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Abstract
This thesis focuses on enriching computational tools for the prediction of protein mutations
for the purpose of enriching their stability. Stable mutants of proteins are necessary for the
development of the new drugs. Unfortunately, experimental validation of the stabilization
effect of given mutations is costly and time demanding. Therefore, the FireProt tool was de-
veloped. FireProt utilizes a combination of both evolutionary and energy-based approaches
for identifying potentially stabilizing mutations. This thesis enriches the FireProt tool with
the possibility of entering custom mutations for the analysis. It also integrates other predic-
tion software, FireProt ASR, and provides user with an option to select multiple mutational
strategies for the detection of stabilizing mutations. Furthermore, it enriches the FireProt
tool with another information about proteins residues (for instance relative B-factor) and
makes it possible to utilize homology modeling to model the protein’s structure based on its
sequence. Lastly, it introduces a novel approach for the design of multiple-point mutants.

Abstrakt
Tato práce se soustředí na rozšíření výpočetního nástroje pro predikci mutací proteinů za
účelem zvýšení jejich stability. Stabilizace proteinů je nezbytnou součástí návrhu léčiv,
a jelikož experimentální vyhodnocení přínosu jednotlivých mutací na stabilitu proteinu je
nákladné a zdlouhavé, byl vyvinut nástroj FireProt. FireProt využívá kombinaci evolučních
a energetických přístupů pro identifikaci potencionálně stabilizujících mutací. Tato práce
rozšiřuje nástroj FireProt o možnost zadat vlastní mutace k analýze, integruje predikční
nástroj FireProt ASR a dává možnost uživateli vybrat z několika strategií pro detekci stabi-
lizujících mutací. Tato práce dále rozšiřuje nástroj FireProt o další informace k jednotlivým
residuím (jako je například relativní B-faktor), umožňuje využít homologní modelování k
vytvoření struktury proteinu na základě jeho sekvence, a v neposlední řadě představuje
nový přístup k návrhu vícebodových mutantů.

Keywords
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point mutants
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Rozšířený abstrakt
Proteiny jsou makromolekuly, které hrají důležitou roli v mnoha aspektech našich živ-

otů. Slouží jako základní stavební bloky organismů a plní rozličné funkce od enzymů,
přes transportní a strukturní proteiny, až po proteiny umožňující pohyb. Proteiny se sklá-
dají ze sekvence aminokyselin, respektive z proteinogenních alfa-L-aminokyselin. Každá
taková aminokyselina se skládá z karboxylové a aminové funkční skupiny a liší se pouze
v navázaném postranním řetězci. Základem pro vznik proteinu je DNA, která se nejprve
pomocí mechanismu transkripce přepíše na RNA, a následně dle pravidel genetického kódu
přeloží pomocí mechanismu translace na sekvenci aminokyselin. Sekvence aminokyselin
(neboli primární struktura proteinu) určuje finální podobu proteinu stejně jako jeho funkci.

Tato práce se zaobírá primárně problematikou stability proteinů z pohledu proteinového
inženýrství. Z toho důvodu jsou popsány mechanismy skládání proteinů a jsou roze-
brány různé mechanismy jednotlivých mutací: záměny jednotlivých aminokyselin a jejich
odstranění nebo vložení. Jelikož u většiny proteinů je známa pouze sekvence, jsou metody
pro analýzu stability proteinů rozděleny na ty, kterým stačí znát sekvenci a na metody,
které využívají strukturu daného proteinu.

Prvním krokem pro většinu metod využívajících sekvenci jakožto primární zdroj infor-
mace je zarovnání sekvencí, neboli MSA (z anglického multiple sequence alignment). Toto
zarovnání pomáhá nalézt množinu homologních (příbuzných) proteinů, s jejichž pomocí je
možné využít metody založené na evoluci daných proteinů.

Metody využívající prostorovou strukturu proteinu často využívají fyzikálně chemické
vlastnosti jednotlivých molekul daného proteinu a snaží se namodelovat stav, při kterém
bude struktura disponovat nejmenší možnou volnou energií.

V neposlední řadě jsou popsány nástroje pro modelování struktury proteinu na základě
jeho sekvence spolu s ohromným pokrokem, který byl v rámci modelování proteinů učiněn.

