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Abstract 

This bachelor’s thesis investigated the identification of material’s flow curve using experi-

mental data from standard tensile test output, and the possibilities of fitting a non-linear rela-

tionship through this identified curve. The theoretical background of differences between engi-

neering and true stress and strain was presented, as well as the tensile test basis and its output. 

An analytical correction method (Mirone-La Rosa) for flow curve’s trend estimation, using the 

tensile test as an input, was described and used. Elasto-plastic piece-wise linear material models 

were listed and additionally four non-linear relationships were chosen and investigated – Hol-

lomon, Ludwik, Swift and Voce. Then, the finite element method was used for flow curve iden-

tification of experimentally tested 18CrNiMo7-6 steel, with a standard tensile test output 

needed for flow curve calibration. Flow curve was calibrated with iterative process on the basis 

of comparison of reaction forces from simulation and experiment. Furthermore, the user inter-

face was created, and the best fit out of four chosen non-linear relationships was found. 
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Rozšířený abstrakt 

Tato bakalářská práce se zabývá problematikou určování křivky napětí–přetvoření z experi-

mentálně změřených dat tahové zkoušky a regresí této zjištěné křivky nelineárními vztahy. 

V úvodní kapitole jsou nadefinovány cíle a motivace této práce. V konvenčním strojírenství se 

obvykle pohybujeme v napětích do hodnoty meze kluzu, protože se snažíme elimininovat vznik 

plastické deformace, a tedy křivka napětí–přetvoření je po dosáhnutí hodnoty meze kluzu ne-

zajímavá. Existují však specifické aplikace, které využívají rozsáhlé plastické deformace pro 

změnu tvaru materiálu – např. tvářecí procesy. Abychom byli schopni tyto procesy numericky 

simulovat, je potřeba znát křivku zpevnění i po vytvoření krčku v rozsáhlých plastických de-

formacích. Materiálový model je kritickým vstupem do numerické simulace, a bez jeho věro-

hodné reprezentace není možné získat reálné výsledky. Práce se dále zabývá možnostmi 

popsání získané křivky zpevnění nelineárními vztahy, které nám dovolují vyšetřovat vlastnosti 

materiálu pomocí různých materiálových konstant, přičemž některé z nich mají technologický 

význam. 

V druhé kapitole je pak dán teoretický základ o tahové zkoušce a jejím výstupu. Jsou popsány 

rozdíly mezi smluvním a skutečným napětím a smluvním a skutečným přetvořením. Jsou 

popsány význačné body na křivce, jako mez kluzu, mez pevnosti, mez úměrnosti, smluvní mez 

kluzu, atd. Dále jsou popsány analytické vztahy smluvních a skutečných napětí a přetvoření a 



jsou vymezeny jejich intervaly platností. Pozornost je věnována pouze tvárným materiálům bez 

výrazné meze kluzu, protože popsání deformace při výrazné mezi kluzu v následujících kapi-

tolách by bylo nad rámec bakalářské práce. Je zde zmíněna analytická korekce Mirone-La Rosa 

(MLR), pomocí které je možné odhadnout trend křivky zpevnění (taktéž „flow curve“) ve sku-

tečných souřadnicích po vytvoření krčku. Touto metodou získáváme odhad trendu redukova-

ného průměrného napětí jako funkci redukovaného průměrného přetvoření. 

Třetí kapitola se zabývá elasto-plastickými materiálovými modely. Popisuje matematické mož-

nosti popisu křivek zpevnění pro výpočtové simulace – ideální elasto-plastický model, biline-

ární a multilineární. Dále byly vybrány 4 nelineární možnosti popisu křivek – Hollomon, Lud-

wik, Swift a Voce. Každý z těchto vztahů je detailněji rozebrán a jsou popsány jejich jednotlivé 

parametry. 

Zmíněné kapitoly dávají teoretický základ, který je následně aplikován na ocel 18CrNiMo7-6, 

která byla změřena zkouškou tahem na Ústavu materiálových věd a inženýrství a jejíž výstup 

byl poskytnut vedoucím. 

Ve čtvrté kapitole je rozebrána problematika numerického určení křivky zpevnění. Iterační vý-

počtová metoda je použita v této práci. Tahová zkouška byla numericky simulována metodou 

konečných prvků v programu ANSYS Mechanical APDL 18.1, přičemž byl celý problém zpra-

cován jako makro v parametrickém jazyce APDL. Tímto byla zaručena maximální parametri-

zovatelnost. Numerické určení křivky zpevnění spočívá v ladění materiálového vstupu na zá-

kladě silové odezvy ze simulace, která je porovnána s experimentální. Autor provedl 26 iterací 

pro nalezení optimální křivky zpevnění. Ta byla zkalibrována s experimentem tak, že rozdíly 

v silové odezvě jsou méně než 1,5 % v oblasti plastické nestability. Makro je přiloženo v pří-

loze, současně se skriptem vytvořeném v programu MATLAB, sloužícím pro porovnání silové 

odezvy experimentu a simulace. Dále je přiložena tabulka s procentuálními rozdíly experi-

mentu a simulace. 

Pátá kapitola potom aplikuje nelineární vztahy z kapitoly třetí. Bylo vytvořeno uživatelské pro-

středí v programu MATLAB verze R2016a, které slouží k nalezení optimální regrese zjištěné 

křivky zpevnění. Tento nástroj hledá minimum chyby ve smyslu nejmenších čtverců, přičemž 

zobrazí optimální nalezenou křivku v závislosti na vstupních odhadech parametrů. Odhady 

vstupních parametrů jsou při regresi nelineárními vztahy kritickým místem, protože řešení me-

tody nejmenších čtverců může konvergovat pouze k nalezení lokálního minima problému, 

avšak ne globálního. Vstupy do vytvořeného uživatelského prostředí jsou zde popsány společně 

s jeho návodem k použití. Vytvořené uživatelské prostředí je taktéž přiloženo jako příloha 

v elektronické podobě. 

Dále jsou rozebrány výsledky regrese. Jako nejlepší nelineární vztah pro danou ocel byl nalezen 

Swift s nejmenší hodnotou chyby vzniklé při regresi ve smyslu nejmenších čtverců. Dále byly 

porovnány vlastnosti materiálových konstant, nalezených vytvořeným nástrojem. Bylo zjiš-

těno, že hodnota exponentu u vztahu „Hollomon“ 𝑛𝐻 neodpovídá vypočtené hodnotě skuteč-

ného přetvoření na mezi pevnosti 𝜀𝑢 – procentuální rozdíl byl vypočten 64,2 %. Zjištěné para-

metry tohoto vztahu – koeficient deformačního zpevnění a exponent deformačního zpevnění – 

by se daly využít v technologických aplikacích např. při tvářecích operacích pro určení hodnoty 

skutečného napětí potřebného pro určitou hodnotu skutečného přetvoření. Také byla nalezena 

dobrá korelace parametru 𝐴𝑉 ze vztahu „Voce“ s hodnotou smluvního napětí 𝑠𝑝0,1. Tento pa-

rametr vyjadřuje počáteční napětí, při němž začne být znatelná homogenní plastická deformace. 

