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Abstrakt
Tato práce pojednává o problematice rozšířené reality a její využití při tréninku servisních
techniků jako i při provádění servisních procedur. Poskytuje přehled metod používaných
při rozšířené realitě se zaměřením na jejich využití při trénování a vykonávání technické
údržby. Rovněž je tady přehled předchozích prací zabývajících se touto problematikou. Na
otestování možností, které rozšířená realita poskytuje, byl vytvořen prototyp a na základě
jeho výsledků a studiu předchozích prací byla následně vytvořena hardwarová specifikace
finálního systému spolu s definicí jeho návrhu. Tento systém bude v budoucnu umožňovat
servisnímu technikovi, který bude mít na hlavě nasazenou malou kameru snímající jeho
zorné pole, počítač a brýle s displejem, rozšířit reální svět viděný v brýlích o další infor-
mace týkající se aktuálně prováděného kroku servisní procedury. Tyto informace mohou
být textové nebo grafické, jako např. zvýraznění komponenty, s kterou bude technik v rámci
aktuálního kroku procedury pracovat, nebo zobrazení doplňující grafiky s např. schématem
dané komponenty. Za účelem získání autentické datové sady byla kontaktována firma LET
vyrábějící letoun LET L-410, která pro účely této práce poskytla letoun, prostory a své
techniky k natočení videí obsahujícími servisní procedury. Na natočení těchto videí byla
použita kamera Contour+2, kterou je možné jednoduše přichytit k hlavě. Natočena videa
ale obsahovala řadu nedostatků – pořízena kamera nedokázala kvůli horším světelným pod-
mínkám v hangáru, kde se procedury natáčeli, poskytnout dostatečně kvalitní videa. Kromě
toho, kvůli širokému zornému poli, které tato kamera ponoukala, natočené videa obsaho-
vali vysokou úroveň distorze. Tato distorze byla odstraněna pomocí OpenCV. Následně
byla podle zkušeností získaných z prototypu a nastudované literatury vytvořena finální ap-
likace. Tato aplikace byla napsána v jazyce C++ a využívala kromě knihovny OpenCV
i knihovnu ALVAR, která obsahuje algoritmy a detektory určeny pro rozšířenou realitu.
Taky byla vytvořena digitální reprezentace servisní procedury, která v sobě zahrnuje tex-
tovou dokumentaci, cesty k dodatečným technickým schématům a taky cesty k jednotlivým
detektorům. Speciálním rozšířením tu jsou tzv. Oblasti zájmu (Areas of Interest, zkratka
AoIs), které určují, kde přesně se na detekovaném objektu nachází komponenta, s kterou
se má v aktuálním servisním kroku manipulovat. Toto rozšíření umožňuje hledat v obraze
i mnohem větší objekty, v rámci kterých se nacházejí skutečně hledané komponenty. Za
účelem zvýšení úspešnosti počtu detekcí, která byla zpočátku nízká, bylo implementováno
několik rozšíření – validace matic homografie, které se počítají pro každý detektor, přineslo
výrazné snížení počtu chybných detekcí. Představení historie, která si pamatuje několik
předchozích detekcí a na jejich základě upravuje pozici aktuálně vykreslovaných objektů,
přinesla větší stabilitu při vykreslování těchto objektů, které už mezi jednotlivými snímky
neměnili natolik svou pozici v scéně. Taky byla implementována možnost spustit v rámci
jednoho kroku procedury vícero detektorů, ta však nebyla nakonec využita, protože byla
výpočetně příliš náročná. Na konci této práce se nachází kapitola věnována testování,
kde jsou jednotlivé algoritmy otestovány a jsou navrženy vylepšení, které budou imple-
mentovány v dalším pokračovaní této práce, která byla tvořena ve spolupráci s firmou
Honeywell. I přestože se kvůli nedostatkům v datové sadě a detektoru nepodařilo přinést
úplně funkční řešení, znalosti získané tvorbou této diplomové práce budou využity na jejím
pokračovaní v rámci firmy Honeywell.

Abstract
This paper provides an overview of methods used with augmented reality applications
with emphasis on their use in training and execution during maintenance procedures. In



addition, a description of the previous work done in this field is provided and analyzed.
First, a prototype application testing the possibilities of the augmented reality is created.
Subsequently, based on the experience gained from this prototype and the previous work
analyses, a final application is designed, implemented and tested on a set of video recordings
with captured aircraft maintenance procedures. Finally, this application’s performance is
evaluated and several improvements to its functionality are suggested. At the end, the
results are summarized and the future work’s direction is set.
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Chapter 1

Introduction

Augmented reality (AR) — as a part of mixed reality described by [25] — can be defined
as a system that enhances the real world with some computer-generated virtual objects
(either 2D or 3D) which appear to coexist in the same space as the real world and thus
enhances user’s experience of the world as well.

Such system has the following list of properties [2]:

• Combines real and virtual objects in a real environment.

• Runs interactively, and in the real time.

• Aligns real and virtual objects with each other.

This definition puts no restrictions on which human senses the augmented reality should
be applied to. Nevertheless, in this work only the augmentation of visual information
received from the real world will be presented.

Augmented reality has many applications starting with showing tourist information
based on what the tourist is looking at, through playing interactive games using the real
world as a playground, up to helping with design by placing virtual models to the real
environment [2].

On the other hand, maintenance is a process which goal is to ensure a maintained object
is functional and to minimize the probability it fails.

The augmented reality for maintenance is a special case of augmented reality; usually,
a technician equipped with a head-mounted display and a camera is navigated step-by-
step through a maintenance procedure. Information connected with the current step of
procedure is shown to the technician in order to increase efficiency and reduce the time the
maintenance requires.

In this work, the following objectives were set:

• Research possibilities provided by augmented reality for training and execution of
airplane maintenance.

• Explore existing solutions, together with toolkits and algorithms for augmented reality
suitable for this application.

• Propose a hardware configuration of a final output system.

• Create a prototype and test its possibilities.
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• Propose a future work and tests.

Cooperation with Honeywell’s Advanced Technology division (located in Brno, Czech
Republic) was established; therefore output of this work can be tested in real-world situa-
tions. However, it is important to mention this project has a goal to explore the potential
benefits of using the AR for supporting maintenance procedures, not to bring a production-
ready implementation. Therefore, the software and hardware choices made for this project
may not reflect the needs of a commercial application.

This work consists of nine chapters that cover the introduction to AR; training and air-
plane maintenance; related work; datasets acquisition and analyses; design, application and
testing of created prototypes; and a summary of reached results together with suggestions
of the future continuation of the project.

The second chapter provides introduction to augmented reality with emphasis on its
use in maintenance applications. Different types of displays and algorithms are explained.
In addition, the most suitable AR toolkits are presented and previous applications of the
AR in maintenance (including such companies as BMW of Airbus) are examined.

In the third chapter, a basic insight into airplane maintenance is provided including
an overview of maintenance intervals, the most important types of documentation for per-
forming maintenance procedures, and a description of L-410 aircraft which maintenance
procedures were used for demonstration of the final application.

The goal of the fourth chapter is to summarize previous work done on this project
during Term Project. This work is also clearly distinguished from the work done afterwards.
Additionally, a first prototype created for this project is described and analyzed here.

The fifth chapter specifies requirements for hardware in terms of its usage with mainte-
nance and AR. Consequently, specific hardware and software components are chosen to be
used in this work and are briefly described as well.

In the sixth chapter, the main dataset acquisition is described along with selected pro-
cedures’ description and a list of requests these procedures had to meet. Furthermore,
obtained datasets are analyzed.

The seventh chapter offers an overview of created algorithms and explains reasons for
their creation and usage.

Subsequently, the eight chapter tests algorithms implemented or used in the previous
chapter and provides and explains their results.

Finally, the ninth chapter concludes all the work already done and presents suggested
plans for continuation of this thesis.
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Chapter 2

Augmented reality in maintenance
applications

Current maintenance systems require a maintenance engineer1 to continually consult his or
her progress within a maintenance procedure with blueprints, manuals, computer screens,
or other references which are often out of his or her field of view. This results in switching
technician’s focus back and forth between the references and the area where the maintenance
takes place. In addition, the technician has to filter references for relevant information
and match and localize parts from the references in the repairing area what can be time-
consuming, considering for example aircraft or vehicle systems that are rather complex.

A possible approach to this problem is to use augmented reality – by wearing a head-
mounted display and a point-of-view camera, technician’s natural view can be augmented
with instructions, labels, descriptions of individual parts, various animations and so on. An
effective assistance in these instances can also save technician’s time while reducing mental
workload [12].

The goal is to reduce the amount of time necessary for the technician to perform a
maintenance procedure along with reduction of human errors. By incorporating the AR,
this can be done by delivering information on current procedure’s step directly to the
technician with a minimum amount of communication between the technician and the
source of information. In one of its studies, Boeing compares time efficiency and error
robustness between information delivered by augmented reality and web-based interface
with voice recognition and text-to-speech technology [17]. The time necessary to complete
a maintenance procedure was shorter when augmented reality was used.

Another comparison between the augmented reality and the web assisted maintenance
used for maintenance inside armored vehicle turret also resulted in a shorter time needed
when augmented reality was used, showing a promising way of handling maintenance and
repairs [13].

In this chapter, basic requirements for the AR are explained starting with types of
displays used, describing the methods and algorithm applied, and with an overview of AR
toolkits that offer marker-less tracking suitable for this work and ending with examples of
use of AR in maintenance by universities and commercial companies.

1In this work, maintenance engineer is referred to as a technician or a mechanic
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2.1 Display types

Because of its nature, it is logical to use the AR2 with some sort of display. In general, three
types of display are being used with the AR: See-through head-mounted displays (HMD),
Projection-based displays and handheld displays [36].

Handheld displays are small portable displays; commonly, they are displays on smart-
phones, PDAs and tablets.

Projection-based displays display graphical information directly on real objects, there-
fore users do not need to wear any special equipment.

2.1.1 See-through head-mounted displays (HMD)

HMDs are the most often used displays with maintenance; therefore they will be described
in more detail here. There are two types of see-through HMDs – optical see-through (OST)
and video-see through (VST) displays. They serve the same goal – to insert computer-
generated objects directly in the user’s field of view and hence enhance his or her experience
of the real world. What differs is the way how this goal is achieved. Figure 2.1 shows the
difference between OST and VST HMD.

Figure 2.1: Difference between VST HMD (left) and OST HMD (right) [20]. Depending
on application OST HMD may include a camera as well.

OST HMDs usually involve a semitransparent eye-glass allowing their user to see the
real world with his or her own eyes and show computer-generated content on it at the same
time. Therefore, OST HMDs offer an instantaneous, natural view of a real scene and usually
also wider field of view. The main challenge with this displays is a correct positioning of
virtual objects to the real world [20].

On the other hand, VST HMDs offer a video of the real world enhanced with virtual
objects, so the positioning problem present at OST HMDs doesn’t occur here. In addition,
the real-world video can be processed before showing on the display, so a variety of image-
processing techniques (e.g. intensity correction) can be applied [20].

2.1.2 Available OST HMDs overview

Recently, several different OST HMDs were introduced. However, only Google Glass and
Lumus OE-32 will be described in this section because of their availability for developers
and good support from manufacturers.

2Only visually augmented reality is described in this work.
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Figure 2.2: Google Glass – available on the market [11].

Google Glass developed by Google X Lab is a lens-less glass with only a frame that
incorporates a camera, a display and a microphone as can be seen on Figure 2.2. In
addition, it offers a dual core processor, 1 GB of RAM and is running on Android 4.0.4. It
offers wired or wireless connection, speakers, a microphone and high-level voice commands
recognition [10]. The main properties of this HMD can be found in Table 2.1.

At the time of this work being written, Google Glass was available only for developers
with an expected release date for general public in Q2 2014.