V této práci jsou popsány nástroje a algoritmy, které se snaží využít jednotlivé principy
pro navrhnutí jedno či více-bodových mutací. Hlavním cílem je však vylepšení nástroje
FireProt, který je nástrojem hybridním – snaží se kombinovat více přístupů jak na základě
evolučního návrhu, tak na základě energetické minimalizace.

Nástroj FireProt využívá evoluční metodiky jako je back to consensus a analýza konz-
ervovaných a korelovaných pozic k vyfiltrování mutací, které by mohly poškodit stabilitu
proteinu, stejně jako k návrhu mutací s vysokou pravděpodobností přínosu ke stabilitě.
Dále používá programy založené na analýze volné energie (FoldX a Rosetta) pro určení
konkrétních hodnot jednotlivých mutací spolu s jednoduchým algoritmem pro navrhnutí
vícebodového mutantu.

Tato práce představuje vylepšenou verzi nástroje FireProt. Ten byl v předchozích
verzích limitován pouze na proteiny se známou strukturou. Proto byl do nástroje Fire-
Prot zařazen modul pro modelování struktury proteinu na základě jeho sekvence. Tento
modul umožňuje uživateli začít analýzu nad libovolnou sekvencí. Dále umožňuje mode-
lování výsledných multi mutantů pro vizualizaci a další analýzu. Dalším vylepšením je
modul pro výpočet relativních B-faktorů, který škáluje jednotlivé pozice proteinu dle jejich
flexibility (a tudíž vhodnosti k mutaci).

Dále byl nástroj FireProt rozšířen o možnost zadat uživatelem definované mutace pro
rychlou analýzu mutací, které uživatel považuje za přínosné. Další novou možností na
straně uživatele je definice šířky prohledávaného stavového prostoru. Uživatel si nyní může
zvolit buď méně riskantní strategii, kdy daná mutace musí existovat v jiné sekvenci v rámci
zarovnání aspoň s uživatelem definovaným procentním počtem výskytů a zároveň se nesmí
změnit náboj původní aminokyseliny vůči nově zmutované. Druhou z možností je více



riskantní strategie, kde nejsou uvalena omezení ani na nutnost existence dané mutace v
zarovnaní a můžou vzniknout i mutace měnící náboj. Uživatel zároveň může zvolit oba z
přístupů. Největším rozšířením funkcionality je nový přístup k návrhu multi mutantů. Výs-
tupem předchozích výpočtů jednotlivých modulů jsou ohodnocení mutací a párů mutací.
Nově je z těchto údajů sestaven neorientovaný graf, kde uzly reprezentují jednotlivé mutace
a hrany vztah mezi nimi. Za pomoci algoritmu pro nalezení všech maximálních klik jsou
navrženy vícebodové mutanty, které neobsahují navzájem antagonistické mutace. Ty jsou
následně ohodnoceny součtem přínosů jednotlivých mutací a je vybrán nejslibnější multi
mutant. Uživateli je následně představen jako tabulka s jednotlivými mutacemi a jejich
přínosem a zároveň je namodelována jeho struktura pomocí modulu pro modelování. Tyto
kroky jsou opakovány pro několik mutačních strategií: pro evoluční přístup návrhu mutací,
pro energetický přístup návrhu mutací (riskantní a/nebo méně riskantní) a jejich kom-
binaci. Tímto způsobem vznikne až pět různých vícebodových mutantů, se kterými může
uživatel dále pracovat. Zároveň byly existují moduly upraveny tak, aby co nejvíce využívaly
možností výpočetního centra a proběhla standardizace kódu s možností budoucího rozšíření.
Na závěr byl také navrhnut API server, který umožňuje volání nástroje FireProt ASR. Nově
implementovaný modul v nástroji FireProt využívá tento server k zadání výpočetních úloh
do nástroje FireProt ASR a k sesbírání následných výsledků. Díky tomu mohou uživatelé
nástroje FireProt z jednoho místa pohodlněji přistupovat k výsledkům obou nástrojů.
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Chapter 1

Introduction

Proteins are macromolecules that play a crucial part in many aspects of our lives. They are
the main building blocks of our bodies where they enable many different functions – from
blood oxygenation to muscle contraction. Further protein research is an integral part of
understanding the protein building mechanisms, which is essential for comprehending the
nature of organisms. This knowledge can be further utilized, for example, in drug design
development.

