
CREATING A RANDOM CHARACTERS FOR CAPTCHA
SCHEMES FROM EXISTING FONTS

Ondrej Bostik
Doctoral Degree Programme (2), FEEC BUT

E-mail: bostik@feec.vutbr.cz

Supervised by: Karel Horak
E-mail: horak@feec.vutbr.cz

Abstract: For nearly a two decades, development of new mechanisms for securing web applications
from unwanted traffic caused by automated programs called CAPTCHA schemes are under constant
improvement. As significant fraction of this defense mechanisms are based on known issues of Op-
tical Character Recognition methods, attackers must help to improve current algorithms to overcame
the security measures.

The focus of this work is to present an idea of randomly generated pseudo characters for purpose of
forming the text-based Captcha challenges. The main part of this article is dealing the problem of
transforming the common computer fonts into abstract characters.

Keywords: OCR, CAPTCHA, Bubble Captcha, computer vision

1 INTRODUCTION

An anonymity of web services often leads to the situation when computer programs substitute humans
in monotonous interaction with essential web services. Automated services can watch stock markets,
make contracts and earn or lose money in a matter of moment without human interaction.

This situation leads to the creation of an automatic system to differentiate the human user from a
machine. Resulting test was called CAPTCHA (Completely Automated Public Turing Test to tell
Computers and Humans Apart) [1]. It is defined as a general task that must be very easy for the
humans to solve, but it must be enormously difficult to create an autonomous machine to solve the
task both for the computing resources and for the algorithm complexity.

Calling Captcha a Turing test is notable because in the original meaning of the concept arbiter must
be a human, not the machine.

2 TEXT-BASED CAPTCHA SCHEMES

Common most used approach to Captcha implementation for web services is based on OCR (Optical
Character Recognition) problem. Current OCR algorithms can be very robust, but they have some
weakness. This imperfection limits the usage of this algorithms but can be utilized for Captcha
purposes with great advantage. The server sends an image (as can be seen in fig. 1) with a sequence
of characters to the client side. This image is prepared in the way that uses known OCR issues against
the computers. At the same time, people who try algorithmically solve this kind of Captcha challenges
helps to improve OCR algorithms ([2]).

This kind an iteration process help booth sides, but development advanced so far, that current Captcha
schemes are very complex for both computers and humans. Many current Captcha challenges are so
complicated, that humans cannot solve them, but machines can. Automated versatile systems for
cracking Captcha can beat many schemes without any kind of human interaction. Some of these

353



systems can be tweaked to learn new unknown Captcha challenge. As previous research shown us in
[3], this kind of system can overcome almost any possible Captcha scheme with high success rate.

Previous study [3] recommend several techniques to improve the security of Captcha schemes. The
first to consider is to utilize some kind of anti-segmentation technique. Many systems use lines
crossing the letters, but the common mistake is to use long lines (longer than the size of a letter),
that can be filtered with Hough transformation. The most straightforward technique is to use variable
keyword length, that makes more difficult to guess the position of individual letters.

The next stage of security is at the level of single characters. It is good practice to apply characters of
different fonts types, sizes, and rotations. On the other hand, it is not recommended to use of random
noise because the current algorithms are better suited to handle the noise than human brains. It is also
not recommended to use alike characters like number 0, letter O and big D, which cannot differentiate
either by computer either by a human.

Figure 1: Wikipedia Captcha, example of ordinary Captcha scheme, (taken from [3])

A very interesting idea called reCaptcha was described in [4]. The further development and improve-
ments were later held in Google. The rough estimations published in [4] indicated about 100 million
Captcha challenges solved every day with various time from 5 to 20 seconds. This leads us to a
situation when humanity wasted dozens of years every day solving Captcha schemes.

Figure 2: Sample of Google reCaptcha text scheme, (taken from [4])

Professor Ahn and his team ask a question, how to utilize this time to help humanity. The solution is
simple. Archives contain a great number of documents which are not digitalized and so not available
for further processing. Original system reCaptcha (see fig. 2) consist of two parts. The preparation
stage utilizes two OCR algorithms, that tries to transcribe submitted document independently. Outputs
are then compared. Matched parts are then marked as correctly solved. Any disagreement in outputs
is used to create Captcha challenge [4].

2.1 BUBBLE CAPTCHA CONCEPT

In previous work [5], we developed elementary bi-color Captcha scheme with randomly positioned
circles/bubbles forming the font. The system was designed as a web application in PHP. The main

354



reason was to prepare a platform for rapid Bubble Captcha testing with a wide variety of people.
The system can be parameterized and can be used to generate single Captcha challenge for security
purposes on web pages or can be used to quickly generate the set for testing OCR algorithms.

(a) (b) (c)

Figure 3: Bubble Captcha variants overview with (a) no displacement - answer 6F5HB (b) medium
displacement - answer LNE4T (c) big displacement - answer RJ3HN (from our previous work [5])

A two-dimension array representing binary grid for every character used is one of the key elements
entering the algorithm. Generative algorithm randomly selects characters from used character set and
position them bubble by bubble to generate our Captcha scheme alongside with bubbles of different
color. Every bubble is randomly positioned approximately to its correct position in the grid and
randomly scaled in size within predefined limits. The three different variants (denoted as a, b and c
hereinafter) of Bubble Captcha are generated in this way as an input dataset of the supervised machine
learning algorithms.

Implemented Captcha scheme is shown in the figure 3 displaying 3 main levels of randomness in the
picture. Differences between the three variants are the rate of randomness in bubble diameters and in
bubble placements. The simplest variant (a) presented on figure 3(a) contains every bubble in precise
centers of the grid with uniform diameters for each bubble.