Display format 640 x 360 pixels
Built-in camera Yes (videos in 720p, photos in 5 MP)
Field of View 40◦

Virtual screen size Equivalent of 25" screen at approx. 2.7 m away
Connectivity 802.11b/g, Bluetooth, Micro USB
Storage 12 GB
Processor OMAP 4430 SoC (dual-core)
RAM 1 GB

Table 2.1: Google Glass properties

Another OST HMD solution is model OE-32 from Lumus, which prototype is available
in Honeywell. This display is inserted into glasses and it offers high resolution and see-
through experience enabling the overlay of information over one’s view of the real world.
Also, the small dimensions of these glasses ensure a good wearing comfort.

The whole glasses can be found on Figure 2.3. The main properties of the glasses and
near-to-eye display are available in Table 2.2. Since it is only a prototype no detailed
specifications will be provided here. More information on this display can be found at [22].

Both solutions bear a different set of properties. In comparison to Google Glass, Lumus
OE-32 offers higher display resolution with two displays that cover greater area of user’s
field of view and are ready for 3D mode; on the other hand, Google Glass comes up with
smaller dimensions, integrated camera, microphone, and speakers connected with Google
services and advanced voice recognition.
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Figure 2.3: Lumus OE-32 – a near-to-eye display used in this thesis [22].

Display format 1280 x 720 pixels
Built-in camera No
Field of View 40◦

Virtual screen size Equivalent 87
”

screen at approx. 3.3 m away
Connectivity Micro USB
Transparency > 78 %
Display thickness 1.6 mm
Virtual screen size 75 %

Table 2.2: Lumus OE-32 properties

2.2 Methods and algorithms used with augmented reality

2.2.1 Vision-based tracking

AR applications require an accurate knowledge of relative position and rotation of the
camera and the scene (or an object in the scene). Therefore, real-time information of all
six degrees of freedom defining the relation between the scene and the camera is required.
To recover this information is the main goal of tracking, making the tracking one of the
core techniques used in the AR [36].

Generally, there are sensor-based and vision-based tracking techniques. Although there
were some experiments with AR maintenance focused on sensor-based tracking [35], in this
work, video-based tracking techniques for marker-less tracking will be discussed. More on
sensor-based tracking techniques can be found in [31].

Vision-based tracking consists of two phases:

• Image processing which extracts some information from the images

• Pose estimation

There are three most used approaches to vision-based tracking which description follows
[9].
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Markers

If possible, artificial markers are inserted into the real-world scene. These markers are
easy to extract and provide reliable measurements for pose estimation [9]. However, in the
airplane maintenance positioning such markers is rather inconvenient; therefore it will not
be further explored.

Natural features

Another approach uses natural features [9] – these features can be either edge-based or
texture-based.

Edge-based features are more resistant to changes in illumination and can be computed
effectively. Usually, a strong gradient in the image is being searched for to find these
features.

Figure 2.4: Example of an edge-based features algorithm (RAPiD algorithm) [9].

Texture-based features can be derived from optical flow, template matching or interest-
point correspondences. However, the object has to be sufficiently textured.

Feature points extraction

These methods usually include an offline training stage, where a database of interest points
lying on the object — and whose position on the object surface can be computed — is
built. For this purpose, one to several images with the object manually registered in are
required.

At runtime, feature points are extracted from the video images and matched against the
database. Next, the camera position can be estimated from the correspondences of feature
points.

Because the database images and the video-images may be acquired from different
viewpoint, it is desired for these feature points to be highly distinctive and also invariant
(or at least more or less robust) to scale, viewpoint, illumination changes, and partial
occlusions. This may be done by characterizing each extracted feature point in terms of its
image neighborhood and then to compare this characterization to the feature points stored
in the database; such characterization is called local descriptor and can be found e.g. in
SURF [9].
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2.2.2 User interfaces and interaction with system

Considering the AR’s purpose and possibilities it offers, a typical user interface (such as a
hardware keyboard used for interaction) may not seem very appropriate. Hence, there are
several different techniques that allow the user to interact with virtual content [36].

An interesting approach are tangible user interfaces (TUI) where digital information
is manipulated with physical objects [16]. For example, Kato et. al. [18] uses a real
paddle to select and move a virtual furniture projected to a surface of a real table; markers
are used in this prototype. Another variants of TUI include e.g. mapping motion of a
real object to a command and also combining it with gesture (e.g. a finger tracker that
requires a special glove with retro-reflective markers [7]) and voice interaction what leads
to multimodal interfaces [36].

Many other techniques that are used in AR — including marker-based tracking and
collaborative user interfaces — were not described in this part, since they are not directly
connected to the goals of this work. For a comprehensive overview of these methods and
techniques used in AR field, the reader is advised to refer to Zhou et. al. [36].

2.2.3 Interpolation methods in two-dimensional discrete images

Interpolation in image is used for calculating a formerly unknown value v of point P —
further expressed as v(P ) — by using its adjacent points. The unknown value may be a
result of various image transformations (for example perspective transformations, resizing,
or remapping image points to new coordinates when removing distortion) that create new
points with an unknown value or remove redundant points (e.g. when downscaling an
image) while trying to keep as much of original image information as possible.

Input for these method are points Π = A,B,C,D, . . .; their values v(A), (B), v(C), (D), . . . ;
and point P which value v(P ) will be computed. Output is an estimation of v(P ). Only
basic interpolation methods and methods used in this paper will be described here. For all
these methods, a point with unknown value is P and a set of its adjacent points is Π, P /∈ Π.
More information about these methods together with other interpolation methods can be
found in [30].

Nearest neighbour interpolation

Nearest neighbour is the simplest interpolation method; it basically returns value of the
nearest point to P , mathematically:

v(P ) = v(A|∀A,B ∈ Π : d(A,P ) ≤ d(B,P )) (2.1)

Area interpolation [28]

Another simple interpolation method that calculates v(P ) as an average value of its adjacent
points. Mathematically:

v(P ) =

∑
p∈Π v(p)

|Π|
(2.2)

This method can be used with image downscaling since it is fast and gives moire’-free
results [28].
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Linear interpolation

Linear interpolation is a method of calculating v(P ) by fitting a straight line between two
points A and B and determining its value at P , as equation 2.3 shows.

v(P ) = v(A) + (v(B)− v(A))
|P −A|
|B −A|

, A,B ∈ Π (2.3)

Bilinear interpolation

Bilinear interpolation uses — as its name states — two linear interpolation to determine a
value of P laying in an area created by four adjacent points; in this case Π = A,B,C,D.
First, linear interpolations PAB, in between points A and B, and PCD between points C
and D are calculated. Then, linear interpolation of PAB and PCD results in final value of
P . These equations are shown in 2.4.

v(PAB) = v(A) + (v(B)− v(A))
|PAB −A|
|B −A|

, A,B ∈ Π

v(PCD) = v(C) + (v(D)− v(C))
|PCD − C|
|D − C|

, C,D ∈ Π

v(P ) = v(PAB) + (v(PCD)− v(PAB))
|P − PAB|
|PCD − PAB|

(2.4)

2.2.4 Camera distortion and calibration

Since camera distortion was a serious problem that needed to be solved in this thesis, a
closer explanation of distortion and camera calibration, together with a pinhole camera
model, is provided here.

Pinhole camera

A very basic camera model is a pinhole camera - it is an imaginary wall with a pinhole
(a small aperture) in its center allowing to pass through only a single ray of light from
any particular point in a scene taken by this camera. This ray is then projected on an
image plane (also called projective plane) and is always focused. The size of projected
object relative to the size of the real object located in the scene is determined by a single
camera parameter – its focal length (a distance between image and pinhole plane). Figure
2.5 demonstrates a mathematical representation of a pinhole camera where image plane is
before the pinhole. In this representation a pinhole is reinterpreted as a center of projection.

The pinhole camera has no distortion. On the other hand, it does not gather enough
light for allowing a rapid exposure. By adding lenses (that allow to gather more light than a
pinhole camera) exposure time may be reduced. However, the lenses bring a more complex
model than a pinhole camera model and they also add distortions [5].

In addition to distortions, another problem arises when using lens – principle point (a
point at the intersection of the image plane and the optical axis) is usually not equivalent
to the center of lens camera’s imager. To model this possible displacement two parameters
representing the shift from its expected position — cx and cy — are used [5]. Then, a
projection of a point q from the real world into the image plane can be calculated as:
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Figure 2.5: Mathematical definition of pinhole camera [5].

q = MQ, q =

 x
y
w

 ,M =

 fx 0 cx
0 fy cy
0 0 1

 , Q =

 X
Y
Z

 (2.5)

Here, q holds the homogeneous coordinates, M is camera intrinsic matrix containing
camera intrinsic parameters that remain fixed for a specific camera, and Q is a position
of point in 3D space. Elements fx and fy of matrix M represent focal length in x and
y axis respectively. This is caused by individual pixels on the imager that may be rather
rectangular than square.

Figure 2.6: Example of radial distortion – rays farther from the center of lens are bent more
than rays closer to the center [5].

Distortion

Although there are many types of distortion, radial and tangential distortions have the
most significant effect (in comparison to the other types) [5]; hence, only these two types
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of distortion will be described here.
Radial distortion is a result of a shape of lens (more commonly used spherical lens

provides a higher level of radial distortion than more mathematically ideal parabolic lens;
on the other hand, parabolic lens is more difficult to produce [5]). This distortion causes
that lines become curves – this is because the rays farther from the center of the lens are
bent more than the rays closer to it, as is shown on Figure 2.6. At the optical center of
imager, distortion is zero and increases toward the periphery; therefore, radial distortion is
most visible at the edges of the imager [9].

Removing radial distortion is rather simple – a radial location (x, y) of a point on the
imager is rescaled to location (xcorrected, ycorrected), using following equation:

xcorrected = x(1 + k1r
2 + k2r

4 + k3r
6)

ycorrected = y(1 + k1r
2 + k2r

4 + k3r
6) (2.6)

Here, r is distance from the optical center of imager and k1, k2, k3 are the terms of a
Taylor series expansion around r = 0. For majority of normal cameras it is sufficient to use
only first two terms of this series expansion; for “fish-eye

”
cameras it is recommended to

use all three [5].

Figure 2.7: Displacements of points on a rectangular grid of camera’s imager caused by
radial (top left), tangential (top right) distortion, and their combination (bottom). [4].

Tangential distortion is caused by assembly process of the camera when the lens is
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not parallel to the image plane. This distortion type is characterized by minimally two
additional parameters, p1 and p2, that help to correct for the distortion as Equation 2.7
shows.

xcorrected = x+ (2p1y + p2(r2 + 2x2))

ycorrected = y + (p1(r2 + 2y2) + 2p2x) (2.7)

Comparison of radial and tangential distortion together with an example of their joint
effect can be found on Figure 2.7. To remove tangential and radial distortion, all five
coefficients — namely k1, k2, k3, p1, p2 — must be known.

To mathematically correct from all these deviations from the simple pinhole model (in
other words, deviations between the image taken by the camera and the real world), camera
calibration is being used.

Camera calibration

Camera calibration is an estimation of camera intrinsic matrix, distortion coefficients and
extrinsic matrix [21]. Extrinsic matrix is a 4 × 4 matrix containing camera’s translation
and rotation from its origin to observed object’s origin.

Basically, there are two ways of calibrating camera: either one picture of an object
with many known 3D points can be taken or several images from different viewpoints of an
object with fewer 3D points are taken.

The second approach requires computing of the camera extrinsic parameters in each
view; however it is usually used because of availability of algorithms for camera position
computing and because its datasets are easier to obtain.

As a dataset, several images with chessboard or other easily recognizable object are
often used [5]. Using a chessboard3 has several advantages:

• It is a planar object.

• Its squares are easily identifiable and extractable.

• These squares lie in straight lines in real world.

