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BACHELOR’S THESIS
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Abstrakt
Tato bakalářská práce popisuje, jak může být princip TDD uplatněn u hardware, převážně
pro vývoj FPGA. Je popsána důležitá teorie pro pochopení kontextu. Na referenčním
návrhu jsou představeny některé dostupné a užitečné verifikační nástroje. Jeden z těchto
nástrojů byl vybrán a pomocí TDD byl vytvořen a úspěšně otestován návrh komunikačního
modulu SPI.

Abstract
This bachelor’s thesis describes, how test-driven development can be used in hardware,
especially for FPGA development. The essential theory for understanding the context is
described. Some available tools for assertion-based hardware verification and unit-testing
are presented and demonstrated on a reference design. One of the introduced tools was
selected and with that a test-driven developed SPI interface was created and successfully
verified.
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Chapter 1

Introduction

Test-driven development (TDD) is a methodology, commonly used in software development.
The concept of TDD is to write a test before the actual implementation of the code. The
tests contain assertions and compare the expected result with the actual result. Gradually
adding tests and expanding functionality, while keeping previous tests passing and avoiding
of unnoticed bugs.

In FPGA development functional verification is usually done with testbenches and
simulations. However complex designs are hard and time-consuming to verify. Therefore
new verification tools and techniques are needed. Assertion-based verification, in combination
with test-driven development, can benefit for hardware design. Today, assertion-based
verifications frameworks exist for FPGA development. Combining the test-driven development
methodology and assertion-based verification can provide major advantages in hardware
verification where verification cycles take most of development time.

The main goal of this thesis is to demonstrate how the TDD methodology can be applied
in the hardware context, so in the further chapters instead of using FPGA design or FPGA
development terms, hardware design and development will be used. The next chapter
describes the essential theory, the third chapter introduces demonstrates and compares
some assertion-based and test-driven techniques on a reference design. A demonstrational
hardware was made using the introduced TDD techniques and the development report can
be found in the fourth chapter. Finally, the stated facts and acquired results are summarized
and evaluated in the final chapter.

This thesis is shipped with a CD, which contains all the examples and the demonstrational
hardware design.
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Chapter 2

Theory basis

2.1 Test-driven development

2.1.1 Assertions

An assertion is a (true-false) statement in a program code defined by the developer, that
(based on the developers knowledge) is always true.[5] They can be defined, e.g. in
comments to help the programmers see through the code and use them to speed up the
development process. Many programming languages support checked assertions, depending
on the language, they can be defined with a built-in keyword or function. They are evaluated
during runtime and when some of them fail, the program exits with an assertion report.
From the report, the developer can determinate which assertion failed, conclude what causes
the error and fix it. These assertions should be removed from the final code, some compilers
have a switch for omitting them.

2.1.2 Unit-tests

A more sophisticated way of testing with assertions is using them in unit-tests. The source
code should be divided into individual units, they can contain one or more functions,
procedures, modules or objects.[6] Each unit should be tested individually, isolated from
other test cases. In the test cases, assertions or similar techniques should be used to generate
a report after running the test.

The test cases can always be written from scratch, but some patterns will be repeated
in all tests, therefore it is obvious that one can take advantage of the reusability from the
object-oriented programming. The first unit-test framework on this basis was developed in
Smalltalk by Keny Beck, whereof the xUnit architecture was specified. The implementation
of the architecture varies for every programming language, but the four base classes are the
same:

• test case - the smallest unit of testing, every test should be inherited from this class

• test fixture - it creates the test context and does a cleanup after running

• test suite - a collection of test cases with the same fixture

• test runner - it runs the test cases or suites and generates a report
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2.1.3 TDD

TDD is an agile software development methodology developed by the aforementioned
software engineer, Kent Beck. The main idea of the technique is to write (automated)
tests before implementing the functionality and step forward only when all tests have
succeeded. Only that many functionality is implemented as many successfully pass the
tests.

Figure 2.1: TDD’s development cycle based on Beck’s definition[3]

Without adding tests, it is not possible to implement new functionality. When a test
succeeds initially, it is meaningless and should be rewritten to fail and be in accordance
with the new functionality. In order to do this successfully, the developer should know the
precise specifications and requirements of the new feature.

When every added test fails, the minimum amount of code has to be written to pass
the tests. The added code usually does nothing more than pass the tests and in many cases
it is not very elegant. This is the part of the methodology, it will be fixed in the next step.
When some of the tests are unsuccessful, the code should be corrected until it passes all
the tests.

Even if all the tests are successful, the functionality is still not implemented, the code
must be refactored. This means that the internal behavior of the code should be changed to
eliminate duplication. The external behavior must remain the same, so all the tests should
successfully pass after refactoring.

When the refactoring is done and every test succeeds, the task of adding new functionality
is completed. The tests are the guarantee that the feature works correctly, so the quality of
the tests has an influence on the quality of the definitive code. To create new functionalities,
these steps should be repeated as long as the software is not complete.

The size of the steps can be chosen by the developer and can be changed any time
during the development. However, this should be carried out with caution since making
very small steps may result in easy coding, yet the whole product will be finished later due
to the high number of iterations.
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Increasing the size of the steps results in a lower number of iterations, but the coding will
be more complex. For every project there is an optimum, but it is still variable depending
on the skills of the developer. This optimum should be determined as soon as possible and
be used in the whole process. It has to be changed when it is necessary.

The methodology teaches how to write and interpret specifications. The errors are
discovered earlier and faster, so debugging becomes quick and easy. It forces to write the
simplest code, so the final code will be clean and easy to understand. On the other hand,
it is hard to learn and not everybody can write good tests. It is not suitable for developing
a program which does not have an exact specification.

