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Abstract

This bachelor’s thesis investigated the identification of material’s flow curve using experi-
mental data from standard tensile test output, and the possibilities of fitting a non-linear rela-
tionship through this identified curve. The theoretical background of differences between engi-
neering and true stress and strain was presented, as well as the tensile test basis and its output.
An analytical correction method (Mirone-La Rosa) for flow curve’s trend estimation, using the
tensile test as an input, was described and used. Elasto-plastic piece-wise linear material models
were listed and additionally four non-linear relationships were chosen and investigated — Hol-
lomon, Ludwik, Swift and Voce. Then, the finite element method was used for flow curve iden-
tification of experimentally tested 18CrNiMo7-6 steel, with a standard tensile test output
needed for flow curve calibration. Flow curve was calibrated with iterative process on the basis
of comparison of reaction forces from simulation and experiment. Furthermore, the user inter-
face was created, and the best fit out of four chosen non-linear relationships was found.

Keywords

flow curve, finite element method, plasticity, MLR correction, tensile test, data regression, non-
linear material model

Rozsifeny abstrakt

Tato bakalafska prace se zabyva problematikou urcovani kiivky napéti—pietvoreni z experi-
mentalné zméfenych dat tahové zkousky a regresi této zjisténé kiivky nelinedrnimi vztahy.

V uvodni kapitole jsou nadefinovany cile a motivace této prace. V konven¢nim strojirenstvi se
obvykle pohybujeme v napétich do hodnoty meze kluzu, protoZe se snazime elimininovat vznik
plastické deformace, a tedy kiivka napéti—ptetvoteni je po dosdhnuti hodnoty meze kluzu ne-
zajimava. Existuji vSak specifické aplikace, které vyuzivaji rozsahlé plastické deformace pro
zménu tvaru materidlu — napt. tvareci procesy. Abychom byli schopni tyto procesy numericky
simulovat, je potieba znat kiivku zpevnéni i po vytvoreni krcku v rozsahlych plastickych de-
formacich. Materialovy model je kritickym vstupem do numerické simulace, a bez jeho véro-
hodné reprezentace neni mozné ziskat realné vysledky. Prace se dale zabyvd moZnostmi
popsani ziskané kiivky zpevnéni nelinearnimi vztahy, které nam dovoluji vySetfovat vlastnosti
materidlu pomoci riznych materidlovych konstant, pfi¢emz nékteré z nich maji technologicky
vyznam.

V druhé kapitole je pak dan teoreticky zaklad o tahové zkousce a jejim vystupu. Jsou popsany
rozdily mezi smluvnim a skuteCnym napétim a smluvnim a skutecnym pietvorenim. Jsou
popsany vyznacné body na kiivce, jako mez kluzu, mez pevnosti, mez imérnosti, smluvni mez
kluzu, atd. Dale jsou popsany analytické vztahy smluvnich a skute¢nych napéti a pfetvoreni a



jsou vymezeny jejich intervaly platnosti. Pozornost je vénovéana pouze tvarnym materialim bez
vyrazné meze kluzu, protoze popsani deformace pii vyrazné mezi kluzu v nasledujicich kapi-
tolach by bylo nad ramec bakalaiské prace. Je zde zminéna analyticka korekce Mirone-La Rosa
(MLR), pomoci které je mozné odhadnout trend kiivky zpevnéni (taktéz ,.flow curve®) ve sku-
te¢nych soufadnicich po vytvoteni krcku. Touto metodou ziskdvame odhad trendu redukova-
ného priimeérného napéti jako funkci redukovaného priimérného pietvoreni.

Tteti kapitola se zabyva elasto-plastickymi materidlovymi modely. Popisuje matematické moz-
nosti popisu kiivek zpevneéni pro vypoctové simulace — idealni elasto-plasticky model, biline-
arni a multilinearni. Dale byly vybrany 4 nelinearni moznosti popisu kiivek — Hollomon, Lud-
wik, Swift a Voce. Kazdy z téchto vztahu je detailnéji rozebran a jsou popsany jejich jednotlivé
parametry.

Zminéné kapitoly davaji teoreticky zaklad, ktery je nasledné¢ aplikovan na ocel 18CrNiMo7-6,
ktera byla zmétena zkouskou tahem na Ustavu materidlovych véd a inzenyrstvi a jejiz vystup
byl poskytnut vedoucim.

Ve ¢tvrté kapitole je rozebrana problematika numerického uréeni kiivky zpevnéni. Iteracni vy-
poctova metoda je pouzita v této praci. Tahova zkouska byla numericky simulovana metodou
konecnych prvki v programu ANSY'S Mechanical APDL 18.1, pticemz byl cely problém zpra-
covan jako makro v parametrickém jazyce APDL. Timto byla zaru€ena maximalni parametri-
zovatelnost. Numerické uréeni kiivky zpevnéni spoc¢iva v ladéni materialového vstupu na za-
kladé¢ silové odezvy ze simulace, kterd je porovnana S experimentalni. Autor provedl 26 iteraci
pro nalezeni optimalni kiivky zpevnéni. Ta byla zkalibrovana s experimentem tak, Ze rozdily
v silové odezvé jsou méné nez 1,5 % v oblasti plastické nestability. Makro je pfilozeno v pii-
loze, soucasn¢ se skriptem vytvofeném v programu MATLAB, slouzicim pro porovnani silové
odezvy experimentu a simulace. Déle je pfilozena tabulka s procentualnimi rozdily experi-
mentu a simulace.

Pata kapitola potom aplikuje nelinedrni vztahy z kapitoly tfeti. Bylo vytvofeno uzivatelské pro-
stfedi v programu MATLAB verze R2016a, které slouzi k nalezeni optimalni regrese zjisténé
ktivky zpevnéni. Tento nastroj hleda minimum chyby ve smyslu nejmensich ¢tverct, pii¢emz
zobrazi optimalni nalezenou kiivku v zavislosti na vstupnich odhadech parametrt. Odhady
vstupnich parametrQ jSou pfi regresi nelinearnimi vztahy kritickym mistem, protoze feSeni me-
tody nejmens$ich ¢tverci muze konvergovat pouze K nalezeni lokalniho minima problému,
avsak ne globalniho. Vstupy do vytvoteného uzivatelského prostiedi jsou zde popsany spolecné
s jeho navodem k pouziti. Vytvofené uzivatelské prostredi je taktéz pfilozeno jako ptiloha
Vv elektronické podobg.