Because the chessboard is a planar object, planar homography — a projective mapping
from one plane to another — may be used map it to the surface of the camera’s imager.
This mapping of point Q on the planar object to the point q (both in their homogeneous
coordinates) on the imager is defined as:

Define Q: Q = [ X Y Z 1 ]T

Define q: q = [ x y 1 ]T

q = sHQ
(2.8)

Parameter s stands for a scale factor. H consists of two parts:

1. Physical transformation – uses rotation R and translation t to relate the plane we are
viewing to image plane.

3Chessboard here represents a flat object with alternating white and black squares, not necessarily an
8× 8 board for playing chess
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Figure 2.8: Transformation of 20 images of one object (a chessboard) from camera coordi-
nates (left) to object coordinates (right) [4].

2. Projection – uses camera intrinsic matrix M .

Then, the equation 2.8 can be expressed as:

q = sMRtQ (2.9)

Without loss of generality, the object plane can be defined so that Z = 0 and thus
reducing rotation matrix R, as Figure 2.8 shows.

Since rotation is defined by three angles and translation is described by three offsets,
there are six unknown parameters unique for each view. Assuming that intrinsic matrix
has only four parameters (as in the case of OpenCV implementation [21]) there are ten
unknown parameters (and intrinsic parameters remain fixed). A planar object provides
eight equations; it is a mapping of a rectangular into a quadrilateral that can be described
by four (x, y) points. Thus, given sufficient amount of images any number of intrinsic
parameters can be computed [5].

Intrinsic (together with extrinsic) and distortion parameters can be dealt with sepa-
rately, since the former are tied to 3D geometry of where the planar object is in space and
the latter are tied to the 2D geometry of how a pattern of points gets distorted. There-
fore, when intrinsics and extrinsics are known, distortion parameters can be computed. By
combining equations 2.6 and 2.7 an image point’s location (xcorrected, ycorrected) equal to its
location in a perfect pinhole camera can be obtained from its original distorted location
(xd, yd) by following equation:

[
xcorrected
ycorrected

]
= (1 + k1r

2 + k2r
4 + k3r

6)

[
xd
yd

]
+

[
2p1xdyd + p2(r2 + 2x2

d)
p1(r2 + 2y2

d) + 2p2xdyd

]
(2.10)

With a list of several such equation for different image points distortion coefficients are
computed.
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2.3 Toolkits for augmented reality overview

In last several years, a number of toolkits for AR have appeared. Generally, they can be
divided into two groups:

• Toolkits based on marker detection

• Toolkits offering a marker-less detection

Although some previous solution were using markers for detection (available for example
in such toolkits as AR Toolkit; its newer version AR Toolkit Plus; or ArUco that is based
on OpenCV), in this work marker-less detection is required.

There are several toolkits with marker-less detection available. A short description of
several of them is to find below.

2.3.1 OpenCV

OpenCV is an open source library for computer vision and machine learning originally
created by Intel. Even though it is natively written in C++, it provides C, C++, Python
and Java interfaces and supports Windows, Linux, Mac OS, Android, and iOS operating
systems. This library is used by such corporations as Google, Yahoo, Microsoft, Intel, IBM,
Sony, Honda, Toyota and has more than 47 thousand community members. In addition,
it contains more than 2500 optimized algorithms that provide a wide functionality in the
field of computer vision including [5], [27]:

• Marker-less detection

• Tracking of camera movement

• Pose estimation

• Camera calibration

Also, a full-featured CUDA interface for OpenCV is currently being developed.

2.3.2 ALVAR

ALVAR (A Library for Virtual and Augmented Reality) is a set of products and libraries for
creating augmented reality and virtual application. It has been developed since year 2009
by the VTT Technical Research Centre of Finland under the GPL, therefore it is suitable
for commercial use as well. Moreover, a commercial version of ALVAR — with advanced
computer vision algorithms — and ALVAR Mobile SDK — for Android, Symbian, Maemo,
Flash and Silverlight platforms — can be purchased.

ALVAR available under GPL is available for Windows and Linux operating systems and
depends on OpenCV – OpenCV libraries have to be installed in order to use ALVAR. It
incorporates functions:

• Marker-based tracking, pose detection, etc.

• Template-based tracking – matching against predefined images or objects; use of SfM
and Fern’s algorithms
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• Camera calibration

A part of installation is also a comprehensive HTML manual, installation instructions,
and FAQ sheet.

Information posted in this section can be found in [1].

2.3.3 Vuforia

Vuforia is an AR toolkit for creating applications for Android and iOS devices. It was
developed by Qualcomm and offers e.g. marker-less detection and tracking, virtual buttons,
a comprehensive online manual and growing community what makes, in combination with
modern Android or iOS based smartphones, interesting choice for future use of augmented
reality in maintenance.

More information on Vuforia can be found in [34].

2.4 Related work

The idea of using the augmented reality for training and maintenance is not new and has
been applied several times by several companies and institutes. This section offers a brief
overview of several of such applications.

2.4.1 BMW

BMW experimented with the AR in repair procedures – the goal was to guide a mechanic
through an entire repair procedure as Figure 2.9 shows.

Figure 2.9: Augmented reality for maintenance by BMW [3].

Using the AR, the mechanic can see a 3D model of the part he is maintaining with
additional text and audio instructions. Apart from that, he also sees an animation showing
the tools and actions to be used in the current step of procedure. Also, several voice
commands are present.

17



2.4.2 Boeing

Boeing has been attempting to include augmented reality in its assembling process since
1990’s; the idea of its first project was, “by superimposing diagrams or text onto the surface
of a work-piece and stabilizing it there on specific coordinates, an information about current
step to be constantly being sent to a factory worker making his or her work more effective

”
[26].

Figure 2.10: Augmented reality for maintenance in space by Boeing [24].

In its next project, Boeing wants to bring augmented reality to space training (as shown
on Figure 2.10) in order to reduce the amount of time required for training the crew for
maintenance. The AR set consists of a camera and a HMD [24].

2.4.3 Airbus

Airbus has experienced with the augmented reality as well. Its first prototype was using the
augmented reality in installation of fresh water pipes – by using a standard laptop, a near-
to-eye display (Sony Glasstron) and a web-camera, a technician was receiving step-by-step
instructions and 2D drawings augmenting the real world.

The second prototype focused on a cable plugging support – this time, a small wearable
computer (Xybernaut MA V) was used along with a mini camera (Toshiba IK-MX1) and
a near-to-eye display (Tekgear M2). In this case, marker-based tracking was used and the
real world was augmented by SVG4.

However, Airbus has not deployed any of this prototypes in productive settings, mainly
because of [35]:

• Missing user acceptance

• Maturity of near-to-eye displays was not high enough several years ago

• Difficult tracking conditions inside an aircraft – state of construction is always chang-
ing, geometry data is not complete (e.g. screws and isolation), bad lighting conditions
(movable lamps and hard reflections) and many identical looking parts (e.g. stringers)

4Scalable Vector Graphics
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2.4.4 Columbia University

At Columbia University, a prototype augmented reality application to support United States
Marine Corps (USMC) mechanics conducting routine maintenance tasks inside a turret of
an LAV-25A1 armored personnel carrier was designed, implemented and user-tested [13].

The entire turret volume is approximately 1 cubic meter, but since a mechanic has to
fit into this space, the resulting work area is reduced to only approximately 0.34 cubic
meters. In this space, a large amount of electrical, pneumatic, hydraulic, and mechanical
infrastructure is located.

The prototype uses a VST HMD with two cameras (Point Grey Firefly MV) capturing
the scene from the mechanic’s point of view and a PC running Windows XP Pro. In
addition, the mechanic uses a wrist-worn controller to navigate through tasks in a repair
sequence. The mechanic’s head position and movement is constantly being tracked by 10
tracking cameras placed inside the turret.

Figure 2.11: Augmented reality for maintenance and repair by Columbia University [13].

Figure 2.11 shows the outcome of the prototype: when a maintenance or repair proce-
dure is selected, first a screen-fixed arrow — that indicates the shortest rotation distance to
target area — is shown (a); as the user orients on the target, a semi-transparent 3D arrow
points to the target (b); the arrow is getting more transparent the closer the user orients
on the target (c); finally, when the user locks on the target, the arrow fades out completely
and a precise target location is highlighted [13].

This prototype was tested on several USMC mechanics that were given to complete
18 common tasks under field conditions. The results showed the augmented reality to be
intuitive and satisfying for the tested sequence of tasks leading to reducing time required to
complete a maintenance procedure. Also, when mechanics began physically manipulating
objects in a task, they tended to not require information provided by the display. More
about this prototype and results can be found in [13] and [12].

All results from the first prototype were processed and the prototype was further im-
proved. A comprehensive description of these improvements coupled with a comparison
between the prototype and a laptop-based documentation currently employed in practice
with USMC mechanics can be found in [14].
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Chapter 3

Introduction to airplane
maintenance

Maintenance can be defined as a set of actions necessary to sustain or restore the integrity
and performance of an airplane (in the case of this work), that includes inspection, overhaul,
repair, preservation, and replacement efforts. In other words, maintenance is the process
of ensuring that a system continually performs its intended function at its designed-in level
of reliability and safety [19].

Basically, there are two types of maintenance – preventive and unscheduled maintenance.

Figure 3.1: Scheduled and unscheduled maintenance [19].

• Preventive maintenance – a scheduled maintenance usually performed at regular in-
tervals that is supposed to restore the system to its normal level and prevent its
deterioration to an unusable level.
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• Unscheduled maintenance – occurs, when the system breaks down completely; in
such cases, the maintenance actions necessary to restore the system to its normal
level are often more complicated; a troubleshooting, adjusting and also replacement
of components may be necessary as well.

Figure 3.1 shows the effect of maintenance to reliability of the maintained unit or system;
the entropy here represents the difference between an ideal and the real-world system.

Not all systems can be checked regularly to prevent them from failing – for example,
a high-frequency radio used for communication has to be operated till a failure appears
before maintenance can be done. Also because of this inability to maintain all airplane’s
systems, the aviation industry has developed three different concepts:

• Redundancy – is quite common in engineering design; if one component (called pri-
mary unit) fails, the other (called backup unit) is available to take over the function;
because of that, the maintenance is sometimes performed only on a backup unit, since
the primary unit is constantly in use and therefore it is known whether it is functional
or not.

• Line replaceable unit (LRU) – a system that has been designed in a way that its
parts that tend to fail the most quickly are easily replaceable; thus, no immediate
maintenance is needed.

• Minimum requirement list – allows an airplane with some inoperative systems to stay
in an active service and to legally defer the maintenance, if all items on this list are
functional; this list is created by a manufacturer.

Although the scheduled maintenance can significantly prolong a service life of a compo-
nent, at some point in time the component will deteriorate beyond an acceptable level or will
fail completely. This results in an otherwise chaotic unscheduled maintenance. Because of
this, various maintenance programs were developed. These programs specify the frequency
and type of maintenance of various components, their testing, how a malfunction shall be
handled, etc. A decision process that chooses the best action (e.g. repair, replacement, or
report to further maintenance) for a given input is also included.

Sections 3.1 and 3.2 draw from [19], section 3.3 draws from [15].

3.1 Maintenance intervals

Not every system of the aircraft has to be checked with the same frequency. A set of
standard maintenance intervals is defined:

• Transit checks – are performed after landing and before next takeoff, while the airplane
is in transit at the airport; it consists of oil level check and fill actions and a general
visual inspection that includes checking for any fluid leaks, opening or loosing panels
and damage to the flight control surfaces or antennae. Any problem found results in
an unscheduled maintenance.

• 48 - hour checks – usually replace 24 - hours (daily) checks. They include more detailed
and complex tasks than transit checks, e.g. checking brakes and wheels, oil level for
the auxiliary power unit and aircraft hydraulic fluid level.
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• Hourly limit checks - are performed after a certain number of hours the unit or the
system has been operating since the last check or maintenance; cover checks of such
parts as engines, airplane flight controls and so on.