2.2 Hardware verification

According to the PMBOK Guide[1]:

•
”
Validation. The assurance that a product, service, or system meets the needs

of the customer and other identified stakeholders. It often involves acceptance and
suitability with external customers. Contrast with verification.“

•
”
Verification. The evaluation of whether or not a product, service, or system

complies with a regulation, requirement, specification, or imposed condition. It is
often an internal process. Contrast with validation.“

In the hardware field, verification means a process that proves a homomorphic relationship
between a register-transfer level (RTL) model of the developed hardware and his specifications.

2.2.1 Simulation and testing

The method is often called bug hunting, because its main objective is to find bugs in the
design. With simulation, it is only possible to detect the errors, not to fix them.[11] A
special software environment is necessary which compiles the design and runs it. The
output is often a waveform where the logic levels of inputs, outputs and inner signals are
shown in the function of time. Since the unit under test needs some input variables, a
testbench is needed to generate these. All inputs and outputs of the unit are connected to
this testbench.

The main disadvantage of this method is that it is time-consuming. Simulating a
complex design can take days or more to run, and with the examination of the output
waveform, the problem is similar. Eventually it is very hard or impossible to write a
testbench which generates all possible input combinations. In many cases simulation is
used only for small parts of a larger module.

Figure 2.2: Typical usage of a testbench in simulation[4]
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2.2.2 Formal verification

Formal verification uses formal methods and mathematics to verify that the specifications
are preserved in the implementation.[10] It can completely prove the correctness of the
design, not just draw some conclusions from test results. That is because testing can be
successfull even then when it does not cover the whole system and the formal methods
should always be working with the complete model. It is not always sure that a formal
verification process will be finite and will be terminated at some point, but it can be still
be helpful to find some errors in the design.

When a system can be represented by a finite-state machine or equivalent, it is possible
to check algorithmically (e.g. by state space search) if the system succesfully satisfies a
given specification. This method is called model checking.

An alternative can be theorem proving which is a deductive verification process. The
specifications and the model can be described mathematically, equivalence can be proved
between them. This method is semi-automated, it often requires a significant manual effort
of users.[11]

Static analysis is linked with automated analysis of the source code. It can be used
not only for verification but for optimalization and code generation too; his main attribute
is that it does not the model of the system and it avoids the execution of the code.

2.2.3 Functional verification

Functional verification is more practical than the formal one. It verifies the system by
examining the inputs and outputs of various simulations. To facilitate the whole process,
it uses more sophisticated techniques like constrained-random stimulus generation, self
checking mechanisms, assertions and coverage-driven verification.

When verifying large systems, it is very difficult to test the complete set of input
combinations. A suitable alternative is to generate random inputs which are circumscribed
by constraints to be valid for testing. This is called constrained-random stimulus
generation. The constraints can be targeted, e.g. to cause corner cases or given states of
the system.

With coverage-driven verification it can be measured which parts of the system
were correctly verified. The types of observable coverages are:

• Code coverage

• Functional coverage

• Path coverage

• FSM coverage

• others. . .

Assertion-based verification uses assertions (see 2.1.1), which can be helpful to
formally express properties of the system and to verify awaited (partial) results. Failing an
assertion terminates the verification and makes easy to find the source of the problem.

Self checking mechanisms are based on calculating the outputs independently from
the implementation and comparing them with the outputs received from the simulation. It
can be used for detecting data loss and the correct order of the output data. This process
can be fully automatized.
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2.3 Test-driven development in hardware verification

It is necessary to redefine the hardware development cycle and the verification process so
that they should fit into the TDD paradigm.

Figure 2.3: TDD’s development cycle modified for hardware development

Creating a testbench before implementing any module is not possible, because the
testbench needs to instantiate the entity to test (see 2.2). So before creating the first
group of tests, the final input/output signals should be implemented into an empty entity.

Implementing and running the testbenches can be done in the classical way, but using
some macros or additional tools can facilitate the development process. Many hardware
verification environments have support for assertions, but it is also possible to extend the
environment with unit-testing functionalities. When the testbenches are created, they
should fail at the initial run.

According to Beck’s second step the minimal amount of code has to be implemented,
which successfully passes all the tests. This newly added code is sometimes not synthesizable
and it is often just a workaround which fakes the tests. To make the code complete and
synthesizable, it has to be refactored in the similar way, which was mentioned in 2.1.3,
combined by running the hardware synthesis.

After the refactoring a synthesizable code should be produced. This can be reached by
running a synthesis tool together with the simulation during the refactoring process. When
it is done, the new functionality is successfully implemented and the whole process can be
started over.
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Chapter 3

Available tools

3.1 Reference design

To demonstrate the available techniques which can facilitate the TDD process, a reference
design was made based on the 16550 UART module. The UART is a simple bi-directional
serial communication device, it converts data bytes into individual bits and sends them
sequentially and vice-versa.

According to the specification when no data is received, on the receiver port is logic
1. The data transfer starts with a start bit (which is logic 0 for one baud-cycle), from the
falling edge of this bit the receiver should be able to generate a synchronized baud rate
using the clock signal. After the start bit the data bits are received, starting with the
first bit, one in every baud-cycle. The following received bits can be parity and/or stop
bits, depending on the chosen configuration. The received data should be forwarded to the
parallel port. The occuring parity and other errors should be signalized, such as the usage
of the module. The transmitter should work on the same principle with the same parallel
port, only in the opposite direction. To settle the difference between the baud rate and the
clock signal, additional FIFO modules should be connected to the transmitter and receiver.
Another signals are needed to select the transmission configuration, indicate errors, usage,
availability and decide the flow on the parallel port. The specification also mentions some
signals for communicating with a serial modem.

