
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

Fakulta elektrotechniky
a komunikačních technologií

DIPLOMOVÁ PRÁCE

Brno, 2017 Bc. Roman Mravec



VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA ELEKTROTECHNIKY
A KOMUNIKAČNÍCH TECHNOLOGIÍ
FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION

ÚSTAV TELEKOMUNIKACÍ
DEPARTMENT OF TELECOMMUNICATIONS

ELEKTRONICKÉ DOKLADY
ELECTRONIC ID CARDS

DIPLOMOVÁ PRÁCE
MASTER'S THESIS

AUTOR PRÁCE
AUTHOR

Bc. Roman Mravec

VEDOUCÍ PRÁCE
SUPERVISOR

doc. Ing. Jan Hajný, Ph.D.

BRNO 2017



Fakulta elektrotechniky a komunikačních technologií, Vysoké učení technické v Brně / Technická 3058/10 / 616 00 / Brno

Diplomová práce
magisterský navazující studijní obor Telekomunikační a informační technika

Ústav telekomunikací
Student: Bc. Roman Mravec ID: 146064
Ročník: 2 Akademický rok: 2016/17

NÁZEV TÉMATU:

Elektronické doklady

POKYNY PRO VYPRACOVÁNÍ:

Cílem projektu je implementace vybraných kryptografických protokolů pro elektronické doklady na platformě
čipových karet.  Výstupem práce bude měření  rychlosti  kryptografických primitiv  na kartách a implementace
jednoduchého protokolu pro autentizaci založeného na eliptických křivkách na platformě MultOS. Výstupem bude
software pro kartu MultOS a aplikace ověřovacího terminálu na libovolné platformě (OS Windows, Linux).

DOPORUČENÁ LITERATURA:

[1] MENEZES, Alfred, Paul C. VAN OORSCHOT a Scott A. VANSTONE. Handbook of applied cryptography.
Boca Raton: CRC Press, c1997. Discrete mathematics and its applications. ISBN 0-8493-8523-7.

[2] Identity Mixer [online]. Zurich, 2016 [cit. 2016-09-12]. Dostupné z:
http://www.research.ibm.com/labs/zurich/idemix/

[3] MULTOS Developer's Reference Manual [online]. , 1 - 334 [cit. 2017-02-08]. Dostupné z:
https://www.multos.com/uploads/MDRM.pdf

Termín zadání: 1.2.2017 Termín odevzdání: 24.5.2017

Vedoucí práce:     doc. Ing. Jan Hajný, Ph.D.
Konzultant:     

 doc. Ing. Jiří Mišurec, CSc.
předseda oborové rady

UPOZORNĚNÍ:
Autor diplomové práce nesmí při  vytváření diplomové práce porušit  autorská práva třetích osob, zejména nesmí zasahovat nedovoleným
způsobem do cizích autorských práv osobnostních a musí si být plně vědom následků porušení ustanovení § 11 a následujících autorského
zákona č. 121/2000 Sb., včetně možných trestněprávních důsledků vyplývajících z ustanovení části druhé, hlavy VI. díl 4 Trestního zákoníku
č.40/2009 Sb.



ABSTRACT
This master thesis deals with an implementation of Diffie-Hellman protocol on smart
card which is based on MULTOS OS. Defines the smart cards based on MULTOS OS
and their usage. Output of this thesis are applications for a smart card and for a client
using Diffie-Hellman protocol for establishing of a secret key between two communication
sides through unsecured communication channel.

KEYWORDS
Elecronic ID cards, smart cards, Asymmetric cryptography, Elliptic curves, Diffie-
Hellman, MULTOS, SmartDeck

ABSTRAKT
Diplomová práca sa venuje implementácii protokolu Diffie-Hellman na smart karte beži-
acej na operačnom systéme MULTOS. Definuje smart karty a ich použitie. Výstupom
práce sú dve aplikácie, jedna pre kartu a druhú pre klienta na obsluhu karty. Tieto apliká-
cie sú založené na protokole Diffie-Hellman, ktorý slúži k ustanoveniu tajného spoločného
kľúča pri komunikácii medzi dvomi stranami cez nezabezpečený komunikačný kanál..

KLÍČOVÁ SLOVA
Elektronické doklady, Smart karty, Asymetrická kryptografie, Eliptické křivky, Diffie-
Hellman, MULTOS, SmartDeck

MRAVEC, Roman Electronic ID cards: master’s thesis. Brno: Brno University of Tech-
nology, Faculty of Electrical Engineering and Communication, Department of Telecom-
munications, 2017. 47 p. Supervised by doc. Jan Hajný, Ph.D.



DECLARATION

I declare that I have written my master’s thesis on the theme of “Electronic ID cards”
independently, under the guidance of the master’s thesis supervisor and using the tech-
nical literature and other sources of information which are all quoted in the thesis and
detailed in the list of literature at the end of the thesis.

As the author of the master’s thesis I furthermore declare that, as regards the creation
of this master’s thesis, I have not infringed any copyright. In particular, I have not
unlawfully encroached on anyone’s personal and/or ownership rights and I am fully aware
of the consequences in the case of breaking Regulation S 11 and the following of the
Copyright Act No 121/2000 Sb., and of the rights related to intellectual property right
and changes in some Acts (Intellectual Property Act) and formulated in later regulations,
inclusive of the possible consequences resulting from the provisions of Criminal Act
No 40/2009 Sb., Section 2, Head VI, Part 4.

Brno . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
author’s signature



ACKNOWLEDGEMENT

I would like to thank for professional guidance, consultations, dedication and suggestive
proposals to doc. Ing. Jan Hajný, Ph.D. and Ing. Petr Dzurenda. Special thanks belongs
to my friends BEng. Andrej Maris and Ing. Peter Mendel for consulting the problematic
of smart cards and my parents for a support.

Brno . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
author’s signature



ACKNOWLEDGEMENT

Research described in this master’s thesis has been implemented in the laboratories
supported byt the SIX project; reg. no. CZ.1.05/2.1.00/03.0072, operational program
Výzkum a vývoj pro inovace.

Brno . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
author’s signature

Faculty of Electrical Engineering
and Communication
Brno University of Technology
Purkynova 118, CZ-61200 Brno
Czech Republic

http://www.six.feec.vutbr.cz

http://www.six.feec.vutbr.cz


CONTENTS

Introduction 11

1 Cryptography 12
1.1 Asymmetric cryptography . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2 Elliptic curve cryptography . . . . . . . . . . . . . . . . . . . . . . . 14
1.3 Diffie-Hellman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3.1 Establishment of a key using Diffie-Hellman protocol . . . . . 17
1.3.2 Discrete logarithm problem . . . . . . . . . . . . . . . . . . . 18

2 Electronic ID cards 19
2.1 Smart cards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1.1 Anatomy of Smart Cards with chip . . . . . . . . . . . . . . . 21
2.1.2 ISO 7816 standard . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1.3 Smartcard with MULTOS OS . . . . . . . . . . . . . . . . . . 22

3 MULTOS 26
3.1 Memory structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.1 Code space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1.2 Data space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 SmartDeck . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.1 SmartDeck components . . . . . . . . . . . . . . . . . . . . . . 30
3.2.2 MUtil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Practical results 33
4.1 Card application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1.1 Parameters of elliptic curve . . . . . . . . . . . . . . . . . . . 34
4.1.2 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.1.3 Supported primitives . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Client application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2.1 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3 Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.4 Problems and issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5 Conclusion 40

