstructed outputs
(distribution of the contrast function) at 3 GHz are reported
in Fig. 6(b)–(d). It is observed that the reconstructed image
using the exponential filtering method is quite accurate in
terms of target position, size, and dielectric property. The
MSE value for the exponential filtering (0.2782) is less than
the Tikhonov method (0.4329). Moreover, the PCC value is
0.9280 for the Tikhonov method and 0.9283 for the exponen-
tial filtering.

-10 10-3.5 3.5

10
7

-2

2
4

-6
-8

-10
x(cm)

y(
cm

)

6-6 0

(a)

(b) (c)

Fig. 5. Results for Austria profile, (a) Actual profile, (b) Recon-
struction using Tikhonov regularization, (c) Reconstruc-
tion using exponential filtering.
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Fig. 6. Results for multilayer dielctric object, (a) Actual profile,
(b) Reconstruction using Tikhonov regularization, (c) Re-
construction using exponential filtering, (d) 1D plot.

3.1.4PEC Object
The proposed reconstruction algorithm is developed for

dielectric scatterers, so it is not known how well this algo-
rithm works for targets with perfect electric conductor (PEC)
objects. In the case of PEC, the electromagnetic field does
not enter into object and the scattered fields come from its
boundary only [20], [21]. The imaging result is obtained
by assuming the scatterer as a highly conducting dielectric
cylinder so that the mathematical formulations derived for the
dielectric object can be applied to the PEC objects [22].
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Fig. 7. Results for PEC cylinder, (a) Actual profile, (b) Recon-
struction using Tikhonov regularization, (c) Reconstruc-
tion using exponential filtering, (d) 1D plot along x-axis.

Here, the target configuration consists of a circular PEC
cylinder of radius 2 cm placed in a homogeneous free space at
a distance of 3 cm from the center of the test domain, as shown
in Fig. 7(a). The corresponding simulation results at a work-
ing frequency of 3 GHz are illustrated in Fig. 7(b)–(d). Since
the PEC targets have infinite conductivity, only the boundary
of these scatterers should be determined [22]. Therefore,
the actual target permittivity value has not been defined in
Fig. 7(d) and only the boundary of the scatterer has been
indicated. It is quite evident from results that the exponential
filtering provides better accuracy than the Tikhonov regu-
larization. Thus the proposed reconstruction algorithm also
works well for the PEC objects.

3.2 Experimental Data Results

In order to check the performance of the proposed algorithm
under realistic conditions, experimental data acquired in the
laboratory of Fresnel’s institute, Marseille [11] is considered.
The scattered field data is acquired in an anechoic chamber
using the experimental setup shown in Fig. 8. In the setup,
linearly polarized horn antennas are used. The transmitting
antenna is fixed on the horizontal axis at a distance of 720 mm
± 3 mm, and the receiving antenna rotates around the target
at a distance of 760 mm ± 3 mm. The target has an elon-
gate shape along the vertical axis to form a two-dimensional
structure. In Fig. 8, θt represents the angle between the trans-
mitting antenna and the target, whereas θr denotes the angle
between the transmitter and the receiver, whose angular range
is from 60◦ to 300◦. In this case, 36 transmission antenna
positions are used.

Fig. 8. Experimental setup used to measure the scattered field
data.

3 cm 9 cm

1.27 cm

2.45 cm

8 cm

4 cm5 cm

3 cm 3 cm3 cm

(a) (b)

(c) (d)

Fig. 9. Target profiles for experimental data, (a) Single dielec-
tric, (b) Two dielectrics, (c) Metallic rectangle, (d) Metal-
lic ‘U’.

In the experimental case, four different imaging config-
urations (dielectric or metallic) are considered. The cross-
sectional dimensions of these scatterers are indicated in
Fig. 9. The dielectric target consists of one (Fig. 9(a)) or
two (Fig. 9(b)) filled dielectric cylinders, with a permittivity
value of εr = 3 ± 0.3, so it is considered a strong scatterer.
Two metallic targets with rectangular and ‘U-shaped’ cross-
section are also studied.

3.2.1Single Dielectric
This example relates to the reconstruction of a single

circular dielectric cylinder of 1.5 cm radius, located at a dis-
tance of 3 cm from the origin, as shown in Fig. 9(a). The
reconstruction is carried out at an operating frequency of
3 GHz. Figure 10 displays the reconstructed distributions
of the contrast function. Since the object is a strong scat-
terer, this case does not satisfy the validity condition of the
Born approximation. Therefore, the magnitude of the re-
constructed profile is less accurate compared to the reference
profile. Nevertheless, the exponential filtering reconstruction
leads to more accurate results.

(d)
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(a) (b)

(c)

Fig. 10. Experimental results for single dielectric, (a) Recon-
struction using Tikhonov regularization, (b) Recon-
struction using exponential filtering, (c) 1D plot along
x-axis.

(a) (b)

(c)

Fig. 11. Experimental results for two dielectrics, (a) Reconstruc-
tion using Tikhonov regularization, (b) Reconstruction
using exponential filtering, (c) 1D plot along x-axis.

3.2.2Two Dielectrics
The dielectric profile of this example is shown in

Fig. 9(b). It consists of two identical circular cylinders of
a 1.5 cm radius and separated by 9 cm. The cylinders are sep-
arated along the horizontal axis by a distance of 9 cm. The
imaging results for this target are illustrated in Fig. 11. Here
again, better reconstruction is obtained using the proposed
algorithm.

(a) (b)

(c)

Fig. 12. Experimental results for metallic rectangle, (a) Recon-
struction using Tikhonov regularization, (b) Recon-
struction using exponential filtering, (c) 1D plot along
x-axis.

(a) (b)

Fig. 13. Experimental results for metallic ‘U’, (a) Reconstruc-
tion using Tikhonov regularization, (b) Reconstruction
using exponential filtering.

3.2.3Metallic Rectangle
In this case, the target configuration consists of a metal-

lic rectangular cylinder of dimensions (2.45 × 1.27) cm2, as
shown in Fig. 9(c). The measurement is carried out at a fre-
quency of 4 GHz, and the corresponding simulation results
are reported in Fig. 12. As the object under inspection is small
in size, the imaging domain is considered as 12 cm × 12 cm.
It is observed that the profile of the target is clearly and
quite accurately reconstructed by the exponential filtering
approach.

3.2.4Metallic ‘U’
Finally, in this example, a more complicated object pro-

file of ‘U-shaped’ metallic cylinder with a dimension of
(8 × 5) cm2 is inspected, and the corresponding results at
an operating frequency of 4 GHz are presented in Fig. 13.
Here, the test domain is taken as 16 cm × 16 cm. The results
led to a similar conclusion where the exponential filtering re-
sults are more accurate than the Tikhonov regularization.

x(cm)
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4. Conclusion
This paper describes a new algorithm based on expo-

nential filtering to solve the linear, discrete ill-posed problem
of microwave imaging. The purpose of the filtering method
is to suppress the contribution of lower singular values and
keep significant singular values. As a result, the computed
solution is more accurate. The linearized scattering model
of Born approximation is considered. The required regular-
ization parameter has been calculated using the regularized
minimal residual method. The results are compared with the
state of the art Tikhonov regularization for various numerical
examples of synthetic data and experimental data (provided
by Institut Fresnel). To show the effectiveness of the algo-
rithm, results are also obtained with different signal to noise
ratios of data. The results conclude that this method is able to
reconstruct the dielectric scatterers with high accuracy. The
same is validated for metallic objects. As future work, this
model can be extended to the case of 3D.
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