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Summary
This thesis deals with Runge–Kutta methods for initial value problem. It starts with analysis
of Euler method and the order conditions are derived. The modified methods are presented.
For two of them is done theoretical examination of order and for all of them, the order is tested
numerically. Embedded methods and methods with error estimation based on modified method
are presented and numerically tested. In the second part the implicit methods are derived. Then
two approaches of constructing implicit embedded methods is presented. Also diagonal implicit
method are introduced. Finally, two kinds of stability of presented method is discussed.

Keywords
Runge–Kutta methods, modified methods, methods with error estimation, stiff problems, sta-
bility

Abstrakt
Tato práce se zabývá Runge–Kuttovými metodami pro počátečńı problém. Práce zač́ıná analýzou
Eulerovy metody a odvozeńım podmı́nek řádu. Jsou představeny modifikované metody. Pro dvě
z nich je určen jejich řád teoreticky a pro všechny je provedeno numerické testováńı řádu. Jsou
představeny a numericky testovány dva typy metod s odhadem chyby, ”embedded” metody a
metody založené na modifikovaných metodách. V druhé části jsou odvozeny implicitńı metody.
Jsou představeny dva zp̊usoby konstrukce implicitńıch ”embedded” metod. Jsou zmı́něny také
diagonálńı implicitńı metody. Na závěr jsou probrány dva druhy stability u metod prezento-
vaných v práci.

Kĺıčová slova
Runge–Kuttovy metody, modifikované metody, metody s odhadem chyby, tuhé problémy, sta-
bilita
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Rozš́ı̌rený abstrakt

Tato práce se zabývá Runge–Kuttovými metodami pro počátečńı problém obyčejných difer-
enciálńıch rovnic prvńıho řádu:

y′(t) = f(t, y(t)), t ∈ [t0, T ] ⊂ R,
y(t0) = y0,

kde funkce f : [t0, T ]× Rm → Rm, y : [t0, T ]→ Rm a vektor počátečńıch hodnot y0 ∈ Rm.
Runge–Kuttovy metody jsou jednokrokové metody dané přepisem:

ki = f

tn + cih, yn + h
s∑
j=1

aijkj

 i = 1, ..., s

yn+1 = yn + h
s∑
j=1

bjkj ,

kde ki jsou takzvané stupně. Tyto metody se staly velmi obĺıbené. Zejména explicitńı metody
s odhadem chyby jsou součást́ı softwar̊u pro řešeńı počátečńıch problémů.

Historie Runge–Kuttových metod se začala psát v roce 1895, kdy C. Runge publikoval
rozš́ı̌reńı myšlenky Eulerovy metody. Zat́ımco Eulerova metoda aproximuje řešeńı v levém bodě
intervalu, Runge použil lepš́ı formule, jakými jsou obdélńıková a lichoběžńıková formule a pro
výpočet derivace ve středńım nebo koncovém bodě použil Eulerovu metodu. T́ımto vznikla
základńı myšlenka Runge–Kuttových metod. Na práci Rungeho navázali K. Heun a W. Kutta,
kteř́ı vytvořili metody řádu tři a čtyři a odvodili pro ně podmı́nky řádu. Později se objevily
implicitńı Runge–Kuttovy metody, které na rozd́ıl od těch klasických – explicitńıch, závisej́ı na
všech stupńıch metody. Dı́ky své neomezené oblasti stability jsou vhodné pro tuhé systémy.
Kompromisem mezi explicitńımi a implicitńımi metodami se zdaj́ı být metody diagonálńı, které
lze rozdělit do několika skupin. Tyto metody mohou být, stejně jako implicitńı metody, stabilńı
a zároveň jsou méně výpočetně náročné [9].

V této práci je nejprve provedena analýza Eulerovy metody, poté jsou odvozeny podmı́nky
řádu z Taylorova rozvoje pro metody druhého a třet́ıho řádu. Podmı́nky řádu jsou také obecně
zavedeny pomoćı teorie stromů a jsou odvozeny metody čtvrtého řádu.

Dále jsou představeny čtyř-stupňové modifikované metody založené na r̊uzných druźıch
pr̊uměr̊u. Konkrétně jde o metody založené na aritmetickém, geometrickém, harmonickém,
heronianském, odmocninovém, kontraharmonickém a centroidálńım pr̊uměru. Všechny tyto
metody jsou uváděny jako metody čtvrtého řádu [36]. Pro metody založené na kontraharmon-
ickém a centroidalńım pr̊uměru je v práci ukázáno, že jsou čtvrtého řádu pouze pro skalárńı
autonomńı problém. V př́ıpadě neautonomńı rovnice či systému jsou pouze řádu dva.

Numerický experiment pro zjǐstěńı řádu byl proveden pro všech sedm uvedených modifiko-
vaných metod a bylo zjǐstěno, že všechny metody maj́ı řád čtyři pro autonomńı rovnici. Pro dva
testovaćı problémy (nehomogenńı rovnice a nehomogenńı systém) modifikované metody vyka-
zovaly druhý řád. V př́ıpadě testovaćıho problému tři, numerický řád nekonvergoval k žádné
hodnotě. Snižováńım velikosti kroku nedocházelo vždy ke zlepšeńı přesnosti, někdy se přesnost
i zhoršila. Dále pak v okoĺı bod̊u řešeńı s nulovou derivaćı docházelo k odskok̊um řešeńı.
Toto chováńı je zp̊usobeno děleńım dvou č́ısel bĺızkých nule. Proto jsou modifikované metody
nevhodné pro většinu úloh.

Poté se práce zabývá metodami s odhadem chyby. Nejprve jsou uvedeny embedded metody,
které maj́ı společné stupně, ale rozd́ılné koeficienty pro výpočet výstupu a řád. Rozd́ıl je-
jich výstup̊u se pak použ́ıvá k odhadu lokálńı chyby. Následně jsou oba př́ıstupy numericky
porovnány na třech testovaćıch problémech.



V druhé části práce jsou představeny implicitńı metody. Tyto metody maj́ı neomezenou
oblast stability, takže je lze použ́ıt pro řešeńı tuhých problémů. Na druhou stranu v každém
časovém kroku je potřeba řešit systém obecně nelineárńıch rovnic. Pomoćı Butcherových zjedno-
dušuj́ıćıch vztah̊u jsou odvozeny Gaussovy, Radau IA, Radau IIA a tři skupiny Lobattových
metod. Jsou uvedeny dva př́ıstupy pro vytvořeńı embedded metod. Tyto př́ıstupy jsou následně
numericky porovnány. Ukazuje se, že dvojice embedded metod se stejným počtem stupň̊u, často
nadhodnocuje chybu a d́ıky tomu zkracuj́ı délku kroku. Závěrem druhé části jsou představeny
diagonálńı metody, které lze rozdělit do několika podskupin.

Závěrem práce je diskutována stabilita představených metod. Je ukázáno, že explicitńı
Runge–Kuttovy metody nesplňuj́ı ani podmı́nky A-stability a t́ımto jsou zcela nevhodné pro
řešeńı tuhých systémů.
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Introduction

History of Runge–Kutta methods started in 1895 when C. Runge published his famous work.
He improved Euler method, by using midpoint and trapezidal rule instead of simple rectangular
formula. To obtain the value of function in the midpoint or endpoint, he used Euler method.
Thus the main idea of Runge-Kutta methods, evaluating function multiple times per step, was
established. In 1900 K. Heun presented order conditions up to fourth order and one year later,
W. Kutta made the analysis up to order five. In the same paper, he presented methods, nowa-
days known as classical Runge–Kutta method of fourth order. Later, Kutzmannn and Butcher
proposed implicit Runge–Kutta methods. First, gauss implicit methods were established, then
the Radau and Lobatto type of methods. Then alternatives to full implicit methods appeared,
diagonaly implicit Runge–Kutta methods. Their stages can be evaluated in sequence rather
than a big system [9].

The goals of this thesis are to give the overview of Runge–Kutta methods, to derive order
conditions, to introduce methods suitable for adaptive step size strategy, to program them and
test and to discus the stability. This thesis starts with the analysis of Euler method, then con-
tinues with derivation of order conditions and fourth order methods. As alternative to classical
explicit Runge–Kutta methods, the modified methods based on various kinds of means are pre-
sented. For methods based on the contraharmonic and centroidal mean the order is examined
theoretically. The numerical order is determined for all presented modified methods. Then two
strategies for estimating the local error are presented and numerically compared. It is important
to have some error estimation for step size selection to avoid unnecessary computational work.

The implicit methods are derived, namely, methods based on Gaussian, Radau and Lobatto
quadrature. Two approaches of derivation embedded methods are presented and then they
are tested. In the end, the stability of presented method is discussed. The stress is put on
A-stability. Then the concept of L-stability is mentioned. The part of the thesis is collection
of MATLAB codes, providing the numerical experiments, which results are commented in this
work.
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1 | Introduction to Runge–Kutta
Methods

Runge–Kutta (RK) methods are family of well-known one-step numerical methods used for
approximate solution of ordinary differential equation.

Let us consider the initial value problem:

y′(t) = f(t, y(t)), t ∈ [t0, T ] ⊂ R,
y(t0) = y0

(1.1)

where functions f : [t0, T ]×Rm → Rm and y : [t0, T ]→ Rm and the initial value vector y0 ∈ Rm.
Numerical methods for solving (1.1) will find an approximate solution y(t) at a discrete set

of nodes

t0 < t1 < ... < tN ≤ T.
The distance between two neighbouring nods hn = tn+1 − tn, n = 0, 1, ...N − 1 is called step
size. In case that all step sizes are equal hn = h = T−t0

N also relation tn = t0 +nh, n = 0, 1, ..., N
holds. In the following the approximate solution in the node tn will be denoted by yn whereas
the exact solution will be denoted by y(tn). To obtain values of y(t) at points other than in the
set above, it is necessary to use some kind of interpolation.

Now Runge–Kutta methods can be presented.

Definiton 1.1. Let s be an integer and aij , bj , cj for i, j = 1, ...s be real coefficients. Then the
method

ki = f

tn + cih, yn + h

s∑
j=1

aijkj

 i = 1, ..., s

yn+1 = yn + h
s∑
j=1

bjkj

(1.2)

is called an s-stage Runge–Kutta method.

Coefficients aij , bj , cj in above definition specify each RK method and are usually written
in the scheme called Butcher tableau:

c A

bT
=

c1 a1,1 a1,2 · · · a1,s−1 a1,s

c2 a2,1 a2,2 · · · a2,s−1 a2,s

c3 a3,1 a3,2 · · · a3,s−1 a3,s
...

...
...

. . .
...

...

cs as,1 as,2 · · · as,s−1 as,s

b1 b2 · · · bs−1 bs

.

17



Usually the coefficients ci and aij are connected by relation

ci =
s∑
j=1

aij , i = 1, ..., s. (1.3)

These conditions express that all points where f is evaluated are first order approximations to
the solution.

According to structure of matrix A we can specify the subclasses of RK methods. The most
general case is group of implicit RK methods (IRK), sometimes they are called fully implicit
(FIRK). They have almost no zero element (usually none) in the matrix A. If the matrix is
strictly lower triangular then the method is called explicit RK method (ERK). If also the
diagonal elements are non-zero, we speak about diagonally implicit RK methods (DIRK). In
the case that all diagonal elements are equal we call those methods as singly diagonal implicit
RK methods (SDIRK). Even more special type of previous subclass is class of explicit singly
diagonal implicit RK methods (ESDIRK). These methods have only zeros in the first row
of matrix A. For example if we have three stages RK method, then the matrices A are as
following: 

0 0 0

a2,1 0 0

a3,1 a3,2 0



a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3



a1,1 0 0

a2,1 a2,2 0

a3,1 a3,2 a3,3


Explicit RK (Fully) Implicit RK Diagonaly Implicit RK

γ 0 0

a2,1 γ 0

a3,1 a3,2 γ




0 0 0

a2,1 γ 0

a3,1 a3,2 γ


Singly Diagonal Implicit RK Explicit Singly Diagonal Implicit RK

.

One could notice that explicit RK are the simplest among those subclasses, since there is no
system of equations which has to be solved. On the other hand with fully implicit RK we get
the system of ms non-linear equations in each time step. Naturally a question can arise: why
do we not use only explicit RK method? As it will be shown later, explicit methods have small
area of stability, which makes problems mainly in case of stiff equations.

There is a problem with defining the stiffnes. It is not possible to make a strict borderline
between non-stiff and stiff equations. So there also exist problems called mildly-stiff. Despite
this, there are several approaches how to recognize the stiff problem. Professor J.C. Butcher in
his book [7] said that the stiff problems usually have large Lipschitz constant. Another interesting
approach is by Randall J. LeVeque [26]. He characterised the stiff problem as one where ∂

∂tf(t, y)
is much larger in norm value than y′(t). One possibility to check this, is calculating the ratio
between the largest and the smallest eigenvalue of the Jacobian matrix f ′(t, y(t)) .

max|λp|
min|λp|

, p = 1, ...,m

This ratio is called stiffness ratio. If this value is large problem might be very stiff but unfortu-
nately it does not hold every time. For example in case of scalar problem the stiffness ratio is
always one, but may be also stiff. Opposite difficulty occurs too, the value may be large even
though the problem is not stiff at all.

18



2 | Explicit Runge–Kutta Methods

This chapter deals with first group of Runge–Kutta methods – Explicit RK methods. We will
start with analysis the oldest numerical method for ordinary differential equations, the Euler
method. Then we show derivation of RK methods of second, third and fourth order and also
order conditions. The methods based on various kinds of means will be introduced and tested on
test problems. The important part is methods with error estimation. We will present classical
embedded methods and combination of modified method.

2.1 First Order Runge–Kutta Method – Euler Method

The very first method for solving initial value problem was Euler method. It was published
in his work Institutiones Calculi Integralis in the year 1770. The idea behind is based on very
simple principle. For example, we assume a particle moving in such way that in time t0 is placed
in position y0 and at this time the velocity v0 is known. In the really short period of time, the
velocity does not change significantly from v0. So the position can be approximated by the time
change multiplied by initial velocity v0:

y1 = y0 + (t1 − t0)v0.

It is possible to compute y2 analogously with velocity v1 = v(t1, y1) and then continue the
sequence of approximations y3, y4, ... [7].

Formally Euler method can be derived from forward difference approximation of derivative

y′(t) ≈ y(t+ h)− y(t)

h

if we apply it to (1.1) at point t = tn we obtain

y(tn + h)− y(tn)

h
≈ f(tn, y(tn))

y(tn+1) ≈ y(tn) + hf(tn, y(tn)).

Now we substitute the exact value y(tn) with the approximated one yn and by taking the relation
exact we obtain Euler method:

yn+1 = yn + hf(tn, yn), (2.1)

which is Runge–Kutta method with one stage with the following Butcher tableau

0 0

1
.

19



But using the difference scheme is not the only way how to derive Euler method. We also
can turn the differential equation

y′ = f(t, y)

into integral one

tn+h∫
tn

y′(t)dt =

tn+h∫
tn

f(t, y)dt (2.2)

y(tn + h)− y(tn) =

tn+h∫
tn

f(t, y)dt.

Now we approximate the right hand side by the left hand rectangle method

tn+h∫
tn

fdt ≈ hf(tn, y(tn))

which will lead again to Euler scheme (2.1).
Another possibility of derivation is to consider the Taylor expansion of the function y around

tn:

y(tn + h) = y(tn) + hy′(tn) +
1

2
h2y′′(tn) +O(h3). (2.3)

From differential equation in (1.1) we know that y′ = f(t, y) so we use it in (2.3) and ignore the
higher-order terms thus we obtain

y(tn + h) = y(tn) + hf(tn, y(tn))

After substituting yn+1 and yn for y(tn + h) and y(tn) we get again (2.1).
We know that the Euler method is one stage RK method. Now we show also its order of

convergence. We start with the local truncation error. We need to compute how approximated
result differs from the exact one assuming that the approximated value in previous step is equal
to the exact one y(tn) = yn. From above derivation we have Taylor expansion of exact solution

y(tn + h) = y(tn) + hf(tn, yn) +
1

2
h2y′′(tn) +O(h3),

from which we subtract approximated solution obtained by (2.1) and we get

|y(tn + h)− yn+1| =
1

2
h2y′′(tn) +O(h3),

thus for bounded second derivation of y we have local truncation error proportional to O(h2).
After many steps the local truncation errors will accumulate and we will observe phenomena

called global truncation error. It is and actual difference between the exact solution and the
approximated one after n steps.

If we subtract euler approximation (2.3) from Taylor expansion of exact solution (2.1) we
get

en+1 = y(tn+1)− yn+1 = y(tn)− yn + h(f(tn, y(tn))− f(tn, yn)) +
h2

2
y′′(tn) +O(h3).

20



Assume that f is Lipschitz continuous in second variable |f(t, y1)− f(t, y2)| ≤ L|y1 − y2| where
L is so-called Lipschitz constant. We take bounds

|en+1| ≤ |en|+ hL|en|+
h2

2
max|y′′(t)|.

If the previous inequality is applied recursively we obtain

|en| ≤ (1 + hL)n|e0|+
(
1 + (1 + hL) + ...+ (1 + hL)n−1

) h2
2

max|y′′(t)|

and then we simplify it by using formula for a finite geometric sum

|en| ≤ (1 + hL)n|e0|+
(

(1 + hL)n − 1

L

)
h2

2
max|y′′(t)|. (2.4)

To continue we need following lemma:

Lemma 2.1. For any real t

1 + t ≤ et

and for any t ≥ −1 and any m ≥ 0

0 ≤ (1 + t)m ≤ emt.

Proof. See [2].

Now using Lemma 2.1 we have (1 + hL)n ≤ enhL = etn−t0L and the relation (2.4) becomes

|en| ≤ e(tn−t0)L|e0|+ h
max|y′′(tn)|

(
e(tn−t0)L − 1

)
2L

.

If we have ”correct” initial condition y(t0) = y0, then the first term disappear since |e0| = 0.
We see that |en| ≤ Ch so the global error of the Euler’s method is proportional to step size h
and we can say that it has order 1.