Bibliography 41

List of symbols, physical constants and abbreviations 43



List of appendices 44

A Attachments 45

B Contain of attached CD 47



LIST OF FIGURES
1.1 Asymmetric cryptography principle . . . . . . . . . . . . . . . . . . . 14
1.2 Points on eliptic curve . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3 Diffie-Hellman algorithm principle . . . . . . . . . . . . . . . . . . . . 16
2.1 An illustration of ISO/IEC 7810 card in ID-1 format. . . . . . . . . . 19
2.2 Communication between a chip card and card reader . . . . . . . . . 20
2.3 A cross sectional view of the structure and packaging of a smart card

chip. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4 A chip card[6] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5 A structure of smart card[6] . . . . . . . . . . . . . . . . . . . . . . . 23
2.6 CAPDU structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.7 RAPDU structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1 Application code space[6] . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Application data space[6] . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 A feature of Mutil for loading the applications on the smart card . . . 32
3.4 A feature of Mutil for loading the applications on the smart card . . . 32
4.1 The smart card UBM21-Z48 and the terminal. . . . . . . . . . . . . . 33
4.2 Diffie-Hellman operation scheme . . . . . . . . . . . . . . . . . . . . . 34
4.3 Output of the client application . . . . . . . . . . . . . . . . . . . . . 37



LIST OF TABLES
2.1 MULTOS status words with a description . . . . . . . . . . . . . . . 25
3.1 The supported formats used by MULTOS . . . . . . . . . . . . . . . 31



INTRODUCTION
From the beginning of the century, people are using cards every day – for paying,
withdrawing money, proving an identity and eligibility, compensating a key and so
on. Naturally, since the cards are carrying more and more significant data, the
priority is imposed for security. The main aim of manufacturers of the cards is clear
– to keep the contain of the cards genuine and trusted.

Nowadays, when the trend of digitalization affects a wide spectrum of a life,
it is absolutely a standard to pay with credit cards, to use keyless cards and tags
to enter into a room or to record arrivals at work. Since the electronic signature
has been established, a new doors for digital revolution are open. Typically, to
sign the documents with electronic signature and prove an identity, the vision of
usage of electronic personal identification documents such as ID cards is aroused.
There are many other ideas how to use authentication of a person during using
an electronic documents such as keyless opening of a car with NFC1 (Near Field
Communication) or BLE2 (Bluetooth Low Energy)technology, to use a health card
with medical records data. Generally, to use electronic documents it means to load
a specific information onto a card (or similar, portable and energetically efficient
wireless device). To keep those information in safe and trusted, the electronic ID
cards must be effectively secured. This master thesis solves this problematic of
electronic ID cards ID card (Identification Card) and brings the solution how to
implement cryptographic protocol while using such a card.

1NFC is a technology and a set of communication protocols that enable two electronic devices,
one of which is usually a portable device such as a smartphone, to establish a wireless communi-
cation by bringing them within 4 cm of each other.

2BLE is a wireless personal area network technology designed and marketed by the Bluetooth
Special Interest Group. Compared to Classic Bluetooth, Bluetooth Smart is intended to provide
considerably reduced power consumption and cost while maintaining a similar communication
range.

11



1 CRYPTOGRAPHY
Cryptography is the study of mathematical techniques related to aspects of in-
formation security such as confidentiality, data integrity, entity authentication, and
data origin authentication. Cryptography is not the only means of providing infor-
mation security, but rather one set of techniques. Cryptography as a discipline has
very obvious targets:

1. Confidentiality is a service used to keep the content of information from all
but those authorized to have it. There are numerous approaches to providing
confidentiality, ranging from physical protection to mathematical algorithms
which render data unintelligible.

2. Data integrity is a service which addresses the unauthorized alteration of data.
To assure data integrity, there must be the ability to detect data manipulation
by unauthorized parties. Data manipulation includes such things as insertion,
deletion, and substitution.

3. Authentication is a service related to identification. This function applies to
both entities and information itself. Two parties entering into a communication
should identify each other. Information delivered over a channel should be
authenticated as to origin, date of origin, data content, time sent, etc. For
these reasons this aspect of cryptography is usually subdivided into two major
classes: entity authentication and data origin authentication. Data origin
authentication implicitly provides data integrity (for if a message is modified,
the source has changed).

4. Non-repudiation is a service which prevents an entity from denying previous
commitments or actions. When disputes arise due to an entity denying that
certain actions were taken, a means to resolve the situation is necessary. For
example, one entity may authorize the purchase of property by another en-
tity and later deny such authorization was granted. A procedure involving a
trusted third party is needed to resolve the dispute.

Following the mentioned goals above, a major role of cryptography is to appropri-
ately address these four areas in both theory and practice. Cryptography is focused
on the prevention and detection of cheating and other malicious activities. To pro-
vide such services, it uses the cryptographic tools – primitives. Examples of such
primitives are: encryption schemes, hash functions, digital signature schemes, etc.
Parameters for consideration of a strength of cryptographic parameters and a rele-
vance of its usage in specific cases are:

• Level of security This is usually difficult to quantify. Often it is given in terms
of the number of operations required (using the best methods currently known)
to defeat the intended objective. Typically the level of security is defined by

12



an upper bound on the amount of work necessary to defeat the objective. This
is sometimes called the work factor.

• Functionality Primitives will need to be combined to meet various information
security objectives. Which primitives are most effective for a given objective
will be determined by the basic properties of the primitives.

• Methods of operation Primitives, when applied in various ways and with var-
ious inputs, will typically exhibit different characteristics; thus, one primitive
could provide very different functionality depending on its mode of operation
or usage.

• Performance This refers to the efficiency of a primitive in a particular mode of
operation (For example, an encryption algorithm may be rated by the number
of bits). per second which it can encrypt.

• Ease of implementation This refers to the difficulty of realizing the primitive in
a practical instantiation. This might include the complexity of implementing
the primitive in either a software or hardware environment.

An importance of these criteria depend on the application and mostly on available
resources, e.g. computing power. Cryptography is closely related to the disciplines
of cryptology and cryptanalysis. Cryptology is the discipline, such as number theory,
and the application of formulas and algorithms. Cryptanalysis refers to the study of
ciphers, ciphertext, or cryptosystems (that is, to secret code systems) with a view
to finding weaknesses in them that will permit retrieval of the plaintext from the
ciphertext, without necessarily knowing the key or the algorithm. This is known as
breaking the cipher, ciphertext, or cryptosystem. [1] [8]

1.1 Asymmetric cryptography
Asymmetric cryptography is based on asymmetric ciphers and uses one pair of
keys – public key of a receiver of a message for encryption and private key of a
receiver of a message for decryption, unlike symmetric cryptography, which is purely
based on one private key (for both encryption and decryption). The public key in
asymmetric cryptography can be given to anyone, trusted or not, while the private
key must be kept secret – just like the key in symmetric cryptography. The keys are
simply large numbers which that have been paired together, but are not identical
(they are asymmetric). Considering a complexity of these two different approaches
of cryptography, it is obvious symmetric cryptography is more simple and therefore
faster, but the risk of disclosure is much higher in comparison to two keys usage.

Asymmetric cryptography has two primary use cases: authentication and confi-
dentiality. Using asymmetric cryptography, messages can be signed with a private

13



key, and then anyone with the public key is able to verify that the message was cre-
ated by someone possessing the corresponding private key. This can be combined
with a proof of identity system to know what entity (person or group) actually owns
that private key, providing authentication. The most common asymmetric encryp-
tion algorithm is RSA. Asymmetric keys have typically length 1024 or 2048 bits.
However, keys smaller than 2048 bits are no longer considered safe to use. 2048-bit
keys have enough unique encryption codes that we won’t write out the number here
(it’s 617 digits). Though larger keys can be created, the increased computational
burden is so significant that keys larger than 2048 bits are rarely used. To put it
into perspective, it would take an average computer more than 14 billion years to
crack a 2048-bit certificate.