UART

clk

rx

rst

data_wr

data_in(8)

err

tx

tx_ready

rx_ready

data_out(8)

Figure 3.1: Schematic of the simplified UART module
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In the reference design, the above specification was significantly simplified. The data-flow
configuration was fixated to 8-N-1 (8 data bits, no parity, 1 stop bit). The baud rate
selection was eliminated too, the signal is generated directly from the clock signal, dividing
it by 16. The original two-way 8-bit data port has been separated into independent input
and output ports, the FIFO on the receiver side and the modem support were eliminated.
Thanks to these simplifications, some configuration and indicational signals were necessary.

The module was implemented using conventional hardware development techniques in
VHDL. The final design was successfully verified by using simulations.

3.2 Assertions

To demonstrate the power of assertions on the reference design, some statements from the
sub-modules’ specifications were selected:

• Receiver

– when rx ready is in logic 1, the received data should match with the sent

– when a stop bit is not received at the end of the communication, the err port
must be in logic 1 for one clock cycle

• Transmitter

– the communication should be started with a start-bit which is logic 0

– each data bit should match with the tx port for 16 clock cycles

– the communication should be ended with a stop bit which is logic 1

• FIFO

– after a reset, on the empty port should be logic 1

– after a write, on the empty port should be logic 0

– when one byte is written and read, they must match

– when multiple bytes are written and read, they must match and the same order
must be preserved (FIFO)

– after writing 254 bytes, on the full port should be logic 1

– after reading out all values, the last one should be preserved on the data port

For each sub-module a new testbench was designed, containing assertions with the
statements listed above. The testbenches were implemented first in VHDL using standard
assertions, then they were converted into PSL and finally all three testbenches were rewritten
into SystemVerilog.

The testbenches were successfully compiled and run using the Mentor Graphics’s QuestaSim
environment. All of the source codes (including some scripts for automated running) are
available on the CD attached to the present paper.
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3.2.1 VHDL

The assertions in VHDL can be defined in linear structures (processes, functions, procedures)
and in concurrent descriptions (entities, architectures) too. The construction is not synthesizable,
so they can be used only in simulations.

assert condition report string severity level;

Listing 3.1: VHDL assert syntax

When the condition is false, the string is written to the output console with the given level.
This level can be note, warning, error or failure. If the severity-level pair is omitted, the
default level will be used, which is error.

There are two modes of using these assertions in the practice. The first is to add them
directly into existing stimulus processes between other lines of code. This makes easier to
check the value of a signal in a given time moment, because it is not necessary to search for
the expected results in the simulation waveform. The second solution is to use concurrent
assertions which are evaluated in every time moment (e.g. two signals cannot be equal)
or create a process which waits for a triggering event and evaluates assertions (e.g. two
nanoseconds after setting a signal to high, an other has to be low). It is necessary to define
the triggering events in the stimulus processes which can be very complicated when having
several tests.

test_empty_after_reset : process begin

wait until rst=’1’;

wait until rst=’0’;

assert empty=’1’

report "Test: empty_after_reset FAILED!"

severity error;

assert empty=’0’

report "Test: empty_after_reset PASSED!"

severity note;

end process test_empty_after_reset;

Listing 3.2: VHDL assertion in a separate process

To prevent code repetition in the stimulus processes, assertions can be written into
procedures/functions and they could be called when necessary. Unfortunately VHDL does
not allow wait statements in procedures/functions, so complex (e.g. timed) assertions
should remain inside stimulus processes.

Concurrent assertions are evaluated in every discrete moment of the simulation process,
so they are only useful for checking simple statements which are independent of time. For
example, they can be used for checking that two signals are never in logic 1 at the same
time, but it is not possible to validate what happens in the next clock-cycle after triggering
an event.

assert write=’1’ and read=’1’

report "Read and write could not be in logic 1 at the same time."

severity failure;

Listing 3.3: Concurrent VHDL assertion
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It is a great advantage that assertions can be combined with almost any VHDL control
structures. For example, the correctness of the transmitter module was verified using a for
loop which compared the output during time with the appropriate bit from the parallel
input.

for i in 0 to 7 loop

wait for clk_period*16;

assert tx=data(i)

report "Test: bit #" & integer’image(i) & " FAILED"

severity error;

assert tx/=data(i)

report "Test: bit #" & integer’image(i) & " PASSED"

severity note;

end loop;

Listing 3.4: Assertion combined with a for loop

To generate an advanced text-based output with assertion reports, it is necessary to
define two assertions for each property (see the example above). One has to fail when the
property is not true and the other should report when the negation of the property fails.
That is the only way to generate a report not just when a test fails, but when it succeeds
too. It makes the report more transparent when different severity levels are used for the
two assertions. When running the simulator, a special option is needed to generate a text
file containing the reports.

When the amount of input/output signals is large or the simulation time is very long,
the assertion report can become very difficult to follow. Whenever a test fails, checking
the waveform is inevitable. Some simulation environments provide an option to show the
assertions directly in the waveform.

The language is suitable for test-driven development, but only for smaller projects with
a moderate number of tests. The simplicity of the concurrent assertions makes them almost
entirely unnecessary, because a non-concurrent assertion in a process can do the same and
using only one type of assertions makes the code cleaner.

3.2.2 PSL

The Property Specification Language (PSL) can be used to formally describe the properties
of hardware designs. It is independent from hardware description languages, usually it is
embedded into comments or written into separate files. His purpose is to define assertions,
it provides very sophisticated and advanced solutions. The language can be divided into
four layers.[2]

Boolean layer

In the boolean layer logic expressions can be specified on the lowest (true/false) level using
standard HDL syntax. It is extended with utility functions to detect e.g. one-hot-encoding,
changes in the value of the expression (together with determining his previous value) and
with some logical operators.
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Temporal layer

The temporal layer specifies when the expressions from the previous layer should be valid.
The time window of the validity can be specified as Foundation Language (FL) temporal
operators or by using Sequential Extended Regular Expressions (SERE). Combining these
two methods, almost any property can be specified with PSL. The temporal units can be
grouped into named sequences and so they are reusable.