2.2 Methods of Order 2 and 3

In previous section we saw simple method to treat differential equations numerically. But we
also showed that the method is quite poor in sense of order. If we want to compute some descent
precision, we need a lot of steps (possibly thousands). Generally there are two approaches how
to improve Euler method. First one is to make the approximated solution dependent on more
values which leads to multi-step method. The second one uses evaluating right hand side f of
equation in (1.1) in more points, which is principle of Runge–Kutta methods.

We start this section with the derivation of specific second order method and then we set up
general conditions for second and third order RK methods.

For deriving better method, we evolve the idea from the previous section. We turn the
differential equation (1.1) into integral one (exactly as we did in the previous section) but now
we use trapezoidal rule (since it has better accuracy than left rectangle method used in case of
Euler method)

tn+1∫
tn

f(t, y(t))dt ≈ (tn+1 − tn)

[
f(tn, yn) + f(tn+1, yn+1)

2

]
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to approximate the integral on the right hand side (2.2) and we obtain

y(tn+1) ≈ yn +
h

2
[f(tn, y(tn)) + f(tn+1, y(tn+1))] .

Unfortunately right hand side involves undetermined value y(tn+1). For lack of better solution
of this problem we use Euler method to determine it. The resulting formula

yn+1 = yn +
h

2
[f(tn, yn) + f(tn+1, yn + hf(tn, yn)]

is called Heun’s method or improved Euler method. We can also rewrite it into form of RK
methods

k1 = f(tn, yn)

k2 = f(tn + h, yn + hk1)

yn+1 = yn + h

(
1

2
k1 +

1

2
k2

) (2.5)

so we can easily see that it is 2-stage RK method and its Butcher tableau is

0 0 0

1 1 0

1
2

1
2

.

By adding more and more stages, we naturally want new methods to be more accurate, to
have higher order. The task of this section will be to set the conditions of coefficients aij , bj , cj
to obtain method of order 2 or 3. We will start with two-stage RK method

k1 = f(tn, yn)

k2 = f(tn + c2h, yn + a21hk1)

yn+1 = yn + h(b1k1 + b2k2)

(2.6)

and three-stage RK method

k1 = f(tn, yn)

k2 = f(tn + c2h, yn + a21hk1)

k3 = f(tn + c3h, yn + a31hk1 + a32hk2)

yn+1 = yn + h(b1k1 + b2k2 + b3k3).

(2.7)

both of them applied to a scalar problem.
To find out the error in the single step of the method we need to compare successive terms

in Taylor expansions of the exact solution and approximate one. As we will compare the errors
in the single step in this section we assume the equality of the exact value of function y(t) and
the approximated one y(tn) = yn in the point tn.

We start with the exact solution. First the Taylor expansion of exact solution y(t) around
point tn is needed

y(tn + h) = y(tn) + hy′(tn) +
h2

2
y′′(tn) +

h3

6
y′′′(tn) +O(h4). (2.8)

From (1.1) we know that y′ = f, thus for higher derivatives y′′ = f ′, y′′′ = f ′′ apply and we use
this to evaluate the above Taylor expansion. Since we work with the function of two variables to
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avoid confusion the total derivative of function f(t, y) will be denoted by apostrophe f ′ = df
dt and

the partial derivative (according to t) by subscript ft = ∂f
∂t . Now we make the first derivative of

function f(t, y):

f ′ =
df

dt
= ft + fyy

′ = ft + fyf

and the second one

f ′′ = ftt + 2ftyy
′ + fyy

(
y′
)2

+ fyy
′′ = ftt + 2ftyf + fyy (f)2 + fyf

′.

For simplifying the above expressions we set

F = ft + fyf and G = ftt + 2ftyf + fyy (f)2 . (2.9)

We plug them into (2.8) and obtain Taylor expansion of exact solution y around point tn:

y(tn + h) = y(tn) + hf(tn, yn) +
h2

2
F (tn, yn) +

h3

6
(G(tn, yn) + fy(tn, yn)F (tn, yn)) +O(h4).

(2.10)

Now we need Taylor expansion of approximate solution around the same point. That means
need of expansions of stages ki, i = 1, 2, 3. The first one is really easy since there is nothing to
expand:

k1 = f(tn, yn) (2.11)

For the second stage we recall multivariate Taylor expansion of function f around point (t, y):

f(t+ h, y + k) = f(t, y) + hft(t, y) + kfy(t, y) +
h2

2
ftt(t, y) +

2hk

2
fty(t, y) +

k2

2
fyy(t, y).

If we use a21 = c2 the Taylor expansion of stage k2 is

k2 = f(tn, yn)+c2hft(tn, yn) + c2hf(tn, yn)fy(tn, yn) +
c22h

2

2
ftt(tn, yn)

+
2c22h

2

2
f(tn, yn)fty(tn, yn) +

c22h
2

2
f2(tn, yn)fyy(tn, yn) +O(h3)

and after using (2.9) we get

k2 = f(tn, yn) + c2hF (tn, yn) +
c22h

2

2
G(tn, yn) +O(h3). (2.12)

For 2-stage method it is enough, therefore we can write down Taylor expansion of (2.6)
around tn

y(tn + h) = y(tn) + h(b1 + b2)f(tn, yn) + h2(b2c2)F (tn, yn) +
c32h

3

2
G(tn, yn) +O(h4). (2.13)

After comparison of first three terms of (2.10) and (2.13) we obtain conditions

b1 + b2 = 1 (2.14)

b2c2 =
1

2
(2.15)
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which need to hold for method to be second order method. If we compare the fourth terms

h3

6
(G(tn, yn) + fy(tn, yn)F (tn, yn)) =

c32h
3

2
G(tn, yn)

we see that the equality does not hold for general function f . So to obtain third order method
we need method with more stages.

Now we can check that introduced Heun’s method is second order:

1

2
+

1

2
= 1

1

2
· 1 =

1

2
.

Going back to making Taylor expansions of stages. After some similar computation as we
did for previous stages we obtain

k3 =f(tn, yn) + c3hft(tn, yn) + (a31hk1 + a32hk2)fy(tn, yn) +
c23h

2

2
ftt(tn, yn)

+
2c3(a31hk1 + a32hk2)

2
fty(tn, yn) +

(a31hk1 + a32hk2)
2

2
fyy(tn, yn) +O(h3)

Now we use c3 = a31+a32 and expansions of previous stages k1, k2 and plug them into the above
expression. We also multiply the brackets, put together terms with the same power of h and
neglect terms with higher powers of h. Thus we obtain

k3 = f(tn, yn) + c3hF (tn, yn) + h2
(
a32c2fy(tn, yn)F (tn, yn) +

1

2
c23G(tn, yn)

)
+O(h3). (2.16)

By putting expansions of stages (2.11), (2.12) and (2.16) into expression for yn+1 (2.7) we get
the Taylor expansion of the approximate solution around point (tn, yn):

y(tn + h) =y(tn) + h(b1 + b2 + b3)f(tn, yn) + h2(b2c2 + b3c3)F (tn, yn) (2.17)

+
h3

2

[
2b3a32c2fy(tn, yn)F (tn, yn) + (c2b

2
2 + c23b3)G(tn, yn)

]
+O(h4). (2.18)

If we compare expansions (2.10) and (2.17) we get following conditions under which 3-stage
method is 3rd order method

b1 + b2 + b3 = 1

b2c2 + b3c3 =
1

2

b2c
2
2 + b3c

2
3 =

1

3

b3a32c2 =
1

6
.

(2.19)

An example of three stages RK method is method given by tableau:

0

1
2

1
2

1 −1 2

1
6

2
3

1
6

.
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We can convince ourself that is also 3rd order RK method.

1

6
+

2

3
+

1

6
= 1

2

3
· 1

2
+

1

6
· 1 =

1

2

2

3
·
(

1

2

)2

+
1

6
· 12 =

1

3

1

6
· 2 · 1

2
=

1

6
.

In the second part of this section, we will again derive order condition. But in this case it
is about vector problem and method without specified number of stages s. Even in previous
case of scalar problems, we see that the conditions would be more complicated as desired order
would increase. Hence, in next section we will present rooted tree and their correspondence to
order conditions. To make this more clear, we will use tensor notation for a while. It means
that a component of vector is denoted by superscript and in capitals in order to avoid confusion
between partial derivatives and indices of coefficients and stages in approximate solution.

At first, let’s make the problem (1.1) autonomous for easier computationt′
y′

 =

 1

f(t, y)

 .

This can be rewritten in tensor notation as

(yJ)′ = fJ(y1, ..., ym), J = 1, ...,m. (2.20)

Now we start to make derivatives of the above equality and evaluate them at point yn. Directly
from above equation we have the first derivative of y, we just evaluate it at yn(

yJ
)′

= fJ
∣∣
y=yn

. (2.21)

Using chain rule we make second and third derivative and again evaluate them at yn

(
yJ
)′′

=

m∑
K=1

fJKf
K

∣∣∣∣∣
y=yn(

yJ
)′′′

=
m∑
K=1

m∑
L=1

fJKLf
KfL

∣∣∣∣∣
y=yn

+
m∑
K=1

m∑
L=1

fJKf
K
L f

L

∣∣∣∣∣
y=yn

,

(2.22)

where fKJ denotes ∂fJ

∂yK
.

We want to obtain the derivatives of approximate solution in easier way. In order to get
better symmetry, we use another expression of RK methods (1.2). We replace stages ki with
expressions gi such that ki = f(gi) and we obtain

gJi = yJn +

i−1∑
j=1

aijhf
J(g1j , ..., g

m
j ) (2.23)

yJn+1 = yJn +

s∑
j=1

bjhf
J(g1j , ..., g

m
j ) i = 1, ..., s.
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If the autonomous system (2.20) was originally non-autonomous then

g1i = y1n +

i−1∑
j=1

aijh = tn + cih. (2.24)

Thus we see that methods (1.2) and (2.23) are the same.
Expressions in (2.23) are really similar. They differ just by the coefficients thus it is enough

to compute just derivatives of gi with respect to h at h = 0. The first derivative according to h

(
gJi
)′

=
i−1∑
j=1

aijf
J +

i−1∑
j=1

aijh
(
fJ
)′

(2.25)

and computed at h = 0

(
gJi
)′∣∣∣

h=0
=

i−1∑
j=1

aijf
J

∣∣∣∣∣∣
y=yn

(2.26)

The second derivative obtained by differentiating the first one (2.25)

(
gJi
)′′

= 2

i−1∑
j=1

aij(f
J)′ +

i−1∑
j=1

aijh(fJ)′′ (2.27)

to obtain (2.27) at h = 0 the derivative of fJ is needed

(fJ)′ =

m∑
K=1

fJK
(
gKj
)′
. (2.28)

And by inserting (2.26) into (2.28) we obtain (fJ)′|h=0 and we can write down the second
derivative of gJi at h = 0

(
gJi
)′′∣∣∣

h=0
= 2

i−1∑
j=1

j−1∑
k=1

aijajk

m∑
K=1

fJKf
K

∣∣∣∣∣∣
y=yn

(2.29)

We continue with the third derivative

(
gJi
)′′′

= 3

i−1∑
j=1

aij
(
fJ
)′′

+

i−1∑
j=1

aijh
(
fJ
)′′′
.

In this case the second derivative of fJ is needed

(
fJ
)′′

=

m∑
K=1

m∑
L=1

fJKL(gKj )′(gLj )′ +

m∑
K=1

fJK(gKj )′′ (2.30)

and finally for evaluation in h = 0 we evaluate (2.30) with the help of (2.26) and (2.29). We get

(
gJi
)′′′∣∣∣

h=0
= 3

i−1∑
j=1

j−1∑
k=1

j−1∑
l=1

aijajkajl

m∑
K=1

m∑
L=1

fJKLf
KfL

∣∣∣∣∣∣
y=yn

+ 6

i−1∑
j=1

j−1∑
k=1

k−1∑
l=1

aijajkakl

m∑
K=1

m∑
L=1

fJKf
K
L f

L

∣∣∣∣∣∣
y=yn

.

(2.31)
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If we substitute aij by bj in derivatives of gi (2.26), (2.29), (2.31) and use condition
ci =

∑
j aij , i = 1, ..., s we obtain following expressions of derivatives of yn+1.

(
yJn+1

)′∣∣∣
h=0

=
s∑
j=1

bj

m∑
J=1

fJ

∣∣∣∣∣∣
y=yn(

yJn+1

)′′∣∣∣
h=0

= 2
s∑
j=1

bjcj

m∑
J=1

m∑
K=1

fJKf
K

∣∣∣∣∣∣
y=yn

(2.32)

(
yJn+1

)′′′∣∣∣
h=0

= 3
s∑
j=1

bjc
2
j

m∑
J=1

m∑
K=1

m∑
L=1

fJKLf
KfL

∣∣∣∣∣∣
y=yn

+ 6
s∑
j=1

j−1∑
k=1

bjajkck

m∑
J=1

m∑
K=1

fJKf
K
L f

L

∣∣∣∣∣∣
y=yn

The comparison of (2.21),(2.22) and (2.32) will lead to these four conditions

s∑
j=1

bj = 1

s∑
j=1

bjcj =
1

2

s∑
j=1

bjc
2
j =

1

3

s∑
j=1

j−1∑
k=1

bjajkck =
1

6

which for choice s = 3 give the same conditions as we derived above for the scalar problem
(2.19).

2.3 Order Conditions

In previous section, we saw that direct derivation by comparing Taylor expansions of exact and
approximated solution is turning more complicated as the order is rising. In this section we
want to show how to derive the order conditions with help of labelled rooted trees.

In the previous section in the derivatives of gJi the indices j, k, l and J,K,L are linked
together as pairs of indices in coefficients ajk, ajl, ... in the same way as upper and lower indices
in the derivatives fJKL, f

J
K . The way how they are linked corresponds to rooted labelled trees.

A labelled rooted tree t is a connected acyclic graph with one vertex designed as root and
every vertex of tree is labelled by index. The symbol τ denotes the tree with only one vertex.
We will also consider an empty tree which will be denoted by the symbol of empty set ∅.
Labelled trees can be also represented as mappings. This mapping indicates to which lower
letter the corresponding vertices are attached. For example coefficients ajk, ajl and derivative
fJKL correspond to the tree t31 graphically represented as

J

KL

and as mappings is represented

L 7→ J, K 7→ J.
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Definiton 2.1. Let A be an ordered chain of indices A = {J < K < L < M < ...} and denote
by Aq the subset consisting of the first q indices. A rooted labelled tree of order q (q ≥ 1) is
a mapping

t : Aq \ {J} → Aq

such that t(z) < z for all z ∈ Aq \ {J}.
The set of all labelled trees of order q is denoted by LTq. We call z the ”child” of t(z) and

the t(z) ”parent” of z. The vertex J is called the root of t and in graphical representation we
put it as the lowest vertex. The order q of a labelled tree is equal to the number of its vertices
and is denoted by q = r(t).

Definiton 2.2. For a labelled tree t ∈ LTq we call

F J(t)(y) =
∑
K,L,...

fJK,...(y)fK... f
L
...(y)..

the corresponding elementary differential. The summation is over q − 1 indices K,L, ... (which
correspond to Aq \ {J}) and the summand is a product of q f ’s where the upper index runs
through all vertices of t and the lower indices are the corresponding children. We denote by
F (t)(y) the vector (F 1(t)(y), ..., Fm(t)(y)).

Example 2.1. For the tree t31 the corresponding elementary differential is
∑

K,L f
J
KLf

KfL.

We already saw elementary differentials, in previous section, when we computed the deriva-
tives of solution. In (2.32) we have fJ in expression for first derivative of yJn+1, which is elemen-
tary differential of tree τ , elementary differential of t21 appeared in second derivative of yJn+1

and even two elementary differentials, corresponding to t31 and t32 (see Table 2.2), are in third
derivative of yJn+1. Graphically we just add a branch to each vertex with new summation index,
as is represented, up to fourth order, in the Figure 2.1.

J

J

K

L K

J J

K

L

J

K

L

M

J

K

LM

J

K

L
M

J

KL

M

J

K

M

L

J

KLM

Figure 2.1: Derivatives of exact solution

We can notice that the second, third and fourth labelled tree in the last layer look topologi-
cally alike. Also their corresponding elementary differentials∑

K,L,M

fJKMf
MfKL f

L,
∑
K,L,M

fJKLf
LfKMf

M ,
∑
K,L,M

fJLKf
KfLMf

M

differ just by an exchange of the summation indices. This bring us to two following definitions.
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Definiton 2.3. Two labelled trees ti and tj , i 6= j are equivalent, if they have the same order,
say q, and if there exists a permutation σ : Aq → Aq, such that σ(J) = J and tiσ = σtj on
Aq \ {J}.
Definiton 2.4. An equivalence class of qth order labelled trees is called a rooted tree of order
q. The set of all trees of order q is denoted by Tq. The order of a tree is defined as the order
of a representative and is again denoted by r(t). Furthermore we denote by α(t) for t ∈ Tq the
number of elements in the equivalence class t.

In graphical representation a tree is distinguished from a labelled tree by omitting the labels.
Rooted trees up to order 5, their corresponding elementary differentials and values α(t) can be
found in Table 2.2 and number of trees up to order 10 can be found in Table 2.1.

order q 1 2 3 4 5 6 7 8 9 10

number of trees Tq 1 1 2 4 9 20 48 116 286 719

Table 2.1: Number of trees

In this moment we state the theorem for derivatives of the exact solution.

Theorem 2.2. The exact solution of (1.1) satisfies

(y)(q)(tn) =
∑

t∈LTq

F (t)(yn) =
∑
t∈Tq

α(t)F (t)(yn). (2.33)

Proof. See [21].

To state similar theorem for approximated solution we need introduce two another function
on trees.

Definiton 2.5. Let t be a labelled tree with root j, we denote by

Φj(t) =
∑
k,l

ajka......

the sum over the q − 1 remaining indices k, l, .... The summand is a product of q − 1 a’s, where
all parents stand two by two with their children as indices. This sum is called weighted function.