Dale jsou rozebrany vysledky regrese. Jako nejlepsi nelinearni vztah pro danou ocel byl nalezen
Swift s nejmensi hodnotou chyby vzniklé pii regresi ve smyslu nejmensich ¢tverct. Dale byly
porovnany vlastnosti materidlovych konstant, nalezenych vytvofenym néstrojem. Bylo zjis-
téno, Ze hodnota exponentu u vztahu ,,Hollomon*“ ny neodpovida vypoétené hodnoté skutec-
ného pretvofeni na mezi pevnosti €, — procentudlni rozdil byl vypocten 64,2 %. Zjisténé para-
metry tohoto vztahu — koeficient deformacniho zpevnéni a exponent deformacniho zpevnéni —
by se daly vyuzit v technologickych aplikacich napt. pfi tvatecich operacich pro urc¢eni hodnoty
skutecného napéti potiebného pro urcitou hodnotu skutecného pretvoreni. Také byla nalezena
dobra korelace parametru Ay ze vztahu ,,Voce* s hodnotou smluvniho napéti s, 4. Tento pa-
rametr vyjadiuje pocatecni napéti, pti némz zacne byt znatelna homogenni plasticka deformace.
Procentualni rozdil téchto dvou hodnot byl vypocten 0,7 %.

Zavé&rem jsou potom shrnuty ziskané poznatky a vysledky. Prace by mohla byt nadale rozvinuta
optimalizaci a automatizaci procedury urcovani flow curve. Je obtizné vyvinout univerzalni



automatickou metodu, ponévadz vlastnosti materialti se vyznamné 1isi v riiznych odvétvich
strojniho inzenyrstvi. Zvlasté obtizny je popis vyrazné meze kluzu — tzv. Liidersovy deformace.
Byly navrzeny nové metody (sekvencni simulace, soft computing — neuronové sit¢), avsak je-
jich vSestranné pouziti je omezené a mohly by byt dale zkoumany a optimalizovany.

Kli¢ova slova

kiivka teCeni, metoda koneénych prvku, plasticita, MLR korekce, zkouska tahem, regrese dat,
nelinearni materialovy model
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1. Introduction

In conventional mechanical engineering, the occurrence of plastic deformation is generally be-
ing eliminated, and therefore, the region of the stress—strain curve beyond the yield point is
being disregarded. However, as some specific applications are using plastic deformations to
change the shape of materials (e.g. forming processes), some are interested in the region of the
stress—strain curve beyond the yield point value. The material model input plays key role to
obtain reliable results in computational simulations. This thesis is centred around the following
research questions and tasks:

How can the conventional output of tensile testing be applied in order to gain values of
a true stress—true strain? The tensile test is the most widely used fundamental mechani-
cal test for gaining material data. Its standard output is the force—elongation curve. This
output is usually recalculated into the engineering stress—strain curve, but it is possible
to derive the true stress—true strain curve by using certain methods.

A research study of possible descriptions of true stress—true strain curves. This is a fre-
quently used approach, which describes the plastic region of a curve with additional
parameters and material constants. Four non-linear relationships were chosen and in-
vestigated.

Identification of the piece-wise linear true stress—true strain curve (the so-called flow
curve) from the measured steel 18CrNiMo7-6. Only standard force—elongation tensile
test output is needed for the finite element method (FEM) simulation. The flow curve is
calibrated using an iterative process.

Development of an interface, which applies the previously-mentioned relationships on
an identified flow curve of given steel.

Comparison of the true stress—true strain curve calibrated using FEM simulation and its
regression by four chosen non-linear relationships. Conclusions of their usability and
fit.

13



2. Types of stress—strain curves
2.1. Tensile test

The tensile test is the most fundamental, widely-used and standardised material test. During the
tensile test, the specimen is loaded uniaxially by displacement along its length and 2 quantities
are simultaneously measured — the applied load F, typically measured by the load cell, and
elongation L, measured by the extensometer. The reason why the elongation is not measured
from the crosshead displacement is because otherwise the results would be influenced by ma-
chine stiffness, which is undesirable [1].

l ; ; load cell
| i |
| | |
+ T——
| = T extensometer
|
! specimen
@ | seinen
| .
T = grips
| /
il crosshead

$ driving screw

gearbox

1
| LT
]

i .

motor

Figure 1 Schema of the universal electromechanical testing machine. Modified from [1]

Apart from electromechanical testing machines, servo hydraulic machines can also be used. A
hydraulic testing machine can supply forces of greater magnitude (more than 4450 kN) more
economically as compared to the screw driven machine. That is because the production cost of
the driving screw rises together with the nominal force [1].

The definition of the recommended geometry of specimens is standardised, generally with the
circular or rectangular cross section. The specification of the geometry is described in Czech
and European standard CSN EN 10002-1. In the United States, the geometry is further specified
in American Standard for Testing and Materials ASTM E8 [1]. Besides geometry, more factors
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have an influence on the results — the speed of deformation, the surrounding temperature and
prior history of plastic deformation [1]. Testing is usually done quasi-statically, however in
some cases — for example investigation of material properties for specific forming processes —
the speed of deformation (together with the temperature) has a decisive effect on results. The
tensile test is then done with increased temperature and strain rate. To be able to describe such
processes, the viscous part of behaviour (dependence of material hardening on strain rate, creep
and stress relaxation) needs to be taken into account. Therefore, the visco-plastic material model
is being used in such cases [2]. Since this thesis is aimed on the standard tensile test output, this
approach will not be further investigated, and only the elasto-plastic model will be investigated.

2.2. Engineering stress—strain curve

The output from the tensile test is the load—elongation dependency. This data is then recalcu-
lated into a conventionally-used engineering stress—strain curve. The engineering stress s is
computed by dividing the applied load F by the original cross-sectional area of the specimen
Ag

s=1 @)
The engineering strain e is defined as
_L-Ly AL )

where L is instantaneous deformed length, AL is elongation increment and L, is the original
undeformed length of the specimen, the so-called gauge length [1]. If the test was realised in
the presence of an extensometer, the L, is substituted with L., Which is the distance be-
tween the extensometer’s clips. A typical engineering stress—strain curve is depicted in Figure
2.