Verification layer

In the verification layer restrictions, assertions, assumptions and functional coverage can be
specified using the previous layers. This layer also offers the division of the verification into
verification units (vunit) which can be bound/unbound to modules and can be inherited.

Modeling layer

The modeling layer should contain the auxiliary HDL code which is not part of the hardware
design, but it helps to describe combinational signals and/or complex state machines.

Figure 3.2: PSL Layers [2]

The PSL assertions could be directly integrated into any hardware description language
(usually into testbenches) using comments and a special psl keyword, but they can be
written into a separate file as well. Depending on the simulation environment, some
additional switches may be needed to interpret these commented lines and show their
output together with the simulation results. Similarly to VHDL assertions in separate
processes, triggering events should be added in the stimulus processes.

-- psl property name is always {(cond_1)} |-> {(cond_2)} @clk_ev;

-- psl assert (name) report "string";

Listing 3.5: PSL property definition and assertion syntax example in VHDL

Because the PSL is logically separated from the testbench, it is not possible to write
assertions inside stimulus processes. Instead of them, the conditions prior to an assertion
could be described using the temporal layer. These conditions can be grouped into sequences
and they can be used in multiple assertions.
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The following example demonstrates a very long assertion which was used to test the
functionality of the transmitter module. The same test was described much simpler in
VHDL using a for loop (see listing 3.4).

-- psl sequence data_bits is

-- psl {tx=data(0)[*16];tx=data(1)[*16];

-- psl tx=data(2)[*16];tx=data(3)[*16];

-- psl tx=data(4)[*16];tx=data(5)[*16];

-- psl tx=data(6)[*16];tx=data(7)[*16]};

-- psl property data_test is always

-- psl {tx_ready;not(tx_ready);tx[+];

-- psl not(tx)[*16]} |=> data_bits;

-- psl assert data_test;

Listing 3.6: Matching the tx output with the data input using PSL

Because the PSL is evaluated independently by the simulator, it is possible to combine
it with VHDL (or other HDL) assertions. The developer can always select that one for each
assertion, which can describe its properties easier.

Unlike VHDL, it does not supports custom text-based output generation, so a final
report generation has to be implemented in the simulation environment, or by using e.g.
TCL or other scripts. However, the assertion results can be summarized in the simulation
waveform window, from which the developer can easily determine which assertion failed or
passed in a given time moment.

In larger projects, PSL is not an optimal solution, because it needs to be combined
with another language which generates the stimulus processes. Using multiple languages
in larger projects and keeping them in accordance is a difficult task for any developer. The
sequence-based property specification, however, is a very useful technique, it should be
implemented in other verification languages.

3.2.3 SystemVerilog

SystemVerilog is a hardware definition and verification language developed from Verilog-2005.
Syntactically the two languages are the same, the SystemVerilog is just extended with some
features for verification such as object-oriented design and complex PSL-like assertions.

Non-concurrent assertions are supported and they are very similar to the VHDL ones.
By using them, it is possible to generate reports with advanced text-based output. Unlike in
VHDL, it does not need two assertions to generate output for both test failing and passing.

label:

assert (condition)

$display("message if the assertion passes");

else $error("message if the assertion fails");

Listing 3.7: Non-concurrent assertion syntax in SystemVerilog

It supports concurrent assertions too, but in much advanced level than VHDL. It
was inspired by the PSL, so only few differences are present, e.g. the logical and timing
operators should be described using SystemVerilog syntax. Boolean values could be defined
in sequences, they could be specified in properties and finally they could be evaluated using
assertions.
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It also provides local variables inside sequences and properties which could be very
helpful when testing reactions to external inputs. However, the the syntax of defining a
value for a variable can be very complicated, e.g it is not possible to pass a value in a
discrete time moment without specifying at least a boolean value.

property read;

reg[0:7] input;

en ##1 (1, input=rx) |=> data_read==input;

endproperty;

always @(posedge clk) assert property(read);

Listing 3.8: PSL-like assertion example with a local variable

When it is complicated to describe an advanced sequence with concurrent assertions, it is
possible to combine standard SystemVerilog control and timing structures with non-concurrent
assertions.

always @(posedge data_req) begin

#18 start_bit:

assert (tx == 0)

$display("Test: start_bit PASSED!");

else $error("Test: start_bit FAILED!");

for (integer i=0;i<8;i++) begin;

#32 data_bit:

assert (tx==data[i])

$display("Test: data_bit #%d PASSED!", i);

else $error("Test: data_bit #%d FAILED!", i);

end;

#32 stop_bit:

assert (tx==1)

$display("Test: stop_bit PASSED!");

else $error("Test: stop_bit FAILED!");

end

Listing 3.9: Assertions combined with standard SystemVerilog control structures

The text-based report generation of the two types of assertions could not be joined into
one file. The concurrent assertions can use only the simulator’s built-in report-generation
system which shows only the failure/pass count of each assertion. Between assertion-based
verification tools, SystemVerilog supports the most features, it can be used object-oriented,
so an advanced unit-test framework can be created using just this language.

As a demonstration, the reference VHDL design was instantiated in a SystemVerilog
testbench, there was no need to reimplement everything in SystemVerilog. PSL-like and
non-concurrent assertions were used together, for each always that one which can describe
the given properties simpler.
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3.2.4 Conclusion

All of the previously mentioned tools are usable together with the TDD methodology. The
automatization of running the tests does not depend on the language of implementation, but
on the used verification environment. It is an important fact, that checking the waveform
window can not be avoided with automated test-report generation due to high number of
possible input/output signal combinations.