Weighted functions Φj(t) for trees up to order 5 are presented in Table 2.2.

Definiton 2.6. For t ∈ LTq let γ(t) be the product of r(t) and all orders of the trees which
appear, if the roots, one after another, are removed from t.

This definition is demonstrated in Fig. 2.2

9 ·4·4 ·3γ(t) = = 432

Figure 2.2: Example of computation γ(t)

Theorem about derivatives of approximated solution follows.
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order t graph γ(t) α(t) F J(t)(y) Φj(t)

0 ∅ ∅ 1 1 yJ

1 τ 1 1 fJ 1

2 t21 2 1
∑

K f
J
Kf

K
∑

k ajk

3 t31 3 1
∑

K,L f
J
KLf

KfL
∑

k,l ajkajl

3 t32 6 1
∑

K,L f
J
Kf

K
L f

L
∑

k,l ajkakl

4 t41 4 1
∑

K,L,M fJKLMf
KfLfM

∑
k,l,m ajkajlajm

4 t42 8 3
∑

K,L,M fJKMf
K
L f

LfM
∑

k,l,m ajkaklajm

4 t43 12 1
∑

K,L,M fJKf
K
LMf

LfM
∑

k,l,m ajkaklakm

4 t44 24 1
∑

K,L,M fJKf
K
L f

L
Mf

M
∑

k,l,m ajkaklalm

5 t51 5 1
∑
fJKLMP f

KfLfMfP
∑

k,l,m,p ajkajlajmajp

5 t52 10 6
∑
fJKMP f

K
L f

LfMfP
∑

k,l,m,p ajkaklajmajp

5 t53 15 4
∑
fJKMP f

K
L f

LfMfP
∑

k,l,m,p ajkaklakmajp

5 t54 30 4
∑
fJKP f

K
L f

L
Mf

MfP
∑

k,l,m,p ajkaklalmajp

5 t55 20 3
∑
fJKMf

K
L f

LfMP fP
∑

k,l,m,p ajkaklajmamp

5 t56 20 1
∑
fJKf

K
LMP f

LfMfP
∑

k,l,m,p ajkaklakmakp

5 t57 40 3
∑
fJKf

K
LP f

L
Mf

MfP
∑

k,l,m,p ajkaklalmakp

5 t58 60 1
∑
fJKf

K
L f

L
MP f

MfP
∑

k,l,m,p ajkaklalmalp

5 t59 120 1
∑
fJKf

K
L f

L
Mf

M
P fP

∑
k,l,m,p ajkaklalmamp

Table 2.2: Trees up to order 5

Theorem 2.3. The derivatives of gi satisfy

g
(q)
i |h=0 =

∑
t∈LTq

γ(t)
∑
j

aijΦj(t)F (t)(yn).

The numerical solution y1 of (1.1) satisfies

(yn+1)
(q)|h=0 =

∑
t∈LTq

γ(t)
∑
j

bjΦj(t)F (t)(yn) =
∑
t∈Tq

α(t)γ(t)
∑
j

bjΦj(t)F (t)(yn). (2.34)

Proof. See [21].
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Finally we state the result about order conditions. If we compare expressions (2.33) and
(2.34) in Theorems 2.2 and 2.3 we can conclude the following theorem about the order of RK
method.

Theorem 2.4. A Runge-Kuta method (1.2) is of order p iff

s∑
j=1

bjΦj(t) =
1

γ(t)
(2.35)

for all trees of order ≤ p.

Proof. See [21].

We see that for order 1 method we need from theorem above just one condition. For order 2
method 2 conditions - the equation (2.35) has to hold for tree of order 1 τ and tree of order 2 t21.
In case of third order method we have two conditions mentioned and another two corresponding
to two trees of order 3. The number of order conditions increase very quickly as can be seen in
Table 2.3, which gives number of order conditions up to order 10.

order p 1 2 3 4 5 6 7 8 9 10

number of conditions 1 2 4 8 17 37 85 200 486 1205

Table 2.3: Number of order conditions

2.4 Methods of Order 4

In this section we want to construct fourth order explicit method with four stages, s = p = 4.
Practically it means, that we need determine the coefficients to satisfy the order conditions. Ac-
cording to Theorem 3.1, equations

∑4
j=1 bjΦj(t) = 1

γ(t) has hold for all trees τ, t21, t31, t32, t41, t42,
t43, t44. Since the method will be an explicit method, we also use condition aij = 0 for i < j,
and take into account condition (1.3)

ci =
i−1∑
j=1

aij , i = 1, 2, ...s.

From this condition follows c1 = 0. Elementary differentials and values γ(t) corresponding to
above mentioned trees can be found in Table 2.2. With all aspects mentioned above we get eight
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conditions:

4∑
i=1

bi = b1 + b2 + b3 + b4 =1 (2.36a)

4∑
i=1

bici = b2c2 + b3c3 + b4c4 =
1

2
(2.36b)

4∑
i=1

bic
2
i = b2c

2
2 + b3c

2
3 + b4c

2
4 =

1

3
(2.36c)

4∑
i=1

i−1∑
j=1

biaijcj = b3a32c2 + b4(a42c2 + a43c3) =
1

6
(2.36d)

4∑
i=1

bic
3
i = b2c

3
2 + b3c

3
3 + b4c

3
4 =

1

4
(2.36e)

4∑
i=1

i−1∑
j=1

biciaijcj = b3c3a32c2 + b4c4(a42c2 + a43c3) =
1

8
(2.36f)

4∑
i=1

i−1∑
j=1

biaijc
2
j = b3a32c

2
2 + b4(a42c

2
2 + a43c

2
3) =

1

12
(2.36g)

4∑
i=1

i−1∑
j=1

j−1∑
k=1

biaijajkck = b4a43a32c2 =
1

24
. (2.36h)

Solving this system of equitations is almost exhausting. It is possible to make this system easier
to solve with results of J.C. Butcher which are called simplifying assumptions [8]. Following
theorem is actually simplifying assumption D(1).

Theorem 2.5. If
s∑

i=j+1

biaij = bj(1− cj), j = 1, 2, ...s, (2.37)

then the equations (2.36d), (2.36g) and (2.36h) follow from the others.

Proof. For (2.36g) we get

s∑
i=1

s∑
j=1

biaijc
2
j =

s∑
j=1

bjc
2
j −

s∑
j=1

bjc
3
j =

1

3
− 1

4
=

1

12

by (2.36c) and (2.36e).
Similarly for (2.36d) we obtain

s∑
i=1

s∑
j=1

biaijcj =
s∑
j=1

bjcj −
s∑
j=1

bjc
2
j =

1

2
− 1

3
=

1

6

by (2.36b) and (2.36c).
And in the end for (2.36h)

s∑
i=1

s∑
j=1

biaijajkcj =
s∑
j=1

s∑
k=1

bjajkck −
s∑
j=1

s∑
k=1

bjcjajkck =
1

6
− 1

8
=

1

24

holds by (2.36d) and (2.36f).

32



Theorem 2.6. For s = 4, equations (2.36) and (1.3) imply (2.37)

To prove Theorem 2.6 we need following lemma:

Lemma 2.7. If P and Q are each 3× 3 matrices such that their product has the form

PQ =


r11 r12 0

r21 r22 0

0 0 0

 , where det

r11 r12

r21 r22

 = det(R) 6= 0,

then either the last row of P is zero or the last column of Q is zero.

Proof. See [21].

Proof of Theorem 2.6. Define

dj =
4∑
i=1

biaij − bj(1− cj), for j = 1, 2, 3, 4,

so we have to prove dj = 0. Now we apply Lemma 2.7 with

P =


b2 b3 b4

b2c2 b3c3 b4c4∑4
i=1 biai2 − b2(1− c2)

∑4
i=1 biai3 − b2(1− c3)

∑4
i=1 biai4 − b4(1− c4)


and

Q =


c2 c22

∑4
j=1 a2jcj − 1

2c
2
2

c3 c23
∑4

j=1 a3jcj − 1
2c

2
3

c4 c24
∑4

j=1 a4jcj − 1
2c

2
4


Multiplication of these two matrices, using the conditions of (2.36), gives

PQ =


1
2

1
3 0

1
3

1
4 0

0 0 0

 ,

where det(R) = 1
8 − 1

9 6= 0. Thus the last row of P or the last column of Q is zero. The first
term in last column of Q is

4∑
j=1

a2jcj −
1

2
c22 = −1

2
c22,

cannot be equal to zero since c2 has to satisfy order condition (2.36h). It implies that the
last row of P is equal to 0, which actually are d2, d3 and d4. From (2.36a), (2.36b) we obtain
d1 + d2 + d3 + d4 = 0 . Thus also d1 = 0.

From Theorems 2.5 and 2.6 follows:
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Theorem 2.8. Under the assumption ci =
∑4

j=1 aij , i = 1, 2, ...4 the equations (2.36) are
equivalent to equations

b1 + b2 + b3 + b4 =1 (2.38a)

b2c2 + b3c3 + b4c4 =
1

2
(2.38b)

b2c
2
2 + b3c

2
3 + b4c

2
4 =

1

3
(2.38c)

b2c
3
2 + b3c

3
3 + b4c

3
4 =

1

4
(2.38d)

b3c3a32c2 + b4c4(a42c2 + a43c3) =
1

8
(2.38e)

b3a32 + b4a42 = b2(1− c2) (2.38f)

b3a43 = b3(1− c3) (2.38g)

0 = b4(1− c4) (2.38h)

From the last equation we have c4 = 1, since b4 6= 0 from (2.36h). Also b3 cannot be
zero by (2.36h) and (2.38g). Now the sketch of solving the system (2.38) in Theorem 2.8 is
presented. First we choose c2, c3. Then we compute b1, b2, b3, b4 to satisfy (2.38a),(2.38b),(2.38c)
and (2.38d). Coefficient a43 is possible to compute from (2.38g). Equations (2.38e) and (2.38f)
form a linear system of two equations for a32 and a42. This system is regular, so it has a solution.
Missing coefficients a21, a31, a41 can be obtained from (1.3).

In case that ci, i = 2, 3 are not chosen distinct, there is possibility of no solution for bi,
i = 1, 2, ..., 4 and it might also happen that b3 or b4 can be found zero (which we showed is not
possible). W. Kutta in [24] distinguished five cases where a solution exists. Those cases with
their Butcher tableaus can be found in [7].

In conclusion of this section some fourth order four stages method are mentioned. In [24]
Kutta also presented his two famous fourth order methods. First is classical Runge–Kutta
method with Butcher tableau:

0

1
2

1
2

1
2 0 1

2

1 0 0 1

1
6

1
3

1
3

1
6

.

The second method is also well-known 3/8 rule:

0

1
3

1
3

2
3 −1

3 1

1 1 −1 1

1
8

3
8

3
8

1
8

.

Another interesting fourth order RK method was derived by Gill. This is methods is special
for purpose of reducing memory requirements for large problems and its Butcher tableau is
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0

1
2

1
2

1
2

√
2−1
2

1
2

1 0 −
√
2
2

2+
√
2

2

1
6

2−
√
2

6
2+
√
2

6
1
6

.

2.5 Order Barriers

In Table 2.3 we saw that number of order condition significantly grows with higher order. In
previous section methods with s = p, s = 1, 2, 3, 4 were presented. In case of 5-stages method
it is needed to hold 17 order conditions. This is not possible with just 5 stages. Those results
about highest possible order of s-stage methods were presented by J.C.Butcher, thus they are
also called Butcher barriers.

Theorem 2.9. For p ≥ 5 no explicit RK method exists of order p with s = p stages.

Proof. See [21].

If desired order is higher and higher with number of order conditions to satisfy, number of
stages also grows.

Theorem 2.10. For p ≥ 7 no explicit RK method exists of order p with s = p+ 1 stages.

Proof. See [4].

Theorem 2.11. For p ≥ 8 no explicit RK method exists of order p with s = p+ 2 stages.

Proof. See [6].

Explicit RK method with highest order, tenth order, was constructed by E.Hairer in [20]
and it has 17 stages. But it is unknown if it is possible to have even less stages.

2.6 Modified Runge–Kutta Methods

During last few decades RK methods based on various kinds of means, as geometrical, harmonic,
contra-harmonic, heroian or centroidal appeared. Among the first work was thesis of B. B. Sanugi
[31] who constructed several methods based on geometrical mean with one up to four stages.
Or A. M. Wazwaz who combined arithmetic and geometric mean, which lead to method based
on harmonic mean. He also did a comparison of modified methods with three stages [36]. Also
extensive work of D. J. Evans should be mentioned [13–15].

We will present seven methods with four stages based on various kinds of means. For two of
them we will make the theoretical examination of order and for all of the methods we will test
the numerical order.

As the first modified method we start with the one based on arithmetic mean (RKAM).
Those methods have output in form

yn+1 = yn +
h

s− 1

s−1∑
i=1

ki + ki+1

2
.

This is not so far from the usual explicit RK methods. In the case of four stage method, we
actually have the classical RK method.
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0

1
2

1
2

1
2 0 1

2

1 0 0 1

with the output rewritten as

yn+1 = yn +
h

3

(
k1 + k2

2
+
k2 + k3

2
+
k3 + k4

2

)
.

In case of modified RK methods we will use incomplete Butcher tableau and output of method
to avoid confusion with traditional RK methods.

As the second we present method based on geometrical mean (RKGM). It was derived by
B. Sanugi in his thesis [31]:

0

1
2

1
2

1
2 − 1

16
9
16

1 −1
8

5
24

11
12

.

yn +
h

3

(√
|k1k2|+

√
|k2k3|+

√
|k3k4|

)
. (2.39)

But (2.39) is not able to approximate the decreasing solution. Therefore we introduce factor δ
such as δi = −1 if one of ki, ki+1 is negative. Then the output is given by

yn +
h

3

(
δ1
√
|k1k2|+ δ2

√
|k2k3|+ δ3

√
|k3k4|

)
.

If we take square of geometrical mean and dived it by arithmetical mean we obtain harmonical
mean (RKHaM). Method based on this mean was presented by A. M. Wazwaz in [35] and has
Butcher tableau:

0

1
2

1
2

1
2 −1

8
5
8

1 −1
4

7
20

9
10

yn +
2h

3

(
k1k2
k1 + k2

+
k2k3
k2 + k3

+
k3k4
k3 + k4

)
(2.40)

The method based on heronian mean (RKHeM) was published by D. J. Evans and N. Yaacob
[13] and has the form

0

1
2

1
2

1
2 − 1

48
25
48

1 − 1
24

47
600

289
300

.
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yn +
h

9

(
k1 + 2 (k2 + k3) + k4 +

√
|k1k2|+

√
|k2k3|+

√
|k3k4|

)
.

As in the case of RKGM method, for practical implementation we involve factor δ:

yn +
h

9

(
k1 + 2 (k2 + k3) + k4 + δ1

√
|k1k2|+ δ2

√
|k2k3|+ δ3

√
|k3k4|

)
.

The following three methods are results of two researchers D. J. Evans and A. R. Yaakub.
The first method of their work is based on root mean square (RKRM):

0

1
2

1
2

1
2

1
16

7
16

1 1
8 −17

56
33
28

.

yn +
h

3

(√
k21 + k22

2
+

√
k22 + k23

2
+

√
k23 + k24

2

)

And again for good approximating of decreasing solution we will need the factor δ to multiply
the square roots.

yn +
h

3

(
δ1

√
k21 + k22

2
+ δ2

√
k22 + k23

2
+ δ3

√
k23 + k24

2

)

The second method is based on contraharmonic mean (RKCoM):

0

1
2

1
2

1
2

1
8

3
8

1 1
4 −3

4
3
2

.

yn +
h

3

(
k21 + k22
k1 + k2

+
k22 + k23
k2 + k3

+
k23 + k24
k3 + k4

)
(2.41)

The last method presented in this work is based on centroidal mean (CeM)

0

1
2

1
2

1
2

1
24

11
24

1 1
12 − 25

132
73
66

.

yn+1 = yn +
2h

9

(
k21 + k1k2 + k22

k1 + k2
+
k22 + k2k3 + k23

k2 + k3
+
k23 + k3k4 + k24

k3 + k4

)
.
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All above method are referred in [29] as fourth order method. It will be check for two of
them in the following. Unfortunately, we cannot use all results of section 2.3 because of the
much more complicated output. But a few results from section 2.2 will be useful.

The RKAM method is in fact the classical Runge-Kutta method of order 4. Its derivation
was sketched in section 2.4 therefore here will not be done any further theoretical examination.

First the examination for autonomous scalar equation

y′ = f(y) (2.42)

will be done and then the same for non-autonomous scalar equation (1.1). For the systems
only system of autonomous equations will be examined. Since the modified methods satisfy the
condition (1.3) we can make the problem autonomous without loss of generality as we have seen
in (2.24).

In case of autonomous scalar problem the Taylor expansion of exact solution around the
point tn is

y(tn + h) = yn + hf(yn) +
h2

2
f ′(yn) +

h3

6
f ′′(yn) +

h4

24
f ′′′(yn) +O(h5), (2.43)

where the derivatives of function f are

f ′(yn) = fy(yn)f(yn)

f ′′(yn) = fyy(yn)f2(yn) + f2y (yn)f(yn)

f ′′′(yn) = fyyy(yn)f3(yn) + 4fyy(yn)fy(yn)f2(yn) + f3y (yn)f(yn).

If RKCoM method is applied to autonomous scalar problem (2.42), we get

k1 = f(yn)

k2 = f(yn +
1

2
hk1)

k3 = f(yn +
1

8
hk1 +

3

8
hk2)

k4 = f(yn +
1

4
hk1 −

3

4
hk2 +

3

2
hk3)

yn+1 = yn +
h

3

(
k21 + k22
k1 + k2

+
k22 + k23
k2 + k3

+
k23 + k24
k3 + k4

)
.

(2.44)

To obtain Taylor expansion of (2.44) it is necessary to make directly the derivatives of output
which needs also derivatives of stages. Theoretically clear procedure requires a lot of computation
in case of derivatives of output. Fortunately there are software programs which can make the
job.