Proteins consist of one or more chains of amino acid residues. Based on the sequence
of amino acid residues, the protein forms its spatial conformation which later affects its
functionality and interactions with other macromolecules. Unfortunately, a lot of proteins
are known only by their amino acid sequence and their structure is not yet known. Thus,
a significant scientific effort was put into finding how to predict the structure of the folded
protein.

The research on protein stability can give us clues, to whether a given protein in given
conditions will be stable, i.e. in its folded state. Furthermore, it provides us with an
understanding how to change the protein sequence to maintain its function, while increasing
protein’s stability so it could withstand harsh conditions of the industrial and medical
environments.

Firstly, this thesis discusses protein folding mechanisms, building blocks of proteins,
their interactions, their connections to the DNA, and how can we improve the attributes of
proteins by exchanging their basic building blocks. At the end of the chapter 2 the basic file
formats for the exchange of information between bioinformatics applications are described.
The next chapter 3 dives deeper into the problematics of protein stability, explaining how
to achieve it, why is it needed, and how is it measured. In the chapters 4 and 5, the
protein analysis is broken down into the analysis of protein sequence and protein structure,
respectively. In the chapter 6, methods of protein structure prediction are discussed. In
the chapter 7, the FireProt tool realizing a combined approach to mutation prediction
will be presented and its usage and benefit will be discussed together with the basis of its
architecture and processing workflow. Lastly, in chapter 8, the benefits of this thesis will be
presented as a set of improvements to the FireProt tool, which includes newly implemented
usage of B-factors, usage of homology modeling for predicting the protein structure for
proteins entered by sequence, providing extended choice for the users (from defining custom
mutations to risk definition), and novel approach to complex multi mutations prediction
based on graph algorithm.

3



Chapter 2

Proteins

Proteins are building blocks of every living organism, where they catalyze reactions, trans-
port ions and molecules, act as nutrients, perform the contractions of muscles and last
but not least regulate cellular and physiological activities [59]. To further understand how
they are capable of doing those tasks and even make changes in them, so they can perform
those functions in a different environment, one first needs to understand the underlying
principles, upon which proteins are built. This chapter will discuss what is the life circle of
protein from being encoded in a DNA to being fully functional in the folded state.

2.1 Amino acids
Amino acids are the building blocks of proteins. They create a polypeptide chain that forms
the sequence, also called the primary structure, of any protein.

There are twenty standard amino acids whose chemical properties greatly affect protein’s
physicochemical properties and structure and therefore protein function. Other two non-
standard amino acids occur quite frequently and occur in literature: selenocysteine and
pyrrolysine. Further understanding of amino acids is essential for the understanding of
protein function and the mechanisms of protein folding. An overview of standard amino
acids, including basic categorization, depicted in the Table 2.1.

Amino acids are built from four chemical elements: carbon, hydrogen, nitrogen, and
oxygen. Furthermore, two of them contain the fifth element: sulfur. All the amino acids
have the same base, illustrated in the Figure 2.1. The main difference lies in the structure
of the side chain. In the protein amino group, one amino acid is connected to the carboxyl
group of another amino acid via a peptide bond, thus forming a polypeptide backbone.

Figure 2.1: Amino acid’s base with an amino group on the left, carboxyl group on the right,
and side chain on the top. The side chain is the only differing part between various amino
acids.

4



Name HYDROPHOBIC/
HYDROPHILIC CHARGE POLARITY

Alanine Ala A Hydrophobic Nonpolar
Arginine Arg R Hydrophilic Positive
Asparagine Asn N Hydrophilic Polar
Aspartate Asp D Hydrophilic Negative
Cysteine Cys C Hydrophobic Nonpolar
Glutamine Gln Q Hydrophilic Polar
Glutamate Glu E Hydrophilic Negative
Glycine Gly G Hydrophobic Nonpolar
Histidine His H Hydrophilic Positive
Isoleucine Ile I Hydrophobic Nonpolar
Leucine Leu L Hydrophobic Nonpolar
Lysine Lys K Hydrophilic Positive
Methionine Met M Hydrophobic Nonpolar
Phenylalanine Phe F Hydrophilic Nonpolar
Proline Pro P Hydrophilic Nonpolar
Serine Ser S Hydrophilic Polar
Threonine Thr T Hydrophilic Polar
Tryptophan Trp W Hydrophobic Nonpolar
Tyrosine Tyr Y Hydrophobic Polar
Valine Val V Hydrophobic Nonpolar

Table 2.1: Table representing 20 standard amino acids, describing their full name, three
and single-letter abbreviations, the relation to water, if they are charged (and if, which
charge), and their polarity in order.
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DNA RNA PROTEIN
DNA DNA replication Transcription Direct translation*
RNA Reverse transciption* RNA replication* Translation

PROTEIN x x x

Table 2.2: Information flow between nucleic acid and protein where the left column indicates
the source and the top row indicates the destination of the information. Cells marked by
the symbol ’*’ are rare and can be induced either in laboratory conditions or in viruses.
Flow in cells marked by ’x’ is impossible or not yet known.