The VHDL assertions are not suitable for production use, just like PSL, they should
be used together. However, for a developer it is easier to use only one language and
SystemVerilog does not need any other language to create advanced tests. The missing
repetition operators could be substituted by non-concurrent assertions combined with standard
control structures or by combining with PSL when it is really necessary.
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Concurrent assertions only simple yes yes yes yes
Non-concurrent assertions yes no yes yes yes
Assertions combined with control structures yes no yes yes yes
Full scale of repetition operators no yes yes no yes
Advanced timing options no no no yes yes
Can be combined with other languages no yes N/A no N/A
Assertions groupable into units no yes yes yes yes
Number of languages to know 1 1 2 1 2
Suitable for production use no no yes yes yes

Table 3.1: Comparison of the three languages and they combinations

Depending on the size and complexity of a hardware design, the table above can serve
as a starting point to select the best language (or language combination) for assertion-based
test-driven development. For more complex projects, more advanced tools, such as unit-test
frameworks or test automation scripts should be used.
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3.3 Unit-test frameworks

As it has been mentioned before, unit-test frameworks provide an environment for automated
testing which can be very useful for TDD. For implementing e.g. the xUnit architecture,
object-oriented programming should be supported by the HDL at least on the verification
side.

3.3.1 VhdlUnit

Unfortunately, VHDL does not support object-oriented programming, so it is not possible
to implement the xUnit architecture in it. However, it is possible to define macros for
regularly used testing structures and implement external scripts for test automation and
better report generation.

The VhdlUnit was made on this principle: procedures are helping the test creation and
a TCL script generates a logically arranged report. Unfortunately, it is documented only
in Polish and it has not been not under development for the past nine years.

After examining the source code, it is sure that the tool cannot be combined with PSL
assertions, so except the html test report generation and the unified testing it does not give
anything more. It is not suitable for production use, because it is easier for a developer to
write his own scripts and macros than using a non-documented framework.

3.3.2 SVUnit

The SVUnit framework can be divided into an object-oriented model of a unit-test framework
for SystemVerilog and helper scripts for code generation implemented in Perl. It is a very
young tool still under development, in this document is introduced using [9].

Objects

Figure 3.3: SVUnit class diagram
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Each unit-test should be inherited from the svunit testcase class, it is a file naming
convention in the framework which requires that the unit-test filename should be ended
with unit test.sv. In the unit-test three functions should be defined:

• setup(): - here should be initialized the test preconditions

• run test(): - this runs the tests

• teardown(): - here should be implemented the cleanup

The unit tests can be grouped into test suites using add testcase() and add testcases()
functions. On smaller hardware modules, sometimes one test suite should be enough for
the whole module. For larger modules, it is recommended to aggregate only those tests
which can tolerate each other’s context.

All test suites should be collected into a test runner inheriting the svunit testrunner
class and using the add testsuite() and add testsuites() functions. This test runner will
iterate all the test suites and they will iterate each unit-test inside. The unit-tests and the
test suites provide a flag to enable/disable their run.

Finally, in the highest level the user’s test runner class should be instantiated and his
run method should be called to start the testing. When everything is set correctly, all test
suites and tests will be iterated and finally a report is made containing the results.

Scripts

To make the test-creation easier, a set of Perl scripts are available. These scripts can
generate unit-tests, test suites and test runner. They also provide adding unit-tests to
existing test suites or adding a new test suite to the existing test runner. These scripts are
using some global variables, which can be set in the svunit test globals.pl file, such as the
format of the header text.

• create unit test.pl
The script takes an existing class or header file and generates for him a unit-test
template using the file naming convention mentioned before. It takes all the functions
from the original class and generates for each an empty test function with the prefix
test . Each generated function is added into the run test() function.

For example, for the transmitter.sv file with a class named transmitter, it will create a
file transmitter unit test.sv with a class named transmitter unit test which is inherited
from the svunit testcase class. An empty test baud gen() function is generated for
testing the original baud gen() function. Finally the test baud gen() and all other
test functions are added into the run test().

The tests should be implemented by the user using the ’FAIL IF and ’FAIL UNLESS
macros or using any other methods which increment the error count variable when
an error occurs.

# create_unit_test.pl [ -help | -out <output_file> | -i |

-author "name" | -overwrite | <filename> ]

Listing 3.10: create unit test.pl script syntax

The
”
-i“ argument enables the interactive mode which allows the user to select the

functions to test, so some functions can be omitted from testing. The description of
any other argument is trivial.
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• create testsuite.pl
The script creates a test suite for the unit-tests within the current directory (or in all
subdirectories when the

”
-r“ argument is set), using a search for files that are ending to

”
unit test.sv“. It creates a template which is inherited from the svunit testsuite class

and appends each test into the suite using the add testcase() function. Interactive
mode is supported just like in the script before and with the

”
-add“ argument a single

test can be added into an existing suite.

# create_testsuite.pl [ -help | -out <output_file> | -i | -r |

-author "name" | -overwrite | -add <testname> ]

Listing 3.11: create testsuite.pl script syntax

As an output, a package file is generated that imports the svunit pkg and includes all
required files for running the unit-tests. For larger projects, this package file should
be modified by including additional required files.

• create testrunner.pl
The script works similar to the create testsuite.pl, it aggregates test suites not unit-tests,
the syntax is the same.