• Operating cycle limit checks – are similar to hourly limits checks, but instead of hours,
operating cycles (number of flights) of an airplane are taken in account. Tires, brakes
and landing gears are checked on operating cycle basis, since they are used only during
takeoffs and landings.

3.2 Documentation

There are several types of documentation. Since their great number, only the most impor-
tant are enlisted below. Most of these documents have standard revision cycles.

• Airplane maintenance manual (AMM) – contains all the basic information on op-
eration and maintenance of the airplane and its on-board equipment. It describes
components and functionality of each system and subsystem along with a description
of basic maintenance and servicing actions such as removal and installation of LRUs,
various operational tests, etc.

• Component and vendor manual – similar to AMM; it describes all components built
by the airplane manufacturer or by outside vendors who supply electronics, computers
and other systems that are installed on the airplane.

• Fault reporting manual – it is a set of flow diagrams that are designed to locate and
isolate problems within aircraft’s various systems.

• Structural repair manual – this manual provides its reader with information how to
perform certain simple repairs of airplane structure.

• Task cards – these cards are produced by airplane manufacturer and are usually for
one action only, e.g. step-by-step explanation: “open panel, turn certain equipment
on and close the panel

”
.

3.2.1 Example of a service procedure

Because of the aim of this project, an example of a service procedure describing an instal-
lation of an engine mount [23] is shown here.

1. Move the engine mount into position on the firewall.

2. Install the 5 bolts which attach the engine mount to the engine nacelle firewall:

• Push the bolts through the firewall and mounting pads.

• Install the washers and self-locking nuts on the bolts.

3. Install the engine coolant radiator.

4. Install the inter-cooler mounting bracket.

5. Install the turbo charger inter-cooler.
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6. Install the engine oil cooler.

7. Install the inter-cooler / oil-cooler shroud.

8. Install the engine air filter housing and alternate air valve.

9. Install the cabin heating heat-exchanger and shroud.

10. Install the propeller un-feathering accumulator.

11. Install all the clamps, clips and ties that hold the electrical harness and hose to the
engine mount.

This is a typical example of a service procedure. It is a step-by-step manual with
references to other procedures or manuals (not shown in the example above) that can be
easily followed.

3.3 Basic description of L-410

For demonstration of the AR in maintenance, the Aircraft Industries’ L-410 airplane (shown
on Figure 3.2) was chosen. L-410 is a 19 seat twin-turboprop commuter aircraft that is
mostly used in passenger transport. It is delivered with a complete set of technical and
operational documentation.

Figure 3.2: Airplane Let L410 [15].

L-410’s general characteristics are listed in Table 3.1:
The manufacturer of L-410 airplane is located in Kunovice, Czech Republic.
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Crew 1 or 2 pilots
Capacity 17/19 passengers
Wing Span 19.98 m
Length 14.42 m
Height 5.83 m
Max. Take-off Weight 6600 kg
Max. Landing Weight 6400 kg
Max. Payload 1800 kg
Max. Cruise Speed 386 km/h
Maximum Range 1400 km

Table 3.1: L410 - general characteristics
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Chapter 4

Previous work

This chapter describes the work done on this thesis within Term Project and the findings,
suggestions, and solutions created during this phase of the project.

During this work, the theoretical background from previous chapters was used to get
a first insight into the AR topic and to find out possible benefits and limitations of this
technology in order to be able to determine a hardware and software configuration 1. Also,
Chapter 3 and majority of Chapter 2 of this thesis were created to process and categorize
gained knowledge. Furthermore, based on this knowledge, a first simple prototype was
built. Experience gained from this prototype was then used in an solution design in Section
7.1.

Figure 4.1: Matching the feature points on original object’s image (upper right) with the
same object found in the video (lower right) and showing its position rotation and trans-
lation according to the original image (left). Matched feature points are connected with
lines.

1For more pertinent thesis structure, hardware and software configuration was moved to Chapter 5.
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4.1 Prototype

To explore the options of object detection and tracking, a prototype has been constructed.
This prototype uses a laptop’s web-camera2 to get and process video frames in real-time.
Fern algorithm with feature points extraction had been used for tracking and pose estima-
tion [1]. The prototype’s algorithm has two phases:

1. Training phase – in this phase, one image of the object that will be tracked is required.
The resolution of this image is recommended to be between 200 × 200 to 500 × 500
pixels and the training takes approximately 1 to 4 minutes. The output of the training
is a datafile with information on found feature points.

2. Tracking phase – here, feature points are extracted from video frames and matched
to the dataset. From the matches, a camera position and orientation according to the
tracked object is calculated.

For a more user-friendly overview of tracking performance, a GLUT library was used
for showing a plane located in a 3D space representing the position and rotation of the
real-world object in comparison to its learned model (stored in the dataset). Additionally,
matched points were connected by lines3. Figure 4.1 shows tracking of a testing object - a
Casio calculator. The calculator was chosen due to unavailability of maintenance videos.

Figure 4.2: Tracking fails if the object is too distant.

However, during repetitive experiments, a problem occurred in this prototype; if the
object was more distant, tracking failed, as Figure 4.2 demonstrates. This may have been
caused due to the low quality of the used web-camera.

2It was the only available camera at that time.
3This option is provided by ALVAR.
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Chapter 5

Hardware and software
configuration

As presented in section 2.4, augmented reality in maintenance applications usually operates
with a camera that captures a scene from a mechanic’s point of view; a computer that
detects and recognizes the scene and contains information about procedure; and a head-
mounted display that imprints additional information of the current step of maintenance
procedure on the video captured from the camera. This concept was chosen in this work
as well.

A description of first two components — i.e. the camera and the computer — that were
used follows below. However, it is important to mention that this project has a goal to
explore the potential benefits of using the AR for supporting maintenance procedures, not
to bring a production-ready implementation. Therefore, the software and hardware choices
made for this project may not necessary reflect the needs of a commercial application.

5.1 Camera

Since camera is an essential component in AR for maintenance applications, the choosing
of the camera, that was used during dataset acquisition, had received considerable atten-
tion. For this purpose, several point-of-view cameras were compared and evaluated before
visiting LET. The most important properties (besides camera’s dimensions and mounting
capabilities) that were examined were:

• Video resolution and quality – critical for computer vision algorithms.

• Live stream capability – for enabling the connection between the camera and an OST
HMD in the future1.

• Wide field of view – the wider portion of the scene can be captured, the better
orientation in it.

Finally, Contour+2 camera was chosen [6]. This camera comes with a headband, so
it can be easily attached to technician’s head. Because of a built-in microphone, voice
commands can be transmitted along with video. Furthermore, it offers (via a 3rd party
hardware) a wireless live video stream to a computer.

The full specifications can be found in Table 5.1.
1Honeywell has access to Lumus OE-32; therefore, it will probably be the first testing device.
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Figure 5.1: Contour+2 – a camera chosen for this thesis.

Resolution 1920× 1080, 1280× 960, 1280× 720, 854 x 480 pixels
Field of View 170◦

Battery life 2 – 2.5 hours
Dimensions 96× 34× 60 mm
Internal microphone Yes
Live stream via HDMI or wirelessly via 3rd party hardware

Table 5.1: Camera properties

5.2 Computation

For this thesis, a Lenovo T500 laptop with Windows 7 SP1 and Visual Studio 2010 was
used. The source code was developed in C++ programming language. ALVAR toolkit [1]
had been used for the core functionality implementation because of high-level functions that
allow to build a prototype rather easily. Also, OpenCV 2.4.0 [27] was used for handling the
other functionality in the implemented solution because of its software maturity, compre-
hensive manual pages, and its active and vast community. Finally, TinyXML2 was used for
XML documents parsing and Doxygen for generating documentation from the source code.
Installation steps for installation of these libraries can be found in Appendix B.
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Chapter 6

Data acquisition and analysis

Since this thesis deals with AR in the field of airplane maintenance, a suitable dataset
— a set of video recordings of service procedures — had to be obtained. To accomplish
this objective, a contact with LET — an aircraft manufacturer of aircraft L-410, located
in Kunovice, Czech Republic — was established. After a mutual agreement, LET chose
several procedures that were supposed to fulfill the requirements sent to them prior to
the appointment that was held on 14 March 2013. In this chapter, a rough draft of these
procedures is provided along with hardware used to obtain the dataset and a first dataset
analysis.

Figure 6.1: Recorded procedure from the technician’s point of view with Contour+2 camera.

6.1 Hardware equipment

For dataset acquisition, several devices were brought to LET:

• Contour+2 camera with a headband mount that was mounted on technician’s head
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with the intention of capturing video from his point of view.

• Samsung Galaxy Note II smartphone which was used for controlling the camera,
changing its settings and capture modes, and receiving live video stream from the
camera via Bluetooth.

• Sony HDR FX1 HDV Camcorder that was capturing service procedures from a dif-
ferent perspective for documentary purposes.

• Nikon D5000 camera for photo documentation.

• Laptop for backing-up recorded data directly after their capture and for problem
solving.

In addition, LET provided lighting equipment for specific procedures performed in dim-
mer environment; its technicians; an L-410 aircraft; and service manuals with description
of all steps within performed procedures.

Direct Bluetooth stream from the camera to the smartphone enabled to check the video
output in real time1; therefore, it was possible to correct for some undesired faults (such
as pointing the camera out of the actual maintenance area) and thus improve quality of
captured video recordings. However, the chosen camera and headband mount put certain
limitations on the video recording that were not fully eliminated. These limitations are
defined in Section 6.3.

Figure 6.2: Contour+2 camera fixed on head using the headband mount.

1Although this stream was in low quality it still allowed for a check of camera’s line of view
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6.2 Procedures description

Preceding the visit of LET, a set of qualities to be met by the selected procedures was sent
to LET. Among the requested qualities were:

• The procedure should consists of only several steps – the goal of this thesis is to test a
prototype not to create a production-ready solution; in addition, less number of steps
usually results in shorter procedures that are better for demonstration.

• During the procedure, the technician should have non-blocked view to all components
he is manipulating with.

In return, LET responded with a list of four procedures that were supposed to fulfill
these qualities. The selected procedures follow:

• Lifting the aircraft

• Disassembling of the main landing gear and its break

• Disassembling of the fire alert unit DPS

• Assembling of the fire alert unit DPS

• Checking of the fire alert unit DPS

6.3 Data analysis

All procedures were captured by Contour+2 camera mounted on the technician’s head the
same way as Figure 6.2 demonstrates. The video was captured in 1280× 720 resolution at
the rate of 30 frames per second. This resolution was chosen with the intention to keep the
highest possible video quality while offering the widest field of view as close as possible to
human’s peripheral view. However, it has caused rather significant distortion.

Camera’s headband mount allowed only for a limited and not very accurate positioning
causing the camera was capturing scene slightly above the scene seen by the technician.
In addition, the camera was attached from the left side of technician’s head2. Since the
technician was right-handed, the camera often captures the scene from a more acute angle
as it would have done if the camera was on the technician’s right side of the head. This
was fixed during the execution of the last procedure — Checking of the fire alert unit DPS
— so it offers a good opportunity to study the difference.

In the video recordings, the technician often turns his head to left or right, or moves
through scene causing the manipulated component (or even the whole original scene) getting
out of the camera’s field of view even for several seconds. Due to camera’s small sensor and
high focal ratio (f-number) all rapid camera movements are blurry to a certain level.

Every service procedure was executed and recorded only once due to limited time.

2This was caused by assembling the camera mount by the author of this thesis, who is left-handed and
who, at given time, was not aware of impact of such assembly to the output quality.
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Chapter 7

Implementation

This chapter describes the process of final applications design and their implementation.
Explanations of algorithms and approaches used during this process are to found here,
including references to literature and previous chapters of this work. The output of the
implementation — the source code — is sufficiently commented and Doxygen tool was used
to generate a comprehensive HTML documentation1 with cross-references; this files can be
found on DVD.

For these reasons, there are no examples of the source code available in this chapter;
its goal is to familiarize the reader with the ideas and reasons that led to use or creation of
following algorithms and approaches, not with their specific implementation in a particular
programming language.