2.2 Central dogma of molecular biology
In 1957, Francis Crick first stated that once ”information“ has passed into protein, it cannot
get out again. To be precise: the transfer of information from nucleic acid to nucleic acid, or
from nucleic acid to protein may be possible, but transfer from protein to protein, or from
protein to nucleic acid is impossible [30, 29]. A graphical illustration of this information
flow can be seen in Table 2.2. For this thesis, two processes are of special interest: the flow
of information from DNA to RNA, which is called transcription, and the flow from RNA
to protein, called translation. As such, those processes will be described in detail in the
next sections.

2.3 Protein folding
Determining the characteristic of a protein is one of the most frequent problems in biology.
Having the structure of the protein facilitates this uneasy task as it provides more insights
into the molecular basis of protein function [150, 134].

In ”How to fold graciously“ [95], Cyrus Levinthal states that when considering all the
conformational possibilities of atoms in the proteins and we know these angles to the pre-
cision of a tenth of a radian, there would still be about 10300 possible configurations in the
model protein. When assessing the calculation presented in ”Levinthal’s paradox“ [162].
To further elaborate on the conformation of amino acids in a given protein, let’s assume
that each bond connecting amino acids can have several (for example three) possible states.
Let our model protein consist of 101 amino acids (which is fairly low, considering one of
the smaller proteins with code 4OEE consisting of 132 residues), this model protein could
exist in 3100 = 5 * 1047 possible configurations. If we used ”brute force“ to examine every
possible configuration at the rate of 313 per second, it would take 1027 years to iterate over
all the possible configurations. Considering that the proteins in the human body usually
fold in rates of seconds or less, we can state with a fairly great confidence, that protein
folding cannot be random. This thought experiment is also known as Levinthal’s paradox.

Another crucial work regarding the path from sequence to folded state is Anfinsen’s
thermodynamic hypothesis. So called Anfinsen’s dogma was firstly presented in Principles
that Govern the Folding of Protein Chains [9]. This postulate states that in their standard
physiological environment protein’s native structure is determined only by the protein’s
amino acid sequence. From this, it can be deduced that not only protein folding is not
random, even more, it is deterministic. This means that one input sequence will (in the
same physiological environment) produce the same 3-dimensional structure.

6



Figure 2.2: Wheel representation of codon usage emphasizes the primary importance of the
central codon position (position 2) while determining the type of amino acid. Three letters
abbreviation of amino acids are used, for explanation see Table 2.1. The three chain STOP
codons are indicated by name (UAA, ochre; UAG, amber; and UGA, opal). Taken over
from ”Understanding the genetic code“ [132].

2.3.1 Genetic code

Under the term genetic code, one should picture a set of rules used by the living cells
to interpret information encoded inside DNA or mRNA to form an amino acid sequence
(polypeptide chain). The genetic code is almost identical for all organisms. It maps a
sequence of three nucleic acids (codons) into single amino acid. By basic calculation, there
are 64 possible codons - four nucleic bases on three-position (43), but only 20 standard amino
acids and stop codon. Therefore, one amino acid can be coded by multiple sequences. This
redundancy is often called ”degeneracy of the genetic code“ and was first foreshadowed
back in 1961 [28, 160]. The genetic code is also unambiguous - one amino acid can be coded
by multiple sequences, but a single sequence (codon) always codes only one specific amino
acid as depicted in Figure 2.2.

2.3.2 Transcription

Transcription is the process of copying a specific coding segment of DNA into RNA. Specif-
ically in proteins, we are talking about messenger RNA commonly abbreviated as mRNA.
The crucial part of this process is represented by RNA polymerase, which moves over the

7



DNA strands (with a speed of around 100 nucleotides per second). The transcription of
nucleic acid utilizes complementary nucleic bases, where guanine pairs with cytosine and
adenine with uracil (uracil in RNA replaces thymine which occurs in DNA).