• create svunit.pl
This script includes the previous three scripts and should be used on existing environments.
It iterates through the current directory (or in all subdirectories when the

”
-r“

argument is set) and searches for all SystemVerilog files. For each declared class
generates a unit-test, it aggregates the unit-tests into test suites based on the subdirectory
structure. It also creates a test runner including all generated test suites. When the

”
top“ argument is set, an svunit top.sv file is generated which instantiates the test

runner and calls the run() function. A package file for including all necessary files is
generated as well.

# create_testsuite.pl [ -help | -out <output_file> | -i | -r | -no_ut |

-author "name" | -overwrite | -top ]

Listing 3.12: create svunit.pl script syntax

Only two simple assertions (‘FAIL IF and ‘FAIL UNLESS) are supported, concurrent
PSL-like assertions are not. They can be added into the code and the simulator will evaluate
them, but the framework’s test report will not contain them. However, their combination
would not make any sense, it just makes test creation diffucult.

An advanced simulation environment, such as the QuestaSim and a Unix-based operating
system is necessary to use this framework. Unfortunately, the QuestaSim used in previous
sections was licensed only for Windows, so it was not possible to try and demonstrate this
framework.
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3.3.3 MyHDL

The MyHDL is not a unit-test framework, but a Python module which provides hardware
description and verification using Python language. So all the advantages of Python,
such as easy learning, simplicity and elegancy, can be used in hardware development. It
supports concurrent hardware modeling similar like VHDL processes and signal-like classes
for connecting endpoints. It has a built-in simulator, but it supports Verilog co-simulation,
too.

It does not support hardware synthesis, but it can convert the Python descriptions to
synthesizable VHDL/Verilog code. High-level constructs are usable for hardware descriptions,
such as objects and exception handling. When running the code, it is hard to find the
errors, because sometimes the interpreter just skips them without displaying any error
or warning. PSL-like assertions are not supported, testbenches have to be written using
Python structures.

The MyHDL alone does not support unit-testing, but it is possible to use Python
assertions or a unit-test framework such as xUnit or pytest. From the TDD’s point of view,
it gives nothing more than VHDL combined with assertions, but it is possible that in the
future it will support advanced timing from the verification side.

Some parts of the reference design were tried to reimplement in MyHDL and testbenches
were added, too, by using assertions. During the simulation with the built-in simulator, it
skipped running of multiple processes without giving any notifications or error messages.
When the order of the processes in the code was changed, some errors were printed out, but
from the output it was not possible to detect where the errors are occured. Conversion to
VHDL/Verilog code returned with similar errors. From this it can be stated that MyHDL
is not suitable for production use.

3.3.4 Conclusion

Unfortunately, there was a problem with every unit-test framework, so they were not
demonstrated. None of them is ready for production use, but in the future they could
be the essential tools of hardware development.

Because unit-testing with the xUnit architecture is defined as object-oriented, a fully
object-oriented hardware description and verification language with PSL-like concurrent
assertions could be an optimal solution. SystemVerilog is very close to that description,
because the verification part can be fully object-oriented. But the potential is inside
MyHDL too, because Python is a very powerful language from the semantical side.
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Chapter 4

Demonstration

In the final part of this thesis, a complete hardware-design was made using test-driven
development. The choice fell on an N -bit parallel-to-SPI interface which can communicate
with M number of slaves.

The implementation was planned to made using the SVUnit framework, but it had
platform collision problems, so finally it was made in VHDL combined with SystemVerilog.
The entity was made in VHDL and it was instantiated in a SystemVerilog testbench. To
make test running and report generation easier, a TCL script was created.

SPI interface

8-bit

6 slaves

clk

rst

en

c_pol

c_pha

sclk miso mosi

ss_1

ss_2

ss_3

ss_4

ss_5

ss_6

busy tx_data rx_data addr(3)

Figure 4.1: Schematic of a 8-bit parallel-to-SPI interface which supports 6 slaves

The SPI is a serial, synchronous and bi-directional communication interface between
two endpoints. One endpoint operates in master, the second in slave mode. The master
generates the clock signal and initiates communication, the slave is only active when the
master allows it. It is possible to connect many different slave devices to one master, but
only one slave can be active at a time.
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4.1 Specification

As mentioned in 2.3, a very accurate and clear specification is necessary before writing the
tests. For the demonstration module it was made using [8] and [7].

Port descriptions

Name Data width Mode Description
clk 1 in Clock signal
rst 1 in Asynchronous reset
en 1 in Initiates a transaction when in high
c pol 1 in Clock polarity selector
c pha 1 in Clock phase selector
addr dlog2Me in Slave address selector
ss 1 1 out Selects the first slave when in low
ss 2 1 out Selects the second slave when in low
ss 3 1 out Selects the third slave when in low
. . . . . . . . . . . .
ss M 1 out Selects the M-th slave when in low
sclk 1 out SPI clock signal
miso 1 in Master in slave out
mosi 1 out Master out slave in
tx data N in Data to transmit
rx data N out Received data
busy 1 out Busy indicator

Input/output

Communication through SPI requires four data wires. The master should generate a sclk
signal and pull one from the ss signals to low to activate a slave. The bi-directional
communication is then realized through the master out, slave in (mosi) and the master in,
slave out (miso) wires.

SCLK

MOSI

MISO

SS

SCLK

MOSI

MISO

SS

SPI master SPI slave

Figure 4.2: SPI master and slave connected together

The information which sent to the tx data bus on the parallel side is transmitted
sequentially through the mosi wire, one-by-one. The data receiving works on the same
principle, only in the opposite direction through the rx data bus and the miso wire.
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Timing

From the clock signal’s point of view, the SPI interface has four operational modes. The
phase and the polarity of the clock signal both have two varieties which can be combined.
In order to set these values on the master, two input wires are needed, the c pol for the
polarity and c pha for the phase selection. The c pol sets the initial value of the SPI clock
signal, so when it is in logic 0, the sclk starts from logic 0 or logic 1 when it is in logic 1.
The edge of the clock signal which the SPI interface should react to can be set with the
c pha signal.

c_pol=0

c_pol=1

ss

c_pha=0 1 2 3 4 5 6 7 8

c_pha=1 1 2 3 4 5 6 7 8

s
c
lk

m
is

o

Figure 4.3: SPI operation modes demonstrated on waveform [8]

The clock generation was completely removed from the design, it is necessary to provide
an external clock signal which has to be twice as fast than the desired SPI clock frequency.