7.1 Application design

Based on the results from the prototype and information from [12], [3], [14], and [35]
an application design was created and implemented. In Section 6.3, many imperfections
found in video recording were described; only a robust solution may be able to handle such
imperfections and eliminate false or erroneous detections – or at least to decrease their
occurrences. Such solution is presented below.

This solution has to be able to undistort and resize distorted video inputs, train detec-
tors from given components’ images, guide through individual procedures’ steps, highlight
a component which will be manipulated within the current step, identify an erroneous de-
tection — which would result either into deformation of highlighting in the current step, or
would cause a small undesirable position deviations from previously highlighted position2

— and also to be as effective as possible.
It was discovered that some algorithms described later in this chapter will be required to

run only a limited number of times. To reduce the number of parameters that it would be
necessary to implement for an application which would work with all these algorithms, func-
tionality was divided and a total of four applications were designed. Their brief description
follows:

1All useful algorithms’ parameters that cannot be set via applications’ command arguments, can be set
in header file Constants.h; these parameters are separated into several categories here in order to make the
orientation in the file easier. It is recommended to study this file.

2These deviations had also occurred in the prototype causing the drawn plane was not stable but tended
to slightly change its position and orientation.
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• Camera Calibrator – calculates camera’s intrinsic and distortion parameters from a
set of calibration images.

• Markerless Creator – trains ALVAR’s detector from an input image and stores the
result on disk.

• Frames Extractor – a supportive application for the first two applications; it plays
video and is able to export individual video frames as images and save them on disk;
these images can be used for instance for camera calibration. The application is also
able to pause video, if further investigation of the current video frame is needed before
saving.

• ARfTaEoAM – an abbreviation of Augmented Reality for Training and Execution
of Airplane Maintenance, the name of this thesis. It is the main application that
implements the detection, validation and drawing algorithms described further in
this chapter.

First three applications are only supportive and their execution may be required only
once per camera and procedure3. Application parameters for each of these applications are
located in Appendix C.

7.1.1 Procedure

One run of the main application works solely with one procedure. Due to the digital
implementation of this procedure — which works with AR, detection and its validation,
etc. — it has to differ from the typical definition of a procedure as presented in Section
3.2.1. Besides its name and textual (and possible image) description of individual steps, it
should contain detector’s data for each step of procedure as well.

Based on the lower quality of video dataset and experience with the prototype, it should
be also possible to use two or more detectors (with different detection goals) simultaneously
to reduce erroneous detections. Consequently, an arbiter unit would be required to validate
the output of each detector and choose the best one.

To compensate for errors in detection even more, a history, that would keep information
about a certain number of previous detection, should be implemented. From looking into
the history, it would be possible to detect an anomaly from previous detections and correct
it.

Sometimes the component, that is manipulated within the current step of procedure, is
either too small or very difficult to detect. If it is firmly attached to another component or
its position in relation to this component does not change, it would be easier if the detector
detected this latter component and then calculated an offset to the former one. That’s why
an Area of interest (AoI, plural AoIs) was introduced which realizes this idea4. As one step
may describe manipulation with more than one component (e.g. loosing several screws), it
should be possible to work with more AoIs within one detector.

All this information should be collected in the electronic version of procedure that
should be stored on a disk. Taking into consideration that a complex procedure may
include many steps with various sets of detectors, all of them containing several AoIs for

3There are already created all necessary files for execution of the main application on the DVD attached
to this thesis; therefore these application may not be executed at all.

4Basically, it just contains an offset between detected object and the searched object.
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its each step, XML format was chosen for storing rather than plain text, as it offers good
editing, processing and validation options. A sample of a procedure XML file is available
in Appendix D.

Figure 7.1: Main application design.

7.1.2 Final design

The ideas presented in this section were put together resulting in the design of the main
application as illustrated on Figure 7.1. Here, the video input goes to a set of detectors,
where each detects a different scene, and their output is validated with the use of history of
previous detections. Arbiter then chooses the best detection which will be drawn. Controller
switches among steps of procedure and detectors and validators associated with them.

Only a simple user interface was implemented in this work. This interface is based on a
manual selection of procedure and also a manual switching among its steps. Even though a
gesture recognition may seem as a very natural way of interacting with an AR environment,
in conjunction with maintenance, where mechanic’s hands are often in camera’s field of view,
their movements during a procedure can be misunderstood as a hand gesture. Nevertheless,
other possible solutions do exist (for example the solutions explained in [36]) and will be
explored in the continuation of this thesis.

7.2 Preprocessing

As mentioned in section 6.3, all video recordings were captured in high definition and with
a high level of distortion. Due to a computational complexity of chosen detection algo-
rithms and their sensitivity to distorted input, the recordings were undistorted and resized,
respectively. These operations were executed on the original video recordings creating a
new modified dataset that had replaced the original one henceforward.

The reason for this decision was that the distortion is individual to each camera and in
some cases, undistortion is not necessary. Moreover, the recordings were captured in their
high quality for possible future use; the most of video cameras offer an option to change their
resolution. Therefore, the undistortion and resizing should not enter the main application’s
loop and affect its computational time. Naturally, these operations were implemented in a
way that allows their use inside the main loop; however, they were not used there.
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This section offers an insight into algorithms for camera calibration, undistortion and
video resizing.

7.2.1 Distortion removal

Two versions of camera calibration and distortion removal — one using ALVAR and one
using OpenCV library — were implemented due to several ALVAR’s properties that did
not meet former expectations:

• ALVAR creates calibration files that are used directly with object detection and their
separate use is rather complicated.

• It offers only limited algorithm settings.

• For camera calibration, it uses old OpenCV structures5 instead of classes available in
the newer versions, while the rest of ALVAR’s classes work with these newer OpenCV’s
classes, causing an inconsistency in source code.

The main calibration algorithm works with chessboards and remains the same for both
version:

1. Take an image and look for chessboard corners – a number of vertical and horizontal
inner corners of the chessboard has to be specified before executing this step.

2. If specified amount of corners was not found, go to step 1.

3. Get subpixel accuracy on the corners – this improves the calibration result.

4. Add chessboard corners’ coordinates to a list of detected corners.

5. If not enough chessboards were found and there are still images left unchecked, go to
step 1.

6. Calculate camera’s intrinsic matrix and distortion coefficients.

7. Save camera’s intrinsic matrix and distortion coefficients to XML file(s)6.

The main difference is, the ALVAR implementation works with a video input where it
looks for chessboards and if one is detected, it waits at least 1.5 seconds before attempting to
detect the chessboard again – this allows the camera to change its position and orientation,
expectantly increasing the diversity of chessboard views. It is also possible to set a maximum
detection number, so the algorithm stops after detecting this number of chessboards and
starts calibrating; because of this, even a long video record may be passed as input and
its processing may not take too much time. In addition, every video frame with detected
chessboard is saved on disk.

On the other hand, the OpenCV implementation does not detect chessboards from
videos but rather from a list of images – this reduces the time required for the first two
steps of the algorithm since a list of images with a good view of chessboard can be prepared
in advance. When calibration is done, intrinsic matrix and distortion coefficients are used
to calculate two maps (one for the x coordinate and one for the y coordinate) that map

5It uses C structure IplImage instead of C++ class cv::Mat.
6ALVAR uses only one XML file; OpenCV solution was implemented using two separate files.
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each pixel in the distorted image to its new location. In the standard version, bilinear
interpolation is used to calculate missing pixels and the output of the undistortion is cropped
(as illustrated on Figure 7.2), so there are no blank areas with undefined7 pixels. It is also
possible to turn this cropping off8.

Figure 7.2: Application of distortion removal – original video frame (top image) is undis-
torted and area with undefined pixel values is cropped (bottom image)

.

It is recommended to provide or capture at least 10-20 chessboard images from different
viewpoints at different depths [21]. Further in this work, only OpenCV implementation
had been used. In addition, a method that undistorts a single frame or the whole video
and saves it on disk was implemented as well.

7.2.2 Resizing

Resizing was implemented to work either with a single image or with the whole video
recording. It uses interpolation for calculating new pixel values. Because this algorithm is
used only for image shrinking, interpolation method was firmly set to area interpolation.
For more information on this and the other interpolation methods, please see Section 2.2.3.

7in the case of OpenCV, set to black color.
8This can be done by changing value of constants AR CAMERACALIBRATION CALCULATE NEW CAMERA MATRIX

and AR CAMERACALIBRATION ALPHA in file Constants.h.
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7.3 Detector training

ALVAR’s FERN detector was used for detector training. ALVAR itself blurs the input
grayscale image, so only strong feature points are extracted and random noise is reduced.
Moreover, ALVAR also displays the input image with all found features during the training
phase.

The algorithm for detector training consists of only three steps:

1. Open image that will be used for detector training and convert it to grayscale.

2. Blur the image and extract its all feature points.

3. Save the result of learning in a .dat data file.

The resolution of input images is recommended to be between 200 × 200 to 500 × 500
pixels and the training takes approximately 1 to 4 minutes [1]. The output of the training
is a datafile with size of approximately 80 MB with stored information on found feature
points.

It is possible to train more detectors in a sequence and choose their names and location.
Appendices C.2 and F describe this functionality in more detail.

7.4 Procedure

Procedure implementation follows its design introduced in Section 7.1.1 and its XML rep-
resentation can be found in Appendix D. For better understanding of the algorithms and
approaches described in this chapter, it is important to get familiar with the structure of
procedure. A brief insight into its organization follows.

7.4.1 Structure

Each procedure consists of its name, a set of steps and a set of detectors that are used with
the procedure. Detectors were separated from steps due to a possibility of the same detector
being used in several procedure steps. Since each detector stores approximately 80 MB of
data, loading the same detector for every step again would not be effective; therefore, the
detectors are stored separately and each step works only with their references.

Except of detector references, every step holds additional information on its unique ID,
which defines its position in procedure9; a textual description of current step; a reference
image, if available, describing a component in more detail; and additional information on
all detectors associated with the step.

The additional information involves detector’s ID10 and a set of AoIs created for this
detector. These AoIs are rectangles — each defined by their top left corner and their width
and height — that envelope the area where a component is located. The use of rectangular
offers many advantages which are further discussed in Section 7.6.

9After loading an XML successfully, all steps are sorted according to their ID.
10Detector’s ID has the same purpose as step’s ID.
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7.4.2 Loading and Validation

A third party library — TinyXML2 in version 1.0.11 [33] — was used for parsing an XML
file. After the XML document is fully loaded and parsed, a check is performed. This check
shows warning or error messages if some inconsistency or missing information is found in
the procedure. Error messages cause the whole application to exit, warning messages allow
it to run, however its functionality may be restricted. For a comprehensive information
on this functionality, the reader is recommended to look into source code documentation
generated by Doxygen.

7.5 Features detection and homography calculation

For features detection and homography (matrix) calculation, a combination of ALVAR and
OpenCV is used. For features detection, ALVAR detector is used. This detector has to
contain a .dat file11 with a model — the object learned by the detector — which will be
detected and works only with grayscale input images. Before the detection process begins,
the input image is blurred – this behaviour is identical with the process of model’s datafile
creation described in Section 7.3.

The detector then extracts feature points from the input image and matches them to
model feature points. The result of these operations are two feature points sets — set of
model feature points M and set of image feature points I — for which the following applies:

mx ∈M, ix ∈ I, |M | = |I|
∀x ∈ 〈1, |M |〉 : mx → ix ∧ ix → mx

(7.1)

Put in other words, a bijection exists between sets M and I, and each model feature
point at position x is matched to image feature point at the same position. From these
matches, homography matrix can be calculated.

However, this matches contain a number of mismatches or outliers. ALVAR uses its
own internal algorithms for detection of such mismatches and computation of homography
matrix.