A strain to fracture e,
uniform strain e o
« i > necking initiation
A
<
=¥
> S
= Lol
5| A %{) A
7] l / 5 o
8 i \proof stress s, ; = =
q(z H —
0 \ . . 2 2
k= \yield point s, ‘ g ‘ Q ‘
3 ' : 8 : =
§= | £ l =
c[) |
£ | = | 3 M
H | = | 5
! = i @
+ i
L] L] L]
| |
! y Y >
0.002 . ) .
—>J<— Engineering strain, e, [-]

Figure 2 Typical stress—strain curve of ductile steel. Modified from [1]
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Point A" is the proportional limit. Until this point, the relationship between stress and strain is
proportional and described by Hooke’s law (see equation (4)). The elastic limit — point A —
succeeds the proportional limit and is defined as the greatest stress the material is able to with-
stand without any measurable residual permanent strain; after the complete unload of the spec-
imen [1].

The yield point is the point where the first plastic deformation occurs. The location of this point
depends on the material properties and behaviour. According to Figure 2, the yield point would
be the point where the curve deflects from its linear part. But, an experimentally determined
yield point in this manner would be dependent on extensometer sampling sensitivity. Therefore,
the offset yield stress value is introduced: the so-called proof stress. It is a covenanted value of
stress magnitude creating certain plastic deformation. Conventionally, the proof stress s, ,
which gives the plastic deformation of e =0.002 (= 0.2 %) is used. The proof stress value may
differ in different standards or applications. In German standard DIN, the prescribed plastic
deformation is sometimes e = 0.01 (e.g. for austenitic steels), in British standard BS 0.001 or
0.005 and the American standard ASTM 0.002 or 0.001 [1]. It is important to mention, that for
computational simulations, the proof stress approach for setting the elastic limit would not be
sufficient. In the simulation, we are trying to describe the behaviour of material as close as
possible. Therefore, the yield point describing the elastic limit must be the first point that de-
flects from the linear line.

The proof stress approach for setting the yield point does not always have to be used. For certain
groups of materials (e.g. low carbon steels), the stress magnitude for plastic deformation initi-
ation (i.e. initiation movement of dislocations) is significantly higher compared to the magni-
tude of propagating plastic deformation [3]. This phenomenon is called the yield point phenom-
enon or discontinuous yielding and it causes significant yield point elongation (depicted in Fig-
ure 3 d)). The upper point of this irregularity in the stress—strain diagram is the upper yield point
S, followed by the sudden drop to the heterogenous deformation at the constant stress [1],
[3]. The last point of this heterogenous deformation is the lower yield point stress, s,;. The
identification of the yield point s, is in this case simple — it is usually the lower yield point
stress magnitude as the more conservative value. The reason for this behaviour are interstitial
atoms, typically nitrogen and carbon. The dislocations, which cause the plastic deformation,
are pinned to these interstitial solutes and are therefore immobile. Similar behaviour can be
found in some polymers and superplastic metal alloys [1]. This phenomenon of discontinuous
yielding is rather complex to describe in the following chapters (4. Identification of flow curve
using the finite element method, 5. Application of chosen non-linear relationships) and was
investigated in more detail in [2] and [4]. This thesis will furthermore investigate only curves
without upper and lower yield points and discontinuous yielding (which fits given material
18CrNiMo7-6 — see chapters 4 and 5).

The ultimate tensile strength s, is another important quantity. It is the maximum load divided
by original undeformed cross-sectional area.

F,
m = 2 @
Until this point, the strain is uniform. The strain magnitude at the ultimate tensile strength is
the engineering uniform strain e,,. Exceeding this point, the neck starts to appear on the speci-
men, in which the triaxial stress state occurs, and therefore stress components (axial a,, radial
g, and circumferential o,) are non-uniformly distributed around its cross section [3]. The
necking does not have to always appear. In that case, the ultimate tensile strength is equal to
the stress magnitude at fracture (Figure 3 b) and c)).
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The fracture point is the last point of the stress—strain curve.

The curve is called ‘engineering’, because the stress values are computed from the original
undeformed cross-sectional area, and the strain is computed from the final elongation value. In
reality, the cross-sectional area reduces, and therefore the true stress value increases. The engi-
neering strain value e is approximately equal to the true strain value & up to 2 % of its nominal
value (see Figure 4) [3]. The engineering strain does not depend on the intermediate strains, but
it is computed only from the final elongation value. The true strain, also known as logarithmic
strain, is taking into account the series of increments by which the plastic deformation is being
realised, and therefore describes the influence of a strain path more reliably compared to an
engineering strain [5].

S A

SA SA SA

' > > >
a) e b) € C) e d) e

Figure 3 Depictions of typical engineering stress-strain curves: a) ductile material without
yield-point elongation, b) material with plastic hardening without necking, c) brittle material,

d) material with upper and lower yield point [2]

2.3. Additional tensile test outputs

Apart from force—elongation dependency, other important material constants are obtained from
tensile test:

Young’s modulus E, defined by T. Young in 1802. This constant describes the propor-
tionality between stress and strain until the proportional limit (Figure 2). This material
behaviour was described by R. Hooke in his well-known Hooke’s law:

s =FEe 4
Poisson’s ratio v, by which the materials ability of relative volumetric change within
the region of elastic deformations is described. In the tensile test, v is a ratio of trans-
verse strain e, (and e,) to axial strain e, [2].

ey =e; = —vey 5)

Engineering strain to fracture er, which is a measure of a material ductility (typically
expressed in percentage), computed from the final length of deformed specimen L, [1].

Ly —L
er = 100 fL 0 (6)
0

Reduction in area q, which is also a measure of ductility and it is computed in similar
manner as elongation, only related to specimen’s areas:

0 f
=1 7
q =100 A (7)
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E and v are thus describing elastic properties. Quantities e; and g are describing plastic
properties and they are experimentally measured from the unloaded specimen’s geometry after
the fracture. Note that e, depends on the gauge length L,. Hence for the same material and
different specimen geometry, 2 different e, values would be identified. Therefore, the gauge
length should always be given together with the elongation results report [1].