Procentuální rozdíl těchto dvou hodnot byl vypočten 0,7 %. 

Závěrem jsou potom shrnuty získané poznatky a výsledky. Práce by mohla být nadále rozvinuta 

optimalizací a automatizací procedury určování flow curve. Je obtížné vyvinout univerzální 



automatickou metodu, poněvadž vlastnosti materiálů se významně liší v různých odvětvích 

strojního inženýrství. Zvláště obtížný je popis výrazné meze kluzu – tzv. Lüdersovy deformace. 

Byly navrženy nové metody (sekvenční simulace, soft computing – neuronové sítě), avšak je-

jich všestranné použití je omezené a mohly by být dále zkoumány a optimalizovány. 
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1. Introduction 
In conventional mechanical engineering, the occurrence of plastic deformation is generally be-

ing eliminated, and therefore, the region of the stress–strain curve beyond the yield point is 

being disregarded. However, as some specific applications are using plastic deformations to 

change the shape of materials (e.g. forming processes), some are interested in the region of the 

stress–strain curve beyond the yield point value. The material model input plays key role to 

obtain reliable results in computational simulations. This thesis is centred around the following 

research questions and tasks: 

• How can the conventional output of tensile testing be applied in order to gain values of 

a true stress–true strain? The tensile test is the most widely used fundamental mechani-

cal test for gaining material data. Its standard output is the force–elongation curve. This 

output is usually recalculated into the engineering stress–strain curve, but it is possible 

to derive the true stress–true strain curve by using certain methods. 

 

• A research study of possible descriptions of true stress–true strain curves. This is a fre-

quently used approach, which describes the plastic region of a curve with additional 

parameters and material constants. Four non-linear relationships were chosen and in-

vestigated. 

 

• Identification of the piece-wise linear true stress–true strain curve (the so-called flow 

curve) from the measured steel 18CrNiMo7-6. Only standard force–elongation tensile 

test output is needed for the finite element method (FEM) simulation. The flow curve is 

calibrated using an iterative process. 

 

• Development of an interface, which applies the previously-mentioned relationships on 

an identified flow curve of given steel. 

 

• Comparison of the true stress–true strain curve calibrated using FEM simulation and its 

regression by four chosen non-linear relationships. Conclusions of their usability and 

fit. 
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2. Types of stress–strain curves 

2.1. Tensile test 
The tensile test is the most fundamental, widely-used and standardised material test. During the 

tensile test, the specimen is loaded uniaxially by displacement along its length and 2 quantities 

are simultaneously measured – the applied load 𝐹, typically measured by the load cell, and 

elongation 𝐿, measured by the extensometer. The reason why the elongation is not measured 

from the crosshead displacement is because otherwise the results would be influenced by ma-

chine stiffness, which is undesirable [1]. 

 

Apart from electromechanical testing machines, servo hydraulic machines can also be used. A 

hydraulic testing machine can supply forces of greater magnitude (more than 4450 kN) more 

economically as compared to the screw driven machine. That is because the production cost of 

the driving screw rises together with the nominal force [1]. 

 

The definition of the recommended geometry of specimens is standardised, generally with the 

circular or rectangular cross section. The specification of the geometry is described in Czech 

and European standard ČSN EN 10002-1. In the United States, the geometry is further specified 

in American Standard for Testing and Materials ASTM E8 [1]. Besides geometry, more factors 

Figure 1 Schema of the universal electromechanical testing machine. Modified from [1] 
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have an influence on the results – the speed of deformation, the surrounding temperature and 

prior history of plastic deformation [1]. Testing is usually done quasi-statically, however in 

some cases – for example investigation of material properties for specific forming processes – 

the speed of deformation (together with the temperature) has a decisive effect on results. The 

tensile test is then done with increased temperature and strain rate. To be able to describe such 

processes, the viscous part of behaviour (dependence of material hardening on strain rate, creep 

and stress relaxation) needs to be taken into account. Therefore, the visco-plastic material model 

is being used in such cases [2]. Since this thesis is aimed on the standard tensile test output, this 

approach will not be further investigated, and only the elasto-plastic model will be investigated. 

2.2. Engineering stress–strain curve 
The output from the tensile test is the load–elongation dependency. This data is then recalcu-

lated into a conventionally-used engineering stress–strain curve. The engineering stress s is 

computed by dividing the applied load 𝐹 by the original cross-sectional area of the specimen 

𝐴0 

 𝑠 =
𝐹

𝐴0
 (1) 

The engineering strain 𝑒 is defined as 

where 𝐿 is instantaneous deformed length, Δ𝐿 is elongation increment and 𝐿0 is the original 

undeformed length of the specimen, the so-called gauge length [1]. If the test was realised in 

the presence of an extensometer, the 𝐿0 is substituted with 𝐿0𝑒𝑥𝑡, which is the distance be-

tween the extensometer’s clips. A typical engineering stress–strain curve is depicted in Figure 

2. 

 𝑒 =  
𝐿 − 𝐿0

𝐿0
=

Δ𝐿

𝐿0
 (2) 

Figure 2 Typical stress–strain curve of ductile steel. Modified from [1] 
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Point A' is the proportional limit. Until this point, the relationship between stress and strain is 

proportional and described by Hooke’s law (see equation (4)). The elastic limit – point A – 

succeeds the proportional limit and is defined as the greatest stress the material is able to with-

stand without any measurable residual permanent strain; after the complete unload of the spec-

imen [1]. 

The yield point is the point where the first plastic deformation occurs. The location of this point 

depends on the material properties and behaviour. According to Figure 2, the yield point would 

be the point where the curve deflects from its linear part. But, an experimentally determined 

yield point in this manner would be dependent on extensometer sampling sensitivity. Therefore, 

the offset yield stress value is introduced: the so-called proof stress. It is a covenanted value of 

stress magnitude creating certain plastic deformation. Conventionally, the proof stress 𝑠𝑝0.2 

which gives the plastic deformation of 𝑒 = 0.002 (= 0.2 %) is used. The proof stress value may 

differ in different standards or applications. In German standard DIN, the prescribed plastic 

deformation is sometimes 𝑒 = 0.01 (e.g. for austenitic steels), in British standard BS 0.001 or 

0.005 and the American standard ASTM 0.002 or 0.001 [1]. It is important to mention, that for 

computational simulations, the proof stress approach for setting the elastic limit would not be 

sufficient. In the simulation, we are trying to describe the behaviour of material as close as 

possible. Therefore, the yield point describing the elastic limit must be the first point that de-

flects from the linear line. 