Fig. 1.1: Asymmetric cryptography principle

In asymmetric key encryption scheme (figure 1.1), anyone can encrypt messages
using the public key, but only the holder of the paired private key can decrypt.
Security depends on the secrecy (length) of the private key.
[2] [11] [12]

1.2 Elliptic curve cryptography
Elliptical curve cryptography is a public key encryption technique based on
elliptic curve theory that can be used to create faster, smaller, and more efficient
cryptographic keys. ECC generates keys through the properties of the elliptic curve

14



equation instead of the traditional method of generation as the product of very large
prime numbers. The technology can be used in conjunction with most public key en-
cryption methods, such as RSA and Diffie-Hellman. According to some researchers,
ECC can yield a level of security with a 164-bit key that other systems require a
1024-bit key to achieve. Because ECC helps to establish equivalent security with
lower computing power and battery resource usage, it is becoming widely used for
mobile applications.

Fig. 1.2: Points on eliptic curve

The properties and functions of elliptic curves have been studied in mathematics
for 150 years. Their use within cryptography was first proposed in 1985, (sepa-
rately) by Neal Koblitz from the University of Washington, and Victor Miller at
IBM. An elliptic curve is not an ellipse (oval shape), but is represented as a looping
line intersecting two axes (lines on a graph used to indicate the position of a point
as dispalyed in the figure 1.2). ECC is based on properties of a particular type of
equation created from the mathematical group (a set of values for which operations
can be performed on any two members of the group to produce a third member)
derived from points where the line intersects the axes. Multiplying a point on the
curve by a number will produce another point on the curve, but it is very difficult
to find what number was used, even if you know the original point and the result.
Equations based on elliptic curves have a characteristic that is very valuable for
cryptography purposes: they are relatively easy to perform, and extremely difficult
to reverse. This characteristics is therefore perfectly suitable for cryptographic al-
gorithm. The following section 1.3 introduces such an algorithm based on elliptic
curve cryptography.
[13]

15



1.3 Diffie-Hellman
Diffie-Hellman is the first asymmetric encryption algorithm (or protocol1), in-
vented in 1976, using discrete logarithms in a finite field. Allows two users to
exchange a secret key over an insecure medium without any prior secrets. This
process is in cryptography defined as conference keying. A conference keying is a
generalization of two-party key establishment2 to provide three or more parties with
a shared secret key. General requirements for conference keying include that distinct
groups recover distinct keys (session keys); that session keys are dynamic (except-
ing key pre-distribution schemes); that the information exchanged between parties
is non-secret and transferred over open channels; and that each party individually
computes the session key. An obvious method to establish a conference key K is to
arrange that each party share a unique symmetric key with a common trusted party.
Consequently the trusted party may choose a new random key and distribute it by
symmetric key transport individually to each member of the conference group.

Fig. 1.3: Diffie-Hellman algorithm principle

1A protocol is a multi-party algorithm, defined by a sequence of steps precisely specifying the
actions required of two or more parties in order to achieve a specified objective.

2Key establishment is a process or protocol whereby a shared secret becomes available to two
or more parties, for subsequent cryptographic use.

16



Diffie-Hellman (DH) is a widely used key exchange algorithm. In many crypto-
graphic protocols, two parties wish to begin communicating. However, let’s assume
they do not initially possess any common secret and thus cannot use secret key cryp-
tosystems. The key exchange by Diffie-Hellman protocol remedies this situation by
allowing the construction of a common secret key over an insecure communication
channel. It is based on a problem related to discrete logarithms, namely the Diffie-
Hellman problem. This problem is considered hard, and it is in some instances as
hard as the discrete logarithm problem. The Diffie-Hellman protocol is generally
considered to be secure when an appropriate mathematical group is used. In partic-
ular, the generator element used in the exponentiations should have a large period
(i.e. order). Usually, Diffie-Hellman is not implemented on hardware.

1.3.1 Establishment of a key using Diffie-Hellman protocol

The implementation of the protocol uses the multiplicative group of integers modulo
𝑝, where 𝑝 is prime, and 𝑔 is a base. Both of these parameters are non-secret. Let’s
have two communication parties, Alice and Bob:

1. At first, Alice and Bob establish a modulus p = 23 and base g = 5 (which is
a primitive root modulo 23).

2. Alice chooses a secret integer a = 6, then sends Bob A = 𝑔𝑎 mod p
• A = 56 mod 23 = 8

3. Bob chooses a secret integer b = 15, then sends Alice B = 𝑔𝑏 mod p
• B = 515 mod 23 = 19

4. Alice computes 𝐾𝐴 = 𝐵𝑎 mod p
• 𝐾𝐴 = 196 mod 23 = 2

5. Bob computes 𝐾𝐵 = 𝐴𝑏 mod p
• 𝐾𝐵 = 815 mod 23 = 2

6. If 𝐾𝐴 = 𝐾𝐵, then K was established.
Naturally, much larger values of 𝑎, 𝑏, and 𝑝 would be needed to make this example
secure, since there are only 23 possible results of n mod 23. However, if 𝑝 is a
prime of at least 600 digits, then even the fastest modern computers cannot find a
given only 𝑔, 𝑝 and 𝑔𝑎 mod 𝑝. Such a problem is called the discrete logarithm
problem. Nowadays, for modulo 𝑝 with length 2048 and more bits is not possible to
find an exponent in reasonable time, what enables to make Diffie-Hellman algorithm
trusted.

17



1.3.2 Discrete logarithm problem

A security of Diffie-Hellman protocol is based on a mathematical problem, which is
called Discrete logarithm problem:

The ordinary logarithm problem example – given a base 𝑏 and a number 𝑥, find
𝑦 such that 𝑏𝑦 = 𝑥. So, e.g., the logarithm to base 2 of 128 is 7. This is usually done
by calculating the logarithm of 𝑥 to base 10, and dividing that by the logarithm of
𝑏 to base 10.

It is possible to do this in modular arithmetic too. Assuming to know, for a
particular choice of 𝑛,𝑥,𝑏, that there is a 𝑦 such that 𝑏𝑦 = 𝑥 (mod 𝑛); then finding
that 𝑦 is the Discrete logarithm problem modulo 𝑛.

This will not be possible for all 𝑛,𝑥,𝑏, but (for instance) if 𝑛 is a prime number,
there is always a 𝑏 that makes the problem solvable for every 𝑥 other than 0.

The problem generalizes further. The integers modulo a prime number 𝑝 form a
finite field; there are other finite fields (exactly one of size 𝑝𝑘 for each prime 𝑝 and
positive integer 𝑘), and we can pose the same sort of problem in any of them. The
fields of size 2𝑘 are particularly nice to work with using computers.

The Discrete logarithm problem is useful in cryptography, for the following rea-
son: suppose 𝑛 is large; then given 𝑛,𝑏,𝑦 it is easy to find 𝑥, but no algorithm is
known that, given 𝑛,𝑏,𝑥, will efficiently find 𝑦. So the function that takes 𝑦 to 𝑥

seems to be a "one-way function", much like the one that takes two prime num-
bers and yields their product. One-way functions are an essential building block for
public-key cryptography. The difficulty of solving the discrete logarithm problem
is essential for the security of the Diffie Hellman key exchange protocol and the
ElGamal cryptosystem.
[3] [1] [14]

18



2 ELECTRONIC ID CARDS
Electronic ID cards as a form of personal identification documents are based on
an electronic identification solution of citizens or organizations, for example in view
to access benefits or services provided by government authorities, banks or other
companies. Apart from online authentication many electronic ID documents also
give users the option to sign electronic documents with a digital signature.