2.4. True stress—true strain curve

The engineering stress and engineering strain are possible to recalculate up to the uniform strain
into a true stress and true strain. True stress is defined as
F

o= (8)

where A describes the instantaneous cross-sectional area of loaded specimen. The relationship
between the engineering stress and true stress is

(%)

We assume that the increments of measured length are very small, and that they can be repre-
sented by AL,, AL,, AL, etc. and the newly measured lengths are L,, L,, L3, etc. The overall
strain can be computed from these increments as

AL, AL, AL, AL
L L, LT L
If the sampling frequency of AL; is fast enough, we can substitute the sum with an integral.
Thus, the formula for true strain is

E =

(10)

L
_[dL l (L ) 1
£ = L= n I (11)
Lo
where L = Ly + AL is the instantaneous deformed length of the specimen. The relationship
between the engineering strain and the true strain is

£=1In (LL—O) =In (1 + %) —In(1 +e) (12)

To be able to express the true stress from the outputs of a tensile test, the formula (9) needs to
be rewritten as a function of load and elongation. This is done under the assumption that the
change of shape in the plastic deformation is caused only by transferring mass in space — the
volume remains constant. So, the specimen’s volume AL, remains constant throughout the
test in the region of plastic deformation. We can write that

AO_L_L0+AL_1+ »
AL, L, 0 Tt¢ (14)

hence
c=s(1+e) (15)
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Formulas (12) and (15) are used for recalculating the true stress and true strain from the tensile
test. Note that these relationships are valid only until uniform strain. The goal of this thesis is
to describe the true stress—true strain curve beyond the initiation of neck — the so-called flow
curve.

uniform strain i
< necking >
engineering strain e = AL/L
< g g 0 >
engineering stress s = F/A
< g g 0 >
true strain ¢ = In(4,/4
B (4y/4) .
true stress o = F/A
€ '
= =In(/+
< e=e e (1+e)
o=3s =s(l+
< o =s(l+e)
T T
0 plasticity initiation necking initiation fracture

Figure 4 Engineering stress, engineering strain, true stress, true strain relationships and their
range of validity. Modified from [3]

The engineering strain e is computed from the distance of two points, which are defining the
length L,. When the stress exceeds the magnitude of ultimate strength s,, the so-called neck
appears on the specimen. This region is called plastic instability. The magnitude of e describes
the mean value of deformation in the necking area and does not correlate with deformation in
the smallest cross-sectional area of the necking part [1]. There are additional methods that are
used for the measurement of the instantaneous cross-sectional area in the necking part (i.e. Dig-
ital Image Correlation, measuring the necking area with additional sensors), however they are
not standard equipment in the tensile test.

2.5. MLR Correction

Several correction methods, of how to gain flow curve after necking initiation appeared
throughout history. Bridgman was the first, who carried out an analytical correction method.
But, his correction method requires necking radius as an input and it is quite complicated to
identify this quantity [6].

This method was further investigated by La Rosa and extended by Mirone in [7]. They devel-
oped following 4™ order polynomial correction coefficient for stress and 3™ order polynomial
correction coefficient for strain:

MLR ; =1 —0.6058(eq s — £y)  + 0.6317(e0qs — &) — 02107 (e0qs — ev)”  (16)

MLR, = 1—0.265(gq, — n) + 0.241(e0q; — &) — 0.074(0q s — ey)°  (17)
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where &, ¢ is equivalent fracture strain:

do
Eeqr = 2In d_f (18)

and &y is true strain at necking initiation.

The corrected average equivalent stress—strain curve beyond the necking initiation can be then
computed:

F

Oeq,avg = . MLR , (19)
f

€eqavg = EeqfMLR ¢ (20)

In fact, these are coordinates of one point, which is connected with [y, ay] (the last point of
analytically valid true stress—true strain curve from equations (12) and (15)) by a straight line.
The demonstration of MLR correction is performed in chapter 4.2.
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3. Non-linear stress—strain relationships

3.1. Constitutive elasto-plastic material model

To be able to perform computational simulations of elasto-plastic material, it is necessary to
introduce a material model, which is defined analytically. The fundamental input for computa-
tional simulations is the true stress—true strain curve, the o = f(&) dependency, the so-called
curve of plastic hardening or flow curve. It is necessary to somehow mathematically describe
experimentally obtained data from the tensile test within a satisfactory magnitude of deviation.

Some of the elasto-plastic material models are listed below:

e Ideal

This is the simplest elasto-plastic model, which does not include plastic hardening, the plastic
part of curve is constant value of yield stress.

e Bilinear

Similar to the previous model, this model is described by 2 lines. In this case though, the plastic
hardening is considered, hence the plastic part of curve is not constant, but a line with a slope.
The ideal material model is hence a special case of the bilinear one, with a slope equal to zero
in the second part of the curve.

e Multilinear

The multilinear material model describes o = f(e) dependency with a piece-wise linear curve,
divided into a finite number of lines. The creation of this model is simple, it is just a connection
of a finite number of chosen key points on the experimentally identified true stress—true strain
curve. By this approach, any shape of curve can be described. When pre-processing the simu-
lation, the minimalization of the number of linear lines is desired to have an optimised simula-
tion [2].
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Figure 5 Examples of piece-wise linear material models. Modified from [2]

e Non-linear

Several empirical mathematical relations have appeared throughout history. This frequently
used approach allows describing the plastic part of the curve by certain parameters [2], [8].
Many of these relations were dedicated to certain material group, therefore their applicability
is limited and not versatile.

Table 1 Summary of some of the frequently used relations, described in this thesis

Name Equation No. of parameters Chapter
Hollomon 0= Ky&p™ 2 3.2
Ludwik o= oo+ Ky e, 2 3.3
Swift 0= Ks(ep + &))" 3 3.4
Voce 0= By — (By — Ay)e épl 3 3.5

3.2. Hollomon
The equation is [9]:

o= Kye,™ (21)

where &, is true or equivalent plastic strain, ny strain hardening exponent and Ky is a con-
stant, sometimes called strain hardening (or strength) coefficient [10]. This relationship was
defined by J. J. Hollomon in 1945 in [9] and it is the most widely used one. The description of
material hardening by ny is convenient and can also be used for the assessment of stretch-
formability and other technological aspects [8].
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Let’s take a closer look at the formula and the solution of its parameters. The formula can be
expanded by adding logarithms on both sides:

log(o) = ny log(spl) + log(Ky) (22)

which is in log-log coordinates equation of a line (y = kx + q). Thus, the unknown parameters
Ky and ny can be easily identified by fitting linear line in log-log coordinates — K is equal
to intercept of the linear line in log-log coordinates at €,; =1 and ny is the slope of this curve
[10]. Note that this is done in equivalent (or true) stress—equivalent plastic strain coordinates.
The method of least squares is exclusively used for curve fitting [2].