The proof stress approach for setting the yield point does not always have to be used. For certain 

groups of materials (e.g. low carbon steels), the stress magnitude for plastic deformation initi-

ation (i.e. initiation movement of dislocations) is significantly higher compared to the magni-

tude of propagating plastic deformation [3]. This phenomenon is called the yield point phenom-

enon or discontinuous yielding and it causes significant yield point elongation (depicted in Fig-

ure 3 d)). The upper point of this irregularity in the stress–strain diagram is the upper yield point 

𝑠𝑒𝐻, followed by the sudden drop to the heterogenous deformation at the constant stress [1], 

[3]. The last point of this heterogenous deformation is the lower yield point stress, 𝑠𝑒𝐿. The 

identification of the yield point 𝑠𝑒 is in this case simple – it is usually the lower yield point 

stress magnitude as the more conservative value. The reason for this behaviour are interstitial 

atoms, typically nitrogen and carbon. The dislocations, which cause the plastic deformation, 

are pinned to these interstitial solutes and are therefore immobile. Similar behaviour can be 

found in some polymers and superplastic metal alloys [1]. This phenomenon of discontinuous 

yielding is rather complex to describe in the following chapters (4. Identification of flow curve 

using the finite element method, 5. Application of chosen non-linear relationships) and was 

investigated in more detail in [2] and [4]. This thesis will furthermore investigate only curves 

without upper and lower yield points and discontinuous yielding (which fits given material 

18CrNiMo7-6 – see chapters 4 and 5). 

The ultimate tensile strength 𝑠𝑚 is another important quantity. It is the maximum load divided 

by original undeformed cross-sectional area. 

 𝑠𝑚 =  
𝐹𝑚𝑎𝑥

𝐴0
 (3) 

Until this point, the strain is uniform. The strain magnitude at the ultimate tensile strength is 

the engineering uniform strain 𝑒𝑢. Exceeding this point, the neck starts to appear on the speci-

men, in which the triaxial stress state occurs, and therefore stress components (axial 𝜎𝑥, radial 

𝜎𝑦  and circumferential 𝜎𝑧 ) are non-uniformly distributed around its cross section [3]. The 

necking does not have to always appear. In that case, the ultimate tensile strength is equal to 

the stress magnitude at fracture (Figure 3 b) and c)). 
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The fracture point is the last point of the stress–strain curve. 

The curve is called ‘engineering’, because the stress values are computed from the original 

undeformed cross-sectional area, and the strain is computed from the final elongation value. In 

reality, the cross-sectional area reduces, and therefore the true stress value increases. The engi-

neering strain value 𝑒 is approximately equal to the true strain value 𝜀 up to 2 % of its nominal 

value (see Figure 4) [3]. The engineering strain does not depend on the intermediate strains, but 

it is computed only from the final elongation value. The true strain, also known as logarithmic 

strain, is taking into account the series of increments by which the plastic deformation is being 

realised, and therefore describes the influence of a strain path more reliably compared to an 

engineering strain [5]. 

2.3. Additional tensile test outputs 
Apart from force–elongation dependency, other important material constants are obtained from 

tensile test: 

• Young’s modulus 𝐸, defined by T. Young in 1802. This constant describes the propor-

tionality between stress and strain until the proportional limit (Figure 2). This material 

behaviour was described by R. Hooke in his well-known Hooke’s law:  

 𝑠 = 𝐸𝑒 (4) 

• Poisson’s ratio 𝜈, by which the materials ability of relative volumetric change within 

the region of elastic deformations is described. In the tensile test, 𝜈 is a ratio of trans-

verse strain 𝑒𝑦 (and 𝑒𝑧) to axial strain 𝑒𝑥 [2]. 

 𝑒𝑦  = 𝑒𝑧 = −𝜈𝑒𝑥 (5) 

• Engineering strain to fracture 𝑒𝑓, which is a measure of a material ductility (typically 

expressed in percentage), computed from the final length of deformed specimen 𝐿𝑓 [1]. 

 
𝑒𝑓 = 100

𝐿𝑓 − 𝐿0

𝐿0
 (6) 

• Reduction in area 𝑞, which is also a measure of ductility and it is computed in similar 

manner as elongation, only related to specimen’s areas: 

 
𝑞 = 100

𝐴0 − 𝐴𝑓

𝐴0
 (7) 

Figure 3 Depictions of typical engineering stress-strain curves: a) ductile material without 

yield-point elongation, b) material with plastic hardening without necking, c) brittle material, 

d) material with upper and lower yield point [2] 
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𝐸  and 𝜈  are thus describing elastic properties. Quantities 𝑒𝑓  and 𝑞  are describing plastic 

properties and they are experimentally measured from the unloaded specimen’s geometry after 

the fracture. Note that 𝑒𝑓 depends on the gauge length 𝐿0. Hence for the same material and 

different specimen geometry, 2 different 𝑒𝑓 values would be identified. Therefore, the gauge 

length should always be given together with the elongation results report [1].  

2.4. True stress–true strain curve 
The engineering stress and engineering strain are possible to recalculate up to the uniform strain 

into a true stress and true strain. True stress is defined as 

 
𝜎 =

𝐹

𝐴
 (8) 

where 𝐴 describes the instantaneous cross-sectional area of loaded specimen. The relationship 

between the engineering stress and true stress is 

 
𝜎 = 𝑠 (

𝐴0

𝐴
) (9) 

We assume that the increments of measured length are very small, and that they can be repre-

sented by Δ𝐿1, Δ𝐿2, Δ𝐿3, etc. and the newly measured lengths are 𝐿1, 𝐿2, 𝐿3, etc. The overall 

strain can be computed from these increments as 

 
𝜀 =

Δ𝐿1

𝐿1
+

Δ𝐿2

𝐿2
+

Δ𝐿3

𝐿3
+ ⋯ = ∑

Δ𝐿𝑗

𝐿𝑗
  (10) 

If the sampling frequency of Δ𝐿𝑗 is fast enough, we can substitute the sum with an integral. 

Thus, the formula for true strain is 

 

𝜀 = ∫
𝑑𝐿

𝐿
= ln (

𝐿

𝐿0
) 

𝐿

𝐿0

 (11) 

where 𝐿 = 𝐿0 + Δ𝐿 is the instantaneous deformed length of the specimen. The relationship 

between the engineering strain and the true strain is 

 
𝜀 = ln (

𝐿

𝐿0
) = ln (1 +

Δ𝐿

𝐿0
) = ln(1 + 𝑒) (12) 

To be able to express the true stress from the outputs of a tensile test, the formula (9) needs to 

be rewritten as a function of load and elongation. This is done under the assumption that the 

change of shape in the plastic deformation is caused only by transferring mass in space – the 

volume remains constant. So, the specimen’s volume 𝐴0𝐿0 remains constant throughout the 

test in the region of plastic deformation. We can write that 

 𝐴0𝐿0 = 𝐴𝐿 (13) 

 

 𝐴0

𝐴
=

𝐿

𝐿0
=

𝐿0 + Δ𝐿

𝐿0
= 1 + 𝑒 (14) 

hence 

  𝜎 = 𝑠(1 + 𝑒) (15) 
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Formulas (12) and (15) are used for recalculating the true stress and true strain from the tensile 

test. Note that these relationships are valid only until uniform strain. The goal of this thesis is 

to describe the true stress–true strain curve beyond the initiation of neck – the so-called flow 

curve. 