Electronic ID card is basically a physical identity card that can be used for on-
line and offline personal identification or authentication. The electronic ID card is
a smartcard in ID-1 format of a regular bank credit card, with identity informa-
tion printed on the surface (such as personal details and a photography) and in
an embedded RFID microchip or chip with contact pad. The format and physical
characteristics of identification cards:

• physical dimensions (85,60 × 53,98 mm; thickness of 0.76 mm),
• resistance to bending, flame, chemicals, temperature and humidity,
• toxicity,
• resistance to heat,

are defined by international standard ISO/IEC 7810.

Fig. 2.1: An illustration of ISO/IEC 7810 card in ID-1 format.

The chip stores the information printed on the card (e.g. the holder’s name and
date of birth) and the holder’s biometric photo. It may also store the holder’s finger-
prints. The card may be used for online authentication, such as for age verification
or for e-government applications. An electronic signature, provided by a private
company, may also be stored on the chip.

Electronic ID cards are sequentially provided by all governments in European
Union. Countries that have already accepted government issued electronic ID cards

19



are Belgium, Bulgaria, Estonia, Germany, Italy, Latvia, Lithuania, Luxembourg,
Malta, the Netherlands, Portugal, Romania, Slovakia, Spain.

2.1 Smart cards
Smart card is any electronic ID card that has embedded integrated circuits. De-
pending on technical solution of a card, smartcard is either contact or contactless.
There are several types of smart cards, these thesis is focused on those with chips.

Characteristics of smart cards

Every smart card consists of:
EEPROM – memory for storing applications and data; momery size is in kB
ROM – memory which contains OS running on a card; memory size is in kB
RAM – volatile memory used by microprocessor
CPU – processor of chip card; usual frequency in MHz

An advanced form of smart cards are multi application cards. Those cards sup-
port an option to load more application on a card and use them for more purposes.
There is OS running on such cards, which provides memory management, appli-
cation run, cryptographic functions and ensure a security. The most relevant and
used multi application platforms are JavaCard and MULTOS. This master thesis
deals with a card from UBM21-Z family and is developed by external company,
nonetheless is running on MULTOS OS.

Fig. 2.2: Communication between a chip card and card reader

Communication between user and chip card is resolved by IFD – terminal (reader)
for chip cards connected to PC. A part of IFD is also to power and control the com-
munication between user’s PC and card (figure 2.2).

20



2.1.1 Anatomy of Smart Cards with chip

Manufacture of smart card with chip consists of bringing layers from different ma-
terials properly together. Nowadays, the cards are made from PVC, Polyester or
Polycarbonate. The card layers are printed first and then laminated in a large press.
The next step in construction is the blanking or die cutting. This is followed by
embedding a chip and then adding data to the card. In all, there may be up to 30
steps in constructing a card. The total components, including software and plastics,
may be as many as 12 separate items; all this in a unified package that appears to
the user as a simple device.[7]

Fig. 2.3: A cross sectional view of the structure and packaging of a smart card chip.

2.1.2 ISO 7816 standard

co je ISO strucne Below are the most significant:

ISO 7816-1

Deals with physical physical characteristics of electronic ID cards, sets up limits
for x-ray or UV based beams, electromagnetic fields or temperature of surrounded
environment. Then determines parameters such as resistance against fold. This
paragraph of ISO 7816 standard is important mostly for developers of electronic ID
cards.

ISO 7816-2

Defines position, dimensions and functions of contacts on a chip. Electrical contacts
located on the surface of the card are connected to a card reader when the card is
inserted. This connector is bonded to the encapsulated chip in the card (picture 2.4).

Definition of Chip pinout:

21



Fig. 2.4: A chip card[6]

• V𝐶𝐶 : Power supply
• RST: Reset signal (to reset the card’s communication)
• CLKn: Clock signal (data communication timing)
• RFU: Reserved pin
• GND: Ground (reference voltage)
• V𝑃 𝑃 : Programming voltage
• I/O: Serial input and output

ISO 7816-3

Specifies a communication between electronic ID card and card reader on low level
(how are parameters for communication established). Then defines communication
protocols used by electronic ID cards. States technical specification independently
on used physical technology (for contact or contactless cards).

ISO 7816-4

Specifies data structures used during communication between electronic ID cards
and card readers and defines an approach to data stored on cards. Solves options
secured way of exchange of messages and safety card architecture. //pridat citaciu
nejaku o el. ID kartach

2.1.3 Smartcard with MULTOS OS

Multos smart cards are working with applications which are sent and loaded to these
cards by Multos utility – MUTil. Each application is identified and selected by its
application identifier (AID). AID and the naming convention of files in which

22



Fig. 2.5: A structure of smart card[6]

are applications kept are defined in ISO 7816. AID is a sequence of bytes and its
length is between 5 and 16 bytes. The part of AID are:

• National registered application provider – known as a RID, its length is fixed
at five bytes

• Proprietary application identifier extension – known as a PIX, its length is
between zero and eleven bytes

The assignment of RIDs is controlled and delegated by ISO and must be unique.
The assignments of PIXs is managed by companies using AID. An example of AID
consisting of RID and PIX:

• RID: A0 01 02 03 04 (5 bytes)
• PIX: 00 01 (2 bytes)

Communication with a card

The process of a communication between an electronic ID card and card reader is
defined as answer to reset. After the card is inserted to a card reader and power
supply is on or receiving RESET signal, card sends IFD chain called as ATR. ATR
consists of two parts – interface characters and historical characters. Interface
characters define parameters of a communication while the connection with IFD is
initializing. Those parameters are supported transport protocols or frequency of an
hourly impulse. Historical characters are may be specific for every single card and
may contain information, for instance about manufacturer of the card or a balance
on electronic wallet. MULTOS OS enables two types of ATR – primary, which is
sent when a card is inserted to a card reader and power supply is on, and secondary,

23



which is received when the RESET signal is confirmed as obtained.
For execution of every application are required commands. Commands are for-

matted and transmitted in the form of application protocol data units (APDU).
APDUs represent the way how a card and a card reader communicate and are com-
pletely defined in ISO 7816. During the communication between a card and a reader,
there are two kinds of APDUs recognized – a command APDU (C-APDU) and
a response APDU (RAPDU). C-APDU is the command sent to a card and
RAPDU returns the execution result of the command to a reader. These versions
of APDU are exchanged alternately, based on request-response principle. C-APDU
consists of a mandatory header with length four bytes and variable-length condi-
tional body:

• CLA — Class of instruction. A mandatory single byte that indicates the
structure and format for a category of command and response APDUs.

• INS — Instruction code. A mandatory single byte that specifies the instruc-
tion of the command.

• P1 and P2 — Instruction parameters. Two mandatory single-byte parameters
that provide qualifications to the instruction.

• Lc — Length of command data. An optional single byte indicating the number
of bytes present in the data field of the command.

• Data field. An optional sequence of Lc bytes in the data field of the command.
• Le — Length of expected response. An optional single byte indicating the

maximum number of bytes expected in the data field of the response to the
command.

Fig. 2.6: CAPDU structure

RAPDU consists of a variable-length conditional body and a two-byte mandatory
trailer:

• Data field. An optional sequence of bytes received in the data field of the
response.

• SW1 and SW2 — Status words. Two mandatory single-byte values that denote
the processing state in the card.