1600 ————rry ——rrrry S —

T
»

1400 |

1200 |

—_
)
)
o

800

Equivalent stress [MPa]

600 .
| Hollomonl
400 L——
107 107 1072 107! 10°

Equivalent plastic strain [—]

Figure 6 Example of Hollomon's relationship plotted in log-log coordinates. Modified from
[10]

As mentioned, the hardening parameters Ky and ny have atechnological importance. The Ky
value gives some idea of the strength level of a material as well as the magnitude of forces that
are required for its forming. The ny value describes the strain hardening characteristic. The
greater the magnitude of ny, the greater is the material’s strain hardening rate. If we seek a
material for processes that are realised by plastic deformation, the material with higher magni-
tudes of ny is more suitable and should be preferred. Also, the stretch formability can be de-
scribed by the ny parameter. The magnitude of ny affects the location of uniform strain,
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hence the greater the ny value, the more the material can plastically deform before necking
and plastic instability occur [10].

The ny value in some cases correlates with the value of the true uniform strain ¢,,. This was
investigated by Kleemola in [8]. He was comparing the fit of the Hollomon’s relationship with
other non-linear relationships, summarizing their correlation. He was also fitting the relation-
ships from Table 1 into experimental data and investigating their correlation and deviation of
the ny value from g,. Finally, he investigated the influence of the strain increment on the fit.
He stated that “short strain increments can be very accurately described by the Hollomon ex-
pression, but then the exponent does not give the correct uniform strain. Only when the strain
increment is sufficiently small and contains the actual uniform strain point does the Hollomon
exponent approximate the value of &,. However, it is not known beforehand what the correct
strain increment is.”’ The examination of correlation of n, and &, was performed experimen-
tally in this thesis — see chapter 5.2.

Hollomon’s relationship is generally more suitable for materials with higher magnitudes of
plastic strain [10].

3.3. Ludwik

P. Ludwik’s relationship from 1909 is [8]

0 = 0Oy + KL((:plnL (23)

Similar to Hollomon’s relationship, the stress is a power law of plastic strain. In this case
though, the value of yield point stress is taken into account and represented by the parameter
o,. The n; defines curvature of the curve in log-log coordinates, whilst K; represents the in-
tercept of this curve.

The modification of Ludwik’s relationship into log-log coordinates is as follows. Firstly, g, is
moved to the left side. Then, logarithms are applied on both sides and the equation is modified
to [8]:

log(o — ay) = n, log(epl) + log(K}) (24)

Since there are only 2 unknown parameters (n; and K;), the coefficients are easily identified
by using the least square method.

The Figure 7 bellow shows the difference between Hollomon’s and Ludwik’s fit applied on
experimentally measured data. Ludwik’s relationship is non-linear in log-log scale, when com-
pared to Hollomon’s linear one. The difference is caused by the influence of .

24



1600 ———rry ———rrrry ————rry

1400 |

1200 |

—_
S
S
(e)

800

Equivalent stress [MPa]

600 £ The difference caused by o, a

Hollomon
Ludwik
400 | e e
10" 107 107 107! 10°

Equivalent plastic strain [—]

Figure 7 The difference between Hollomon’s (3.2) and Ludwik’s fit. Modified from [10].

3.4. Swift

The equation defined by H. W. Swift in 1952 is [11]:
0= Ks(&p + &)™ (25)

In this relationship, a constant strain value &, is present, similar to o, in Ludwik’s formula-
tion. All three parameters are unknown and need to be identified using the non-linear least
square fit.

The estimation of the values of initial guesses is a critical part of least square fitting procedure.
That is because the non-linear system does not always have an unambiguous solution (in fact
the number of solutions depends on the fitted function, the number of solutions can be up to
infinity). It is necessary, to be able to have an educated initial guess, otherwise the solution
might converge only to the local minimum of the least square error, but not towards to global
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minimum?. Figure 8 depicts Swift’s relationship plotted together with previous relationships.
In case of this dataset, Swift gives a very similar fit to Hollomon’s.
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Figure 8 Comparison of Hollomon, Ludwik and Swift fit in log-log coordinates, fitted to the
same dataset.

3.5. Voce

The equation defined by E. Voce in 1948 is [12]:

By — AV)

o (26)

gpl = Kvln(

where Ay is the initial or threshold stress at which homogenous plastic deformation begins to
be appreciable. By is the final constant stress, attainment of which at indefinitely large strains
appears to be a characteristic of homogenous deformation. The Ky, is a dimensionless constant
[12].

! Paraphrased from J. N. Kutz’s online lecture Data Fitting with Matlab, University of Washington, Department
of Applied Mathematics. Available online (youtube.com), or in study text: Kutz, J. N.: AMATH 301 Beginning
Scientific Computing. Seattle: University of Washington, Department of Applied Mathematics. 2003.
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The expression of stress as a function of strain from equation (26) is [8]:

o= By — (By — Ay)e "V (27)

where n, is a dimensionless exponent, equal to K, ~*, which gives a value of saturation rate.
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Figure 9 Voce’s relationship fitted to the experimental dataset over previous relationships

Voce was proposing this relationship, after investigation done on various non-metallic alloys,
such as copper, brass, bronze, etc. He stated that the constant A, is usually above the limit of
proportionality and roughly corresponds with proof stress for 0.1 % of strain [12]. The correla-
tion of these quantities was examined on experimentally performed fit - see chapter 5.2.
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4. ldentification of flow curve using the finite
element method

4.1. Introduction

The experimental tensile test of 18CrNiMo7-62 was provided by the supervisor Ing. Frantisek
Sebek, Ph.D. The test was performed at room temperature in the laboratory of the Institute of
Materials Science and Engineering. The load—elongation output was received in digital form
for post-processing. Apart from the output, the rest of the measured quantities is listed below:

Spo2 = 738 MPa
Sm = 1053 MPa
E =196 GPa
Ay = 29.03 mm?
Ap = 12.63 mm?
Loext = 30 mm,

where Ay is the area of the specimen at fracture.

4.2. Stress—strain curves

The engineering stress—strain curve can be plotted instantly, converting measured values using
equations (1) and (2). Similarly, the analytically computed true stress—true strain curve can be
plotted using equations (15) and (12), but only until the necking initiation, as described in chap-
ter 2.4.

The MLR correction can be directly performed as well to estimate the average equivalent stress
trend beyond necking, following the procedure described in chapter 2.5.