 

The engineering strain 𝑒 is computed from the distance of two points, which are defining the 

length 𝐿0. When the stress exceeds the magnitude of ultimate strength 𝑠𝑚 the so-called neck 

appears on the specimen. This region is called plastic instability. The magnitude of e describes 

the mean value of deformation in the necking area and does not correlate with deformation in 

the smallest cross-sectional area of the necking part [1]. There are additional methods that are 

used for the measurement of the instantaneous cross-sectional area in the necking part (i.e. Dig-

ital Image Correlation, measuring the necking area with additional sensors), however they are 

not standard equipment in the tensile test. 

2.5. MLR Correction 
Several correction methods, of how to gain flow curve after necking initiation appeared 

throughout history. Bridgman was the first, who carried out an analytical correction method. 

But, his correction method requires necking radius as an input and it is quite complicated to 

identify this quantity [6]. 

This method was further investigated by La Rosa and extended by Mirone in [7]. They devel-

oped following 4th order polynomial correction coefficient for stress and 3rd order polynomial 

correction coefficient for strain: 

 𝑀𝐿𝑅 𝜎 = 1 − 0.6058(𝜀𝑒𝑞,𝑓 − 𝜀𝑁)
2

+ 0.6317(𝜀𝑒𝑞,𝑓 − 𝜀𝑁)
3

− 0.2107(𝜀𝑒𝑞,𝑓 − 𝜀𝑁)
4
 (16) 

 

 𝑀𝐿𝑅𝜀 = 1 − 0.265(𝜀𝑒𝑞,𝑓 − 𝜀𝑁) + 0.241(𝜀𝑒𝑞,𝑓 − 𝜀𝑁)
2

− 0.074(𝜀𝑒𝑞,𝑓 − 𝜀𝑁),3 (17) 

Figure 4 Engineering stress, engineering strain, true stress, true strain relationships and their 

range of validity. Modified from [3] 
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where 𝜀𝑒𝑞,𝑓 is equivalent fracture strain: 

 
𝜀𝑒𝑞,𝑓 = 2ln (

𝑑0

𝑑𝑓
) (18) 

and 𝜀𝑁 is true strain at necking initiation.  

The corrected average equivalent stress–strain curve beyond the necking initiation can be then 

computed: 

 
𝜎𝑒𝑞,𝑎𝑣𝑔 =

𝐹

𝐴𝑓
𝑀𝐿𝑅 𝜎 (19) 

 

 𝜀𝑒𝑞,𝑎𝑣𝑔 = 𝜀𝑒𝑞,𝑓𝑀𝐿𝑅 𝜀 (20) 

 

In fact, these are coordinates of one point, which is connected with [𝜀𝑁 ,  𝜎𝑁] (the last point of 

analytically valid true stress–true strain curve from equations (12) and (15)) by a straight line. 

The demonstration of MLR correction is performed in chapter 4.2. 
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3. Non-linear stress–strain relationships 

3.1. Constitutive elasto-plastic material model 
To be able to perform computational simulations of elasto-plastic material, it is necessary to 

introduce a material model, which is defined analytically. The fundamental input for computa-

tional simulations is the true stress–true strain curve, the 𝜎 = 𝑓(𝜀) dependency, the so-called 

curve of plastic hardening or flow curve. It is necessary to somehow mathematically describe 

experimentally obtained data from the tensile test within a satisfactory magnitude of deviation. 

Some of the elasto-plastic material models are listed below: 

• Ideal 

This is the simplest elasto-plastic model, which does not include plastic hardening, the plastic 

part of curve is constant value of yield stress. 

• Bilinear 

Similar to the previous model, this model is described by 2 lines. In this case though, the plastic 

hardening is considered, hence the plastic part of curve is not constant, but a line with a slope. 

The ideal material model is hence a special case of the bilinear one, with a slope equal to zero 

in the second part of the curve. 

• Multilinear 

The multilinear material model describes 𝜎 = 𝑓(𝜀) dependency with a piece-wise linear curve, 

divided into a finite number of lines. The creation of this model is simple, it is just a connection 

of a finite number of chosen key points on the experimentally identified true stress–true strain 

curve. By this approach, any shape of curve can be described. When pre-processing the simu-

lation, the minimalization of the number of linear lines is desired to have an optimised simula-

tion [2]. 
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• Non-linear 

Several empirical mathematical relations have appeared throughout history. This frequently 

used approach allows describing the plastic part of the curve by certain parameters [2], [8]. 

Many of these relations were dedicated to certain material group, therefore their applicability 

is limited and not versatile.  

Table 1 Summary of some of the frequently used relations, described in this thesis 

 

3.2. Hollomon 
The equation is [9]: 

 𝜎 =  𝐾𝐻𝜀𝑝𝑙
𝑛𝐻  (21) 

 

where 𝜀𝑝𝑙 is true or equivalent plastic strain, 𝑛𝐻 strain hardening exponent and 𝐾𝐻 is a con-

stant, sometimes called strain hardening (or strength) coefficient [10]. This relationship was 

defined by J. J. Hollomon in 1945 in [9] and it is the most widely used one. The description of 

material hardening by 𝑛𝐻 is convenient and can also be used for the assessment of stretch-

formability and other technological aspects [8]. 

Name Equation No. of parameters Chapter 

Hollomon 𝜎 =  𝐾𝐻𝜀𝑝𝑙
𝑛𝐻 2 3.2 

Ludwik 𝜎 =  𝜎0 + 𝐾𝐿𝜀𝑝𝑙
𝑛𝐿 2 3.3 

Swift 𝜎 =  𝐾𝑆(𝜀𝑝𝑙 + 𝜀0)𝑛𝑆 3 3.4 

Voce 𝜎 =  𝐵𝑉 − (𝐵𝑉 − 𝐴𝑉)e−𝑛𝑉𝜀𝑝𝑙 3 3.5 

Figure 5 Examples of piece-wise linear material models. Modified from [2] 
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Let’s take a closer look at the formula and the solution of its parameters. The formula can be 

expanded by adding logarithms on both sides: 

 log(𝜎) = 𝑛𝐻 log(𝜀𝑝𝑙) + log (𝐾𝐻) (22) 

 

which is in log-log coordinates equation of a line (𝑦 = 𝑘𝑥 + 𝑞). Thus, the unknown parameters 

𝐾𝐻 and 𝑛𝐻 can be easily identified by fitting linear line in log-log coordinates – 𝐾𝐻 is equal 

to intercept of the linear line in log-log coordinates at 𝜀𝑝𝑙 = 1 and 𝑛𝐻 is the slope of this curve 

[10]. Note that this is done in equivalent (or true) stress–equivalent plastic strain coordinates. 