To get the following Taylor expansion software Maple was involved. By using command
taylor(yn+1,h=0, 6) was obtained result

y(tn + h) =yn + hf(yn) +
h2

2
fy(yn)f(yn) +

h3

6

(
fyy(yn)f2(yn) + f2y (yn)f(yn)

)
(2.45)

+
h4

24

(
fyyy(yn)f3(yn) + 4fyy(yn)fy(yn)f2(yn) + f3y (yn)f(yn)

)
(2.46)

+
h5

41472

(
296f4y (yn)f(yn) + 47347f2y (yn)f2(yn)fyy(yn) + ...

)
+O(h6) (2.47)

thus if we compare (2.43) and (2.45) we can see that the RKCoM method is of order 4 for
autonomous scalar problem.
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Now we apply RKCoM method on (1.1), so we have

k1 = f(tn, yn)

k2 = f(tn +
1

2
h, yn +

1

2
hk1)

k3 = f(tn +
1

2
hyn +

1

8
hk1 +

3

8
hk2)

k4 = f(tn + h, yn +
1

4
hk1 −

3

4
hk2 +

3

2
hk3)

yn+1 = yn +
h

3

(
k21 + k22
k1 + k2

+
k22 + k23
k2 + k3

+
k23 + k24
k3 + k4

)
.

(2.48)

The Taylor expansion of exact solution for scalar problem around point tn is

y(tn + h) = y(tn) + hf(tn, yn) +
h2

2
F (tn, yn) +

h3

6
(G(tn, yn) + fy(tn, yn)F (tn, yn))

+
h4

24

(
fttt(tn, yn) + 3ftty(tn, yn)f(tn, yn) + 3ftyy(tn, yn)f2(tn, yn) + fyyy(tn, yn)f3(tn, yn)

+ 3(fty(tn, yn) + fyy(tn, yn))F (tn, yn) + fy(tn, yn)(G(tn, yn) + fy(tn, yn)F (tn, yn))) +O(h5),

(2.49)

where G,F are defined same as in Section 2.2, i.e.

F = ft + fyf and G = ftt + 2ftyf + fyy (f)2 .

From Maple we obtain Taylor expansion of (2.48)

y(tn+h) =yn + hf(tn, yn) +
h2

2
(ft(tn, yn) + fy(tn, yn))

+
h3

6

(
ftt(tn, yn) + 2fty(tn, yn)f(tn, yn) + fyy(tn, yn)f2(tn, yn) +

5

4
ft(tn, yn)fy(tn, yn)...

+ f2y (tn, yn)f(tn, yn) +
1

4

f2t (tn, yn)

f(tn, yn)

)
+O(h4).

(2.50)

By comparing (2.49) and (2.50) we see that the method is only second order for non-autonomous
scalar problem.

The second method which we are going to check for the order is RKCeM method. We apply
it on the autonomous scalar problem

k1 = f(yn)

k2 = f(yn +
1

2
hk1)

k3 = f(yn +
1

24
hk1 +

11

24
hk2)

k4 = f(yn +
1

12
hk1 −

25

132
hk2 +

73

66
hk3)

yn+1 = yn +
2h

9

(
k21 + k1k2 + k22

k1 + k2
+
k22 + k2k3 + k23

k2 + k3
+
k23 + k3k4 + k24

k3 + k4

)
(2.51)
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and by Maple we obtain the following Taylor expansion

y(tn + h) =yn + hf(yn) +
h2

2
fy(yn)f(yn) +

h3

6

(
fyy(yn)f2(yn) + f2y (yn)f(yn)

)
+
h4

24

(
fyyy(yn)f3(yn) + 4fyy(yn)fy(yn)f2(yn) + f3y (yn)f(yn)

)
+ h5

(
5

576
fyyyy(yn)f4(yn) +

203

3456
fy(yn)f3(yn)fyyy(yn) + ...

)
+O(h6).

This method is also of fourth order for autonomous scalar problem.

But for the non-autonomous scalar problem Taylor expansion is the following:

y(tn + h) =yn + hf(tn, yn) +
h2

2
(ft(tn, yn) + fy(tn, yn))

+
h3

6

(
ftt(tn, yn) + 2fty(tn, yn)yn)f(tn, yn) + fyy(tn, yn)f2(tn, yn)...

+
13

12
ft(tn, yn)fy(tn, yn) + f2y (tn, yn)f(tn, yn) +

1

12

f2t (tn, yn)

f(tn, yn)

)
+O(h4).

So this method is also only second order for non-autonomous equation.

If we make the system (1.1) autonomous, then the result should be the same as in case
of non-autonomous scalar problem because every non-autonomous problem can be written as
system of two autonomous equation. To confirm it, we will just briefly show it for RKCoM
method.

From (2.21) and (2.22) we can write down Taylor expansion of exact solution for vector
problem

yJ(t+ h) = yJn + h fJ
∣∣
y=yn

+
h2

2

m∑
K=1

fJKf
K

∣∣∣∣∣
y=yn

+
h3

3

 m∑
K=1

m∑
L=1

fJKLf
KfL

∣∣∣∣∣
y=yn

+

m∑
K=1

m∑
L=1

fJKf
K
L f

L

∣∣∣∣∣
y=yn

+O(h4).

(2.52)

Therefore, RKCeM method is also only second order for non-autonomous equation.

Similarly as in Section 2.2, we rewrite the (1.1) into form

yJn+1 = yJn +
1

3
hΦJ(h)

then its Taylor expansion can be written as

yJn+1 = yJn + h

(
1

3
ΦJ(0)

)
+
h2

2

(
2

3

(
ΦJ
)′

(0)

)
+
h3

6

((
ΦJ
)′′

(0)
)

+O(h4) (2.53)

Then we need to compute the derivatives of function Φ. This has been done again with the help
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of Maple software.

Φ(0) =
3∑
i=1

k2i + k2i+1

ki + ki+1

∣∣∣∣
y=yn

Φ′(0) =
3∑
i=1

(2kik
′
i + 2ki+1k

′
i+1)(ki + ki+1)− (k2i + k2i+1)(k

′
i + k′i+1)

(ki + ki+1)2

∣∣∣∣∣
y=yn

Φ′′(0) =

3∑
i=1

(
(2(k′i)

2 + 2kik
′′
i + 2(k′i+1)

2 + 2ki+1k
′′
i+1)

(ki + ki+1)

∣∣∣∣
y=yn

− 2(2kik
′
i + 2ki+1k

′
i+1)(k

′
i + k′i+1)

(ki + ki+1)2

∣∣∣∣
y=yn

+
2(k2i + k2i+1)(k

′
i + k′i+1)

2

(ki + ki+1)3

∣∣∣∣
y=yn

− (k2i + k2i+1)(k
′′
i + k′′i+1)

(ki + ki+1)2

∣∣∣∣
y=yn

With the help of relations (2.28), (2.26), (2.30) and (2.27) we obtain derivatives of stages ki, i =
1, 2, 3, 4. The Taylor expansion of solution obtained by RKCoM method become:

y(tn + h)J = yJn + hfJ +
h2

2

m∑
K=1

fJKf
K

+
h3

6

(
m∑
K=1

m∑
L=1

fJKLf
KfL +

3

4

m∑
K=1

m∑
L=1

fJKf
K
L f

L +
m∑
K=1

(fJK)2(fK)2

4fJ

)
+O(h4).

Comparing with the Taylor expansion of exact solution (2.52) we see that this method is only
of second order for vector problem, as we expected.

2.7 Numerical Testing of Modified Runge–Kutta Methods

Now we move to testing the modified RK methods numerically. The methods will be compared
according the absolute error. For this purpose the solution was computed with constant step
size h =

tf−t0
100 .

Then, we will also numerically determine the order of all methods from previous section.
The global error e satisfy following:

|e| = Chp

|e 1
2
| = Chp1

2

where we denote by h 1
2

= 1
2h. Then if we make logarithm and subtract those two equations.

Hence we get

ln

(
|e|
|e 1

2
|

)
= ln

(
h

h 1
2

)p
= p ln(2).

From above we have relation for the numerical order of method

p =

ln

(
|e|
|e 1

2
|

)
ln(2)

. (2.54)

The solution was computed with step sizes hi = 1
2i
, i = 5, ...9. Since we know the exact solution

we can compute the error and plug it into (2.54). The sequence of {pi} should converge to the
order of method.

All modified methods were implemented in MATLAB (ComparisonModifiedMethod.m).
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Problem 1

The first problem we have chosen autonomous scalar equation

y′ =− y, t ∈ [0, 1]

y(0) =1
(2.55)

with exact solution

y(t) = e−t.

In Table 2.4 are the global errors of all modified RK methods at times 0, 0.1, ..., 1.

Time AM GM HaM HeM RM CeM CoM

0.0 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00

0.1 7.603e-12 1.768e-11 2.910e-11 1.089e-11 2.179e-12 1.054e-12 1.511e-11

0.2 1.376e-11 3.200e-11 5.266e-11 1.970e-11 3.943e-12 1.908e-12 2.735e-11

0.3 1.868e-11 4.343e-11 7.147e-11 2.674e-11 5.352e-12 2.590e-12 3.712e-11

0.4 2.253e-11 5.239e-11 8.622e-11 3.226e-11 6.458e-12 3.124e-12 4.478e-11

0.5 2.548e-11 5.926e-11 9.752e-11 3.648e-11 7.304e-12 3.534e-12 5.065e-11

0.6 2.767e-11 6.434e-11 1.059e-10 3.961e-11 7.930e-12 3.837e-12 5.499e-11

0.7 2.921e-11 6.792e-11 1.118e-10 4.182e-11 8.372e-12 4.051e-12 5.805e-11

0.8 3.021e-11 7.024e-11 1.156e-10 4.324e-11 8.657e-12 4.189e-12 6.003e-11

0.9 3.075e-11 7.150e-11 1.177e-10 4.402e-11 8.812e-12 4.264e-12 6.111e-11

1.0 3.091e-11 7.188e-11 1.183e-10 4.426e-11 8.860e-12 4.287e-12 6.144e-11

Table 2.4: The global errors of the Problem 1 (2.55)

We assumed all modified methods to be fourth order for autonomous scalar problem. In
Table 2.5 we see that it is true.

h/h 1
2

AM GM HaM HeM RM CeM CoM

1
32/

1
64 4.0188 4.0256 4.0273 4.0225 4.0754 3.9346 4.0402

1
64/

1
128 4.0094 4.0128 4.0137 4.0113 4.0380 3.9695 4.0200

1
128/

1
256 4.0050 4.0062 4.0066 4.0064 4.0193 3.9839 4.0095

1
256/

1
512 4.0073 3.9997 4.0046 4.0056 4.0353 3.8256 4.0007

Table 2.5: Numerical order for Problem 1 (2.55)

42



Problem 2

As the second problem we took equation with non-constant coefficients

y′ =− 3 t2y, t ∈ [0, 1]

y(0) =1
(2.56)

with exact solution

y(t) = e−t
3
.

In the Table 2.6 the global errors are presented. The RKAM method performed much better
result than the other methods. In case of order, we observe that all methods except RKAM
have second order, see Table 2.7, which agree with results of previous section.

Time AM GM HaM HeM RM CeM CoM

0.0 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00

0.1 3.124e-13 2.497e-06 4.817e-06 8.323e-07 2.377e-06 1.606e-06 4.817e-06

0.2 6.206e-13 4.947e-06 9.717e-06 1.649e-06 4.827e-06 3.239e-06 9.718e-06

0.3 9.180e-13 7.233e-06 1.429e-05 2.411e-06 7.115e-06 4.765e-06 1.429e-05

0.4 1.162e-12 9.170e-06 1.817e-05 3.057e-06 9.057e-06 6.059e-06 1.818e-05

0.5 8.613e-13 1.054e-05 2.092e-05 3.514e-06 1.044e-05 6.977e-06 2.093e-05

0.6 2.992e-12 1.115e-05 2.215e-05 3.717e-06 1.105e-05 7.387e-06 2.217e-05

0.7 2.215e-11 1.088e-05 2.162e-05 3.626e-06 1.079e-05 7.211e-06 2.164e-05

0.8 8.938e-11 9.747e-06 1.938e-05 3.250e-06 9.679e-06 6.465e-06 1.940e-05

0.9 2.725e-10 7.948e-06 1.580e-05 2.650e-06 7.894e-06 5.272e-06 1.582e-05

1.0 6.752e-10 5.800e-06 1.153e-05 1.934e-06 5.757e-06 3.845e-06 1.154e-05

Table 2.6: The lobal errors of Problem 2 (2.56)

h/h 1
2

AM GM HaM HeM RM CeM CoM

1
32/

1
64 3.9868 2.0227 2.0092 2.0254 2.0047 2.0084 2.0104

1
64/

1
128 3.9955 2.0106 2.0038 2.0114 2.0019 2.0040 2.0047

1
128/

1
256 3.9982 2.0051 2.0017 2.0054 2.0009 2.0020 2.0022

1
256/

1
512 3.9991 2.0025 2.0008 2.0026 2.0004 2.0010 2.0011

Table 2.7: Numerical order for Problem 2 (2.56)
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Problem 3

Our next problem is a linear system

y′ =

0 1

1 0

 y, t ∈ [0, 10]

y0

1

1

 (2.57)

with exact solution

y1(t) = sin(t) + cos(t)

y2(t) = cos(t)− sin(t).

In matter of global error we have the biggest error among our test problems, see Table 2.9.
But really disturbing results brought the numerical examination of order. For y2 (Table 2.8) we
can clearly determine the order in case of RKAM (oder 4), RKGM and RKHeM (both order 2).
For the rest of methods we can say that they have the second order of accuracy but not so sure.
On the other hand the numbers in numerical order of y1 are complete mess and we cannot say
anything about order of methods (again except RKAM). It seems that contraction of time step
size has no impact on the accuracy.

h/h 1
2

AM GM HaM HeM RM CeM CoM

Numerical order for component y1

1
32/

1
64 4.0803 1.7421 -0.0868 1.7177 -1.4668 -1.4897 -2.4551

1
64/

1
128 4.0420 4.1585 9.1204 4.1775 0.8870 5.1823 4.6311

1
128/

1
256 4.0205 4.7640 -0.7310 4.6609 2.6784 3.9335 4.9688

1
256/

1
512 3.9948 -1.8733 0.7395 -1.7972 2.5224 0.0844 -0.3603

Numerical order for component y2

1
32/

1
64 3.9956 2.0225 3.6032 2.0254 1.8905 3.7117 3.8160

1
64/

1
128 3.9979 1.8732 0.6144 1.8740 2.3206 0.4886 0.4051

1
128/

1
256 3.9991 1.9607 1.9532 1.9612 1.9096 1.8654 1.8112

1
256/

1
512 4.0013 2.0780 2.1419 2.0780 1.9569 2.1322 2.1275

Table 2.8: Numerical order of Problem 3 (2.57)

This is connected with another phenomena. Figure 2.3 presents the solution and the global
error of method RKHaM. At time t = 7.1 we can see a jump of approximated solution of y1.
The same happened in case of RKCoM method, Figure 2.4, at time t = 4. Both jumps appeared
near point where the solution changes from ingreasing do decreasing or vice versa. Thus the
derivative of solution is close to zero and the stages also. If we look back to outputs of methods
(2.40), (2.41), we find out that we dived kiki+1 by the sum of the same stages or sum of square
of ki and ki+1 is again divided by its sum. Thus when the stages are really close to zero it
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may happen that we divide by number which is almost zero. Even not to be so dramatic, we
divide two close numbers which causes bigger numerical errors than in case of classical explicit
RK methods where the stages are just sum. Therefore non-monotonous solution are difficult to
approximate by modified method.

Time AM GM HaM HeM RM CeM CoM

Global error for component y1

0.0 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00

1.0 1.542e-07 1.443e-03 2.532e-03 4.810e-04 1.725e-03 9.060e-04 2.807e-03

2.0 2.133e-06 5.598e-04 1.239e-03 1.879e-04 1.716e-03 3.866e-04 1.129e-03

3.0 2.994e-06 1.563e-03 3.662e-03 5.277e-04 1.881e-03 1.316e-03 4.092e-03

4.0 4.867e-08 4.245e-04 7.789e-03 1.457e-04 2.517e-03 1.123e-02 2.302e-02

5.0 4.925e-06 3.006e-03 1.329e-03 1.007e-03 1.318e-03 4.223e-03 1.794e-02

6.0 6.459e-06 2.888e-03 9.164e-03 1.065e-03 2.569e-03 6.742e-03 3.118e-03

7.0 1.248e-06 1.394e-04 8.564e-03 2.681e-04 1.630e-04 1.162e-02 2.062e-02

8.0 7.070e-06 3.624e-03 2.143e-02 1.088e-03 4.361e-03 4.049e-03 2.328e-02

9.0 1.020e-05 5.088e-03 2.563e-03 1.752e-03 4.459e-03 6.324e-03 4.410e-03

10.0 3.409e-06 1.504e-03 1.857e-02 6.527e-04 7.497e-04 1.123e-02 1.567e-02

Global error for component y2

0.0 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00

1.0 1.168e-06 8.849e-04 1.686e-03 2.956e-04 2.291e-04 5.722e-04 1.736e-03

2.0 1.003e-06 1.804e-03 3.262e-03 6.020e-04 1.216e-03 1.146e-03 3.525e-03

3.0 1.879e-06 8.808e-04 9.261e-04 2.877e-04 2.059e-04 1.629e-04 2.920e-04

4.0 4.713e-06 2.375e-03 4.741e-03 7.953e-04 2.275e-03 1.583e-03 4.772e-03

5.0 3.234e-06 7.919e-04 8.847e-03 2.639e-04 3.226e-03 1.022e-02 1.702e-02

6.0 2.876e-06 2.387e-03 2.934e-03 6.012e-04 2.168e-03 9.006e-03 2.396e-02

7.0 8.154e-06 4.246e-03 7.171e-03 1.397e-03 3.855e-03 1.158e-03 1.135e-02

8.0 6.235e-06 3.192e-03 1.224e-02 1.221e-03 1.621e-03 9.443e-03 1.267e-02

9.0 2.903e-06 1.815e-03 2.439e-02 4.627e-04 2.319e-03 9.051e-03 2.216e-02

10.0 1.128e-05 5.798e-03 1.642e-02 1.903e-03 5.535e-03 7.878e-04 1.673e-02

Table 2.9: The global errors for Problem 3 (2.57)
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Figure 2.3: Approximated solution of Problem 3 (2.57) obtained by method RKHaM
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Figure 2.4: Approximated solution of Problem 3 (2.57) obtained by method RKCoM

46



Problem 4

As the last problem, in this section, the following inhomogeneous system was chosen

y′1 = −4y1 − 3y2 − 14

y′2 = −2y1 − 5y2 + 5e−2t, t ∈ [0, 1]

y(0) =

 0

−2

 (2.58)

and with exact solution

y1(t) = 6e−2t − e−7t − 3te−2t

y2(t) = −3e−2t − e−7t + 2te−2t + 2.