2 Case hardening steel according to DIN EN 10084, with chemical composition of chrome 1.50-
1.80 %, nickel 1.40-1.70 % and molybdenum 0.25-0.35 %. Information found in online cata-
logues of companies Saarstahl AG and Gruppo Lucefin S.p.A.
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Figure 10 Stress—strain curves directly plotted from experimental measurement

4.3. Flow curve calibration and tensile test finite
element simulation

As it was mentioned before, the stress—strain curve serves as an essential input into numerical
simulations. For cases with large-scale deformations, e.g. plastic flow localization, metal form-
ing or ductile crack propagation, the MLR correction does not sufficiently describe the plastic
behaviour of material [4].

In this thesis, an iterative finite element method in the ANSY'S analysis system is presented. It
IS an iterative process, wherein each iteration material input is modified. The modification is
based upon manual comparison of the reaction force response from the simulation to an exper-
imentally measured force.
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The tensile test is modelled as a axisymmetric problem. The symmetry allows us to simplify
the geometry.

modelled axisymmetric section of specimen

/ \
2 0777 I -

Figure 11 Simplified geometry of tensile test specimen

Jenik stated in [2], that if the tensile test was realised in the presence of an extensometer, it is
unnecessary to take in account the clamping part of the specimen, and it is possible to simplify
the geometry even more as in the following Figure 12:

A i A
modelled axisymmetric section of specimen

Figure 12 Simplified geometry of tensile test specimen with extensometer

The mesh was done using quadratic element PLANE183. The size of the elements was chosen
in such a way that there were 15 elements over the radius of section. This was done based on
Jenik’s study, who performed a sensitivity analysis of mesh refinement [2]. He learned, that
even the difference between 15 and 9 elements per radius in terms of equivalent stress was less
than 0.5 % in his case. 15 elements per radius should be sufficient enough in this case.

Since we are modelling a perfectly cylindrical section of the specimen, it is necessary to create
imperfection to assure necking. The radius has been reduced by 3 %o. That assures the initiation
of plastic instability in the desired place — Figure 13. Otherwise the deformation would be linear
throughout the cylindrical section, if the imperfection was not created. The creation of neck can
be seen in chapter 4.3.2.

The problem was solved using a macro in Ansys Parametric Design Language (APDL) in AN-
SYS Mechanical APDL 18.1 software. The APDL macro guarantees maximal parametricity.
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Figure 13 Meshed axisymmetric model with depicted boundary conditions

4.3.1. APDL Macro

The created APDL macro needs two text files as an input — the input is the estimated flow curve
—fl_eps.txt, which consists of the equivalent strain coordinates, and fl_sig.txt, which consists of
the equivalent stress coordinates. The input must be formatted to be in two separate columns,
with the serial number in the first column and the corresponding value in the second one.

IAPDL PIECEWISE LINEAR FLOW CURVE IDENTIFICATION MACRO
!Josef Kostal, Bachelor's thesis, Brno 2018

FINISH
/clear

IDefinition of parametres

displ = 2 IDisplacement (divided by 2 due to symm.) [mm]
nl = 40 !Number of Lloadsteps [-]
pt = 19 INumber of points of flowcurve [-]
el = 0.2 ILength of element [mm]
rs = 3 !Radius of the specimen [mm]
loext = 15 Ileext = Loext/2 - half of the length LOext [mm]
mu = 0.3 !Poisson’'s ratio [-]

Figure 14 Input parameters of the macro

It is reasonable, to base the first estimation of stress—strain input on MLR correction.

The other input parameters are in Figure 14. It is necessary to align the number of points of the
flow curve pt with the highest serial number from fl_eps.txt (and fl_sig.txt).

Macro then solves the problem in a number of loadsteps nl that was inserted, and in each load-
step the reaction force F, is written into output. The output file feedback.dat contains force—-
elongation data from the simulation.

The output is then compared with the experimental measurement. Note that the displacement
data from feedback.dat needs to be multiplied by 2 due to symmetry. The user then checks the
deviation between the FEM simulation and the experiment. This can be done by created
MATLAB script comparison.m, which is included in the attachment. Based on the deviation,
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the input data of fl_eps.txt and fl_sig.txt can be modified and a new iteration computed.

The created macro macro.mac can be found in the attachment of this thesis, as well as the
material input of the 26" iteration fl_eps.txt and fl_sig.txt and a simulation output feedback.dat.
The experimentally measured tensile test of given steel is also included — experiment.dat

Initial guess of flow curve

l

— APDL macro

'

Evaluation of deviation between
simulation and experiment:
force—elongation comparison

Modify the input of
the flow curve

NO

Satisfied with results?

The flow curve was identified

Figure 15 Flowchart of iterative finite element method of the tensile test simulation
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4.3.2. Results

The simulation was run 26 times to identify the flow curve. The first part of the flow curve
input was analytically computed (in the uniform strain region) using the equations 12 and 15,
and the rest of the curve was modified and calibrated until the resulting deviation between the
simulation and experiment was satisfying.
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Figure 16 The results of 5™ iteration
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Figure 17 The results of 26™ iteration which are satisfactory to the author

The flow curve was identified, so the slope of the curve is decreasing in each evaluated strain
point. The percental difference between the experiment and the simulation is lower than 1.5 %
in the whole region of plastic instability — the table.pdf with the percental difference is in the
electronic attachment and also printed on the last page of this thesis. In fact, the whole force—
elongation curve from simulation was not differing more than 1.5 % from the experiment, ex-
cept for the first 5 elongation points. However, these 5 points with higher percental difference
are dependent on analytically computed part of the flow curve, and understandably, the highest
difference is on the yield point — 8.19 %. That is, because in the vicinity of the yield point the
force rises dramatically with relatively small elongation increment. The goal of this thesis was
primarily to calibrate the curve in the region of plastic instability.

34



The percental difference dg;,,, from table.pdf was calculated using the following formula:

P;’xp _Fy

dsim = 100 (28)

Fexp
where F,,,, is force measured in the tensile test.

Figure 19 The necking appearance at the end of the simulation
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Figure 18 Comparison of identified stress—strain curves

35



5. Application of chosen non-linear relation-
ships

The relationships from Table 1 were fitted to the identified flow curve from chapter 4. A user
interface was designed for curve fitting.