The method of least squares is exclusively used for curve fitting [2]. 

 

As mentioned, the hardening parameters 𝐾𝐻 and 𝑛𝐻 have a technological importance. The 𝐾𝐻 

value gives some idea of the strength level of a material as well as the magnitude of forces that 

are required for its forming. The 𝑛𝐻 value describes the strain hardening characteristic. The 

greater the magnitude of 𝑛𝐻, the greater is the material’s strain hardening rate. If we seek a 

material for processes that are realised by plastic deformation, the material with higher magni-

tudes of 𝑛𝐻 is more suitable and should be preferred. Also, the stretch formability can be de-

scribed by the 𝑛𝐻  parameter. The magnitude of 𝑛𝐻  affects the location of uniform strain, 

Figure 6 Example of Hollomon's relationship plotted in log-log coordinates. Modified from 

[10] 

tgα = nH 

K
H
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hence the greater the 𝑛𝐻 value, the more the material can plastically deform before necking 

and plastic instability occur [10]. 

 

The 𝑛𝐻 value in some cases correlates with the value of the true uniform strain 𝜀𝑢. This was 

investigated by Kleemola in [8]. He was comparing the fit of the Hollomon’s relationship with 

other non-linear relationships, summarizing their correlation. He was also fitting the relation-

ships from Table 1 into experimental data and investigating their correlation and deviation of 

the 𝑛𝐻 value from 𝜀𝑢. Finally, he investigated the influence of the strain increment on the fit. 

He stated that “short strain increments can be very accurately described by the Hollomon ex-

pression, but then the exponent does not give the correct uniform strain. Only when the strain 

increment is sufficiently small and contains the actual uniform strain point does the Hollomon 

exponent approximate the value of 𝜀𝑢. However, it is not known beforehand what the correct 

strain increment is.” The examination of correlation of 𝑛𝐻 and 𝜀𝑢 was performed experimen-

tally in this thesis – see chapter 5.2. 

Hollomon’s relationship is generally more suitable for materials with higher magnitudes of 

plastic strain [10]. 

3.3. Ludwik 
P. Ludwik’s relationship from 1909 is [8] 

 𝜎 =  𝜎0 + 𝐾𝐿𝜀𝑝𝑙
𝑛𝐿 (23) 

 

Similar to Hollomon’s relationship, the stress is a power law of plastic strain. In this case 

though, the value of yield point stress is taken into account and represented by the parameter 

𝜎0. The 𝑛𝐿 defines curvature of the curve in log-log coordinates, whilst 𝐾𝐿 represents the in-

tercept of this curve. 

The modification of Ludwik’s relationship into log-log coordinates is as follows. Firstly, 𝜎0 is 

moved to the left side. Then, logarithms are applied on both sides and the equation is modified 

to [8]: 

 log(𝜎 − 𝜎0) = 𝑛𝐿 log(𝜀𝑝𝑙) + log (𝐾𝐿) (24) 

 

Since there are only 2 unknown parameters (𝑛𝐿 and 𝐾𝐿), the coefficients are easily identified 

by using the least square method. 

The Figure 7 bellow shows the difference between Hollomon’s and Ludwik’s fit applied on 

experimentally measured data. Ludwik’s relationship is non-linear in log-log scale, when com-

pared to Hollomon’s linear one. The difference is caused by the influence of 𝜎0. 
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3.4. Swift 
The equation defined by H. W. Swift in 1952 is [11]: 

 𝜎 =  𝐾𝑆(𝜀𝑝𝑙 + 𝜀0)𝑛𝑆 (25) 

 

In this relationship, a constant strain value 𝜀0 is present, similar to 𝜎0 in Ludwik’s formula-

tion. All three parameters are unknown and need to be identified using the non-linear least 

square fit. 

The estimation of the values of initial guesses is a critical part of least square fitting procedure. 

That is because the non-linear system does not always have an unambiguous solution (in fact 

the number of solutions depends on the fitted function, the number of solutions can be up to 

infinity). It is necessary, to be able to have an educated initial guess, otherwise the solution 

might converge only to the local minimum of the least square error, but not towards to global 

Figure 7 The difference between Hollomon’s (3.2) and Ludwik’s fit. Modified from [10]. 

The difference caused by 𝜎0 
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minimum1. Figure 8 depicts Swift’s relationship plotted together with previous relationships. 

In case of this dataset, Swift gives a very similar fit to Hollomon’s. 

3.5. Voce 
The equation defined by E. Voce in 1948 is [12]: 

 
𝜀𝑝𝑙 = 𝐾𝑉ln (

𝐵𝑉 − 𝐴𝑉

𝐵𝑉 − 𝜎
) (26) 

 

where 𝐴𝑉 is the initial or threshold stress at which homogenous plastic deformation begins to 

be appreciable. 𝐵𝑉 is the final constant stress, attainment of which at indefinitely large strains 

appears to be a characteristic of homogenous deformation. The 𝐾𝑉 is a dimensionless constant 

[12]. 

                                                 
1 Paraphrased from J. N. Kutz’s online lecture Data Fitting with Matlab, University of Washington, Department 

of Applied Mathematics. Available online (youtube.com), or in study text: Kutz, J. N.: AMATH 301 Beginning 

Scientific Computing. Seattle: University of Washington, Department of Applied Mathematics. 2003. 

Figure 8 Comparison of Hollomon, Ludwik and Swift fit in log-log coordinates, fitted to the 

same dataset. 
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The expression of stress as a function of strain from equation (26) is [8]: 

 𝜎 =  𝐵𝑉 − (𝐵𝑉 − 𝐴𝑉)e−𝑛𝑉𝜀𝑝𝑙 (27) 

 

where 𝑛𝑉 is a dimensionless exponent, equal to 𝐾𝑉
−1, which gives a value of saturation rate. 

 

Voce was proposing this relationship, after investigation done on various non-metallic alloys, 

such as copper, brass, bronze, etc. He stated that the constant 𝐴𝑉 is usually above the limit of 

proportionality and roughly corresponds with proof stress for 0.1 % of strain [12]. The correla-

tion of these quantities was examined on experimentally performed fit - see chapter 5.2. 

 

 

 

 

 

 

Figure 9 Voce’s relationship fitted to the experimental dataset over previous relationships 



28 

 

4. Identification of flow curve using the finite 

element method 

4.1. Introduction 
The experimental tensile test of 18CrNiMo7-62 was provided by the supervisor Ing. František 

Šebek, Ph.D. The test was performed at room temperature in the laboratory of the Institute of 

Materials Science and Engineering. The load–elongation output was received in digital form 

for post-processing. Apart from the output, the rest of the measured quantities is listed below: 

𝑠𝑝0,2 = 738 𝑀𝑃𝑎 

𝑠𝑚 = 1053 𝑀𝑃𝑎 

𝐸 = 196 𝐺𝑃𝑎 

𝐴0 = 29.03 𝑚𝑚2 

𝐴𝑓 = 12.63 𝑚𝑚2 

𝐿0𝑒𝑥𝑡 = 30 𝑚𝑚, 

where 𝐴𝑓 is the area of the specimen at fracture. 