Except the RKAM, all methods reached the second order in both components, as can be
seen in Table 2.10. The global errors are the lowest again for RKAM method. For the rest of
the methods is similar to each other and comparable to those ones we obtained in Problem 2.

Modified methods are of fourth order accuracy only in case of autonomous equation. In any
other case they are only second order. The group of autonomous scalar problem is not so wide
thus we would not appreciate much the fourth order for autonomous equation in practise. Also,
we can conclude that the performance of modified method heavily depends on the monotony of
solution. This make them for many problem unsuitable and would be better to avoid them.

h/h 1
2

AM GM HaM HeM RM CeM CoM

Numerical order for component y1

1
32/

1
64 4.0373 2.0983 2.0911 2.1108 2.1031 2.0986 2.1159

1
64/

1
128 4.0193 2.0410 2.0374 2.0455 2.0457 2.0439 2.0506

1
128/

1
256 4.0098 2.0186 2.0168 2.0203 2.0215 2.0207 2.0236

1
256/

1
512 4.0046 2.0088 2.0079 2.0095 2.0104 2.0101 2.0114

Numerical order for component y2

1
32/

1
64 4.0551 2.0893 2.0833 2.0960 2.0995 2.0966 2.1102

1
64/

1
128 4.0248 2.0385 2.0352 2.0413 2.0445 2.0432 2.0488

1
128/

1
256 4.0118 2.0178 2.0161 2.0191 2.0210 2.0204 2.0229

1
256/

1
512 4.0056 2.0085 2.0077 2.0091 2.0102 2.0099 2.0111

Table 2.10: Numerical order of Problem 4 (2.58)
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Time AM GM HaM HeM RM CeM CoM

Global error for component y1

0.0 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00

0.1 6.666e-08 3.031e-05 6.036e-05 1.010e-05 3.078e-05 2.051e-05 6.184e-05

0.2 6.340e-08 3.243e-05 6.458e-05 1.081e-05 3.290e-05 2.192e-05 6.609e-05

0.3 4.408e-08 2.789e-05 5.555e-05 9.299e-06 2.826e-05 1.882e-05 5.677e-05

0.4 2.603e-08 2.270e-05 4.521e-05 7.573e-06 2.297e-05 1.530e-05 4.613e-05

0.5 1.315e-08 1.835e-05 3.655e-05 6.125e-06 1.854e-05 1.234e-05 3.723e-05

0.6 5.076e-09 1.499e-05 2.987e-05 5.007e-06 1.512e-05 1.007e-05 3.037e-05

0.7 4.592e-10 1.244e-05 2.478e-05 4.155e-06 1.253e-05 8.343e-06 2.516e-05

0.8 1.935e-09 1.046e-05 2.085e-05 3.497e-06 1.053e-05 7.013e-06 2.115e-05

0.9 3.000e-09 8.898e-06 1.774e-05 2.975e-06 8.951e-06 5.960e-06 1.797e-05

1.0 3.318e-09 7.624e-06 1.520e-05 2.549e-06 7.665e-06 5.103e-06 1.539e-05

Global error for component y2

0.0 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00

0.1 6.964e-08 3.706e-06 7.394e-06 1.198e-06 3.924e-06 2.631e-06 7.837e-06

0.2 6.820e-08 2.709e-07 5.458e-07 5.125e-08 4.604e-07 3.242e-07 8.841e-07

0.3 4.986e-08 3.610e-06 7.192e-06 1.235e-06 3.498e-06 2.316e-06 7.051e-06

0.4 3.222e-08 6.278e-06 1.251e-05 2.116e-06 6.232e-06 4.142e-06 1.253e-05

0.5 1.936e-08 7.648e-06 1.524e-05 2.566e-06 7.646e-06 5.087e-06 1.536e-05

0.6 1.106e-08 8.050e-06 1.605e-05 2.695e-06 8.073e-06 5.373e-06 1.621e-05

0.7 6.054e-09 7.841e-06 1.563e-05 2.623e-06 7.876e-06 5.243e-06 1.581e-05

0.8 3.191e-09 7.297e-06 1.455e-05 2.439e-06 7.335e-06 4.884e-06 1.472e-05

0.9 1.620e-09 6.601e-06 1.316e-05 2.206e-06 6.638e-06 4.420e-06 1.332e-05

1.0 7.930e-10 5.864e-06 1.169e-05 1.959e-06 5.898e-06 3.928e-06 1.184e-05

Table 2.11: The global errors for Problem 4 (2.58)

2.8 Methods with Error Estimation

In practical computation we want to choose step size hi such as on one hand is sufficiently
small to achieve required precision but on the other hand sufficiently large to avoid unnecessary
computational work. For this reason we need some error estimation.

There are rigorous results about error of RK methods, see [21, p. 156], but their use for prac-
tical computing is quite limited. Rigorous bounds on error estimation require the computation
and majorization of several partial derivatives of high orders. Since RK methods do not need
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computation of derivatives, theoretical approach is quite impractical.
First approach was by Runge – repeat the computations with halved step size. Then results

are compared and those digits which have not change are assumed to be correct. Then the idea
of using Richardson extrapolation came. Now it is widely accepted that embedded methods
are efficient. They usually combine two methods. In this work will be discussed two type of
this approach. First case is embedded method using two methods of different order. And then
alternative idea will be presented – method involving two methods of the same order.

Embedded Methods

Idea of embedded methods is to combine two RK methods with different order, but with the
same stages i.e. aij and ci coefficients are same for both method, but with different coefficients
bi and order. Thus we have common stages:

ki = f

tn + cih, yn + h

s∑
j=1

aijkj

 i = 1, ..., s

and first method

yn+1 = yn + h

s∑
j=1

bjkj (2.59)

of order p and second method

ŷn+1 = yn + h

s∑
j=1

b̂jkj (2.60)

with order p̂ (usually p̂ = p + 1 or p̂ = p − 1 ). Coefficients of both method can be written in
extended Butcher tableau

c A

bT

b̂
T

.

Let’s now assume that p̂ = p + 1, in this case the local error, used for automatic step size
selection, is estimated by

estn+1 = |ŷn+1 − yn+1| = h

s∑
j=1

(b̂j − bj)kj = h

s∑
j=1

djkj . (2.61)

If we use the value yn+1 to continue the sequence of approximated solution, we call it method
without local extrapolation. In this case, we do not need to compute values of ŷn+1 but only the
error estimation, sometimes the Butcher tableau for embedded methods contains also coefficients
di, thus looks following:

c A

bT

b̂
T

dT

.
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One of the first who derived embbeded methods was Fehlberg. In [18] he introduced also
method known as Runge–Kutta–Fehlberg 4(5), where numbers 4(5) indicate orders of yn+1 and
ŷn+1 respectively. This method is given by following tableau:

0

1
4

1
4

3
8

3
32

9
32

12
13

1932
2197 −7200

2197
7296
2197

1 439
216 −8 3680

513 − 845
4104

1
2 − 8

27 2 −3544
2565

1859
4104 −11

40

25
216 0 1408

2565
2197
4104 −1

5 0

16
135 0 6656

12825
28561
5630 − 9

50
2
55

.

Practically we usually use higher order approximation ŷn+1 as an approximation of solution.
Then we use ŷn in (2.59), (2.60) instead of yn. This approach is called local extrapolation.
Dormand and Prince in [12] presented RK method of order 5(4) for purpose of local extrapolation
with additional property to reduce computational cost. This property is called FSAL - ’first
same as last’. It means that last row of A is the same as the b̂i coefficients of output, as can be
seen in the following tableau:

0

1
5

1
5

3
10

3
40

9
40

4
5

44
45 −56

15
32
9

8
9

19372
6561 −25360

2187
644448
6561 −212

729

1 9017
3168 −355

33
46732
5247

49
176 − 5103

18656

1 35
384 0 500

1113
125
192 −2187

6784
11
84

5179
57600 0 7571

16695
393
640 − 92097

339200
187
2100

1
40

35
384 0 500

1113
125
192 −2187

6784
11
84 0

.

That makes Dormand–Prince method same expensive in terms of computational cost as Runge–
Kutta–Fehlber 4(5), even if it has more stages because the last stage k7 can be used as first
stage k1 in next time step.

Another examples of embedded RK methods are methods by Verner [33], or Cash and Karp
method of order 4(5) [10] and also well know method of order 3(2) with local extrapolation by
Bogacki and Shampine [3].

Embedded methods with automatic step size control are wildly used in software for solving
ODE problems. As an example MATLAB can be mentioned, where are two functions with
implemented embedded RK method. First is ode23 using Bogacki–Shampine 3(2) method and
the second one is function ode45 based on Dormand–Prince 5(4) method.

Methods of Same Order

As another possibility of estimating error appeared idea using two different RK methods but
of the same order. D. J. Evans and A. R. Yaakub presented in [16] error estimation strategy
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based on pair RKAM and RKCoM. And in [28] the combination of RKAM and RKCeM were
published. Now we will present the error estimation for both of these pairs of methods and
discussed them in light of result from sections 2.6 and 2.7.

If we combine RKAM and RKCeM methods we get RKACeM method

k1 = k∗1 = f(tn, yn)

k2 = k∗2 = f

(
tn +

h

2
, yn +

1

2
hk1

)
k3 = f

(
tn +

h

2
, yn +

1

2
hk2

)
k4 = f (tn + h, yn + hk3)

k∗3 = f

(
tn +

h

2
, yn +

1

24
hk1 +

11

24
hk2

)
k∗4 = f

(
tn +

h

2
, yn +

1

12
hk1 −

25

132
hk2 +

73

66
hk∗3

)
yn+1 = yn +

h

3

(
3∑
i=1

ki + ki+1

2

)

y∗n+1 = yn +
h

3

(
2

3

3∑
i=1

(k∗i )
2 + k∗i k

∗
i+1 + (k∗i+1)

2

k∗i + k∗i+1

)
.

The authors in [28] established the error estimation as follows. For local truncation errors
of each method the following holds

yAMn+1 =y(tn+1) + LTEAM

yCeMn+1 =y(tn+1) + LTECeM

therefore taking difference between RKAM and RKCeM gives

yAMn+1 − yCeMn+1 = LTEAM − LTECeM . (2.62)

The local truncation error of RKAM is given by

LTEAM =
h5

2880

(
−24ff4y + f4fyyyy + 2f3fyfyyy − 6f3f2yy + 36f2f2y fyy

)
while the local truncation error of the RKCeM is given by

LTECeM =
h5

69120

(
−762ff4y + 8f4fyyyy + 36f3fyfyyy − 744f3f2yy + 273f2f2y fyy

)
Then the absolute difference between LTEAM and LTECeM is obtained as

|LTEAM − LTECeM | =
h5

69120

(
186ff4y + 16f4fyyyy + 12f3fyfyyy + 600f3f2yy + 591f2f2y fyy

)
(2.63)

Now we bound f and its partial derivative using the following relations suggested in [27]:

|f(t, y)| < Q

|∂
i+jf(t, y)

∂ti∂yj
| < P i+j

Qj−1
, i+ j ≤ p
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where P,Q are positive constants, p is the order of the method and this holds for t ∈ [t0, T ] and
y ∈ (−∞,∞). In this case p = 4 we obtain

|ff4y | < QP 4

|f4fyyyy| <
Q4P 4

Q3

|f3fyfyyy| < Q3PP
3

Q2

|f3f2yy| < Q3

(
P 2

Q

)2

|f2f2y fyy| < Q2P 2P
2

Q

thus all derivatives in (2.63) are bounded by QP 4, hence it becomes

LTEAM − LTECeM ≤
281

13824
P 4Qh5

and thus by (2.62) also

|yAMn+1 − yCeMn+1 | ≤
281

13824
P 4Qh5.

And as error estimation we use difference between the RKAM method and RKCeM method
together with the constant derived above

estn = |yAMn − yCeMn | 281

13824
. (2.64)

The method RKACoM combines RKAM and RKCoM methods.

k1 = k∗1 = f(tn, yn)
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2
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y∗n+1 = yn +
h

3

(
3∑
i=1

(k∗i )
2 + (k∗i+1)

2

k∗i + k∗i+1

)
.

and by the same procedure as for RKACeM the error estimation was established as

estn = |yAMn − yCeMn | 1405

23040
. (2.65)

The above derivation of the bound on the local truncation errors are done under assumption
that both method are of order 4. It was shown in Section 2.6 that the methods are fourth order
only in case of autonomous scalar problem. In any other case the RKCeM method is only second
order and therefore the constant is not needed. The difference between those two method should
be sufficient error estimation but probably overrated, as can be seen from numerical experiments.
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2.9 Automatic Step Size Selection

If we have some local error estimation, we can use it for step size selection to achieve a prescribed
tolerance of the local error. The prescribed tolerance can be written component wise in form

εi = max {Atoli,max{|yn,i|, |yn+1,i|} ·Rtoli} , i = 1, 2, ...,m,

where Atol is chosen absolute tolerance and Rtol is chosen relative tolerance. For Atol = 0 only
relative errors are considered and for Rtol = 0 the absolute ones. But usually both tolerances
are different from zero.

To consider the step from yn to yn+1 as successful, we want to an estimation of the local
error satisfy |estn,i| ≤ εi. To measure the error we use Euclidean norm

‖err‖ =

√√√√ 1

m

m∑
i=1

(
estn,i
εi

)2

, (2.66)

but also maximum norm is frequently used. Since local error of the method of order p is
proportional to hp+1 also ‖err‖ ≈ Chp+1 holds. For optimal step size 1 ≈ Chp+1

opt . From that,
by eliminating the constant C, we have the optimal time step:

hopt = h

(
1

‖err‖

) 1
q+1

where q = min(p, p̂). To prevent rejection in the next step the optimal step is multiplied by
a safety factor θ, usually is equal to 0.8 or 0.9. In our numerical experiments we will use θ = 0.8
Also we do not want h to increase or decrease too fast, thus we introduce factors θmin, θmax and
as the new time step we put

hnew = hmin

{
θmax,max

{
θmin, θ

(
1

‖err‖

) 1
q+1

}}
. (2.67)

We reject the step if ‖err‖ ≤ 1 does not hold. We do a new computation of yn+1 with hnew.
When the inequality ‖err‖ ≤ 1 is satisfied, we pass over to the next step also with hnew.

Factor θmax is usually chosen between 1.5 and 5, but in addition to this, for the step right
after the rejected one θmax = 1. Factor θmin is chosen 0.2. Sometimes is add even the maximal
step size hmax and minimal step size hmin.

Starting Step Size

The last thing we are missing to complete automatic step size control is the length of starting
step. It will be presented algorithm from [22] which is based on the hypothesis that

local error ≈ Chp+1(y)p+1(t0).

But we do not know (y)p+1(t0) and thus we need to replace it by approximations of the first
and second derivative of the solution. This is done as follows: First we compute d0 = ‖y0‖ and
‖f(t0, y0)‖ using the same norm as we used above in err with εi = Atoli + |y0|Rtoli. Then the
first guess h0 = 0.001d0d1 is made. When d0 or d1 is smaller than 10−5 we set h0 = 10−6. Using
Euler method we compute y1 = y0 + h0f(t0, y0) and use it for estimation of second derivative

d2 =
‖f(t0 + h0, y1)− f(t0, y0)‖

h0
.

Then we compute h1 from relation hp+1
1 max{d1, d2} = 0.01. If max{d1, d2} ≤ 10−15 we put

h1 = max{10−6, h0 10−3}, and finally we set the starting step size as

hstart = min{100h0, h1}.
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2.10 Numerical Testing of Methods with Error Estimation

In this section some numerical results about error estimation methods will be presented. Meth-
ods RKACoM and RKACeM were compared with embedded methods Runge–Kuta–Fehlberg
4(5) (RKF45), Cash–Karp 4(5) (CK45) and local extrapolation method Dormand–Prince 5(4)
(DP54). The problems were also computed by MATLAB solvers ode23 (based on Bogacki–
Shampine method) and by MATLAB implementation of Dormand–Prince method ode45.

All methods were implemented in MATLAB (ExplicitEmbeddedMethods). The algorithms
described in Section 2.9 were used for step size selection with absolute tolerance Atol = 10−6

and relative tolerance Rtol = 10−3. Euclidean norm was used. For every test problem we
present the number of accepted steps, the number of rejected steps and the maximal error in
each component.

Problem 1

We start our testing with autonomous scalar equation

y′ =
√
y, t ∈ [1, 4]

y(1) = 1
(2.68)

with exact solution

y(t) =
1

4
(t+ 1)2.