This process can be summarized in several steps (assuming the model feature points
were already successfully loaded):

1. Extract image feature points.

2. Match these points to model points.

3. Remove outliers.

4. Calculate homography matrix.

Another approach to the detection of outliers and calculation of homography matrix —
based on solution from [21] and using OpenCV — was implemented in this thesis. Feature
points detection remains the same as in the previous case, but a new outlier removal and
homography matrix calculation were implemented.

In this implementation, image and model points are gained from the detector at the
beginning. Then, OpenCV’s implementation of RANSAC (RANdom SAmple Consensus)

11This file can be created by Markerless Creator application.
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method is used for detection of outliers which are removed and finally, the homography
matrix is computed using OpenCV’s function implementing the technique described in
Section 2.2.4. RANSAC is an iterative method that estimates parameters of a mathematical
model (in this case homography calculation) by randomly selecting from a dataset that may
contain a number of outliers. It means that the result given by this algorithm is correct
only with a certain probability. More about this algorithm can be found in [21].

The homography calculation algorithm can be summed-up into these four steps:

1. Get image and model feature points from detector.

2. Use RANSAC method for outliers detection.

3. Remove outliers.

4. Calculate homography matrix from reduced sets of image and model feature points.

Unrelated to the chosen homography matrix calculation algorithm, the feature points
used for its computing may be shown in output video. In the case of OpenCV implemen-
tation, also all detected feature points are shown.

7.6 Homography matrix validation

As mentioned in sections 4.1 and 6.3, there are segments in video recordings where the model
is either not present or is indistinguishable from its background. These cause incorrect
detections, since the homography matrix is computed every time at least eight feature points
between model and image are matched12. Because of the nature of chosen features and video
recordings rich on features, it can be assumed that more than 8 points are detected in each
video frame even if the object does not occur there, resulting in an erroneous homography
matrix.

The purpose of the algorithms (or tests) introduced in this section is to detect these
erroneous matrices. Several different checks that use simple geometric objects — only
AoIs and squares are used — were implemented. Because of use of simple two-dimensional
objects and analytic geometry, these algorithms can classify the input matrix only with
several basic arithmetic and trigonometric operations.

The idea behind these algorithms is simple – if homography matrix is not valid due
to previously listed reasons, its application to an object will deform it noticeably. Such
deformations can be divided into several categories with certain characteristics, which were
discovered by observation of a number of deformations that occurred in the video dataset.

Each check searches for one typical characteristic of invalid matrix. If any test fails, the
homography matrix is rejected as invalid.

Effect of these algorithms on erroneous matrices detection — both individual and com-
bined — is tested and evaluated in Section 8.3.

7.6.1 Sides ratio check

A very simple test that uses a reference square. A perspective transformation using ho-
mography is applied to this square. Subsequently, the ratio of the longest and the shortest
side of the transformed square is compared with a predefined constant.

12Although seven matches would be enough, OpenCV implementation uses eight [21].
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This check eliminates matrices that would stretch model over a certain threshold where
it can be assumed no valid detection should occur.

7.6.2 Complex quadrilateral check

Figure 7.3: Dependency on AoI dimensions in quadrilateral check – green AoI reports that
the current homography matrix passes the check while an red AoI is deformed and reports
invalid homography.

In a number of invalid homography matrices cases, the transformed AoI became complex
quadrilaterals [32], as two of their opposite sides crossed. This test analyzes if such case
occurred.

Although AoI’s dimensions affect this check’s success rate, as Figure 7.3 illustrates,
during tests, its performance was overcome by other checks, no matter what dimension
were set to either AoIs or reference objects.

7.6.3 Angles check

In video dataset, a number of invalid homography matrices appeared that passed the first
two checks; however their inner angles were too acute turning them basically into a line
(or a line-like object) on the screen. To prevent this from happening, angles check was
implemented. This test simply calculates all inner angles of a transformed AoIs using the
law of cosines (a, b and c are lengths of triangle’s sides and α, β and γ are their corresponding
angles) [32]:

a2 = b2 + c2 − 2bc cosα

b2 = c2 + c2 − 2ac cosβ

c2 = a2 + b2 − 2ab cos γ (7.2)

If any of calculated angles is more acute than a predefined constant, the homography
matrix is rejected.
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When all inner angles are known, another quick test that investigates, if transformed
AoI remained convex or became a concave quadrilateral [32] is performed. An easy method
to test it is to sum its inner angles – if the result is 360◦, there is a good probability that
the AoI remained convex.

7.7 History and AoIs’ acceptation process

Even when detection succeeded and the detected object was enveloped by a transformed
AoI properly, this envelop used to move or resize between two frames, what was rather
disturbing. In order to reduce this resizing and movement, history was introduced.

History was implemented for each detector. It is a cyclic list of a predefined size, where
records of previously calculated homography matrices, their validity, and transformed AoIs
are stored. Its goal is to adjust AoI’s coordinates or replace them completely (in case an
invalid homography is detected).

This adjustment or replacement of a single AoI is done according to the following algo-
rithm:

1. If calculated homography was not valid, go to step 4.

2. Calculate weighted sum of distances between AoI’s coordinate and all history entries
and subtract it from AoI’s original coordinate (as equation 7.5 shows) for each of AoI’s
eight coordinates13. In this equation, cnew stands for new coordinate; cold represents
AoI’s original coordinate; h defines index to the history, where h = 1 represents the
most distant history; and w expresses weight. The more distant entry in history, the
lower weight it carries.

3. Calculate error according to equation 7.6. Go to step 6.

4. (Homography matrix was not valid) Replace AoI coordinate’s value with centerhistory
calculated according to equation 7.4.

5. Set error to 0.

6. Return new AoI coordinates and calculated error.

w =

{
0, homography for entry h is invalid
h, homography for entry h is valid

(7.3)

centerhistory =

∑|H|
h=1(ch)w

sum
|H|
h=1w

(7.4)

cnew = cold −
∑|H|

h=1(cold − ch)w

sum
|H|
h=1w

(7.5)

error =

√√√√ 8∑
i=1

(coldi − centerhistoryi)2 (7.6)

Then, the history algorithm can be described as:

13AoI has four corners, each corner is characterized by its x and y coordinate.
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1. Validate homography using checks from Section 7.6.

2. Use validity information from previous step to calculate new coordinates of each AoI
as described in previous algorithm. Accumulate AoIs’ errors.

3. Store all AoIs along with their homography matrix and validity information to the
history.

4. Return an altered set of AoIs and accumulated error.

The new set of AoIs is then used instead of the original one, when showed to the
technician.

The accumulated error is calculated from a comparison to only those history entries,
which were marked as valid. If the object was detected properly there will not be a signif-
icant difference from other valid detections; therefore, the accumulated error will be low.
Hence, it can be assumed this error represents a certainty, that detected object corresponds
to the object learned by the detector. Zero error means, no valid homography was calculated
and AoIs’ coordinated represents weighted and averaged history’s coordinates. Otherwise,
the higher the accumulated error, the higher the probability of a wrong detection.

7.8 Use of multiple detectors

As can be seen in Section 7.4 and Appendix D, it is possible to enter two or more detectors
to one procedure’s step. Because of this, the same object can be learned from multiple
views14 and these views can be searched for in each video frame during its processing.
After all detectors are finished, result from each of them can be evaluated.

The evaluation is directly connected to the history; as mentioned in previous section, the
history algorithm returns — except of an altered set of AoIs — also detector’s accumulated
error. This error is used when deciding which detector can provide the best results. If there
are two or more detectors whose accumulated errors are equal and the lowest at the same
time, either the one used in previous frame is chosen again or (if such detector is not among
these detectors) the first detector in row is chosen. This detector’s AoIs are then displayed.

The whole algorithm can be summarized in following steps:

1. For each detector in the current step of procedure, try to detect the object it was
trained for in the scene and calculate homography.

2. Validate each detector’s homography and calculate detector’s accumulated error.

3. Compare the error of each detector to error of the detector chosen in previous frame.

4. If this error is lower and its detector has valid homography, select it instead of the
previous one.

5. Draw the selected detector’s AoIs.

Only a sequential version of this algorithm was implemented in order to explore its
possibilities.

14This approach also requires a creation a different set of AoIs for each detector.
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7.9 Displaying results

Detecting components, calculating their orientation and fixing detection errors would not
be very meaningful, if no information was given to the technician. The easiest way how to
pass this information is by augmenting the input video with a helpful content. At the same
time, the technician should not be overwhelmed by amount of graphical information, as it
might result in decreased productivity [12].

Based on tests and conclusions in [12] and [14], three different kinds of information
passing were implemented. All information can be turned on/off, so it will not distract
the technician when it is not required. Because it is not always possible to determine
technician’s position in relation to the searched component (for example when the technician
turns or walks away from the aircraft or workbench to bring necessary equipment), a guiding
line as shown on Figure 2.11 used in [13] was not possible to implement.

The following information passing techniques were implemented.

7.9.1 Highlighting the component

A very simple algorithm that uses OpenCV to connect four given points — that represent
AoI’s corners after application of homography matrix to its former corners’ positions — with
lines, creating a quadrilateral. Because of previous tests and validations, this quadrilateral
is convex and should envelope the searched component.

7.9.2 Drawing text

This algorithm takes care about displaying a text bonded to the current step of procedure
in the video. The text is horizontally centered and located at the bottom of the display
where it does not block the technician’s field of view.

7.9.3 Overlapping images

Sometimes the text and highlighting are not sufficient and an additional information — e.g.
a technical image of a whole block of components — is needed as well. For this reason, it
is possible to add an image with such data to every step of procedure.

This image overlaps the input video frame with its upper right corner fixed to frame’s
upper right corner. In order to prevent this image to cover a significant portion of video
frame, maximum dimensions of overlapping images can be set; if the image exceeds any of
them, it will be resized to fit into them while keeping its side ratio.

To further reduce the disturbance caused by displaying an overlapping image — because,
when displayed, it blocks the a part of original video frame, no matter its dimensions —
it is possible to set transparency α of this image. Then, output image o consisting of an
image i overlapping a video frame f is calculated as:

o = i ∗ α+ f ∗ (1− α) (7.7)

7.10 Main execution loop

The main loop follows its designed shown in Figure 7.1. Its arguments and bound control
keys can be found in Appendix C.1. In addition, loading of video file, detectors, and parsing
of XML file was implemented here.
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Chapter 8

Reached results

The goal of this chapter is to discuss the results (in terms of efficiency, computational
complexity, and contribution in general) gained by application of implemented algorithms
to the video dataset, and to suggest possible future improvements that can be considered
in the continuation of this work.

For testing purposes, four video recordings with four maintenance procedures were cho-
sen:

1. Video 1 – Disassembling of the main landing gear and its break.

2. Video 2 – Disassembling of the fire alert unit DPS.

3. Video 3 – Disassembling of the fire alert unit DPS and Checking of the fire alert unit
DPS – second part.

4. Video 4 – Assembling of the fire alert unit DPS.

These videos remained uncut (including technician’s approach toward maintenance area)
in order to provide the most authentic simulation of possible future use of AR in mainte-
nance.

8.1 Preprocessing

This section examines gained results from undistortion and resize algorithms described in
section 7.2.

The distortion level of captured video recordings was relatively high — as Figure 7.2
illustrates — and required undistortion.

Because of the ALVAR’s disadvantages mentioned in section 7.2.1 (and due to incom-
patibility of its and OpenCV’s intrinsic matrices and distortion coefficients format), camera
calibration using ALVAR algorithms was not used for final calibration. However, feature
in ALVAR’s camera calibration implementation, which waits at least 1.5 seconds after the
last chessboard detection, was used to create chessboard dataset – all images in the dataset
contained chessboard detected by ALVAR, so there was a high probability that they will
be detected by OpenCV as well.

This dataset was then passed to OpenCV which calculated and stored intrinsic matrix
and distortion coefficients. Figure 7.2 shows the successful result of undistortion. It also
shows the result was cropped.
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Figure 8.1: Distortion removal with calculating new camera intrinsic matrix with parameter
α = 0.3; areas with undefined pixel values appear in the output image.