4.2. Stress–strain curves 
The engineering stress–strain curve can be plotted instantly, converting measured values using 

equations (1) and (2). Similarly, the analytically computed true stress–true strain curve can be 

plotted using equations (15) and (12), but only until the necking initiation, as described in chap-

ter 2.4. 

The MLR correction can be directly performed as well to estimate the average equivalent stress 

trend beyond necking, following the procedure described in chapter 2.5. 

                                                 
2 Case hardening steel according to DIN EN 10084, with chemical composition of chrome 1.50-

1.80 %, nickel 1.40-1.70 % and molybdenum 0.25-0.35 %. Information found in online cata-

logues of companies Saarstahl AG and Gruppo Lucefin S.p.A. 
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4.3. Flow curve calibration and tensile test finite 

element simulation 
As it was mentioned before, the stress–strain curve serves as an essential input into numerical 

simulations. For cases with large-scale deformations, e.g. plastic flow localization, metal form-

ing or ductile crack propagation, the MLR correction does not sufficiently describe the plastic 

behaviour of material [4]. 

In this thesis, an iterative finite element method in the ANSYS analysis system is presented. It 

is an iterative process, wherein each iteration material input is modified. The modification is 

based upon manual comparison of the reaction force response from the simulation to an exper-

imentally measured force. 

Figure 10 Stress–strain curves directly plotted from experimental measurement 
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The tensile test is modelled as a axisymmetric problem. The symmetry allows us to simplify 

the geometry. 

Jeník stated in [2], that if the tensile test was realised in the presence of an extensometer, it is 

unnecessary to take in account the clamping part of the specimen, and it is possible to simplify 

the geometry even more as in the following Figure 12: 

The mesh was done using quadratic element PLANE183. The size of the elements was chosen 

in such a way that there were 15 elements over the radius of section. This was done based on 

Jeník’s study, who performed a sensitivity analysis of mesh refinement [2]. He learned, that 

even the difference between 15 and 9 elements per radius in terms of equivalent stress was less 

than 0.5 % in his case. 15 elements per radius should be sufficient enough in this case. 

Since we are modelling a perfectly cylindrical section of the specimen, it is necessary to create 

imperfection to assure necking. The radius has been reduced by 3 ‰. That assures the initiation 

of plastic instability in the desired place – Figure 13. Otherwise the deformation would be linear 

throughout the cylindrical section, if the imperfection was not created. The creation of neck can 

be seen in chapter 4.3.2. 

The problem was solved using a macro in Ansys Parametric Design Language (APDL) in AN-

SYS Mechanical APDL 18.1 software. The APDL macro guarantees maximal parametricity. 

Figure 12 Simplified geometry of tensile test specimen with extensometer 

Figure 11 Simplified geometry of tensile test specimen 
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4.3.1. APDL Macro 
The created APDL macro needs two text files as an input – the input is the estimated flow curve 

– fl_eps.txt, which consists of the equivalent strain coordinates, and fl_sig.txt, which consists of 

the equivalent stress coordinates. The input must be formatted to be in two separate columns, 

with the serial number in the first column and the corresponding value in the second one. 

 

It is reasonable, to base the first estimation of stress–strain input on MLR correction. 

The other input parameters are in Figure 14. It is necessary to align the number of points of the 

flow curve 𝑝𝑡 with the highest serial number from fl_eps.txt (and fl_sig.txt). 

Macro then solves the problem in a number of loadsteps 𝑛𝑙 that was inserted, and in each load-

step the reaction force 𝐹𝑦 is written into output. The output file feedback.dat contains force–

elongation data from the simulation. 

The output is then compared with the experimental measurement. Note that the displacement 

data from feedback.dat needs to be multiplied by 2 due to symmetry. The user then checks the 

deviation between the FEM simulation and the experiment. This can be done by created 

MATLAB script comparison.m, which is included in the attachment. Based on the deviation, 

Figure 13 Meshed axisymmetric model with depicted boundary conditions 

Figure 14 Input parameters of the macro 
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the input data of fl_eps.txt and fl_sig.txt can be modified and a new iteration computed. 

The created macro macro.mac can be found in the attachment of this thesis, as well as the 

material input of the 26th iteration fl_eps.txt and fl_sig.txt and a simulation output feedback.dat. 

The experimentally measured tensile test of given steel is also included – experiment.dat 

 

 

 

 

 

 

 

 

 

Figure 15 Flowchart of iterative finite element method of the tensile test simulation 
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4.3.2. Results 
The simulation was run 26 times to identify the flow curve. The first part of the flow curve 

input was analytically computed (in the uniform strain region) using the equations 12 and 15, 

and the rest of the curve was modified and calibrated until the resulting deviation between the 

simulation and experiment was satisfying. 
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Figure 16 The results of 5th iteration 
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The flow curve was identified, so the slope of the curve is decreasing in each evaluated strain 

point. The percental difference between the experiment and the simulation is lower than 1.5 % 

in the whole region of plastic instability – the table.pdf with the percental difference is in the 

electronic attachment and also printed on the last page of this thesis. In fact, the whole force–

elongation curve from simulation was not differing more than 1.5 % from the experiment, ex-

cept for the first 5 elongation points. However, these 5 points with higher percental difference 

are dependent on analytically computed part of the flow curve, and understandably, the highest 

difference is on the yield point – 8.19 %. That is, because in the vicinity of the yield point the 

force rises dramatically with relatively small elongation increment. The goal of this thesis was 

primarily to calibrate the curve in the region of plastic instability. 
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Figure 17 The results of 26th iteration which are satisfactory to the author 
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The percental difference 𝑑𝑠𝑖𝑚 from table.pdf was calculated using the following formula: 

 𝑑𝑠𝑖𝑚 = 100 |
𝐹𝑒𝑥𝑝 − 𝐹𝑦

𝐹𝑒𝑥𝑝
| (28) 

where 𝐹𝑒𝑥𝑝 is force measured in the tensile test. 

 

 

 

 

 
 

 
 

 

  

Figure 19 The necking appearance at the end of the simulation 

Figure 18 Comparison of identified stress–strain curves 
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5. Application of chosen non-linear relation-

ships 
The relationships from Table 1 were fitted to the identified flow curve from chapter 4. A user 

interface was designed for curve fitting. 

5.1. The user interface 
The user interface code fitting_GUI.m was developed in MATLAB, version R2016a. It follows 

the logic of inputs of previous APDL macro (4.3.1), thus it automatically loads the calibrated 

flow curve from fl_eps.txt and fl_sig.txt from the working directory – these input files need to 

be in the same folder as the user interface code together with fitting_GUI.fig (graphical envi-

ronment of user interface). 