Since the problem is autonomous equation as error estimator for methods RKACoM and RKACeM
the estimation with the constants (2.64) and (2.65), respectively, were used. In Figures 2.5 and
2.6 we present behaviour of the solution and selection of time steps these methods

1 1.5 2 2.5 3 3.5 4
0

5

10
Output y

AM

1 1.5 2 2.5 3 3.5 4
0

5

10
Output y

CeM

Figure 2.5: Numerical solution obtained by RKACeM with step size control of Problem 1 (2.68)
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Figure 2.6: Numerical solution obtained by RKACoM with step size control of Problem 1 (2.68)

If we compare the all the methods they performed quite similar results. For modified method
we would like to see if there is a difference in which method is used as output. That we can see
in Figures 2.5 for RKACeM and 2.6 for RKCoM. It seems that all of the solutions are the same.
Actually, in all four cases the solution was computed at points:

t0 = 1, t1 = 1.0216, t2 = 1.1293, t3 = 1.16681, t4 = 4,

which means that the chosen output method did not influenced the error estimation. But the
values of yn are not the same.

Problem 2

The second problem for testing of error estimating methods was chosen scalar equation with
non-constant coefficient

y′ = y cos(t), t ∈ [0, 8],

y(0) = 1
(2.69)

with exact solution

y(t) = ecos(t),

which is non-monotonous function on the given interval.
For this problem the local error was estimated for RKACoM method as

estn = |yAM − yCoM | (2.70)

and for RKACeM method analogously. In Table 2.14 we can see the significant difference in
number of steps in case of modified methods and the embedded methods. As was assumed
the modified methods performed much more steps (accepted and rejected) than the embedded
methods.
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Because the modified methods (RKCoM, RKCem) do not give a good approximation around
points with zero derivative, as have seen in Section 2.7, the step size around those points is for
error estimating RKACoM and RKaCeM automatically chosen smaller, see Figure 2.7. Therefore
we got the approximated solution at points where the solution changes the most. This is not
generally bad but on the other hand much more computation was needed.

We wanted to verify the idea that using error estimation (2.64) or (2.65) for RKACoM and
RKCeM methods is not working well. As we can see in Table ??, in this case the number of
steps decreased. On the other hand the errors increased. In the Figure 2.8 is presented the
solution obtained by RKACeM with both outputs. In case of RKCeM output the result is really
inaccurate. For the RKAM output we got bigger maximal error than in computation with est
given by (2.70) however comparable with the results of embedded method RKF45, CK45 and
DP45.

RKACeM RKACoM

output RKAM RKCeM RKAM RKCoM

No. of accepted steps 12 11 19 19

No. of rejected steps 4 2 5 5

Maximal error 1.5695e-02 2.2384e-01 3.4522e-03 1.4135e-01

Table 2.12: Table for Problem 2 (2.69) modified methods with error estimation (2.64),(2.65)
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Figure 2.7: The solutions computed by RKACoM and RKF45
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Figure 2.8: The solutions computed by RKACeM and DP54

Problem 3

The last problem we chose a linear system of two equations

y′ =

 0 1

−1 0

 y +

tg2(t) + 1

tg(t)

 , t ∈ [0, 1.5],

y(0) =

1

3

 (2.71)

with exact solution

y(t) =

cos(t) + sin(t) + tg(t)

−sin(t) + cos(t) + 2

 .

As in previous problem modified methods RKACeM and RKACoM performed more steps than
other embedded methods but since the solution is monotonous, the difference is not so significant
an in Problem 2. From Table 2.15 it is also seem the better precision mainly in case of RKAM
output.

The modified method with error estimation overestimated the actual error and because of
the inaccuracy of modified methods, around points with zero derivative. Accurate results are
obtained only in case of RKAM output. The number of steps corresponds with method of lower
order (ode23 - method of order 3). The possible application could be in case we need better
illustration of the solution and also we want to avoid some unnecessary computational work in
parts where solution does not varies a lot.
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3 | Implicit Runge–Kutta Methods

Explicit Runge–Kutta methods are easy to implement formula. Unfortunately, they suffer from
lack of stability (as we will see in Chapter 4), therefore they are not suitable for treating stiff
problems also as singular perpetuated problems or differential-algebraic systems.

Implicit Runge–Kutta methods have several subgroup of methods. First group is fully im-
plicit methods. These methods have almost none of coefficients of matrix A in Butcher tableau
equal to zero. Every stage ki, i = 1, 2, ..., s depends on previous and also following stages there-
fore there is needed solution of generally non-linear system of ms equations. To make it easier
the idea of diagonal implicit Runge–Kutta methods arise. If the coefficients above the diagonal
are zero, the solution of system of equations is easier, instead of whole system of ms equations
we can solve one equation after another.

3.1 Collocation Methods

As the first we will present derivation of collocation methods. First methods as Implicit Euler,
implicit midpoint rule or trapezoidal rule are collocation methods. To derive the collocation
method we start from differential equation

y′(t) = f(t, y(t))

and we convert it to integral equation by integrating over interval [tn, t]∫ t

tn

y′(r)dr =

∫ t

tn

f(r, y(r))dr

and we compute the integral on the left hand side we obtain

y(t) = y(tn) +

∫ t

tn

f(r, y(r))dr.

Now we replace the exact value y(tn) by approximated one yn and the integrand by a polynomial
interpolation

y(t) ≈ yn +

∫ t

tn

p(r)dr, (3.1)

where p(r) is a unique interpolation polynomial of degree < s which interpolates points
[tn,i, f(tn,i, y(tn,i)], i = 1, 2, ..., s, where tn,i ≡ tn + τih, i = 1, ..., s. and 0 ≤ τ1 < ... < τs ≤ 1.

Using Lagrange interpolating polynomial we have

p(r) =

s∑
j=1

f(tn,j , y(tn,j))lj(r), (3.2)
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where lj(r) are fundamental Lagrange polynomials defined as

lj(r) =

s∏
i=1
i 6=j

(
r − ri
rj − ri

)
, j = 1, ..., s.

Plug (3.2) into (3.1) we obtain

y(t) ≈ yn +

s∑
j=1

f(tn,j , y(tn,j))

∫ t

tn

lj(r)dr.

Now the key of collocation method will come. We force equality of above expression at all the
points tn,j , i = 1, 2, ..., s. Thus approximations yn,j for j = 1, ..., s of exact values y(tn,j) at
collocation node points are determined by following system of non-linear equations

yn,i = yn +

s∑
j=1

f(tn,i, yn,j)

∫ tn,i

tn

lj(r)dr, i = 1, ..., s. (3.3)

In case τs = 1 we put yn+1 = yn,s. Otherwise we set

yn+1 = yn +
s∑
j=1

f(tn,j , yn,j)

∫ tn+1

tn

lj(r)dr. (3.4)

For example, case s = 2 we will have Lagrange interpolation polynomial

p(r) = f(tn,1, y(tn,1))
(tn,2 − r)
h(τ2 − τ1)

+ f(tn,2, y(tn,2))
(r − tn,1)
h(τ2 − τ1)

and thus the resulting method will have Butcher tableau in the following form

τ1
2τ2−τ21
2(τ2−τ1) − τ21

2(τ2−τ1)

τ2
τ22

2(τ2−τ1)
τ22−2τ1
2(τ2−τ1)

2τ2−1
2(τ2−τ1)

1−2τ1
2(τ2−τ1)

where coefficients aij and bi are obtained from integrals in (3.3) and (3.4) respectively. The
particular examples of collocation methods will be presented in the following section.

3.2 General Construction of Fully Implicit Runge–Kutta Meth-
ods

Since collocation is not the only way how to derive IRK method we will present general approach
to construct those methods too. We derived order conditions in Section 2.3, which are valid also
for implicit methods. But in that case we need to handle with almost two times number of
coefficients. J. C. Butcher presented in [8] five conditions (we already mentioned condition D(1)
in Section 2.4) which are known as simplifying assumptions. The construction of implicit RK
method relies on three of them

B(p) :
s∑
i=1

bic
k−1
i =

1

k
, k = 1, 2, .., p

C(q) :
s∑
j=1

aijc
k−1
j =

cki
k
, k = 1, 2, ..., q, i = 1, 2, ..., s

D(r) :

s∑
i=1

bic
k−1
i aij =

bj
k

(1− ckj ), k = 1, 2, ..., r, j = 1, 2, ..., s, .
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Condition B(p) means that the quadrature formula

t+h∫
t

f(s)ds ≈ h
s∑
i=1

bif(t+ cih)

is exact for all polynomials of degree < p and if this condition is satisfied we say that the RK
method has quadrature order p.

And the conditions C(q) has similar meaning. If it is satisfied, the corresponding quadratures
on [t, t+ cih]

t+cih∫
t

f(s)ds ≈ h
s∑
j=1

aijf(t+ cjh)

are exact for all polynomials of degree < q and the RK method is called of stage order q. As is
proved in [21], methods which satisfy C(s) (where s is as usual number of stages) and have all
ci, i = 1, 2, ..., s distinct are collocation methods.

Also in [8], Butcher stated and proved the following important theorem about order.

Theorem 3.1. If a Runge–Kutta method satisfies conditions B(p), C(q), and D(r) with
p ≤ q + r + 1 and p ≤ 2q + 2, its order of convergence is p.

Proof. See [8].

To simplify the construction of implicit method a little bit, we use following lemma.

Lemma 3.2. Let a Runge–Kutta with s stages have distinct c1, c2, ..., cs and non-zero weights
b1, b2, ..., bs. Then we have

1. C(s) and B(s+ ν) imply D(ν)

2. D(s) and B(s+ ν) imply C(ν).

Proof. See [22].

Hence, we can construct the method with using B(p) condition and C(q) or D(r).
Now we can move to derivation the methods. Fully implicit methods are divided in three

groups according to quadrature formula on which are based.

Gauss Methods

Gauss methods are collocation methods based on the Gaussian quadrature formula, which has
the maximal order if the nodes are the roots of Legendre polynomial Ps on the interval [−1, 1].
We need the formula on the interval [0, 1] therefore we take ci, i = 1, 2, ..., s as roots of shifted
Legendre polynomial of order s:

P ∗s =
1

s!

ds

dts
(ts (t− 1)s) . (3.5)

First we take a look on quadrature formula associated to ci’s.

Lemma 3.3. Let c1, c2, ...cs denote the roots of P ∗s . Then there exist positive numbers b1, b2, ..., bs
such that

1∫
0

φ(t)dt =
s∑
i=1

biφ(ci) (3.6)

for any polynomial of degree less then 2s. The bi are unique.
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Proof. See [7].

Therefore, for ci chosen as roots of P ∗s the condition B(2s) holds and it is enough to find the
s coefficients bi only from the first s equations of condition B(2s) i.e. it is sufficient to satisfy
only B(s).

Thus if we have satisfied B(2s) and C(s), condition D(s) is also satisfied and the method is
by the Theorem 3.1 of order 2s. We obtain the coefficients aij from the condition C(s).

Let’s do it for s = 1. From (3.5) we have

P ∗1 =
d

dt
(t(t− 1)) = 2t− 1

we obtain node c1 = t = 1
2 . Condition B(1) becomes just one equation

b1c
0
1 = 1,

from which we immediately see b1 = 1. This we use in condition C(1): b1a11 = b1 − b1c1, thus
we have a11 = 1− 1 · 12 = 1

2 . So, we will get method given by Butcher tableau

1
2

1
2

1

which is also know as implicit midpoint rule.
For two stage method we need to find c1 and c2 as roots of polynomial

P2 =
d2

dt2
(
t2(t− 1)2

)
= 12t2 − 12t+ 2.

After really short computation we get: c1 = 1
2 −

√
3
6 , c2 = 1

2 +
√
3
6 . For b’s, from B(2) we get

system of two equations

b1 + b2 = 1

b1c1 + b2c2 =
1

2

which solution is b1 = b2 = 1
2 and for coefficients aij , from C(2) we have the following system of

four linear equation is

a11 + a21 =
1

2
−
√

3

6

a21 + a22 =
1

2
+

√
3

6

a11

(
1

2
−
√

3

6

)
+ a12

(
1

2
+

√
3

6

)
=

1

2
·
(

1

2
−
√

3

6

)2

a21

(
1

2
−
√

3

6

)
+ a22

(
1

2
+

√
3

6

)
=

1

2
·
(

1

2
+

√
3

6

)2

Its solution with other coefficients are in Butcher tableau

1
2 −

√
3
6

1
2

3−2
√
3

12

1
2 +

√
3
6

3+2
√
3

12
1
4

1
2

1
2
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and is simply called Gauss 2-stage method.
If we would done the same procedure for three stages, the resulting method will have following

Butcher tableau

1
2 −

√
15
10

5
36

2
9 −

√
15
15

5
36 −

√
15
30

1
2

5
36 +

√
15
24

2
9

5
36 −

√
15
24

1
2 +

√
15
10

5
36 +

√
15
30

2
9 +

√
15
15

5
36

5
18

4
9

5
18

and again referred simply as Gauss 3-stage.

Theorem 3.4. The s-stage Gauss method is of order 2s.

Proof. See [8].

Thus above mentioned methods have respectively order 2, 4 and 6.

Radau Methods

The second group of fully implicit methods is based on Radau quadrature formulas and it is
divided in two subgroups - Radau I and Radau II methods. We start with Radau I methods,
which are based on Radau left quadrature formula of order 2s − 1. We can find ci as roots of
polynomial

P ∗s + P ∗s−1 =
ds−1

dts−1

(
ts (t− 1)s−1

)
(3.7)

and it holds c1 = 0 for any s.
Radau II methods are based on Radau right quadrature formula of order 2s−1 and coefficients

ci are chosen as roots of polynomial

P ∗s − P ∗s−1 =
ds−1

dts−1
(
ts−1 (t− 1)s

)
(3.8)

and it follows cs = 1.
First attempt to contract such methods was by J.C. Butcher in [5]. For first group coefficients

bi of his methods satisfy B(s) and coefficients aij are chosen such that c1 = a11 = a12 = ... =
a1s = 0 therefore k1 = f(tn, yn). This made first stage explicit and condition C(q) hold for any
q. An example of Butcher’s Radau I 2-stage method is in the following Butcher tableau:

0 0 0

2
3

1
3

1
3

1
4

3
4

In case of methods based on (3.8) coefficients aij were chosen such that a1s = a2s = ... = ass = 0.
This made the final stage explicit and condition D(r) holds for any r. As example of Butcher’s
2-stage Radau II method, we present this one

1
3

1
3 0

1 1 0

3
4

1
4

.
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But the idea to make the method as close to explicit as possible turn out not be convenient.
These methods are not A-stable and nobody used them nowadays.

Then the idea to define aij in Radau I methods by condition D(s) came. To distinguished
this type of method from the Butcher’s, there was added A in the name of the method. From
order of Radau quadrature formula we have satisfied B(2s−1), from above, we force coefficients
to satisfy D(s). By the Lemma 3.2 we have fulfilled condition C(s − 1). Therefore, Radau IA
methods are not collocation methods. By Theorem 3.1, for p = 2s− 1, q = s− 1 and r = s, we
have 2s− 1 ≤ 2s and 2s− 1 ≤ 2s, which means that Radau IA methods are of order s− 1 [7].

Now we start with s = 1. From (3.7) we have

d0

dt0
(
t(t− 1)0)

)
= t

and c1 = 0 and from the B(1) condition we again have b1 = 1. As the last we determine a11
from D(1):

b1a11 = b1(1− c1).

The resulting method has Butcher tableau:

0 1

1
.

When the number of stages equals 2, the coefficients c1, c2 are obtained as roots of polynomial

d

dt
(t2(t− 1)) = 3t2 − 2t.

Those are c1 = 0, c2 = 2
3 and again with help of condition B(2) we get system of equations

b1 + b2 = 1

b1 · 0 + b2 ·
2

3
=

1

2

which solve b1 = 1
4 , and b2 = 1

4 . Using D(2) we write down the system of equation for desired
a’s:

1

4
a11 +

3

4
a21 =

1

4
1

4
a12 +

3

4
a22 =

1

4
1

2
a21 =

1

8
1

2
a22 =

15

72
.

Directly from two last equations we can compute a22 = 5
12 and a21 = 1

4 . Then we plug them
into first and second equation to obtain all coefficients of two stage Radau IA method:

0 1
4 −1

4

2
3

1
4

5
12

1
4

3
4

.
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Analogously Radau IA method with three stages can be constructed:

0 1
9

−1−
√
6

18
−1−

√
6

18

6−
√
6

10
1
9

88+7
√
6

360
88−43

√
6

360

6+
√
6

10
1
9

88+43
√
6

360
88−7

√
6

360

1
9

16+
√
6

36
16−
√
6

36

.

For Radau IIA coefficients ci are roots of (3.8).The coeffients bi are same as in case of Radau
IA, based on condition B(s) and for aij condition C(s) was imposed, therefore we will obtain
collocation methods. Since the radau right quadrature formula is of order 2s − 1, condition
B(s − 1) is satisfied [7]. From Lemma 3.2 holds D(s − 1) and by Theorem 3.1 the Radau IIA
methods are of order 2s− 1.

Such one stage method has butcher tableau

1 1

1

and it is well-known implicit Euler method with first order of accuracy.

For s = 2 we get from (3.8) roots c1 = 1
3 a c2 = 1 and B(2) condition gives us

b1 + b2 = 1

b1
1

3
+ b2 =

1

2

and then we compute aij from system of linear equations

a11 + a12 = c1

a21 + a22 = c2

a11c1 + a12c2 =
c21
2

a21c1 + a22c2 =
c22
2
.

As result we obtain third order method given by tableau:

1
3

5
12 − 1

12

1 3
4

1
4

3
4

1
4

.