Multiple slaves

There are several techniques to connect a master with many slaves, but the most well known
is to use common mosi, miso and sclk signals. For each slave device, the master has to
possess one dedicated slave selection wire which are used to activate the appropriate slave
device. This requires an addr bus which should be minimally code M number of addresses
to select the proper slave device and M number of ss x signals (where x ∈ 〈1;M − 1〉).

addr(2)

sclk mosi miso ss_1 ss_2 ss_3

sclk mosi miso ss sclk mosi miso ss sclk mosi miso ss

SPI slave #3

SPI master

SPI slave #1SPI slave #2

Figure 4.4: Multiple slaves connected to one master
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Transaction description

When the busy signal is in logic 0, the module is idle and ready to begin a transaction,
otherwise it will ignore anything except reset (see below).

The transaction can be initiated by setting the en signal to high. On the first rising
edge of the clk, the module latches the settings and the tx data. On the next rising edge,
the busy flag is set and the sending of data has commenced. After all bytes were sent, the
busy signal goes back to logic 0, which indicates that the received data is available on the
rx data.

clk

en

c_pol

c_pha

addr 0 3 0

cont

tx_data 000 010 000

ss 111 011 111

sclk

mosi

miso

rx_data 000 101

busy

Figure 4.5: SPI transaction waveform

The waveform above shows an example transaction using a module which supports 3
slaves and uses 3 bit data-width. It transfers the 010 sequence to the third slave, while
simultaneously receiving the 101 sequence. The clock polarity and phase settings are both
in logic 1.

Reset and initial state

With the rst signal, it is possible to asynchronously set the module into its initial state.
It can be triggered at any time and it causes the module to stop the current operation
immediately and set the busy signal to logic 1 until the rst goes back to logic 0.

In the initial state all ss outputs are set back to logic 1, the mosi output is set into high
impedance and the rx data is cleared.
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4.2 Implementation

Before writing a test, it is necessary to create an empty top level entity for the module using
the port descriptions and a testbench with only clock generation. To support the N-bit
data-width and M number of slaves, VHDL generics were used together with a custom base
2 logarithm function to determine the width of the addr bus. During the tests, their default
values (N=8, M=3) were used to avoid complications when instantiating a VHDL module
in SystemVerilog.

Reset and initial state

• When the reset signal is active, the busy should be active too.

• After the reset goes back to logic 0, the initial settings of the module should be set.

These two simple facts were transformed into assertions in the newly created testbench.
For further operations it is necessary to reset the module at start, so the first triggering of
the rst was added into the initialization part of the testbench. In the following sections,
these extensions of the initialization part will not be mentioned. It should be understood
that every possible combination, that the suitable test needs has been implicitly added.

property initial_state;

rst [*1:$] ##1 !rst |=> accept_on(rst)

(ss==3’b111) && (rx_data==8’h00) && (mosi===1’bz) && !busy;

endproperty;

always @(posedge clk) assert property(initial_state);

Listing 4.1: Assertion for testing the initial state

Because the reset signal is not handled, running these tests will fail. Hereby allowing to
continue with the next step of the TDD methodology, by implementing the code for passing
the tests.

init : process (rst) begin

if (rst = ’1’) then

busy <= ’1’;

ss <= (others => ’1’);

mosi <= ’Z’;

rx_data <= (others => ’0’);

else

busy <= ’0’;

end if;

end process;

Listing 4.2: The first lines of code after the failing tests

When the tests successfully pass, the implementation is ready and new tests can be
added. This is done only in the first TDD iteration, because the added code (from the
perspective of the two tests) is clean and does not contain any duplications. Refactoring
will be made later, after adding more tests.
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Clock generation

• When the reset signal is active, the busy should be active too.

• After the reset goes back to logic 0, the initial settings of the module should be set.

• After an enable sequence, the SPI clock has to be initialized with the correct polarity.

• The SPI clock should oscillate for N ticks, twice as slow than the clk.

To pass the third test, only one line has to be added (sclk <= c pol), but refactoring
will be needed. Passing the fourth test needs a finite-state machine with four states. The
starting idle state latches the c pol setting and waits for the enable signal. The enable
signal activates the start state, where the sclk signal is set to the aprorpiate clock polarity.
The last two states are responsible for oscillating the clock signal. When the number of
clock ticks equals to the data-width of the module, the FSM returns to the idle state.

property sclk_generation;

reg polarity;

(en, polarity=c_pol) ##1 !en |=> accept_on(rst)

(sclk == polarity ##1 sclk != polarity) [*8] ##1 sclk == polarity;

endproperty;

always @(posedge clk) assert property(sclk_generation);

Listing 4.3: The test of the spi clock’s oscillation

This FSM is not the representation of the minimal amount of code, but is the product
of the refactoring.

Figure 4.6: SPI clock generation FSM

Data transfer

• . . .

• The busy signal has to be in logic 1 for N ticks after the enable sequence.

• The correct slave has to be selected, but only when the transaction was initiated and
the busy signal is high.

• The bits of tx data should appear on the mosi, one-by-one, then it has to return to
high-impedance state.