Applications reply to each APDU command with a status word indicating the
result of the operation, and optionally with data. To activate an application on

24



Fig. 2.7: RAPDU structure

Tab. 2.1: MULTOS status words with a description
Status Word Description
90 00 Successful processing
61 xx Successful processing where xx bytes of unexpected data are returned
6C xx Successful processing, but Le value and La value are different. Send the command again with an Le value of xx.
6A 82 File not found
6A 83 Record not found
6B 00 Wrong parameter P1P2
6D 00 Instruction not supported
6E 00 Class not supported
6F 00 Unknown error

a Multos smart card is necessary to insert SELECT command. After receiving
SELECT command follows the process of searching for the application whose AID
matches the one specified in the command. If there is a match, the application
is getting prepared to be selected (in a case the application is already selected,
Multos deselects it). When an application is selected, Multos forwards all subsequent
APDU commands (including further SELECT commands) to the application. In
the main method, the application interprets each incoming command APDU and
performs whatever is requested by the command. For each command APDU sent,
the application responds by sending back a response APDU.CITE The command-
and-response dialogue continues until a new application is selected or the card is
removed from the reader. Once the application is deselected, it becomes inactive
until it is selected the next time.

Technical specification:
• Power 3 ∼ 5 V
• External clock 1 ∼ 10 MHz
• Application Header: 48K Bytes
• Total temporary space per protected ALU: 16 Bytes

[4] [?]

25



3 MULTOS
MULTOS is a multi-application smart card operating system, that enables a smart
card to carry a variety of applications, from chip and pin application for payment
to on-card biometric matching for secure ID and ePassport. MULTOS is an open
standard whose development is overseen by the MULTOS Consortium – a body
composed of companies which have an interest in the development of the OS and
includes smart card and silicon manufacturers, payment card schemes, chip data
preparation, card management and personalization system providers, and smart
card solution providers. There are more than 30 leading companies involved in the
consortium.

One of the key differences of MULTOS with respect to other types of smart card
OS, is that it implements a patented public key cryptography-based mechanism by
which the manufacture, issuance and dynamic updates of MULTOS smartcards in
the field is entirely under an issuer’s control using digital certificates rather than
symmetric key sharing. This control is enabled through the use of a Key Manage-
ment Authority (KMA), a special kind of certification authority. The KMA provides
card issuers with cryptographic information required to bind the card to the issuer,
initialize the card for use, and generate permission certificates for the loading and
deleting of applications under the control of the issuer.

Application providers can retrieve and verify the public key certificate of an indi-
vidual issuer’s card, and encrypt their proprietary application code and confidential
personalisation data using that card’s unique public key. This payload is digitally
signed using the private key of the application provider. The KMA, on request from
the card issuer, signs the application provider’s public key and application code has
and creates a digital certificate (the Application Load Certificate) that authorises
the application to be loaded to an issuer’s card or group of cards. Applications are
therefore protected for integrity and confidentiality and loaded to a card without any
party sharing symmetric keys and therefore needing to trust any other party sharing
the card platform – including the card issuer. Both the Application Provider and
Card Issuer know that only specific, authorised applications from authorised parties
can be loaded to any specific card.

Hundreds of millions of MULTOS smart cards have been issued by banks and
governments all around the world, for projects ranging from contactless payment, In-
ternet authentication and loyalty, to national identity with digital signature, ePass-
port with biometrics, health care and military base and network access control.

[9]

26



3.1 Memory structure
While developing an application using MULTOS OS, it is fundamental to get un-
derstand how memory on ID card works and what is the approach to it. Every
application on a card has its own memory space, which is secured by a firewall –
it does not approach directly to physical memory, but through AAM (Application
Abstract Machine). It allows to ensure the application on a card cannot approach
to other application’s memory space. A card’s memory space is divided into two
independent parts – code space and data space.

3.1.1 Code space

Code Space refers to the memory space occupied by the application’s code, which
can not be accessed to read or write, but rather can only be interpreted by the
AAM. Physically the code space is a block of memory that consists of up to 64 KB
of contiguous, non-volatile memory.

Fig. 3.1: Application code space[6]

Segment addresses within the code space are always relative to the application.
So, the starting offset is always zero and, furthermore, application execution always
starts from the first byte. Now, when an instruction is being executed the Code
Pointer register contains the code address of the next instruction to be executed. The
value that is held in this register is affected when using program flow instructions
such as Jump, Branch, Call and Return instructions. However, the code pointer
value is not available for manipulation by an application. [6]

3.1.2 Data space

Data Space contains all of the data that is addressable by the application and consists
of three distinct memory areas. Those areas are:

1. non-volatile Static memory,
2. RAM based Public memory,

27



3. RAM based Dynamic data.
The latter can be composed of application specific session data and the stack. Data
Space can be no more than 64 KB in size and is addressed from 0 using tagged
addresses.

Fig. 3.2: Application data space[6]

Static memory

Static data is the non-volatile memory of the MULTOS Card. Static memory is
private to the application and cannot be accessed by the terminal or other appli-
cations. Therefore it is used as a storage of private data of applications such as
encryption keys. Static memory is usually implemented by EEPROM memory. It
is important to avoid corrupting static memory. There is a limited amount of space
for applications and corrupted memory can render an application useless. There are
two OS supplied mechanisms that eliminate this problem: data item protection and
transaction protection. Data Item Protection is always used. MULTOS guarantees
that in executing an instruction that writes data to static memory it will either be
completely updated or not updated at all. Transaction Protection is controlled us-
ing the Set Transaction Protection primitive – this is an OS supplied mechanism for
caching a number of writes to memory. They can then be committed or discarded.
MULTOS guarantees that once a commit has started then all affected writes are all
made. This behaviour holds even if there is a loss of power during the writing of
the data. [6]

28



Public memory

The Public memory area is the RAM resident input / output buffer for applications.
Incoming APDU are held in Public and any outgoing status word (𝑆𝑊 ), 𝐿𝐴 and data
are placed here. This buffer is also used to pass information from one application
to another when delegation is used. As an I/O buffer it is visible to IFD. During
the command-response dialogue MULTOS passes an APDU to an application the
APDU is written into Public memory. The APDU Header appears at the top of
Public, and command data appears at the bottom of public. When a MULTOS
Application wishes to pass a response back to the terminal then the response APDU
is written into Public and MULTOS sends the response to the terminal. MULTOS
guarantees that data in Public remains private to the application until it exits or
delegates to another application. So, public may be used as temporary workspace.
MULTOS will automatically clean up the public area if the application terminates
abnormally, but will not do so otherwise. This means that any data held in Public
that an application does not wish to reveal after exiting should be explicitly erased.
[6]

Dynamic memory

Dynamic data is volatile and held in the RAM memory of the MULTOS Card. Like
the other areas, dynamic memory is behind a firewall and private to the application.
Unlike the other areas, this memory can consist of two parts: session data and
the stack. Session Data is RAM based application variables, which are available
to any function used in the application. The size of the session data area is fixed
when an application is loaded onto a MULTOS Card and will always appear at
the bottom of the dynamic area. Session Data, however, is not mandatory and if
none is used, then none will be present. The stack is an application’s work area. A
MULTOS chip is a stack machine, which means that this memory area is used to
perform many functions. For example, most primitives and many instructions use
stack-based values as input.

3.2 SmartDeck
SmartDeck is an application development system for Multos, which enables to code
applications using 𝐶 and assembler programming languages. These applications
run on the Multos smart card operating system under high security. SmartDeck,
as a programming extension, runs strictly on Microsoft Windows operating system
and is based around the Eclipse IDE. Programs which are prepared on these host

29



machines using the tools in the SmartDeck package are not executed on a host, but
on a Multos smart card.