5.1. The user Interface

The user interface code fitting_GUI.m was developed in MATLAB, version R2016a. It follows
the logic of inputs of previous APDL macro (4.3.1), thus it automatically loads the calibrated
flow curve from fl_eps.txt and fl_sig.txt from the working directory — these input files need to
be in the same folder as the user interface code together with fitting_GUI.fig (graphical envi-
ronment of user interface).

4 fitting_GUI - E
Choose the function:
1600
Ludwik
1500 [
Swift Voce 1400
Fitted function: 1300
ig=ar* . é 1200
sig=a*e_pl'b =
Parameters: 1100
Initial guess*:  Value after fitting: __E 1000
a 1000 1399.4366 E
2 900
b 0.01 0.0896 =)
800
C 0 0
700 F
*Click to reset initial guesses to automatic
600 F —— FEM flow curve
L east-squares fit error: Fitted curve
125 0342 500 I I I L L L I I I
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Equivalent plastic strain [-]
Josef Kestal, Bachelor's Thesis, Brno 2018

Figure 20 The environment of created interface, depicting Hollomon fit

The interface contains four buttons with functions from Table 1 and three editable text boxes
of initial guesses.

The user then simply inputs the initial guesses of parameters into the grey boxes and clicks the
button of the function that was chosen to fit. The box with the caption “Fitted function” shows
which function was fitted and the three white boxes with static text show the value of the pa-
rameters after least square fitting. The least square fit error Er (also known as root-mean
square error) is computed:
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pt
Er = EZlo-fit,i — Oflow curve,i
=1
where o;, is equivalent stress value of fitted curve and oy, curve IS €quivalent stress value
of identified calibrated flow curve. As mentioned in chapter 3.4, the initial guess is a critical

part of fitting a non-linear relationship using the least square method. When the inaccurate val-
ues are iserted, the solution can converge only to the local minimum of the least square error.

2
| (29)

4 fitting_GUI — *®
Choose the function:
1600
Hollemon Ludwik
1500 b
Voce 1400 E
Fitted function: 1300 r ]
ig=a” & é 1200 b
sig=a*e_pl+c)'b C
Parameters: £ 1100 f] 1
Initial guess*:  Value after fitting: EJ 1000 |
a 1000 472.0054 E
3 900 B
b 0.01 017371 F
800 -
C 500 143.7961
700 F B
*Click to reset initial guesses to automatic
600 F = FEM flow curve N
L east-squares fit error: Fitted curve
500 L L L . . . L L L
278 4015 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Equivalent plastic strain [-]
Josef Kostal, Bachelor's Thesis, Brno 2018

Figure 21 Typical example of inaccurate input of initial guesses, leading to the bad fit

An additional reset button was developed for this study. The button with the text “*Click to
reset initial guesses to automatic” resets the values of initial guesses to zeros. If the user then
clicks the button with function again, a new set of initial guesses is automatically inserted. Any
zero inserted as an initial guess is converted to the automatic value of initial guess. It is im-
portant to emphasise, that these automatically inserted initial guesses were designed for this
specific case of 18CrNiMo7-6 steel using a method of trial and error. They do not have to assure
the convergence to the global minimum of least square fitting error, if a different flow curve is
inserted. But, the user can modify initial guesses directly and insert own educated initial guesses
for a specific case.

The limit for initial guess for all the exponents was set, so the number cannot be infinite. If the
magnitude of the exponent was exceeded, a message box displays, and the value of the exponent
restores the automatic value.
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4 Click 0K — o4

The value of exponent exceeds allowed limit. Initial guess of exponent had

been restored.

Figure 22 A message box, displayed when the exponent value exceeds the limit

5.2. Results of fitting

The best fit was found using Swift’s relationship (chapter 3.4), giving the lowest least squares
fit error of 49.9.

4. fitting_GUI - X

Choose the function:
1600

Hollemon Ludwik
1500 e
Voes 1400 F
Fitted function: 1300
=
ig=a* n & 1200
sig=a*(e_pl+c)'b =)
Parameters: £ 1100
Initial guess*:  Value after fitting: ié 1000
a 1500 13992188 E
2. 900 F g
b 0.01 0.089496 =)
800 F g
€ 1.9403e-48 9.3545e-06
*Click to reset initial guesses to automatic 001 1
600 F ~———FEM flow curve |
L east-squares fit error: —— Fitted curve
500 * * . . . L L : .
49.9335 0 02 04 06 08 1 1.2 14 16 18 2

Equivalent plastic strain [-]

Josef Kostal, Bachelor's Thesis, Brno 2018

Figure 23 Swift fitted to the calibrated flow curve

Note that Hollomon gives a very similar fit with much higher error. That is caused by the fact
that in the initial point, where the flow curve’s equivalent plastic strain is equal to zero and
equivalent stress is equal to yield point stress, Hollomon gives the value of equivalent stress of
zero instead of yield point stress. That is because of the formulation of Hollomon’s relationship.
It is questionable whether or not Hollomon really is a function of equivalent plastic strain and
not a function of equivalent total strain and whether it can be used like that.

In this case of 18CrNiMo7-6 calibrated flow curve, the found parameters of fitted Hollomon’s
relationship are:

o = 1399.4 - ¢, 008% (30)
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in which if we input the value of strain &,, = 0.00001

o = 1399.4-0.00001°98% = 498.8 MPa

(31)

which corresponds with the identified value of yield point stress 500 MPa. Thus, we can say
that Hollomon’s relationship contains the point [0;0], but if the input of equivalent plastic strain
is higher than 1 - 107>, the relationship fits plastic coordinates.
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Figure 24 Stress—strain curves comparison
Identified parameters and errors of fitted functions are in Table 2 bellow.
Table 2 Identified parameters of chosen non-linear relationships
Hollomon Ludwik Swift Voce
Er = 125.03 Er = 65.82 Er = 49.93 Er = 69.32
Ky = 13994 MPa | K, = 901.8MPa | K= 1399.2MPa | Ay, = 619.3 MPa
ny = 0.089 n, = 0.161 ng = 0.0895 By = 1311 MPa
o= 500MPa | = 935-10°® | n, =  53.331

Furthermore, we can examine correlations of some of the previously mentioned parameters.