The interface contains four buttons with functions from Table 1 and three editable text boxes 

of initial guesses. 

The user then simply inputs the initial guesses of parameters into the grey boxes and clicks the 

button of the function that was chosen to fit. The box with the caption “Fitted function” shows 

which function was fitted and the three white boxes with static text show the value of the pa-

rameters after least square fitting. The least square fit error 𝐸𝑟 (also known as root-mean 

square error) is computed: 

Figure 20 The environment of created interface, depicting Hollomon fit 
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𝐸𝑟 = √
1

𝑝𝑡
∑|𝜎𝑓𝑖𝑡,𝑖 − 𝜎𝑓𝑙𝑜𝑤 𝑐𝑢𝑟𝑣𝑒,𝑖|

2

𝑝𝑡

𝑖=1

 
 

(29) 

where 𝜎𝑓𝑖𝑡 is equivalent stress value of fitted curve and 𝜎𝑓𝑙𝑜𝑤 𝑐𝑢𝑟𝑣𝑒 is equivalent stress value 

of identified calibrated flow curve. As mentioned in chapter 3.4, the initial guess is a critical 

part of fitting a non-linear relationship using the least square method. When the inaccurate val-

ues are iserted, the solution can converge only to the local minimum of the least square error. 

 

An additional reset button was developed for this study. The button with the text “*Click to 

reset initial guesses to automatic” resets the values of initial guesses to zeros. If the user then 

clicks the button with function again, a new set of initial guesses is automatically inserted. Any 

zero inserted as an initial guess is converted to the automatic value of initial guess. It is im-

portant to emphasise, that these automatically inserted initial guesses were designed for this 

specific case of 18CrNiMo7-6 steel using a method of trial and error. They do not have to assure 

the convergence to the global minimum of least square fitting error, if a different flow curve is 

inserted. But, the user can modify initial guesses directly and insert own educated initial guesses 

for a specific case. 

The limit for initial guess for all the exponents was set, so the number cannot be infinite. If the 

magnitude of the exponent was exceeded, a message box displays, and the value of the exponent 

restores the automatic value. 

 

Figure 21 Typical example of inaccurate input of initial guesses, leading to the bad fit 
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5.2. Results of fitting 
The best fit was found using Swift’s relationship (chapter 3.4), giving the lowest least squares 

fit error of 49.9. 

 

 

Note that Hollomon gives a very similar fit with much higher error. That is caused by the fact 

that in the initial point, where the flow curve’s equivalent plastic strain is equal to zero and 

equivalent stress is equal to yield point stress, Hollomon gives the value of equivalent stress of 

zero instead of yield point stress. That is because of the formulation of Hollomon’s relationship. 

It is questionable whether or not Hollomon really is a function of equivalent plastic strain and 

not a function of equivalent total strain and whether it can be used like that. 

In this case of 18CrNiMo7-6 calibrated flow curve, the found parameters of fitted Hollomon’s 

relationship are: 

 𝜎 =  1399.4 ∙ 𝜀𝑝𝑙
0.0896 (30) 

 

Figure 22 A message box, displayed when the exponent value exceeds the limit 

Figure 23 Swift fitted to the calibrated flow curve 
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in which if we input the value of strain 𝜀𝑝𝑙 = 0.00001 

 𝜎 =  1399.4 ∙ 0.000010.0896 = 498.8 𝑀𝑃𝑎 (31) 

 

which corresponds with the identified value of yield point stress 500 MPa. Thus, we can say 

that Hollomon’s relationship contains the point [0;0], but if the input of equivalent plastic strain 

is higher than 1 ∙ 10−5, the relationship fits plastic coordinates. 

Identified parameters and errors of fitted functions are in Table 2 bellow. 

Table 2 Identified parameters of chosen non-linear relationships 

Hollomon Ludwik Swift Voce 

𝐸𝑟 = 125.03 𝐸𝑟 = 65.82 𝐸𝑟 = 49.93 𝐸𝑟 = 69.32 

𝐾𝐻 = 1399.4 𝑀𝑃𝑎 𝐾𝐿 = 901.8 𝑀𝑃𝑎 𝐾𝑆 = 1399.2 𝑀𝑃𝑎 𝐴𝑉 = 619.3 𝑀𝑃𝑎 

𝑛𝐻 = 0.089 𝑛𝐿 = 0.161 𝑛𝑆 = 0.0895 𝐵𝑉 = 1311 𝑀𝑃𝑎 

  𝜎0 = 500 𝑀𝑃𝑎 𝜀0 = 9.35 ∙ 10−6 𝑛𝑉 = 53.331 

 

Furthermore, we can examine correlations of some of the previously mentioned parameters.  

 

Figure 24 Stress–strain curves comparison 

Only Hollomon’s relationship 

contains point [0;0] 
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The value of 𝑒𝑢 (the engineering uniform strain) was computed using equation (2): 

 
𝑒𝑢 =

𝛥𝐿𝐹𝑚𝑎𝑥

𝐿0
=

1.6706

30
= 0.0557 (32) 

 

from which the true engineering strain can be computed using equation (12): 

 𝜀𝑢 = ln(1 + 𝑒𝑢) = ln(1 + 0.0557) = 0.0542 (33) 

 

As mentioned, this value can correlate in some cases with the exponent of Hollomon’s relation-

ship 𝑛𝐻 (chapter 3.2). The difference of these numbers is: 

 
𝑑𝐻 = 100 |

𝑛𝐻 − 𝜀𝑢

𝜀𝑢
| = 100 |

0.089 − 0.0542

0.0542
| = 64.19 % (34) 

 

Thus, we can say, that in the case of investigated 18CrNiMo7-6, the identified parameter 𝑛𝐻 

does not represent uniform strain 𝜀𝑢, because the values vary by 64.19 %. 

We can also examine the difference of 0.1% proof stress and the coefficient 𝐴𝑉 in Voce’s re-

lationship (chapter 3.5). The 0.1% proof stress was identified from stress–strain curve - 𝑠𝑝0.1 =

614.9𝑀𝑃𝑎, which gives a good correlation with value of 𝐴𝑉 = 619.25𝑀𝑃𝑎. The difference 

between these two numbers is only 

 
𝑑𝑉 = 100 |

𝑠𝑝0.1 − 𝐴𝑉

𝑠𝑝0.1
| = 100 |

614.9 − 619.25

614.9
| = 0.71 % (35) 
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6. Summary and conclusion 
This thesis can be divided into two major parts. 

In the first part (chapters 2 and 3), the research study was carried out, including descriptions of 

the tensile test, differences between engineering and true stress and strain and their relation-

ships, an analytical correction method (MLR) for obtaining average equivalent stress–strain 

curve beyond the necking initiation, the summary of elasto-plastic material models and the 

properties of four chosen non-linear relationships. 