Credibility of an implementation of SmartDeck in 𝐶 programming language is
guaranteed by the ANSI and ISO standards. Basically, Multos SmartDeck environ-
ment brings enhancements and improvements to extend authentic 𝐶 programming
language. SmartDeck also contains assembly language. As well as providing a
cross-compilation technology, SmartDeck provides a PC-based simulation which is
interfaced with the Eclipse IDE allowing to debug application quickly. A set of
tools for generating standard application load units and facility for loading and
deleting applications on Multos smart cards provide the final stage of the software
development life-cycle. [5]

3.2.1 SmartDeck components

SmartDeck includes a several programs which are separated but at the end work
together through proprietary files and create a chain for developing and testing the
applications for smart cards. Multos uses various file formats.

File formats used by SmartDeck:

• .hzo – Object files – contain compiled program code
• .hza – Library files – collections of object files
• .hzx – Executable files – fully linked executable program
• .alc – ALC files – contain Application Load Certificate
• .adc – ADC files – contain Application Delete Certificate
• .alu – ALU files – contain Application Load Unit

Object files can be created:
• From assembly language source code using the has program
• From C source code using the hcc program

Library files are created using the har program. Object and library files are linking
together using the hld program to create an executable file. Executable files can
be loaded and debugged on the MULTOS debugger/simulator programs mdb and
hsim. Executable files can also be loaded onto MULTOS cards using the hterm
program. MULTOS application load units can be generated from executable files
using the halugen program. The use of the C compiler, assembler, linker, and even
the archiver is coordinated by the compiler driver, hcl.exe so you won’t need to use
these programs directly.

30



Tab. 3.1: The supported formats used by MULTOS
hcl.exe Compiler driver: provides a useful way to get files compiled, assembled and linked
hcc.exe C compiler: compiles modules written in C
mdb.exe Eclipse gdb/mi debugger: Provides the debugging interface between Eclipse and the MULTOS simulator.
has.exe MULTOS Assembler: assembles modules written in assembly language
hld.exe Linker: Required for linking compiled and assembled files
hsim.exe MULTOS Simulator: used in conjunction with mdb but can also be used stand-alone.
hterm.exe Loader: Used to load and delete application from MULTOS cards
har.exe Archiver: Consolidates multiple object files into a single, object code library
hls.exe Object file lister: displays useful information held in unlinked files and linked executables.
hkeygen.exe RSA key pair generator: creates a private and public RSA key pair
halugen.exe ALU generator: creates a standard MULTOS application load unit.
melcertgen.exe ALC/ADC generator: creates load and delete certificates for developer cards.
meldump.exe MULTOS file list: outputs contents of standard MULTOS files.
hex.exe Extractor utility: used to prepare images in various formats

3.2.2 MUtil

The MULTOS Utility application – MUtil provides a single application that handles
the different functions needed when working with MULTOS cards. The latest release
(version 2.9.1) includes the following features:

• Loading and deleting of applications for developer cards
• Loading and deleting of applications for live cards
• Creating an MCD ID list for enrollment data/MSM Control Data requests
• Enable cards using KMA supplied MSM Control Data
• Exchanging APDUs
• Running of scripts from the command line
• MULTOS 4.4 / 4.5 support
• Optional output of a trace file
• INI file for settings

During a development of the application for smart card, Mutil was used mainly for
loading the applications on the smart card and testing APDU commands (see the
screenshots in the pictures 3.3 and 3.4).

MUtil supports developing cards as well as "live cards" and is able to load and
delete applications using ALC and ADC certificates. It is recommended to use
just one tool for uploading of applications – either hterm as a part of SmartDeck or
MUtil. Whereas it may come to inconsistency and accidentally the same application
would be loaded twice, hterm is not then able to delete that application or to load
another one with the same AID. A solution of this issue is to search for all loaded
applications on a card using "FindFirst" and "FindNext" functions on "Delete Test"
tab in MUtil. Since the application is found in the way of comparing all possible
AIDs, it is possible to delete the selected application.

[10]

31



Fig. 3.3: A feature of Mutil for loading the applications on the smart card

Fig. 3.4: A feature of Mutil for loading the applications on the smart card

32



4 PRACTICAL RESULTS
This chapter is focused on practical application and implementation of the crypto-
graphic protocol based on ECC – Diffie-Hellman. Hereby is demonstrated, that this
algorithm is confident to establish a reciprocal secret key between two users. For
these purposes, the applications in language C and language Java had to be built.

Fig. 4.1: The smart card UBM21-Z48 and the terminal.

For physical connection of the card to a PC, the card reader for chip smart cards
was used (picture 4.1). The connection of the reader to PC is through USB cable
with standard USB 3.0 connector. Thanks to this, the reader is powered from the
PC.

4.1 Card application
The application running on the smart card is written in language C and uses some
MULTOS functions from header file multos.h as displayed in C code definition part:

#include <multos.h>
#include <string.h>

33



As stated in section 1.3.1, it is obvious that principle of Diffie-Hellman algorithm
is demonstrated by using mathematical operations based on modular arithmetic.
However, Diffie-Hellman algorithm is based on ECC, therefore during the imple-
mentation and development of the application in programming language C it uses
scalar multiplication for its operations as it is showed in the picture 4.2 It was men-

Fig. 4.2: Diffie-Hellman operation scheme

tioned in the section 2.1.3 that every single application running on the card must
be represented by its name – AID. The AID is implemented in the beginning of the
code as well as set up of the log in DIR:

#pragma attribute("aid", "ABCDEFFEDC123456")
#pragma attribute("dir", "61 1c 4f 04 AB CD EF FE DC 12 34 56 50 14
43 52 33 31 32 20 45 43 43 20 50 72 69 6d 69 74 69 76 65 73")

4.1.1 Parameters of elliptic curve

The definition of the elliptic curve created for an application running on the smart
card is characterized by these parameters, which are firmly fixed:

0xAC, 0x75, 0xCF, 0x35, 0x99, 0x88, 0x5A, 0x6A, 0x26, 0xB2,
0x0F, 0x52, 0x71, 0xAB, 0x95, 0xA3, 0xF0, 0xD2, 0x4B, 0x74,
0x37, 0x21, 0x46, 0xCC, 0xDB, 0xA0, 0x5F, 0xA9, // P
0x93, 0x62, 0xE8, 0xF2, 0x7B, 0xDC, 0xA9, 0x6F, 0x81, 0xE6,
0xBF, 0xA6, 0x79, 0x5E, 0x10, 0x60, 0xA9, 0x69, 0xD2, 0x0D,
0x9F, 0x88, 0x2E, 0xB4, 0xD8, 0xE8, 0xD4, 0x20, // A

34



0x89, 0xD8, 0x66, 0x9D, 0x59, 0x20, 0x5C, 0xB4, 0xA3, 0x6E,
0xEC, 0x01, 0x22, 0xC6, 0x49, 0x1C, 0x92, 0xB6, 0x18, 0xB8,
0xFC, 0x09, 0xB6, 0xD6, 0xF3, 0x24, 0xAA, 0xCA, // B
0x2E, 0xDA, 0x6A, 0x9C, 0xE8, 0x53, 0x3B, 0xBC, 0xB8, 0x1D,
0x49, 0xF4, 0x69, 0xB5, 0x43, 0x95, 0xD3, 0x1A, 0x64, 0xB8,
0x14, 0x8B, 0x92, 0xB3, 0x6B, 0xC0, 0x23, 0x00, // Gx
0x84, 0xDA, 0x69, 0x9D, 0xF7, 0x56, 0xBF, 0x58, 0xC9, 0x50,
0x76, 0x7A, 0xD7, 0xF8, 0x84, 0x62, 0x1E, 0x2F, 0x5C, 0xFC,
0x28, 0x25, 0x97, 0x99, 0x14, 0x05, 0xB2, 0x4D, // Gy
0x0F, 0xAD, 0x9E, 0x79, 0x3C, 0x80, 0xC2, 0x66, 0xBD, 0xB3,
0x18, 0xAA, 0x67, 0x6C, 0x9E, 0xDB, 0x4F, 0xB6, 0x53, 0xCF,
0x4F, 0x67, 0x92, 0x37, 0x13, 0x37, 0x56, 0xA1, // N

The stated parameters are:
• P – the characteristics of a prime number
• A – the characteristics of a point A lying on the curve
• B – the characteristics of a point B lying on the curve
• G𝑥 – the characteristics of x axis of a base
• G𝑦 – the characteristics of y axis of a base
• N – the characteristics of an order of the curve

The length of the curve is 28 bytes and every byte is characterized in hexadecimal
numeral system (according low-level programming in plain C language and data
representation on the smart card). A strength of the cryptographic functions and
primitives depends on the length of curve. However this length is preferred as a
good compromise between the strength and application size.