39



The value of e, (the engineering uniform strain) was computed using equation (2):

ALpmay  1.6706
ey L 29— = 0.055 (32)

from which the true engineering strain can be computed using equation (12):

& =In(1+e,) =In(1+ 0.0557) = 0.0542 (33)

As mentioned, this value can correlate in some cases with the exponent of Hollomon’s relation-
ship ny (chapter 3.2). The difference of these numbers is:

|0.089 —0.0542
0.0542

dy = 100 | = 64.19 % (34)

Ny — &
&y

Thus, we can say, that in the case of investigated 18CrNiMo7-6, the identified parameter ny
does not represent uniform strain ¢,,, because the values vary by 64.19 %.

We can also examine the difference of 0.1% proof stress and the coefficient A, in Voce’s re-
lationship (chapter 3.5). The 0.1% proof stress was identified from stress—strain curve - s, 1 =

614.9MPa, which gives a good correlation with value of A, = 619.25MPa. The difference
between these two numbers is only

_ 100 |614.9 - 619.25| 0719 o
B 614.9 T (35)

Spo1 — Ay

dy = 100

Spo.1
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6. Summary and conclusion

This thesis can be divided into two major parts.

In the first part (chapters 2 and 3), the research study was carried out, including descriptions of
the tensile test, differences between engineering and true stress and strain and their relation-
ships, an analytical correction method (MLR) for obtaining average equivalent stress—strain
curve beyond the necking initiation, the summary of elasto-plastic material models and the
properties of four chosen non-linear relationships.

The second part (chapters 4 and 5) applied previous research to the experimental case of the
tensile test of 18CrNiMo7-6 steel. The APDL macro was developed and piece-wise linear flow
curve was identified and calibrated on the basis of force response from the simulation and ex-
periment. The force response from the simulation did not differ more than 1.5 % from the ex-
periment in the region of plastic instability. Then, the user interface was designed for fitting the
four chosen non-linear relationships, mentioned above. The best fit was found using Swift’s
relationship, giving the lowest root-mean square error and good correlation found between iden-
tified Voce’s coefficient A, and experimentally identified proof stress s, ;. Identified param-
eters of Hollomon’s relationship can be furthermore used for solving e.g. flow stress magnitude
for certain true strain value in forming processes.

There is a potential in research in the flow curve identification procedure, especially in its op-
timization and automatization. It is difficult to make the process automatized, since the material
properties vary dramatically in the fields of mechanical engineering. Especially challenging are
descriptions of yield-point elongations. New methods of identification (soft computing — neural
networks, sequential simulations [4]) were proposed, yet the versatility is still limited, and
methods can be investigated and optimized further.
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8. Lists

8.1. List of abbreviations

APDL ANSYS Parametric Design Language

ASTM American Standard for Testing and Materials

DIN z,De_uz‘sches Institut fiir Normung® — German Institute for Standard-
ization

EN European Standards

FEM Finite Element Method

MLR Mirone-La Rosa correction method

8.2. List of variables

A instantaneous cross-sectional area of specimen [mm?]

Ay undeformed cross-sectional area of specimen [mm?]

Af final cross-sectional area of fractured specimen [mm?]

Ay initial (or threshold) stress in Voce’s relationship [MPa]

By final constant stress in Voce’s relationship [MPa]

d percental difference of two numbers [%0]

d, original diameter [mm]

ds diameter at fracture [mm]

e engineering (or average linear) strain [-]

E Young’s modulus [MPa]

er elongation (or engineering strain at fracture) [%]

Er least square error [-]

ey engineering uniform strain -]

€y axial engineering strain (direction in axis x) -]

ey transverse engineering strain (direction in axis y) [-]

e, transverse engineering strain (direction in axis z) -]
applied load [N]

Foxp force measured in experimental tensile test [N]

Fax maximum force measured in tensile test [N]

43



UYext
AL

ALFmax

reaction force from the tensile test simulation

strain hardening coefficient (or strength coefficient) in

Hollomon’s relationship

strength coefficient in Ludwik’s relationship
strength coefficient in Swift’s relationship
dimensionless constant in Voce’s relationship
instanteous deformed length of specimen
gauge (or original undeformed) length of specimen
distance between extensometer’s clips

final length of a fractured specimen
Mirone’s correction coefficient for strain
Mirone’s correction coefficient for stress
Hollomon’s strain hardening exponent
exponent in Ludwik’s relationship

number of loadsteps

exponent in Swift’s relationship

exponent in Voce’s relationship

number of points of flow curve

area reduction

engineering stress

yield point

upper yield point

lower yield point

ultimate tensile strength

proof stress of xx % of strain

[N]

[MPa]
[MPa]
[MPa]
[-]
[mm]
[mm]
[mm]
[mm]
[-]

[-]

[-]

[-]

[-]

[-]

[-]

[-]
[%]
[MPa]
[MPa]
[MPa]
[MPa]
[MPa]
[MPa]

boundary condition; fixed displacement in the global direction of x [mm]

boundary condition; fixed displacement in the global direction of y [mm]

boundary condition; displacement in the global direction of y

increment of elongation
increment of elongation on maximum load
true (or logarithmic) strain

constant true strain value in Swift’s relationship
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[mm]
[mm]
[-]
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Eeqavg corrected average equivalent strain -]
Eeq.f equivalent fracture strain [-]
EN true strain at necking initiation [-]
Epl true (or equivalent) plastic strain -]
&y true uniform strain [-]
v Poisson’s ratio [-]
o true (or equivalent) stress [MPa]
0o yield point stress value in Ludwik’s equation [MPa]
Oeq,avg corrected average equivalent stress [MPa]
OFit equivalent stress value of fitted curve [MPa]
Oflow curve  €QUIValent stress value of flow curve [MPa]
oy true stress at necking initiation [MPa]
Oy true axial stress component [MPa]
oy true radial stress component [MPa]
o, true circumferential stress component [MPa]

8.3. List of attachments

comparison.m

experiment.dat

feedback.dat
fitting_GUl.fig

fitting_GUIL.m
fl_eps.txt

fl_sig.txt
macro.mac

Main Document.pdf
table.pdf

MATLAB script for loading and comparing reaction force differ-
ence between simulation and experiment. Simultaneously it plots
current flow curve.

an force-elongation output of experimental tensile test measurement
of 18CrNiMo7-6 steel.

an output of the FEM simulation — the load—elongation dependency

graphical environment of the created user interface for fitting non-
linear relationships, used by the created code

code of the created user interface for fitting non-linear relationships
material input of flow curve — equivalent strain

material input of flow curve — equivalent stress

APDL macro for FEM simulation of tensile test

an electronic version of this document

table with percental difference between reaction force of simulation
and experiment
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