The OpenCV implementation1 offers a way of reducing or eliminating this cropping by
calculating a new camera matrix based on a free scaling parameter α, α ∈ 〈0, 1〉, where
α = 0 means that all the pixels in undistorted image are valid (no pixel with an undefined
value is present); α = 1 means, that all the original image pixels are kept in the undistorted
image. Result of crop reduction (by using α = 0.3) is shown on Figure 8.1.

However, after output analysis, it was decided to keep the original cropped result without
any undefined pixels. The main reason was that the curve between undefined (black) and
valid pixels would create a new set of feature points which would decrease probability of
a successful detection. Furthermore, although the camera was not aligned perfectly with
the technician’s line of sight, manipulated objects usually remain in the center of video
recordings; therefore, it is more beneficial to keep cropped result with only valid pixels.

First, camera calibration and video undistortion were performed, and then undistorted
video was resized to resolution 640×360 what was a compromise between quality and time
required to process it. The results of this step were used further in this thesis.

8.2 Basic detection

Various undistorted and resized video inputs were passed to a Fern detector. These inputs
contained both scenes with the object the detector was trained to detect, and scenes without
this object. Both ALVAR’s and OpenCV’s implementations were tested and times required
for processing of a single frame were recorded.

To get more accurate results, the main application was launched several times for all
four videos in order to reduce deviations caused by other processes running on the operating
system. Table 8.1 shows measured times.

Finding feature points and pairing them with the feature points in detector’s model takes
approximately 24 ms. Every detection and pairing returned in average 102 matched feature
points2. Since there is no description of this functionality in ALVAR’s documentation,

1OpenCV and ALVAR implementation in this text means the author’s implementation that uses OpenCV
or ALVAR, respectively.

2This was tested using several different detector’s models.
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Operation Processing time (ms)
Feature points detection and matching 24.13 ms
Detection, matching and homography calculation (ALVAR) 122.44 ms
Detection, matching and homography calculation (OpenCV) 110.93 ms
Processing one video frame (ALVAR) 142.37 ms
Processing one video frame (OpenCV) 133.26 ms

Table 8.1: Average times.

and the number of matched feature points differed slightly between two frames (even when
the same detector’s model was used), it was only assumed that the detection and pairing
returns only the strongest matches.

As soon as the homography calculation was added, processing time changed to 122 ms
for ALVAR implementation and 111 ms for OpenCV implementation that used RANSAC
algorithm for homography calculations. This resulted in frame’s average processing time3

of 142 ms for ALVAR implementation and 133 ms for OpenCV implementation.
Although the OpenCV implementation was slightly faster while providing similar re-

sults, both versions provided processing speed of only about 7 to 8 frames per second.

8.3 Homography matrix validation

Even though the processing speed of detection and homography calculation was noticeably
low, the results provided by it were often invalid; this was caused either by the object
(represented by detector’s learned model) was not present in a frame, the frame was blurred
due to camera’s movement, or object’s orientation (mostly rotation) was too different from
the model’s to allow a successful detection.

A possible solution of detecting these invalid results was implemented in Section 7.6.
Effectiveness of the algorithms introduced there was tested and results are shown and
discussed below.

The tests were based on detecting an object which either does not occur in input video
or is undetectable (e.g. due to its small dimensions, orientation or blending with environ-
ment). In this situation, calculated homography usually deforms given objects; therefore,
the algorithms should mark these homographies as invalid.

For this test, a simple procedure4 was created, which contained a learned model of
wheel from disassembling of the main landing gear and its break procedure (see Figure 8.2
– wheel image is located in the overlapping window during all three tests). This wheel
was not detectable in any of test videos (which were already undistorted and resized) and
contained two AoIs:

1. <aoi x="0" y="0" width="246" height="211"/> with dimensions of the learned
wheel image; and

2. <aoi x="50" y="50" width="100" height="100"/> located inside the first AoI.

3This value also contains loading the frame, converting it to grayscale, drawing information and displaying
it, and handling keyboard inputs.

4With one step and one detector.

46



Figure 8.2: Detecting an object (wheel from Video 1) that does not occur in any scene
(from left to right – Video 2, Video 3 and Video 4).

No other algorithms that would affect results of detection were used. The tests were
executed with following parameters:

• Sides ratio check – if the ratio of the longest and shortest side of transformed reference
square is greater than 5, the homography matrix is marked as invalid.

• Complex quadrilateral check – no parameters are required for this test.

• Angles check – rejects all matrices causing that transformed AoIs have one or more
angles more acute that 5◦, or whose sum of inner angles is not equal 360◦ ± 0.01◦5.

These parameters were set to such values that any AoI or reference square meeting these
parameters can be considered invalid under most circumstances; this results in considering
the homography matrix, that created it, invalid as well.

Algorithm name Abbreviation
Sides ratio check 7.6.1 S
Complex quadrilateral check 7.6.2 C
Angles check 7.6.3 A

Table 8.2: Abbreviations of individual homography matrix validation checks.

Three tests (each with one video recording)were executed. Table 8.3 shows results of
each test. Vx in this table stands for a number of matrices marked as valid in video x, Ix
represents a number of matrices marked as invalid and % is check’s success rate.

The tests results in this table show, that despite their simplicity, these checks offer good
results by filtering over 99 % of invalid matrices when combined. It also shows that the
Angles check is able to correctly classify homography in most of situations. On the other
hand, Complex quadrilateral check does not contribute to success rate when combined with

5A rather vast space for rounding errors was given.
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Video name V1 I1 % V2 I2 % V3 I3 %
S 925 1635 63.9 % 918 1702 65.0 % 2425 4122 63.0 %
C 904 1656 64.7 % 969 1651 63.0 % 2332 4215 64.4 %
A 24 2536 99.1 % 14 2606 99.5 % 43 6504 99.3 %
S + C 316 2244 87.7 % 327 2293 87.5 % 794 5753 87.9 %
S + A 23 2537 99.1 % 13 2607 99.5 % 30 6517 99.5 %
C + A 24 2536 99.1 % 14 2606 99.5 % 43 6504 99.3 %
S + C + A 23 2537 99.1 % 13 2607 99.5 % 30 6517 99.5 %

Table 8.3: Number of homography matrices classified as Valid (incorrect classification, as
all matrices should be classified as Invalid), Invalid (correct classification), and each check’s
(or combination of checks’) success rate.

other checks6. However, it was not removed from the checks since there still exist theoretical
situations where it can detect an invalid homography even if the other two checks fail.

Although some erroneous classifications were made, applying history further reduced
this number.

8.4 Application of history

The application of the history was a continuation of the effort to further reduce the number
of invalid detections and stabilize the appearance of the valid ones.

To test the effectiveness of the history, Video 1 was chosen and history size was set
to 25 detections, allowing to remember 25 homography matrices along with their validity
statuses and sets of AoIs.

The larger the history, the greater the resistance to dynamic changes. Setting history
size to 25 detections was a result of performing several experiments. Since the input video
has the frame rate of 30 fps, less than a second of detections is being remembered. This
history size should be short enough to prevent from distractions caused by a dynamic change
of scene where the AoI still remains drawn, and sufficient for reducing small deviance in
detections as Figure 8.3 illustrates.

In this figure, AoI’s coordinates are calculated from a combination of its current and
history’s average coordinates and are drawn in blue color. The order of frames is from left to
right, from top to bottom. Between every pair of frames shown in this figure, three another
frames passed. In order to show a wider fragment of video, these frames were skipped.

It can be seen, although AoI’s original coordinates (green quadrilaterals) show detected
object under different positions, because of the history the AoI’s calculated coordinates
change only a little. When an invalid homography matrix appears (red quadrilateral),
AoI’s coordinates remain the same as in the previous detection.

Even though the output of the main application improved significantly when history
was applied, using every single valid history entry for calculating AoI’s new coordinates is
not ideal; a set of AoI with significantly larger or smaller dimensions which homography
matrices were erroneously marked as valid, can affect the calculation of several following
AoIs’ coordinates noticeably. To reduce this problem, a new algorithm is suggested to be
implemented in the continuation of this work.

6To confirm this, each test with the Complex quadrilateral check was performed twice.
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Figure 8.3: Application of history; the coordinates of AoI shown to the technician (blue)
are computed from the history rather than using original AoI’s coordinates (green and red).

This algorithm uses a clustering method based on density — e.g. DBSCAN – Density
Based Spatial Clustering of Applications with Noise [8] — to find clusters of AoIs (each AoI
is represented here as a point in 8-dimensional space7) and use only one of these clusters
to adjust or replace AoI’s coordinates. The idea behind this algorithm is that, when an
object is detected properly in a scene, all homographies tend to locate the AoI into the
similar area (in comparison to an area consisting of the cases when the detection fails)
what creates a dense cluster in 8-dimensional space. This allows to separate outliers and
achieve better results than with an algorithm implemented in this work. The proposed
algorithm’s description follows:

1. Validate AoI’s homography matrix.

2. If matrix is not valid, find cluster with the highest density and calculate its center
using modified equation 7.4, where only entries within this cluster enter the equation.
Return AoI with replaced coordinates.

3. Else insert AoI to history.

4. Find the cluster with highest density, calculate its center using modified equation 7.5,
where only entries within this cluster enter the equation. Return AoI with adjusted
coordinates.

In this algorithm, AoI with homography marked as valid may affect which cluster will
be chosen, since it is added before the cluster selection. The history size should be set

7Again, an AoI is a concave quadrilateral defined by four corners with two coordinates resulting in eight
coordinates in total.
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to size + 1 to compensate for adding the AoI from current detection before using history.
Additionally, a minimal density can be set causing no AoI will be shown unless there is
enough evidence the detection is correct.

8.5 Detection using multiple detectors

Because of its serial implementation, using multiple detectors resulted in processing of only
3 to 4 images per second. However, the switching between detectors and choosing the one
with better evaluation worked correctly. In the continuation of this work, it is recommended
to implement parallel version of this algorithm — for example by using OpenMP that can
be added to this project easily [29] — and run it on a multicore architecture, what may
result in significantly improved results when multiple different detectors will be running
simultaneously.

8.6 Testing on video dataset

The final application was tested on dataset acquired in LET and its output was evaluated.
Because of the video preprocessing and implementation of the homography validation to-
gether with the history, a majority of erroneous detections was removed and the drawing
of AoIs stabilized (when the valid rear-world representation of the learned object was de-
tected). If video segment was stable and detected object was properly visible, the detection
output was similar to the one shown in Figure 8.4.

Figure 8.4: An example of a valid application output – a component that is being manip-
ulated with during the current step of the procedure is highlighted, and procedure’s text
is shown to the technician with a reference to a semi-transparent schematics shown in the
upper-right corner.
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However, this was rather an occasional situation. The acquired video dataset contained a
number of flaws caused by the acquisition process and the camera’s properties, for instance:

• Because of the way the camera was mounted, it does not always capture the whole
scene.

• The technician often moves his head or himself (this activity was often required by
the procedure); because of the camera’s larger f-number, all movements blurred the
whole scene.

• The object that should be detected is often either out of camera’s field of view or is
being captured from too acute angle to allow a successful detection.

Because of this flaws, often no — or less often erroneous — detection appeared as
shown in Figure 8.5. In addition, nor ALVAR neither OpenCV implementation offered a
satisfactory processing speed to allow a smooth running of the application.

Figure 8.5: Technician’s change of position resulted in the whole scene being blurry causing
an erroneous detection.

Due to all these difficulties, a successful use of the AR during the whole maintenance
procedure was not accomplished in this thesis. A possible solution could be reached by a
use of several detectors — each with a model of the component taken from a different view
— working together, as suggested in previous section.