The parameters P, A, B and N are used on background, other parameters are
are actively used. According Diffie-Hellman operation scheme of scalar multiplica-
tion (section 4.2), it is conspicuous an addition parameter is required – multiplier.
The multiplier presents the private key in the Diffie-Hellman operation scheme and
is generated randomly and must be smaller than order N:

GenerateRandomNumberLessThan(order, (BYTE *)private_key);
EccMultiplyPointByScalar(domain_params, generator_point,

/*multiplier=*/private_key,
/*result=*/public_key);

ReturnResponse(2*ECC_LEN+1, public_key, ERR_OK);
break;

The multiplier could be possibly firmly fixed in the code as well, but regarding the
tendency to set up the highest achievable security of the private key, implemented
solution is preferred.

35



4.1.2 Functions

To obtain desired results from the smart card, some MULTOS functions had to be
used. To generate the secret key on side of the card, the GENERATE_SHARED_SECRET_INS
is called:

case GENERATE_SHARED_SECRET_INS:
if (!CheckCase(3)) multosExitSW(ERR_BAD_INS);

GenerateSharedSecret(apdu_data);
ReturnResponse(0, NULL, ERR_OK);
break;

This functions uses scalar multiplication to multiply required parameters with pri-
vate or public key:

void GenerateSharedSecret(BYTE *other_public_key) {
EccMultiplyPointByScalar(domain_params, other_public_key,

private_key, shared_secret);

After the secret key is established, this key is supposed to use and therefore it
must be kept in private and non-readable for others. For this purpose mathematical
operation XOR was used as a demonstration of such a security. This has to be
implemented on the application card as well:

case ECHO_INPUT_INS:
if (!CheckCase(4)) multosExitSW(ERR_BAD_INS);
EncryptSymmetrically(apdu_data, Lc, result);

ReturnResponse(Lc, result, ERR_OK);
break;

The operation XOR is implemented very simple hereby:

void XorMessage(BYTE *msg, WORD len, BYTE *shared_secret,
WORD shared_secret_len, BYTE *result) {

int i;
for (i = 0; i < len; ++i) {

result[i] = msg[i] ^ shared_secret[i % shared_secret_len];
}

}

4.1.3 Supported primitives

This master thesis deals with the card UBM21-Z48, which supports specific prim-
itives and because of that it was necessary to adjust the code in SmartDeck. The

36



primitives listed in attachment A of this thesis are those that are included in the tar-
get specification. As it is obvious, the card UBM21-Z48 does not support the Multos
GenEccKeyPair primitive and therefore it was crucial to generate the private and
public key.

4.2 Client application
The application for the communication with the card is written in Java programming
language. This application physically connect to the smart card and exchange the
APDU messages between a client and smart card. This application demonstrates
all implemented functions on the smart card.
The source file of client application contains of three Java files:

1. DiffieHellmanMain.java – main code
2. ApduSender.java – code for sending and exchanging APDU messages
3. RawDataSender.java –code for sending raw data

The client application consists of several methods and functions, its main role is to
connect to the card, communicate with the card using APDU messages and receive
and display the answer from the application loaded on the card.
This application written in Java language shows the result of the code after it was
run in the console as it is stated in section below.

4.2.1 Result

After the Java code is debugged and built, the console displays this result: In

Fig. 4.3: Output of the client application

the very first step, client sends the C-APDU message with AID of the application.

37



Naturally, client must know in advance which application wants to use and therefore
this information is mandatory to input. After the application with given APDU is
found, client receives R-APDU message from the smart card with SW 9000. This
means application was found and the communication is established.
Then, to calculate shared secret key, it is necessary to generate the private key. As
mentioned above, the private key is generated randomly and to obtain it from the
smart card, client sends C-APDU 80 01 00 00 00 and receives generated private key.
After the private key is generated on both sides (card and client), a counting of
the shared secret key can be launched. This is happening again on both sides.
When the client receives R-APDU 9000 from the client, then the shared secret
keys are compared. A value of the secret key is not displayed in console purposely,
because this information is considered as a top secret. Generated secret keys must
be compared and therefore the XOR operation is used to secure the transfer of these
keys between both sides. It is recommended to use symmetric cryptography to send
established shared secret key to make sure it will remain secret after it was created.1

The final output from console is: Returned encrypted string after decryption
equals the original one and proves, that the common secret key is the same on
both sides.

4.3 Measurement
To evaluate the application of the implemented code on the smart card, the speed
testing of cryptographic protocol Diffie-Hellman was performed. The measuring
was implemented in the client application in Java and several values are captured:
GEN_NEW_KEYPAIR_INS: 640ms, 529ms, 701ms, 599ms, 640ms
GENERATE_SHARED_SECRET_INS: 568ms, 530ms, 580ms, 610ms, 530ms
ECHO_INPUT_INS: 272ms, 268ms, 240ms 290ms, 288ms
ENCRYPT_INS: 288ms, 248ms, 233ms, 266ms, 217ms
The measuring was focused on end-to-end communication, so it means that mea-
sured values involves the latency of the data transfer and other factors. The client
application measures the time of these primitives after every run, because of that
this measurement may differ and stated data represents values measured five times
in a row.

4.4 Problems and issues
During the development of the applications, some issues appeared:

1For instance DES or SHA cipher.

38



1. MULTOS SmartDeck is compatible just with Windows 7 32-bit OS, therefore it
was necessary to install a virtual machine and run this version of MS Windows.

2. After the smart card is plugged in the card terminal, an installation of drivers
starts in MS automatically. The problem occurred when the PC wanted to
install the driver of the smart card – unsuccessfully. The specific driver is not
publish publicly on internet and it looked like there will be a problem with
the communication. However Mutil does not require the driver for the com-
munication with the card, so at the end it did not influence the development
of the application.

3. It is very important to study the technical parameters of the smart card,
especially memory size and supported primitives. If a memory size is exceeded
or a unsupported primitive is used, it might be difficult to find where the
problem is, because MULTOS does not inform a developer about all errors
and usually returns just very general status words (in some cases it even does
not return any error status word).

4. By the SmartDeck manual, the application should be developed in the Eclipse
and to generate .hzx file developer is supposed to debug the code all the
time. It takes too much time and it is not so practical for development of the
application, which has to loaded using external software. Therefore, the much
better solution is to use command line programs from MULTOS and create
scripts. Then a developer does not have to debug the code and can use some
other software for writting the code, for instance Notepad++.

Nonetheless, all mistakes and issues have been resolved and development was suc-
cessful.