2.3.3 Translation

Translation is a process in which ribosomes (occurring in the cytoplasm or endoplasmic
reticulum) synthesize polypeptide chain (chain of amino acids further forming protein) from
mRNA that is created during transcription. The process of transcription and translation
is jointly called ”gene expression“. Mentioned ribosomes sequentially ”read“ codons from
mRNA strand - three consecutive nucleotides following the principles of genetic code
described in section 2.3.1 and utilizing transfer RNA (tRNA) to bring in amino acids that
are further forming the resulting polypeptide chain and thus starting to develop resulting
protein.

2.4 Protein structure
With the knowledge of how the protein’s sequence of amino acids is created, there still lies
a question of how does the sequence get its ”spacial structure“ - before the proteins are
folded. This task can be divided into steps, where protein gradually receives more of its
final shape. Those steps are represented by protein structure at a given moment: primary,
secondary, tertiary, and quaternary structure [114, 156]. Illustrations of those structures
depicted in the Figure 2.3.

Primary structure is the linear order of amino acid residues along the chain. It arises
from the covalent linkage of individual amino acids via peptide bonds. Every protein is
defined by the sequence of those residues. All subsequent structures (secondary, tertiary,
quaternary) are based on this primary level of the structure.

Secondary structure is basically a local conformation of the polypeptide chain (those
amino acid residues that are close together in the primary sequence). In globular proteins,
the two basic units of secondary structure are 𝛼-helix, 𝛽-strand, which can be observed
in Figure 2.3. 𝛼-helix is a conformation, where the strand formed into the right-handed
helical structure of approximately 3.6 residues per turn. This conformation is stabilized
by hydrogen bonds between overlapping peptide bonds. 𝛽-sheets consist of 𝛽-strands con-
nected laterally by at least two or three backbone hydrogen bonds, forming a generally
twisted, pleated sheet. The 𝛽-strands are usually 3 to 10 amino acids long. Similarly as
with primary structure, all further (tertiary and quaternary) structures are based on the
secondary structure.

Tertiary structure represents the folded polypeptide chain. It can be defined as the
spatial arrangement of amino acid residues. It is dependent mainly on the amino acid
sequence (primary structure) and chemical properties of given amino acids. For example,
hydrophobic amino acids tend to be ”hidden“ inside the resulting protein, whereas hy-
drophilic amino acids tend to move to the protein’s surface so their interaction with water
molecule is possible.

Quaternary structure is considered when the protein is composed of multiple polypep-
tide chains (often called subunits). It describes how tertiary structures of those chains are
formed together.

The resulting 3-dimensional structure has a great impact on the resulting function of
the protein. There are binding sites on the surface of the proteins or inside the protein’s
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Figure 2.3: Structural organization of proteins. Taken over from ”Protein Bioinformatics:
From Sequence to Function“ [59].

tunnels. Binding sites are necessary for binding other molecules to the protein – so-called
ligands. Those binding sites match with ligand in a ”key and lock“ fashion so even a small
changes in the protein structure around the binding site can make binding impossible. Thus,
mutations around those sites are considered as high risk mutations.

As Adrian A. Nickson and Jane Clarke mentioned [116] we now know four ’classical’
folding mechanisms. Framework model [83], which implies that local elements of the
secondary structure form first, then they diffuse, collide and finally adhere to produce
the correct tertiary structure. The hydrophobic collapse model [39] implies that a
protein collapses rapidly around its hydrophobic side-chains and then rearranges itself.
The nucleation propagation model [154] states that local interactions form secondary
structure, which acts as a base for further folding. Lastly, the nucleation condensation
model [74] suggests the presence of a metastable nucleus that is unable to trigger folding
until a sufficient number of stabilizing long-range interactions is built up. All those models
depicted the Figure 2.4.

2.5 File formats
To exchange information between various bioinformatics applications, a few standardized
formats for proteins were created. Two of them will be described in this section. One is
used for the description of protein sequence: fasta, while the second describes protein’s
structure pdb.

Fasta [98] file format is a text-based file format for representing either nucleotide se-
quences or peptide sequences. The file begins with a description on a single line that is
distinguished by the greater-than sign (”>“) as the first character. The letters of amino
acids of the protein follow (usually with a newline after every eighty characters). Attached
example shows the fasta file for protein with pdb code 4OEE:
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Figure 2.4: Figure representing folding models. Adapted from ”Protein Bioinformatics:
From Sequence to Function“ [59].