Nevertheless, the created solution offers a good starting point to the future continuation
of the project. It was being developed with the goal to continue it in the future (still in
a cooperation with Honeywell). The structure of the application was designed in order
to allow change of basic components (such as ALVAR’s detector or individual history’s
algorithms) rather easily. If ALVAR’s detector is switched to other solution, the suggested
changes and improvements are implemented, and a new dataset (by which acquisition the
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experience gained from previous dataset manipulation can be utilized) is created, the output
quality of the application would increase significantly.
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Chapter 9

Conclusion and future directions

In this work, a basic overview on technologies used with the augmented reality was given,
providing the reader with an insight in displays, algorithms, toolkits and research done
in this area. In addition, several examples of usage of augmented reality in maintenance
applications were listed, including experiments of well-known companies such as BMW,
Boeing or Airbus. To achieve that, a number of relevant research papers, presentations and
experiments had to be studied.

Also, because this work operates with the aircraft maintenance, this topic was widely
examined and the information required for its understanding was included in here. Based
on the other already existing implementations, a hardware configuration was determined
for the continuation of this project.

Next, a prototype application was created in order to better understand the possibilities
and limitations of the AR. This prototype pointed out several issues such as the need of a
better camera and possible problems with more distant or smaller objects.

The experience gained from this prototype and studied literature led to a creation of
algorithms that should remove limitations found on the prototype, and to design and to
implementation of the final application.

This application was created with an intention to continue in its development after the
finish of this work, since it was developed for Honeywell, which would like to bring a working
solution for application of the augmented reality in maintenance within the next couple of
years.

A communication with LET Industries — a manufacturer of LET-L410 aircraft —
was established and a dataset was acquired in LET hangars. This dataset consisted of
several maintenance procedures captured by a camera mounted on technician’s head while
performing these procedures.

However, this dataset proved unsatisfactory, as it contained a number of flaws – starting
with a slightly different angle of view of the technician and the camera, and ending in blurry
frames caused by rapid motion of technician’s head.

Nevertheless, additional algorithms were introduced in order to increase detection suc-
cess rate on the dataset, including distortion removal. Among the other algorithms, there
were several simple tests that were able to eliminate a vast number of invalid detections.
In addition, a history was established, which further improved the detection success rate
and reduced small deviations in detecting the same object between two video frames. Ad-
ditional improvement of history using clustering method based on density was suggested
and its basic algorithm was provided.

Furthermore, an electronic implementation of the maintenance procedure was proposed

53



and realized. This procedure is represented by an XML file that contains all information
necessary for a successful run of the application.

A usage of multiple detectors for detecting the same object in the scene from different
viewpoints was proposed and implemented. However, due to the computational complexity
and the sequential character of this implementation, it was not fully utilized yet.

All implemented algorithms were tested and test results were shown and discussed in
this work. Although an effort to use this solution to guide a technician through a com-
plete maintenance procedure was not successful, these tests provided new information and
brought proposals of new algorithms and approaches that will be used in the continuation
of this project.

The continuation of this project is again planned in cooperation with Honeywell, which
has already started several initiatives that are aimed to computer-based maintenance; this
represents a complex solution which includes maintenance scheduling, components mon-
itoring, failure localization and identification, and so on; it also plans to work with the
augmented reality.

Therefore, in the future continuation of this project, experience gained during working
on this thesis will be put into several different areas described below.

It will be important to acquire a new high-quality data set, probably in a more controlled
environment. Next, ALVAR library proved quite unsatisfactory; although it offered high-
level functions for an easy creation of augmented reality applications, its options were
limited and its documentation rather poor. For this reason, it is recommended to use
OpenCV or other well-documented tool with a wide community. This will be quite simple
since the implemented application allows to change its detector quite easily.

Parallel processing will be also an important part of future work, since it can increase
the output quality of the application significantly.

Also a new user interface will be required; the UI used within this project is quite
simple and aimed more to testing. For this purpose, instead of hand gestures recognition
a voice commands recognition should be considered, as the hands movements during a
procedure execution might be confused with hand gestures. On the other hand, voice
commands — especially discrete words recognition, which can recognize several pre-trained
commands also in a noisy environment, such as aircraft hangars — offer a comfortable way
of controlling of an augmented reality application since the technician can use his or her
hands to manipulate with other objects.

Finally, during the future work on this project, it will be important to discuss regularly
the user interface and all the potential benefits, drawbacks, and possible improvements of
the whole application with technicians who will test this application, so the application will
fulfill their expectations and its purpose.

The augmented reality for training and maintenance holds a great potential not only in
saving costs for training technicians and reducing amount of printed manuals, but also in
enabling an easier way of quality control by recording and analyzing performed procedures
and reducing the administration associated with requesting, planning and execution of the
maintenance procedures.

The absence of the augmented reality in the maintenance in general is an indication
there are still many problems that need to be solved and challenges to be overcome. I
believe this work and its continuation will help to address some of them and will bring
some new ideas and approaches to this not yet fully discovered field of computer vision.
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Appendix A

Content of DVD

This work contains a DVD with implementation of described algorithms, installation files
of applications and libraries used in this work and obtained datasets. A brief description
of DVD’d structure follows:

• datasets/ – a folder with obtained or generated datasets.

• documentation/ – a folder that contains source code documentation generated auto-
matically by Doxygen.

• instal/ – installation files for tools necessary for the source code to work are located
in this folder.

• latex/ – a folder containing LATEXsource code of this thesis.

• samples/ – a folder containing several already created procedures and their data.

• src/ – a folder with source codes of created applications.

• projekt.pdf – this text in electronic form.

• README.TXT – a text file with a more detailed description of DVD’s content.
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Appendix B

Installation manual

Since installation of used libraries took a considerable amount of time, necessary steps
for ALVAR library installation are provided in this Appendix. Because there were several
unsuccessful attempts to install ALVAR on various Linux distributions, only a Windows
installation is briefly described here, which is rather simple. Installation manual is aimed
on Windows 7 SP1 with Visual Studio 2010 installed on it. All installation files can be
found on DVD in folder Installation files.

1. Install GLUT Toolkit from subfolder glut.

2. Install Open Scene Graph from subfolder openscenegraph

3. Install OpenCV 2.4.01

4. Install ALVAR library; a comprehensive installation manual for Windows can be
found on [1].

5. In Visual Studio, for each project select Project → Properties and:

• Add ALVAR’s and OpenCV’s include directories to C/C++ → General → Ad-
ditional Include Directories.

• Add ALVAR’s and OpenCV’s library directories (containing .bin files) to Linker
→ General → Additional Library Directories.

• Add following ALVAR’s and OpenCV’s libraries (containing .bin files) to Linker
→ Input → Additional Dependencies: alvar200.lib, alvarplatform200.lib,
opencv core240.lib, opencv imgproc240.lib, opencv highgui240.lib,
opencv ml240.lib, opencv video240.lib, opencv features2d240.lib,
opencv calib3d240.lib, opencv objdetect240.lib, opencv contrib240.lib,
opencv legacy240.lib, opencv flann240.lib, opencv nonfree240.lib. Add
d at the end of each library’s name for additional debugging information.

6. It should be possible to build and run the whole solution now.

1This version is recommended by developers of ALVAR as well; newer version of OpenCV caused mal-
function of ALVAR, when attempted to install.
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Appendix C

Applications’ command arguments

This section lists and explains all command arguments needed to launch created appli-
cations. All arguments are mandatory; if there are multiple options how to launch an
application, all of them are listed. Other parameters, that are not passed as arguments but
were rather fixed, are located in header file Constants.h.

If application can be controlled during its execution, its controls are listed and explained
here as well.

C.1 ARfTaEoAM

ARfTaEoAM.exe procedure_xml_file videofile

-h or --help print application help
procedure_xml_file XML file describing a procedure and its data

locations in format as presented in Appendix D
videofile video file containing record of procedure

described by first argument

Table C.1: ARfTaEoAM – command arguments.

<esc> ends application
<spacebar> pauses/resumes video
<n> switches to next procedure step
<p> switches to previous procedure step
<d> shows detected features
<+> increases transparency of window with step description image
<-> decreases transparency of window with step description image
<t> shows/hides actual step’s instructions and description image
<a> shows/hides original AoIs not affected by history
<o> switches between ALVAR and OpenCV algorithm for

homography matrix calculation

Table C.2: ARfTaEoAM – controls.
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C.2 Camera Calibrator

CameraCalibrator.exe chessboards_filename chessboard_cols chessboard_rows

-h or --help print application help
chessboards_filename textfile containing paths to chessboard images; one image

path per line, last line is empty; see Appendix E
chessboard_cols number of horizontal inner corner points of chessboard
chessboard_rows number of vertical inner corner points of chessboard

Table C.3: CameraCalibrator – command arguments.

C.3 Frames Extractor

FramesExtractor.exe video_filename

-h or --help print application help
video_filename path to video to be played and its frames to be saved

Table C.4: FramesExtractor – command arguments.

<spacebar> pauses/resumes video
<esc> ends application
<s> or S saves actual video frame on disk

Table C.5: FramesExtractor – controls.

C.4 Markerless Creator

MarkerlessCreator.exe textfile

MarkerlessCreator.exe image_filename output_dat_file_filename

-h or --help print application help
textfile name of textfile containing rows with entries in

format image_filename[delimiter]output_filename
image_filename name of input image (including extension)
output_dat_file_filename name of output data file (including extension)

Table C.6: MarkerlessExtractor – command arguments.
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Appendix D

Procedure input XML file sample

An example of XML file, containing all data necessary for the main application to run, is
provided and explained here.

<procedure name="Name of the procedure">

<step id="1" image="image1.png">

<description>

Manual text for this step

</description>

<classifiers>

<item id="1" name="detector1.dat">

<aoi x="0" y="0" width="100" height="100"/>

<aoi x="50" y="50" width="80" height="70"/>

</item>

</classifiers>

</step>

<step id="2" image="image_with_additional_information2.png">

<description>

Manual text for this step

</description>

<classifiers>

<item id="1" name="detector2.dat">

<aoi x="0" y="0" width="100" height="150"/>

</item>

</classifiers>

</step>

</procedure>

• image1.png – path to image that will partially overlap the recorded video in current
step.

• detector1.dat – path to detector trained on model that will be used for detection
in current step.

• There has to be at least one step in the procedure.

• There can be 0 to n <aoi> and <item> tags.

62



Appendix E

Calibration input text file sample

A format of the input text file for camera calibration is explained here. On each line of this
file, there is a path to an image containing a chessboard. This path can be either relative
or absolute. As stated in Section 7.2.1, it is recommended to put at least 10 - 20 detectable
chessboards to this text file; otherwise, the output (camera intrinsic matrix and distortion
parameters) may not remove distortion properly.

chessboard_image_filename1.png

chessboard_image_filename2.png

chessboard_image_filename3.png

chessboard_image_filename4.png

chessboard_image_filename5.png

chessboard_image_filename6.png
...
chessboard_image_filenameN.png

<newline>
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Appendix F

Markerless Creator input text file
sample

Input file example for MarkerlessCreator application is showed below. Each life of this
file describes an input image for detector training and a location of the output .dat file,
respectively. These two file paths are separated by a delimiter, which can be set to any
desirable string of characters; in this implementation, delimiter is set to <tab>.

object1.png[DELIMITER]learned_object1_datafile.dat

object2.png[DELIMITER]learned_object2_datafile.dat

object3.png[DELIMITER]learned_object3_datafile.dat

object4.png[DELIMITER]learned_object4_datafile.dat

object5.png[DELIMITER]learned_object5_datafile.dat

object6.png[DELIMITER]learned_object6_datafile.dat
...
objectN.png[DELIMITER]learned_objectN_datafile.dat

<newline>
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Appendix G

Code metrics

Source files 23
Directories 14
LOC, Lines of code 7991
BLOC, Blank lines 1359
SLOP-P, Executable Physical 4579
SLOP-L, Executable Logical 3056
C&SLOC, Code & Comment 235
CLOC, Comment Lines 2054
CWORD, Comment Words 12470

Table G.1: Code metrics.
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