• When the busy signal goes low after the transaction, the rx data should contain the
received bits from miso.
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The tests described above were first made only for c pha = 0. The busy indicator was
added into the appropriate states of the FSM, together with the slave selection which was
desribed with a log2M to M decoder.

property tx_transaction;

reg[0:7] tx;

int unsigned i;

(en, tx=tx_data, i=0) ##1 !en |=> accept_on(rst)

(tx[i]==mosi ##1 tx[i++]==mosi) [*8] ##1 mosi===1’bz;

endproperty;

always @(posedge clk) assert property(tx_transaction);

Listing 4.4: Validation of the transmitted data

The data sending and receiving were integrated into the tick1 and tick2 states. There
was already a counter for counting the number of sclk ticks, so it was used to select the
appropriate byte to send.

Phase selection

To support the c pha = 1 mode, the original transaction tests were duplicated and reclocked,
so finally four tests cover the whole transaction system of the module. The implementation
of these functionalities was made by adding some extra states to the existing FSM which
was very complicated, but it passed all the tests.

Figure 4.7: FSM which supports both clock phases

Final refactoring

The idle and start states are necessary, they cannot be eliminated, but the other five states
could be joined into one work state by extending the range and the purpose of the cnt.

In this newly added state, the counter counts from zero and it generates the sclk signal.
When the value of the clk variable equals zero, the appropriate slave is selected, the busy
signal is set to logic 1 and when the clock’s polarity is set to zero, the first bit is sent out
through the mosi wire. Further writing and reading is solved by checking the counter’s
value. Whether or not a reaction is needed, depends on the clock polarity selection too.
When the counter reaches the final value, the machine sends the received N-bytes to the
rx data and returns to the idle state.
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if cnt=0 then

if phase=’0’ then

mosi <= tx(N-1);

end if;

elsif cnt mod 2 = 0 then

if phase=’0’ then

mosi <= tx(N-1-cnt/2);

else

rx_data(N-cnt/2) <= miso;

end if;

else

if phase=’0’ then

rx_data(N-1-cnt/2) <= miso;

else

mosi <= tx(N-1-cnt/2);

end if;

end if;

Listing 4.5: Transaction handling with even-odd-zero checking

4.3 Evaluation

After the final refactoring of the code was synthesizable and it passed all the tests. Compared
with the reference design, they were both communication interfaces with easily available
and well documented specifications. However, the development of the SPI interface was
much faster, because writing the tests before implementation causes that the developer
pays more attention to the specifications and memorizes them better.

It can be stated that the use of SystemVerilog assertions is the best available solution
yet for test-driven hardware development. Using them for very large projects with many
tests but can be very difficult.

Running a simulation can sometimes take hours or more and in TDD, it is a very
frequent operation. When the simulation of a module takes too much time, it has to be
decomposed and the sub-modules should simulated separately. It does not decreases the
simulation time, because the design remains the same, but it reduces the time of waiting
between the steps of TDD.

The most difficult part of writing the testbenches is the timing, especially when using
concurrent assertions or assertions in separate processes. For having good tests, it is
necessary to add every possible combination of input signals into the tectbench’s stimulus
process and keep them in accordance with the assertions. Seeing through two types of
code-structure which are placed in two different places is not an easy task for any developer.
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Chapter 5

Conclusion

A designer knows he has achieved perfection not when there is nothing left
to add, but when there is nothing left to take away.

(Antoine de Saint-Exupéry)

It is proved that the test-driven method highly facilitates the software development
process. The red-green-refactor model always proves to be the most simplest and cleanest
code which is an important quality factor of a software product. Saint-Exupéry’s quote
expresses the same idea: if one cannot simplify the code any further so that its functionality
remains intact, then perfection has been achieved and the product is finished.

From the previous chapters is evident that test-driven development methodology has a
place in the toolbox of a hardware developer as well. It helps the developer to understand
the specifications deeper and forces him to write high quality tests. It does not matter when
the tests are written, it takes the same amount of time to create them, so the metodology
at the worst case is neither slower, than the classical hardware development.

It is very important, that the methodology is not applicable one-to-one, because of the
differences between software testing and hardware simulation. Creating a test to verify a
function which calculates e.g. the square root of a number is much easier, than simulating
an entity what does the same. However, the basic idea is the same, just the tests are
grouped into testbenches and instead of testing the operation it is called simulation.

To use TDD in larger projects, a complete and generally available unit-test, or at
least, a test-automation framework is necessary. The continuation of the present paper
in the future could be an object-oriented, xUnit based hardware verification and unit-test
framework. Since the now available similar tools does not support PSL-like assertions and
they were very useful in the demonstrational project, this future framework should support
them as well. To make refactoring faster, the simulation environment should be extended
with automated running of synthesis.
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Appendix A

Contents of CD

• /demonstration - directory containing the source files of the demonstration module

• /latex - directory containing the LATEX and other source files for creating the thesis

• /pdf - directory containing the PDF version of the thesis

• /examples - directory containing the source files of the assertion and unit-test
examples

– /examples/reference - directory containing the source files of the reference
design

– /examples/vhdl - directory containing the VHDL assertion examples

– /examples/systemverilog - directory containing SystemVerilog assertion examples

– /examples/psl - directory containing the the PSL assertion examples
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Appendix B

Manual

To run the simulations, ModelSim/QuestaSim simulation environment is necessary. Unfortunately
ModelSim does not support SystemVerilog assertions, so the demonstrational module and
the SystemVerilog assertion examples could not be run by using it.

In each directory are files with .fdo extension which have to be started from the
simulator’s command line. Every testbench generates an assertion report into a .log file in
his own directory.

The reference and the demonstrational hardware designs both can be synthesized in
Xilinx ISE, by importing all the .vhd files to an empty project.
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