Variant (b) and (c) presented on figure 3(b) and 3(c) respectively contains various rate of randomness
in positioning and bubble diameters. All the parameters of all three variants are presented in table 1.

Variant Buble diameter Buble variation Grid dimension Grid variation Number of letters
[−] [px] [%] [px] [%] [−]

a 30 0 % 35 0 % 5 - 7
b 30 10 % 35 20 % 5 - 7
c 30 15 % 35 30 % 5 - 7

Table 1: Buble Captcha parameters for each variant (from our previous work [5])

3 PROPOSED CHARACTER GENERATION ALGORITHM

One of the recommended design ideas for every Captcha scheme stated in [3] is to use various fonts.
The next section expands this idea and presents an algorithm to randomize every font to make the
Captcha challenge more secure.

3.1 INITIAL IDEA

In previous work [5] we used simple 5x3 pixel font to generate the Bubble captcha scheme. The font
was created from scratch by us, but some of the characters used were not easily distinguishable one
from another. For example, the numbers 5 and 6 differed only in one pixel and many humans cannot
differentiate one from the other.

355



During the initial testing with human subjects, we came with the idea to use a higher resolution. One
reason is making the letters be more readable for humans. The other one is to make more space to
variate the letters. The variations of the font are achieved by randomizing the common text font into
a new one as presented in the following section.

3.2 IMPLEMENTATION

The process of generating each new letter for the Bubble Captcha scheme starts with empty square
canvas with each side measure exactly 100 px. Then a letter of selected font is placed to the image.
The size of the letter is chosen as a half of the image side. As we tried to keep this binary, the color
of the character is white. To speed up the process in next steps and lower the computational costs, the
image is now cropped out of the blank space.

The next step is slightly tilting the letter. For initial testing, we choose random tilting only in the
range of ±18◦. In this part, we can utilize more transformation to furthermore disrupt the letter.

The most crucial part of the algorithm is to downscale the image to low resolution. The goal of this
is to bring up some error which leads to the entirely new and abstract font. In our case, the resulting
image has the resolution of 6x10 pixels.

The last part of the process is binary thresholding with fixed level. The resulted image is then saved
to PHP file and used as an input to the Bubble captcha scheme.

The whole process of generating a letter Z is depicted in figure 4.

(a) (b) (c)

(d) (e) (f)

Figure 4: Process of generation new font (a) initial step with a letter of selected font draw into
blank image (b) cropped image without a blank space (c) tilted image (d) rescaled image to 6x10px
(e) binary image (f) resulted Bubble captcha letter

4 RESULTS OF EXPERIMENT

The generated font from previously described algorithm was used as the input for our Bubble captcha
scheme. The resulting Bubble captcha challenges are shown in figure 5.

356



(a) (b) (c)

Figure 5: Sample of generated Bubble Captcha scheme from random fonts (a) with no displacement
- answer AZILFYK (b) with medium displacement - answer HSP2IZ (c) with big displacement -
answer Z2S6FQ

As can be seen, the resulting Bubble captcha challenges are much more user-friendly than the previous
version. In contrast, we believe, that this kind of randomness will bring more difficulty to the Optical
Character Recognition algorithms used to solve the Captcha algorithmically.

5 CONCLUSION

This paper extends our previous work on Bubble captcha scheme. We present a new way how to
randomize font during Captcha challenge construction. With this concept, we are able to create unique
Captcha challenges which utilize one of the greatest weaknesses of Optical Character Recognition
algorithm to better protect web services from automated machines. At the same time, human users
are more likely to recognize the letters as the rough outlines are preserved.

The following work will focus on the implementation of some advanced anti-segmentation techniques
like using dynamically selected colors to increase the difficulty of Bubble Captcha scheme. The next
idea is to generate more object and stack them layer on layer to achieve more complex structure.

ACKNOWLEDGEMENT

The completion of this paper was made possible by the grant No. FEKT-S-17-4234 - ’Industry 4.0 in
automation and cybernetics’ financially supported by the Internal science fund of Brno University of
Technology and Competence Center realized by TACR (reg. number TE01020197).

REFERENCES

[1] L. von Ahn, M. Blum, N. J. Hopper, and J. Langford, “CAPTCHA: Using Hard AI Problems for
Security,” in Lect. Notes Comput. Sci., pp. 294–311, Springer, Berlin, Heidelberg, 2003.

[2] K. Kaur and S. Behal, “Designing a Secure Text-based CAPTCHA,” in Procedia Comput. Sci.,
vol. 57, pp. 122–125, Elsevier, 2015.

[3] E. Bursztein, M. Martin, and J. C. Mitchell, “Text-based CAPTCHA strengths and weaknesses,”
Proc. 18th ACM Conf. Comput. Commun. Secur., vol. 2011, pp. 125–138, 2011.

[4] L. von Ahn, B. Maurer, C. Mcmillen, D. Abraham, and M. Blum, “reCAPTCHA: Human-Based
Character Recognition via Web Security Measures,” Science (80-. )., vol. 321, pp. 1465–1468,
sep 2008.

[5] O. Bostik, K. Horak, J. Klecka, and D. Davidek, “Bubble Captcha - A Start of the New Direction
of Text Captcha Scheme Development,” in Mendel 2017, 23rd Int. Conf. Soft Comput., vol. 23 of
23, pp. 57–64, Brno University of Technology, 2017.

357


	Doktorské projekty
	D2 – Kybernetika a automatizace, Zpracování signálů, obrazu a dat I