Three stage Radau IIA method of fifth order has tableau:

4−
√
6

10
88−7

√
6

360
296−169

√
6

1800
−2+3

√
6

225

4+
√
6

10
296+169

√
6

1800
88+7

√
6

360
−2−3

√
6

225

1 16−
√
6

36
16+
√
6

36
1
9

16−
√
6

36
16+
√
6

36
1
9

.
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Lobatto Methods

Lobatto methods, often referred as Lobatto III methods, to preserve some consistency in naming
methods, are based on Lobatto quadrature formula. If the coefficients ci are chosen as roots of
polynomials

P ∗s − P ∗s−2 =
ds−2

dts−2

(
ts−1 (t− 1)s−1

)
(3.9)

where s is again the number of stages, clearly, c1 = 0 and cs = 1 for every s, the corresponding
quadrature formula

1∫
0

φ(t)dt ≈
s∑
i=1

biφ(ci)

is precise for any polynomial of degree less than 2s− 2 [7].
Obviously the lowest number of stages is two, in that case the polynomial has form

d0

dt0
(t(t− 1)) = t(t− 1)

thus we have c1 = 0, c2 = 1. And in case s = 3, we search the roots of polynomial

d

dt
(t2(t− 1)2) = 4t3 − 6t2 + 2t

we obtain c1 = 0, c2 = 1
2 and c3 = 1. Then coefficients bi are computed again with help of

condition B(s). For case s = 2 from solving the system

b1 + b2 = 1

b2 =
1

2

we have b1 = b2 = 1
2 and for three stages by system

b1 + b2 + b3 = 1

b2
1

2
+ b3 =

1

2

b2
1

4
+ b3

1

9
=

1

3

we obtain b1 = 1
3 , b2 = 2

3 and b3 = 1
6 .

Now we are missing only coefficients aij . Again the first who tried to construct Lobatto
method was by J.C. Butcher. He wanted to make close to explicit method as possible, as in case
of Radau methods. The elements of the first row and last column of matrix A have been set as
zeros. Thanks to that first and last stage become explicit and number of implicit stages reduces
to s − 2. But there is the same problem as in case of Radau methods, lack of stability. As an
example of Butcher’s Lobatto method the three 3-stage method we present only:

0 0 0 0

1
2

1
4

1
4 0

1 0 1 0

1
6

2
3

1
6

.
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Later three groups of Lobatto III methods were established according to way of choosing
coefients aij . Those groups are denoted by letters A, B and C. For Lobatto IIIA coefficients aij
satisfy condition C(s), i.e. in case s = 2 have to satisfy following system of equation

a11 + a12 = 0

a21 + a22 = 1

a21 = 0

a22 =
1

2

thus the method has following Butcher tableau:

0 0 0

1 1
2

1
2

1
2

1
2

and we see that this is trapezoidal method. Analogously we can get the method with three stages
with Butcher tableau:

0 0 0 0

1
2

5
24

1
3 − 1

24

1 1
6

2
3

1
6

1
6

2
3

1
6

For the second group, Lobatto IIIB method, we impose condition D(s). For s = 2 such
method does not exist. In case s = 3 we need to satisfy system of nine following equations:

1

6
a11 +

2

3
a21 +

1

6
a31 =

1

6
1

6
a12 +

2

3
a22 +

1

6
a32 =

1

3
1

6
a13 +

2

3
a23 +

1

6
a33 = 0

1

3
a21 +

1

6
a31 =

1

12
1

3
a22 +

1

6
a32 =

1

4
1

3
a23 +

1

6
a33 = 0

1

24
a21 +

1

6
a31 =

1

18
1

24
a22 +

1

6
a32 =

7

36
1

24
a23 +

1

6
a33 = 0.

If we solve this system and add the coefficients c1, c2, c3 and b1, b2, b3 we get Butcher tableau:

0 1
6 −1

6 0

1
2

1
6

1
3 0

1 1
6

5
6 0

1
6

2
3

1
6

.
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The 4-stage method can be obtained similarly as the previous one. We present here only resulting
Butcher tableau:

0 0 −1−
√
5

24
−1+

√
5

24 0

5−
√
5

10
1
12

25+
√
5

120
25−13

√
5

120 0

1
12

11+
√
5

120
25+13

√
5

120
25−
√
5

120 0

1 1
12

1−
√
5

120
1+
√
5

120 0

1
12

5
12

5
12

1
12

.

Finally for Lobatto IIIC we set ai1 = b1, for i = 1, ..., s and the other coefficients a are
determined by C(s− 1). Therefore, for s = 2 we have a11 = a21 = 1

2 and from system

1

2
+ a12 = 0

1

2
+ a22 = 1

we obtain the rest of coefficients to complete following Butcher tableau:

0 1
2 −1

2

1 1
2

1
2

1
2

1
2

.

The Lobatto IIIC method with three stages can be derived in the same manner as the previous
2-stage method and its Butcher tableau is:

0 1
6 −1

3
1
6

1
2

1
6

5
12 − 1

12

1 1
6

2
3

1
6

1
6

2
3

1
6

.

In the end of this section, we are going to discuss the order of Lobbatto methods using the
Lemma 3.2 and Theorem 3.1. By order of quadrature formula, B(2s− 2). For Lobatto IIIA we
have satisfied C(s), therefore D(s− 2) and the order is 2s− 2. For Lobatto IIIB B(2s− 2) and
D(s) imply C(s− 2) and the order is again 2s− 2. For Lobatto IIIC C(s− 1) holds, therefore
D(s− 1) and its order is 2s− 2.

3.3 Simplified Newton Method

It was already mentioned that we need to solve non-linear system of equations for s stages. By
(1.2) we obtain following non-linear system

k1

k2
...

ks

 =


f(tn + c1h, yn + h

∑s
i=1 a1iki)

f(tn + c2h, yn + h
∑s

i=1 a2iki)
...

f(tn + csh, yn + h
∑s

i=1 asiki)

 . (3.10)
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The vector of stages ki will by denoted by K = (k1, k2, . . . ks)
T and the right hand side of (3.10)

by F(K). If we apply Newton method to (3.10) we get
I − ha11 ∂f∂y (tn + c1h, yn + k1) · · · −ha1s ∂f∂y (tn + c1h, yn + ks)

...
...

−has1 ∂f∂y (tn + csh, yn + k1) · · · I − hass ∂f∂y (tn + csh, yn + ks)

∆Kk = −Kk + F(Kk),

(3.11)

where the superscript denotes the number of Newton iteration. To simplify (3.11) we instead of
all Jacobians ∂f

∂y (tn + cih, yn + ki) we use only

J ≈ ∂f

∂y
(tn, yn), (3.12)

therefore we get simplified Newton method for (3.10)

(I − hA⊗ J) ∆Kk = −Kk + F(Kk).

3.4 Embedded Methods and Step Size Selection

As in case of explicit RK methods we want to established some kind of error estimation. Now
we also use the idea of combining two methods with the same stages but different output. In
previous section some methods has been derived. Those are of optimal order. In other word it
is impossible to embed method of higher order with the same number of stages. Thus we search
for lower order method.

We will present two approaches of establishing the implicit embedded methods. First is
creating pair of method with the same number of stages. This was presented in [30]. Then the
second approach of professor E. Hairer will be presented.

The simplifying assumptions B(p) can be rewritten in matrix-vector notation

bT ck−1 =
1

k
(3.13)

where the power of vector is taken element-wise ck−1 = (ck−11 , ..., ck−1s )T

First we choose coefficients ci according to (3.5) or (3.7) or (3.8) or (3.9) for corespondig
kind of method. Then we need conditions B(1), B(2), ....B(s) to be satisfied

bTe = 1

bT c =
1

2
...

bT cs−1 =
1

s

where e denotes vector of ones e = (1, 1, ..., 1)T . These conditions can written in matrix form

Vsb = eH (3.14)
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where eTH is defined as eTH =
(
1, 12 , ....,

1
s

)
and Vs is so-called Vandermonde matrix:

Vs =



1 1 · · · 1

c1 c2 · · · cs

c21 c22 · · · c2s
...

...
. . .

...

cs−11 cs−12 · · · cs−1s


. (3.15)

From properties of Vandermonde matrix we know if all ci are distinct, then the determinant is
non-zero and the inverse exist [30].

Pairs of Methods with Same Number of Stages

As first we make the Vandermonde matrix (3.15) for coefficients ci of Gauss method. From
(3.14) we have

b̂ = V −1s êH (3.16)

where êTH =
(

1, 12 , ...,
1
s−1 , 0

)
. From (3.16) coefficients b̂ satisfy condition B(s − 1) therefore

resulting method is of order s− 1. In particular case of 2-stage Gauss method we obtain pair of
order (4,1)

1
2 −

√
3
6

1
2

3−2
√
3

12

1
2 +

√
3
6

3+2
√
3

12
1
4

1
2

1
2

1
2 +

√
3
2

1
2 −

√
3
2

and for 3-stage Gauss method pair of order (6,2)

1
2 −

√
15
10

5
36

2
9 −

√
15
15

5
36 −

√
15
30

1
2

5
36 +

√
15
24

2
9

5
36 −

√
15
24

1
2 +

√
15
10

5
36 +

√
15
30

2
9 +

√
15
15

5
36

5
18

4
9

5
18

−5
6

8
3 −5

6 .

.

Now we will do the same procedure for Radau methods. Radau methods are of 2s− 1 order
hence we obtain pair of order (2s-1, s-1). Radau IA methods of orders (3,1) and (5,2) are

0 1
4 −1

4

2
3

1
4

5
12

1
4

3
4

1 0

0 1
9

−1−
√
6

18
−1−

√
6

18

6−
√
6

10
1
9

88+7
√
6

360
88−43

√
6

360

6+
√
6

10
1
9

88+43
√
6

360
88−7

√
6

360

1
9

16+
√
6

36
16−
√
6

36

−1 1 + 7
√
6

13 1− 7
√
6

13

.
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and Radau IIA methods of orders (3,1) and (5,2) are

1
3

5
12

−1
12

1 3
4

1
4

3
4

1
4

3
2 −1

2

4−
√
6

10
88−7

√
6

360
296−169

√
6

1800
−2+3

√
6

225

4+
√
6

10
296+169

√
6

1800
88+7

√
6

360
−2−3

√
6

225

1 16−
√
6

36
16+
√
6

36
1
9

16−
√
6

36
16+
√
6

36
1
9

1− 7
√
6

12 1 + 7
√
6

12 −1

.
Since the Lobatto methods have order 2s-2, the pair of embedded methods for s = 2 is of

order (2,1) and for s = 3 (4,2). These Lobbato IIIA methods are

0 0 0

1 1
2

1
2

1
2

1
2

1 0

0 0 0 0

1
2

5
24

1
3 − 1

24

1 1
6

2
3

1
6

1
6

2
3

1
6

−1
2 2 −1

2

There is no 2-stage Lobatto IIIB method thus also embedded methods with 2 stages does not
exist. So, we introduce only one method (4,2)

0 1
6 −1

6 0

1
2

1
6

1
3 0

1 1
6

5
6 0

1
6

2
3

1
6

−1
2 2 −1

2

.

In case of Lobatto IIIC the embedded method for two and three stages of order (2,1) and
(4,2) are following:

0 1
2 −1

2

1 1
2

1
2

1
2

1
2

1 0

0 1
6 −1

3
1
6

1
2

1
6

5
12 − 1

12

1 1
6

2
3

1
6

1
6

2
3

1
6

−1
2 2 −1

2

.

There are not so many suitable pairs of methods. Only 2-stage Lobbato IIIA and Lobbatto
IIIC have desirable pair of order (p, p− 1). In other cases the error estimation would be larger
and the step size smaller.

Hairer’s Embedded Method

Professor E. Hairer is author of code RADAU5 which is based on fifth order Radau IIA method
with three stages. To established the error estimation he embedded method with four stages
with explicit first stage
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c0 = 0 0 0

c 0 A

b̂0 b̂T

where b̂0 6= 0. Then ŷn+1 is computed as

ŷn+1 = yn + h

(
b̂0f(tn, yn) +

3∑
i=1

b̂iki

)

and the difference is taken as error estimation

est = ŷn+1 − yn+1 = b̂0hf(tn, yn) +
3∑
i=1

eiki (3.17)

where ei = (b̂i−bi) and then e =
(
−2−3

√
6

6 b̂0,
−2+3

√
6

6 b̂0,−1
3 b̂0

)
. E. Hairer recomended (and used

in his code) to take b̂0 as the real eigenvalue of the matrix A [22]. But it is not only posibility,
Jacques J.B. de Swart and Gustaf Soderlind in [11] used b̂0 = 0.02.

If we assume problem y′ = λy then for hλ → ∞ the error estimation (3.17) behaves like
est ≈ b̂0hλyn, which is unbounded and therefore not suitable for stiff equations. L. F. Shampine
proposed in [32] to take error estimation as

est =
(
I − hb̂0J

)−1
(ŷn − yn),

where J is the same Jacobian as in Newton method (3.12).

Step Size Selection

As in case of explicit embedded methods with error estimation we can control the step size using
(2.67). But in case of stiff equation this can lead to many rejected steps. Since solving of the
stiff problems often required a rapid decrease of step size, the new step size selection strategies
have been introduced.

K. Gustafson in [19] presented predictive controller. Where the new step size depend on two
previous steps and on two previous error estimations:

hnew = θhn

(
1

‖errn+1‖

) 1
4

· hn
hn−1

( ‖errn‖
‖errn+1‖

) 1
4

, (3.18)

where ‖err‖ is defined the same way as in (2.66).

3.5 Numerical Testing of Implicit Embedded Methods

In this section the results of testing the implicit embedded methods from previous section will be
presented. The embedded methods with same numbers of stages are referred as name of output
and the Hairer’s estimation is named Radau 5(3). All methods were implemented in MATLAB
with step size controlled by (3.18) and as local extrapolation methods (ImplicitEmbeddedMeth-
ods.m). The tolerances was taken as Atol = 1e− 6 and Rtol = 1e− 3. The implicit embedded
methods were also compared to explicit methods. There is no function based on implicit RK
method in software MATLAB hence the comparison is only between methods implemented in
this work.
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Problem 1

The first testing problem is linear equation with non-constant coefficients

y′ =− 2000(y − cos(t)), t ∈ [0, 5],

y0 =1
(3.19)

with exact solution

y(t) =
e−2000t + 2000 sin(t) + 4000000 cos(t)

4000001
.

In Table 3.1 we see the number of accepted and rejected steps for fifth order methods -
explicit Dormand–Prince method, 3-stage Radau IA method and Radau IIA method with both
error estimating strategies. The DP54 method needed to preform 3232 steps all implicit methods
under 60. Thus we have no doubts that problem is stiff. As was assumed the number of steps
in case of embedded methods with same stages (the estimation method has order 2) is bigger
than in the case of Radau 5(3).

DP54 Radau IA Radau IIA Radau 5(3)

No. of accepted steps 3232 59 48 16

No. of rejected steps 4 6 4 0

Maximal error 6.7849e-07 2.1939e-04 1.1526e-07 2.1967e-05

Table 3.1: Comparison of fifth order methods for Problem 1 (3.5)

The comparison of fourth order method is presented in Table 3.2. The explicit method again
preformed much more steps. The Lobatto IIIA and 2-stage Gauss method did almost the same
number of steps. On the other hand Lobatto IIIC method computed solution within 16 steps.

RKF45 Lobatto IIIA Lobatto IIIC Gauss

No. of accepted steps 9558 48 16 49

No. of rejected steps 518 5 0 10

Maximal error 4.7091e-06 6.2811e-07 1.3048e-04 6.8026e-06

Table 3.2: Comparison of fourth order methods for Problem 2 (3.5)

In the Figure 3.1 the errors of solution and estimated errors are presented. From that we
see that Gauss methods definitely over-estimated the error for this problem as the Radau IIA
methods and Lobatto IIIA methods. On contrary Lobatto IIIC methods estimated the error
quite well. The embedded Lobatto methods are of order 2(1) in case of 2-stage and 4(2) for
3-stage methods. The difference between order is not big. Lobatto IIIC are, in addition to
this, stiffly accurate method, therefore they are suitable for treating stiff problems. Thus the
presented Lobatto IIIC method seems like a good option to variable step size solver for stiff
problems.
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Figure 3.1: The error of solution and the estimated error for Problem 1 (3.5)

Problem 2

The second problem is non-linear system

y1 =− (µ+ 2)y1 + µy22

y2 =y1 − y2 − y22, t ∈ [0, 10]

y0 =

1

1

 (3.20)
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with exact solution independent of stiffness parameter µ

y1(t) =e−2t

y2(t) =e−t.

Table 3.3 shows again number of accepted and rejected steps and maximal error in both
components of solution for fifth order methods. The explicit performed much more steps. The
same behaviour of explicit method is observed in case of fourth order methods, Table 3.4. Thus
we easily see that the explicit method are not suitable for stiff problems.

Figures 3.2 and 3.3 shows the error and estimated error of solution in both components.
Among the implicit fifth order method the best estimation provided the Radau 5(3) method
and Lobatto IIIC was the best among the four order methods, as in previous problem.
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Figure 3.2: The error of solution and the estimated error for problem (3.20)
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DP54 Radau IA Radau IIA Radau 5(3)

No. of accepted steps 15396 113 73 18

No. of rejected steps 1016 2 0 0

Maximal error 7.5206e-07 2.2664e-05 1.6585e-08 8.7101e-07

Maximal error 1.5038e-10 4.5238e-09 2.0500e-10 7.1822e-07

Table 3.3: Comparison of fifth order methods for problem (3.20) with µ = 5000
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Figure 3.3: The error of solution and the estimated error for problem (3.20)
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RKF45 Lobatto IIIA Lobatto IIIC Gauss

No. of accepted steps 16337 144 57 87

No. of rejected steps 2013 0 0 22

Maximal error 1.4429e-04 1.3325e-07 1.2388e-06 1.1199e-06

Maximal error 1.4394e-04 1.8065e-08 1.8965e-07 2.2373e-10

Table 3.4: Comparison of fourth order methods for problem (3.20) with µ = 5000

3.6 Diagonally Implicit Methods

The fully implicit method are very useful for treating stiff equations but they require solving
the system of ms implicit equations at each time step. To decrease the cost methods with
lower triangular matrix A were established. Some authors called them ’semi-explicit’ or ’semi-
implicit’. In this work are referred as diagonally implicit method (DIRK). Unfortunately some
authors used this term only for methods which have all the diagonal elements equal.

The advantage of DIRK method is that we can solve the system of non-linear equations
sequentially rather than as one great implicit system. The earliest method of DIRK type were
implicit Euler method and implicit midpoint rule. Those are quite ’trivial’ DIRK method. As
example of the two methods with nice coefficients are presented (more of them can be found
in [23])

1
3

1
3

1 3
4

1
4

3
4

1
4

1 1

1
3 − 1

12
5
12

1 0 3
4

1
4

0 3
4

1
4

.