39



5 CONCLUSION
The role of this master thesis was to implement chosen cryptographic protocol on the
smart card and its further usage for electronic ID cards. As preferable protocol was
used Diffie-Hellman, which was theoretically described and characterized in detail as
well as was graphically displayed its arithmetic principle. Diffie-Hellman is based on
ECC, the very first chapter covers also this problematic together with an overview
of asymmetric cryptography.

The goal was to implement such a cryptographic protocol on a specific smart
card based on MULTOS OS. For better understanding how does this OS influence
the development of the application for smart cards, the second chapter describes
smart cards and the third chapter shows the MULTOS principle.

Practical part of this thesis is focused on the implementation of Diffie-Hellman
protocol based on ECC and running on MULTOS OS. The output of this imple-
mentation is a software, specifically two codes from two different programming envi-
ronments – Java (client application) and C (card application). The implementation
was successful in the final and was tested in a console application of Java. All source
files are included to this project.

At the end, testing of a time of partial primitives used in this thesis was provided,
processed and analyzed. Therefore, all targets of this master thesis are considered
as schieved.

40



BIBLIOGRAPHY
[1] MENEZES, A., C. VAN OORSCHOT P., A. VANSTONE S. Handbook of ap-

plied cryptography. Boca Raton: CRC Press, c1997. Discrete mathematics and
its applications. ISBN 0-8493-8523-7.

[2] ROUSE, M. Asymmetric cryptography (Public Key Cryptography)
[online]. 2001, poslední aktualizace 11. 11. 2004 [cit. 17. 2. 2005].
Online: <http://searchsecurity.techtarget.com/definition/
asymmetric-cryptography>.

[3] Encryption and Decryption.com Asymmetric Algorithms [online]. 2001,
poslední aktualizace 11. 11. 2004 [cit. 17. 2. 2005]. Online: <http://www.
encryptionanddecryption.com/algorithms/asymmetric_algorithms.
html#Diffie-Hellman>.

[4] Multos UBM21-Z Family – External Characteristics. [online]. Online: <https:
//www.multos.com/products/approved_platforms/MIR/ubivelox/umb21>.

[5] Multos SmartDeck Developer’s Reference Manual. Version 3.0.1 [online].
<multos.com/downloads/technical/smartdeck-manual.pdf>.

[6] Multos MULTOS Developer’s Guide. [online]. <http://www.multos.com/
uploads/MDG.pdf>.

[7] Smart Card Basics Types of Smart Card. [online]. <http://www.
smartcardbasics.com/smart-card-types.html>.

[8] TechTarget Cryptography. [online]. <http://searchsoftwarequality.
techtarget.com/definition/cryptography>.

[9] MULTOS Further MULTOS information. [online]. <http://www.multos.com/
multos_explained.htm>.

[10] MULTOS MULTOS Utility Manual. [online]. <http://www.multos.com/
uploads/MUM.pdf>.

[11] Cryptography – Individual Contributors Asymmetric algorithms. [on-
line]. <https://cryptography.io/en/latest/hazmat/primitives/
asymmetric/>.

[12] Digicert Behind the Scenes of SSL Cryptography. [online]. <https://www.
digicert.com/ssl-cryptography.htm>.

41

http://searchsecurity.techtarget.com/definition/asymmetric-cryptography
http://searchsecurity.techtarget.com/definition/asymmetric-cryptography
http://www.encryptionanddecryption.com/algorithms/asymmetric_algorithms.html#Diffie-Hellman
http://www.encryptionanddecryption.com/algorithms/asymmetric_algorithms.html#Diffie-Hellman
http://www.encryptionanddecryption.com/algorithms/asymmetric_algorithms.html#Diffie-Hellman
https://www.multos.com/products/approved_platforms/MIR/ubivelox/umb21
https://www.multos.com/products/approved_platforms/MIR/ubivelox/umb21
multos.com/downloads/technical/smartdeck-manual.pdf
http://www.multos.com/uploads/MDG.pdf
http://www.multos.com/uploads/MDG.pdf
http://www.smartcardbasics.com/smart-card-types.html
http://www.smartcardbasics.com/smart-card-types.html
http://searchsoftwarequality.techtarget.com/definition/cryptography
http://searchsoftwarequality.techtarget.com/definition/cryptography
http://www.multos.com/multos_explained.htm
http://www.multos.com/multos_explained.htm
http://www.multos.com/uploads/MUM.pdf
http://www.multos.com/uploads/MUM.pdf
https://cryptography.io/en/latest/hazmat/primitives/asymmetric/
https://cryptography.io/en/latest/hazmat/primitives/asymmetric/
https://www.digicert.com/ssl-cryptography.htm
https://www.digicert.com/ssl-cryptography.htm


[13] TechTarget Elliptical curve cryptography (ECC). [on-
line]. <http://searchsecurity.techtarget.com/definition/
elliptical-curve-cryptography>.

[14] Math and cryptography Discrete Logarithm Problem. [online]. <http://wiki.
c2.com/?DiscreteLogarithmProblem>.

42

http://searchsecurity.techtarget.com/definition/elliptical-curve-cryptography
http://searchsecurity.techtarget.com/definition/elliptical-curve-cryptography
http://wiki.c2.com/?DiscreteLogarithmProblem
http://wiki.c2.com/?DiscreteLogarithmProblem


LIST OF SYMBOLS, PHYSICAL CONSTANTS
AND ABBREVIATIONS
AAM Application Abstract Machine

ADC Application Delete Certificate

AID Application identifier

ALC Application Load Certificate

ANSI American National Standards Institute

APDU Application Protocol Data Unit

BLE Bluetooth Low Energy

ECC Elliptic Curve Cryptography

EEPROM Electrically Erasable Programmable Read-Only Memory

ID card Identification Card

IFD Interface Device

ISO International Organization for Standardization

I/O Input/Output

kB kilo Bytes

L𝐴 Length of actual data

MS Microsoft

NFC Near Field Communication

OS Operation System

PC Personal Computer

RAM Random Access Memory

XOR eXclusive OR

ZIP newer compression algorithms

43



LIST OF APPENDICES

A Attachments 45

B Contain of attached CD 47

44



A ATTACHMENTS
The following tables displays the supported primitives of used smart card based on
Multos OS:

45



46



B CONTAIN OF ATTACHED CD
The final applications for the smart card and client are saved on the attached CD
and are situated in diplomka_final folder. This folder contains two sub folders
– client and card. The client folder contains one folder SmartCardTerminal and
one ZIP file with the same name1 The card folder contains the source c code –
ecc_diffie_hellman.c, the header file – multos.h, generated hzx and alu files and
script, which enables to generate such files – build.bat. Recommended software to
open the C code is Eclipse IDE with SmartDeck platform and NetBeans to open
and run the Java code.

1Because some environments support importing of Java project in ZIP format, for example
NetBeans, the client folder contains both ziped and unziped forms.

47


	Introduction
	Cryptography
	Asymmetric cryptography
	Elliptic curve cryptography
	Diffie-Hellman
	Establishment of a key using Diffie-Hellman protocol
	Discrete logarithm problem


	Electronic ID cards
	Smart cards
	Anatomy of Smart Cards with chip
	ISO 7816 standard
	Smartcard with MULTOS OS


	MULTOS
	Memory structure
	Code space
	Data space

	SmartDeck
	SmartDeck components
	MUtil


	Practical results
	Card application
	Parameters of elliptic curve
	Functions
	Supported primitives

	Client application
	Result

	Measurement
	Problems and issues

	Conclusion
	Bibliography
	List of symbols, physical constants and abbreviations
	List of appendices
	Attachments 
	Contain of attached CD 