The second part (chapters 4 and 5) applied previous research to the experimental case of the 

tensile test of 18CrNiMo7-6 steel. The APDL macro was developed and piece-wise linear flow 

curve was identified and calibrated on the basis of force response from the simulation and ex-

periment. The force response from the simulation did not differ more than 1.5 % from the ex-

periment in the region of plastic instability. Then, the user interface was designed for fitting the 

four chosen non-linear relationships, mentioned above. The best fit was found using Swift’s 

relationship, giving the lowest root-mean square error and good correlation found between iden-

tified Voce’s coefficient 𝐴𝑉 and experimentally identified proof stress 𝑠𝑝0.1. Identified param-

eters of Hollomon’s relationship can be furthermore used for solving e.g. flow stress magnitude 

for certain true strain value in forming processes. 

There is a potential in research in the flow curve identification procedure, especially in its op-

timization and automatization. It is difficult to make the process automatized, since the material 

properties vary dramatically in the fields of mechanical engineering. Especially challenging are 

descriptions of yield-point elongations. New methods of identification (soft computing – neural 

networks, sequential simulations [4]) were proposed, yet the versatility is still limited, and 

methods can be investigated and optimized further. 
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8. Lists 

8.1. List of abbreviations 
APDL  ANSYS Parametric Design Language 

ASTM American Standard for Testing and Materials 

DIN  „Deutsches Institut für Normung“ – German Institute for Standard-

ization 

EN  European Standards 

FEM  Finite Element Method 

MLR  Mirone-La Rosa correction method 

 

8.2. List of variables 
𝐴 instantaneous cross-sectional area of specimen   [mm2] 

𝐴0 undeformed cross-sectional area of specimen  [mm2] 

𝐴𝑓 final cross-sectional area of fractured specimen   [mm2] 

𝐴𝑉  initial (or threshold) stress in Voce’s relationship  [MPa] 

𝐵𝑉  final constant stress in Voce’s relationship  [MPa] 

𝑑  percental difference of two numbers   [%] 

𝑑0 original diameter    [mm] 

𝑑𝑓  diameter at fracture    [mm] 

𝑒 engineering (or average linear) strain    [–] 

𝐸 Young’s modulus     [MPa] 

𝑒𝑓 elongation (or engineering strain at fracture)   [%] 

𝐸𝑟  least square error    [–] 

𝑒𝑢 engineering uniform strain    [–] 

𝑒𝑥 axial engineering strain (direction in axis x)  [–] 

𝑒𝑦 transverse engineering strain (direction in axis y)  [–] 

𝑒𝑧 transverse engineering strain (direction in axis z)  [–] 

𝐹 applied load               [N] 

𝐹𝑒𝑥𝑝  force measured in experimental tensile test  [N] 

𝐹𝑚𝑎𝑥  maximum force measured in tensile test   [N] 
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𝐹𝑦  reaction force from the tensile test simulation  [N] 

𝐾𝐻 strain hardening coefficient (or strength coefficient) in  

Hollomon’s relationship    [MPa] 

𝐾𝐿 strength coefficient in Ludwik’s relationship  [MPa] 

𝐾𝑆 strength coefficient in Swift’s relationship  [MPa] 

𝐾 𝑉  dimensionless constant in Voce’s relationship  [–] 

𝐿 instanteous deformed length of specimen   [mm] 

𝐿0 gauge (or original undeformed) length of specimen  [mm] 

𝐿0𝑒𝑥𝑡 distance between extensometer’s clips   [mm] 

𝐿𝑓 final length of a fractured specimen    [mm] 

𝑀𝐿𝑅 𝜀  Mirone’s correction coefficient for strain  [–] 

𝑀𝐿𝑅 𝜎  Mirone’s correction coefficient for stress  [–] 

𝑛𝐻 Hollomon’s strain hardening exponent   [–] 

𝑛𝐿 exponent in Ludwik’s relationship   [–] 

𝑛𝑙  number of loadsteps    [–] 

𝑛𝑆 exponent in Swift’s relationship   [–] 

𝑛𝑉  exponent in Voce’s relationship   [–] 

𝑝𝑡  number of points of flow curve   [–] 

𝑞 area reduction     [%] 

𝑠 engineering stress     [MPa] 

𝑠𝑒 yield point      [MPa] 

𝑠𝑒𝐻 upper yield point     [MPa] 

𝑠𝑒𝐿 lower yield point     [MPa] 

𝑠𝑚 ultimate tensile strength     [MPa] 

𝑠𝑝𝑥𝑥 proof stress of xx % of strain   [MPa] 

𝑈𝑋 boundary condition; fixed displacement in the global direction of x [mm] 

𝑈𝑌 boundary condition; fixed displacement in the global direction of y [mm] 

𝑈𝑌𝑒𝑥𝑡 boundary condition; displacement in the global direction of y [mm] 

𝛥𝐿 increment of elongation     [mm] 

𝛥𝐿𝐹𝑚𝑎𝑥 increment of elongation on maximum load  [mm] 

𝜀 true (or logarithmic) strain    [–] 

𝜀0 constant true strain value in Swift’s relationship  [–] 
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𝜀𝑒𝑞,𝑎𝑣𝑔 corrected average equivalent strain   [–] 

𝜀𝑒𝑞,𝑓  equivalent fracture strain    [–] 

𝜀𝑁  true strain at necking initiation   [–] 

𝜀𝑝𝑙 true (or equivalent) plastic strain   [–] 

𝜀𝑢 true uniform strain    [–] 

𝜈 Poisson’s ratio     [–] 

𝜎 true (or equivalent) stress    [MPa] 

𝜎0 yield point stress value in Ludwik’s e uation  [MPa] 

𝜎𝑒𝑞,𝑎𝑣𝑔  corrected average equivalent stress   [MPa] 

𝜎𝑓𝑖𝑡 equivalent stress value of fitted curve   [MPa] 

𝜎𝑓𝑙𝑜𝑤 𝑐𝑢𝑟𝑣𝑒 equivalent stress value of flow curve   [MPa] 

𝜎𝑁  true stress at necking initiation   [MPa] 

𝜎𝑥  true axial stress component   [MPa] 

𝜎𝑦  true radial stress component   [MPa] 

𝜎𝑧  true circumferential stress component   [MPa] 

 

8.3. List of attachments 
comparison.m MATLAB script for loading and comparing reaction force differ-

ence between simulation and experiment. Simultaneously it plots 

current flow curve. 

experiment.dat an force-elongation output of experimental tensile test measurement 

of 18CrNiMo7-6 steel. 

feedback.dat  an output of the FEM simulation – the load–elongation dependency 

fitting_GUI.fig graphical environment of the created user interface for fitting non-

linear relationships, used by the created code 

fitting_GUI.m code of the created user interface for fitting non-linear relationships 

fl_eps.txt  material input of flow curve – equivalent strain  

fl_sig.txt  material input of flow curve – equivalent stress 

macro.mac  APDL macro for FEM simulation of tensile test 

Main Document.pdf an electronic version of this document 

table.pdf  table with percental difference between reaction force of simulation 

and experiment 