Butcher’s two stage Radau I or three stage Lobatto method are examples of first EDIRK
methods - diagonal methods with one explicit stage. Hence the number of equation, which needs
to be solved, reduces. If in addition the method is stiffly accurate, i.e. have FSAL property, then
the value last stage can be used in next step as first one. Such method constructed M. Crouziex:

0 0

2 1 1

1 5
12 − 1

12
2
3

1
2

5
24 0 − 1

24
1
3

1 1
6 0 − 5

12
2
3

7
12

1
6 0 − 5

12
2
3

7
12

.

SDIRK

Singly diagonal implicit RK methods have all the diagonal elements of matrix A equal. They be-
come very popular for treating the stiff equations. For this reason, they were usually constructed
to have desirable properties – A-stability, L-stability or be stiffly accurate.
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There is only one 1-stage method, the implicit Euler method, which is first order and well-
known A-stable method. M. Crouzeix determined all 2-stage third order and 3-stage fourth
order DIRK methods. There is exactly one A-stable method in each group and both are SDIRK
methods. The proof of that can be also found in [1]. The 2-stage third order formula has Butcher
tableau

1
2 + 1

2
√
3

1
2 + 1

2
√
3

0

1
2 − 1

2
√
3

−1
3

1
2 − 1

2
√
3

1
2

1
2

and the 3-stage fourth order has following one

1+α
2

1+α
2

1
2 −α

2
1+α
2

1−α
2 1 + α −(1 + 2α) 1+α

2

1
6α2 1− 1

3α2
1

6α2

,

where α = 2
cos( π

18
)√

3

R. Alexander in [1] presented stiffly accurate SDIRK methods. If we assume such a method
with 2 stages, we have Butcher tableau

c1 γ

c2 c2 − γ
b1 b2

and coefficients have to (2.35) satisfy order conditions

b1 + b2 = 1

b1γ + b2c2 =
1

2

to be second order. There are infinitely many solutions b1 = 2c2−1
2(c2−γ) , b2 = 1−2γ

2(c2−γ) . For choice

γ ≥ 1
4 is the method A-stable and if γ = 2±

√
2

2 the method is also L-stable. For c2 = 1 the
method has following Butcher tableau

2−
√
2

2
2−
√
2

2 0

1 −
√
2
2

2−
√
2

2

−
√
2
2

2−
√
2

2

.

Popular method is L-stable stiffly accurate SDIRK method with embedded method con-
structed by J. R. Cash. The construction of this method and some implementation issues are
shown in [22]
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25
1
4

1
2

371
1360 − 137

2720
15
544

1
4

1 25
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16 −85
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1
4
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24 −49

48
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16 −85
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1
4

59
48 −17

96
225
32 −85

12 0

.

ESDIRK

The last presented subgroup of DIRK methods is SDRIK methods with explicit first stage. We
already mentioned that the first explicit stage decrease the number of equations which are need
to solve. ESDIRK methods can have the stage order 2 whereas SDIRK method have stage order
only 1.

As example present fourth order method with seven stages:

0 0

1
2

1
6

1
6
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1
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1
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6

1 11
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3
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and embedded method 3(2)

0 0

9
20

9
40

9
40

4
5

19
72

14
45

9
40

1 3337
11520

233
720

207
1280

9
40

1 7415
34776

9920
30429

4845
9016 − 5827

19320
9
40

7415
34776

9920
30429

4845
9016 − 5827

19320
9
40

23705
104328

29720
91287

4225
9016 − 69304987

337732920
42843
233080

.

In [25] are constructed embedded pairs of methods 3(2), 4(3) and 5(4), where both methods
are stiffly accurate. As example, the method 3(2) is given by Butcher tableau
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0 0

2γ γ γ

1 −γ2+6γ−1
4γ

−2γ+1
4γ γ

1 6γ−1
12γ

−1
(24γ−12)γ

−6γ2+6γ−1
6γ−3 γ

−γ2+6γ−1
4γ

−2γ+1
4γ γ 0

6γ−1
12γ

−1
(24γ−12)γ

−6γ2+6γ−1
6γ−3 γ

where γ is set according to output. For first output γ = 0.2928932188 and for the second one
γ = 0.435866521.
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4 | Stability

The last chapter deals with important property of numerical methods - stability. Actually, it is
better to say important properties. There are more kinds of stability. A-stability was introduced
as first.

4.1 A-Stability

The concept of A-stability was introduced by Dahlquist and originally it was considered for
multi-step methods.

We assume linear test problem

y′ = λy

y(0) = 1
(4.1)

where λ ∈ C and Re(λ) < 0. Its exact solution is

y(t) = eλt

and it approaches zero as t → ∞. Naturally we want the numerical solution also exhibits this
behaviour

yn → 0 as n→∞ (4.2)

which we call stability condition.
If we apply a RK method to test equation (4.1) we obtain

yn+1 = R(λh)yn

where function R(z) is determined by coefficients aij , bi, and by induction

yn+1 = (R(λh))ny0.

Then the stability condition (4.2) is equivalent to |R(λh)| < 1.

Definiton 4.1. The function R(z) is called the stability function of the method. It can be
interpreted as the numerical solution after one step for (4.1) with z = hλ.

In the next we need to define the stability domain.

Definiton 4.2. The set

S = {z ∈ C : |R(z)| ≤ 1}
is called the stability domain of the method.

Finally we can define the A-stability.

Definiton 4.3. A method, whose stability domain satisfies

S ⊃ C− = {z : Re(z) ≤ 0}
is called A-stable.
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Explicit Runge–Kutta Methods

Now we examine the stability of explicit RK methods. We can start with the simplest RK
method, explicit Euler method. If we applied it to (4.1), we obtain

R(z) = 1 + z

and from Definition 4.2 follows R(z) = 1 + z ≤ 1 thus the stability domain is inside the unit
circle with center at [−1, 0].

If we assume 4 stage RK method applied to test problem (4.1), we obtain

k1 = λyn

k2 = λ(yn + a21hk1)

k3 = λ(yn + a31hk1 + a32hk2)

k4 = λ(yn + a41hk1 + a42hk2 + a43hk3)

yn+1 = yn + h(b1k1 + b2k2 + b3k3 + b4k4)

If we plug stages ki into output yn+1, multiply and put together terms with same power of (λh)
we get

yn+1 = (a21a32a43b4(hλ)4 + (a21a32b3 + a21a42b4 + a31a43b4 + a32a43b4) (hλ)3

+ (a21b2 + a31b3 + a32b3 + a41b4 + a42b4 + a43b4) (hλ)2 + (b1 + b2 + b3 + b4)hλ+ 1)yn

Now we apply order conditions, namely relations (2.36a), (2.36b), (2.36d), (2.36h) and condition
(1.3) and we obtain stability function for RK method s = p = 4

R(z) = 1 + z +
1

2
z2 +

1

6
z3 +

1

24
z4.

The stability function for explicit methods is summarized in following theorem.

Theorem 4.1. If the explicit RK method is of order p, than its stability function is

R(z) = 1 + z +
1

2!
z2 + ...+

1

p!
zp +O(zp+1).

Proof. The exact solution of (4.1) is ez and therefore the numerical solution y1 = R(z) must
satisfy

ez −R(z) = O(hp+1) = O(zp+1).

The consequence of this theorem is that all methods with same order such that s = p have
the same stability function. The boundaries of stability domain are shown in Figure 4.1.

As examples of RK methods with more stages we present Runge-Kuta-Fehlberg 4(5) method
of order 4, mentioned in Section 2.8, with stability function

R(z) =
z5

104
+
z4

24
+
z3

6
+
z2

2
+ z + 1.

In the same section mentioned, Dormand-Prince 5(4) method, for which the RK method use for
computing solution is fifth order method:

R(z) =
z6

600
+

z5

120
+
z4

24
+
z3

6
+
z2

2
+ z + 1
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and Runge-Kuta-Fehlberg 7(8), its Butcher tableau can be found in [17], of order 7

R(z) = − 65z11

1504935936
+

13z10

250822656
+

4453z9

1881169920
+

269z8

11612160
+

z7

5040

+
z6

720
+

z5

120
+
z4

24
+
z3

6
+
z2

2
+ z + 1

Stability regions of those methods can be found in Figure 4.1.
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Figure 4.1: Boundaries of stability domains for explicit methods (stable within boundaries)

As we can see, the stability domain is bigger as order of method increase. The explicit RK
methods are not A-stable. Therefore the step size is limited and the methods are unsuitable for
stiff problems.

Implicit Runge–Kutta Methods

For implicit methods we start with implicit Euler method. Applied to test problem (4.1),

yn+1 = yn + hλyn+1

hence its stability function is R(z) = 1
1−z and its stability domain is the outside of the unit cycle

with center at [1, 0].
If we assume general implicit RK method in form

gi = yn + h

s∑
j=1

aijf(tn + cjh, gj), i = 1, ...s

yn+1 = yn + h
s∑
j=1

bjf(tn + cjh, gj)

then if we apply it to the test problem (4.1), we get

g = yne + hλAg (4.3a)

yn+1 = yn + hλbT g, (4.3b)
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where g denotes the vector g = (g1, g2, ..., gs) and e = (1, 1, ..., 1)T is the s-dimensional vector of
all ones. From (4.3a) we have linear system with solution

g = (I− hλA)−1 yn,

where I denotes the unit matrix of dimension s. We plug it into (4.3b) and obtain

yn+1 = yn + hλbT (I− hλA)−1yn

then easily, the stability function is given by

R(z) = 1 + zbT (I− zA)−1e. (4.4)

Propositon 4.2. The stability function (4.4) satisfies

R(z) =
det(I− zA + zebT )

det(I− zA)
. (4.5)

Proof. See [22].

The stability function of a RK method can be written as the ratio of two polynomials

R(z) =
N(z)

D(z)
,

and if we define the E-polynomial as

E(y) = D(iy)D(−iy)−N(iy)N(−iy)

then we can use another criterion for A-stability.

Theorem 4.3. A Runge–Kutta method with stability function R(z) = N(z)
D(z) is A-stable if and

only if

1. all poles of R are in the real positive half-plane and

2. E(y) ≤ 0, for all real y.

Proof. See [7].

All Gauss, Radau IA, Radau IIA, Lobatto IIIA, Lobatto IIIB and Lobatto IIIC methods are
A-stable [7, 22].

For DIRK methods, from (4.5) the stability function become

R(z) =
P (z)

(1− a11z)(1− a22z)...(1− assz)
(4.6)

because the determinant of a triangular matrix is the product of its diagonal entries. The
numerator P (z) is a polynomial of degree s at most.

The stability function of SDIRK methods is

R(z) =
P (z)

(1− γz)s . (4.7)

It can be found bounds on γ for which the method is A-stable [23]. In Table 4.1, we present
this bounds for methods up to four stages.
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s p A-stable

2 2 1
4 ≤ γ ≤ ∞

2 3 γ = 3+
√
3

6

3 3 1
3 ≤ 1.068579021

3 4 γ = 1.068579021

4 4 0.39433756 ≤ γ ≤ 1.28057976

4 5 –

Table 4.1: Bounds on γ for SDIRK methods

4.2 L-Stability

The A-stability is not enough for solving stiff equations. It is demanded L-stability, which is
sometimes called strong A-stability or stiff A-stability.

Definiton 4.4. A method is called L-stable if it is A-stable and if in addition

limz→∞R(z) = 0.

Some of the L-stable method can be identified by the following theorem.

Theorem 4.4. If and implicit Runge-Kutta method with non-singular A satisfies one of the
following conditions:

asj = bj , j = 1, ..., s, (4.8)

ai1 = b1, i = 1, ...s, (4.9)

then R(∞) = 0. This makes A-stable methods L-stable.

Proof. By (4.4)

R(∞) = 1− bTA−1e,

where e = (1, 1, ..., 1)T . The condition (4.8) can be written as ATes, es = (0, ..., 0, 1)T . Therefore
R(∞) = 1− eTs e = 1− 1 = 0.

The condition (4.9) means that ATe1 = eb1. Therefore R(∞) = 1−bTA−1Ae1
1
b1

= 1−1 =
0.

Methods satisfying (4.8) are called stiffly accurate and they important for solution of singu-
larly perturbed problems and differential-algebraic equations. According to the above theorem,
the L-stable fully implicit methods are Radau IA, Radau IIA and Lobattto IIIC methods.
Among the diagonal RK methods, as we already mentioned, the 2-stage second order method
and embedded method with 5 stages are L-stable.
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Conclusion

The goals of this thesis were to give the overview of Runge–Kutta methods, to derive order con-
ditions, to introduce methods suitable for adaptive step size strategy and test them and also to
discus the stability of methods. In the first chapter, the Runge–Kutta methods were introduced
and divided into groups according to the structure of matrix A from the Butcher tableau. As
first, the analysis of Euler method, the oldest numerical method for solving differential equation,
was done. There is also defined stiff problem.

The second chapter deals with explicit Runge–Kutta methods. The analysis of the explicit
Euler method is done. The way to improve it was sketched and the order conditions for the
second and third order are derived from the Taylor expansion. In the Section 2.3, the theory of
rooted trees is introduced for application to order conditions of Runge–Kutta methods. Then
the methods of fourth order are derived. It is mentioned the highest possible order for which
s = p is four. To obtain more accurate methods we need more stages.

In Section 2.6, the modified Runge–Kutta based on the various kinds of means are presented.
Namely, geometrical, harmonic, contra-harmonic, heronian, centroidal, square root and arith-
metic means. The last one is the classical 4-stage Runge–Kutta methods. All those methods are
referred as fourth order methods. The analysis of order was done for methods based on contra-
harmonic and centroidal mean and unfortunately, different results were obtained. It turned out
that the methods are fourth order only for scalar autonomous equation. In any other case they
are only second order.

To confirm the theoretical results, all modified methods were tested numerically on four prob-
lems – autonomous and non-autonomous scalar equations, autonomous and non-autonomous
systems. In case of autonomous scalar equations, all methods performed solution with similar
global errors. The numerical order was determined to be four. For non-autonomous equation
and systems, all methods, except the one based on arithmetic mean, performed second order
behaviour. In Problem 3, the interesting phenomenon occurred. The jumps in the approximated
solution appeared around point, where the derivative of solution is zero. This rapid increase of
error in solution can be explained by the division two numbers close to zero. This is probably the
reason why was impossible to determine the numerical order. The contraction of step sometimes
caused the bigger global error. Therefore the modified Runge–Kutta methods are unsuitable for
the most problems.

As the next, two approaches of error estimation were presented. Today the embedded meth-
ods are classical way how to approximate the local error for the step size selection. They combine
two methods with same stages but have different coefficients bi, i = 1, ..., s. The difference of
outputs is used as error estimation. As alternative, the strategy of combination of two methods
of same order was presented. This approach combines the method based on arithmetic mean
and any other mean. In this thesis were discussed combination with methods based on contra-
harmonic and centroidal mean. In the light of previous results of this work, the error estimation
provided by authors of methods is justified only for autonomous scalar problem. In other cases,
we use the classical estimation, difference of the outputs. The local error is overestimated,
mainly around points where the derivative of solution is zero.
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The third chapter presents implicit Runge–Kutta methods. First, the collocation methods
are derived. Then the fully implicit methods are derived with the help of Butcher’s simplifying
assumptions B(p), C(q) and D(r). Methods based on Gauss, Radau and Lobatto quadrature
formulas are presented. The embedded methods with same number of stages were derived. As
alternative, the Hairer’s embedded method was presented. He embedded four stage method
into Radau IIA method with three stages. Then the methods were compared on two test
problems. Methods with same number of stages mainly overestimated the error. The exception
was Lobatto IIIC pair of method with orders (2,1) and (4,2). The 3-stage methods performed
results comparable with Hairer’s method. In the end of the third chapter, the diagonally implicit
methods were presented.

The fourth chapter discuses the stability. It is shown that the explicit methods have small
domain of stability, therefore the restriction to length of time step is applied and they are not
suitable for stiff problems. On the other hand, the fully implicit methods as Gauss, Radau IA
and IIA and Lobatto III A, B, C, are A-stable although it is not enough. Therefore, the concept
of L-stability is presented.

This work could be extended in many ways. As diagonal methods have big potential to solv-
ing the stiff systems, the deeper theoretical research could be presented as well as the numerical
experiments. Then method derived from Runge–Kutta methods, as implicit-explicit scheme,
could be presented. More kinds of stability could be discussed, for example, the concepts for
non-linear problems as AN-stability or B-stability. Other option is S-stability which is required
for strongly stiff problems as singularly perturbed problems and differential-algebraic equations.
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Electronic Appendix Index

• ComparisonModifiedMethod.m – script for numerical experiments in Section 2.7

• ExplicitEmbeddedMethods.m – script for numerical experiments in Section 2.10

• ImplicitEmbeddedMethods.m – script for numerical experiments in Section 3.5

• ascontroler.m – function, returns solution obtained by chosen explicit embedded method

• ButcherTableauE.m – function, returns extended Butcher tableau for explicit embedded
methods

• ButcherTableauI.m – function, returns extended Butcher tableau for implicit embedded
methods

• EmIRK.m – function, returns solution obtained by chosen implicit embedded method

• jacobian.m – function, returns Jacobian fy(t, y)

• modifiedRK.m – function, returns solution obtained by chosen modified method with con-
stant step size

• RadauIIA53.m – function, returns solution obtained by Hairer’s embedded method

• RKAMCeMstep.m – function, returns one step of solution obtained by RKACeM method

• RKAMCoMstep.m – function, returns one step of solution obtained by RKACoM method

• RKstep.m – function, returns one step of solution obtained explicit embedded method
without FSAL property

• RKstepFSAL.m – function, returns one step of solution obtained explicit embedded method
with FSAL property

• startingstepsize.m – function, returns starting stepsize

• testproblems.m – function, returns input data and exact solution of test problems
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