>4OEE_1|Chain A|Fibroblast growth factor 2|Homo sapiens (9606)
MAAGSITTLPALPEDGGSGAFPPGHFKDPKRLYCKNGGFFLRIHPDGRVDGVREKSDPHIKLQLQAEERGVVSIKGVSAN
RYLAMKEDGRLLASKSVTDECFFFERLESNNYNTYRSRKYTSWYVALKRTGQYKLGSKTGPGQKAILFLPMSAKS

The fasta file format can contain letters from standard amino acids as well as a few
special symbols: ”-“ for a gap of indeterminate length, and ”*“ indicating a translation
stop.

Protein Data Bank (PDB1) file format is a text file format that contains the information
about the proteins structure. Its fixed-column width format is limited to eighty columns.
Some notable records are

• HEADER uniquely identifies a PDB entry and contains the date when the coordinates
were deposited to the PDB archive.

• ATOM records present the atomic coordinates for standard amino acids and nu-
cleotides. They also present the occupancy and temperature factor for each atom.

• HETATM records describe non-polymer or other “non-standard” chemical coordi-
nates, such as water molecules. Atoms presented in HET groups use the HETATM
record type.

Example of several lines from the 4OEE pdb file:

HEADER PROTEIN BINDING 13-JAN-14 4OEE
TITLE CRYSTAL STRUCTURE ANALYSIS OF FGF2-DISACCHARIDE (S3I2) COMPLEX
...

1PDB file format description: http://www.wwpdb.org/documentation/file-format-
content/format33/v3.3.html
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REMARK 200 EXPERIMENTAL DETAILS
REMARK 200 EXPERIMENT TYPE : X-RAY DIFFRACTION
REMARK 200 DATE OF DATA COLLECTION : 01-MAR-13
REMARK 200 TEMPERATURE (KELVIN) : 100
....
ATOM 1 N PHE A 12 -8.926 -25.813 18.243 1.00 19.01 N
ATOM 2 CA PHE A 12 -9.267 -24.633 19.032 1.00 13.56 C
ATOM 3 C PHE A 12 -9.487 -24.991 20.502 1.00 17.04 C
ATOM 4 O PHE A 12 -10.186 -25.959 20.816 1.00 17.54 O
...
HETATM 1070 S IDY B 1 -11.480 -10.256 -1.897 1.00 8.59 S
HETATM 1071 C1 IDY B 1 -8.915 -8.089 -2.031 1.00 12.04 C
HETATM 1072 O1 IDY B 1 -7.938 -7.604 -1.116 1.00 13.15 O
...
END

2.6 Mutations
A mutation is a change in the primary structure (sequence) of the protein. They are the
main factor enabling evolution (different genes have larger ”fitness“ and a thus greater
chance of evolutionary success). The said mutation is the main tool to increase protein
stability - to evolve a more stable protein. This section will focus mainly on gene mutations,
where nucleotides in DNA strands are affected.

2.6.1 Types of mutations

Multiple things can occur upon DNA strand that might affect the resulting protein struc-
ture:

Insertion of one or more nucleotides into the nucleic acid strand. The greatest impact
factor of this change is the number of inserted nucleotides. If the number of inserted
nucleotides is not dividable by three (number of nucleotides in codon) reading frame will
be altered, thus all following codons will be changed. If the number of inserted nucleotides
is the multiplication of three, it will result in additional amino acid(s) in the sequence.

Deletion is quite similar to insertion but instead of adding, we remove certain nu-
cleotides. In the same fashion as in insertion, if the removed count is not a multiplication
of three, the reading frame will be shifted.

Substitution is a simple change of nucleotide (or nucleotides) for another one. Se-
quence length is not altered and the reading frame remains the same. This is the main
factor, why substitution tends to be less dangerous than insertion or deletion.

After nucleotide mutation occurs, it doesn’t necessarily mean that it will change the
protein’s structure or even function of the organism. The mutated nucleotide might be
located in the noncoding region. The mutation can even be synonimical, meaning that
due to the degeneracy of the genetic code, the change in nucleic acid sequence doesn’t
necessarily caus a change in the resulting amino acid. For example, in the sequence GUU
resulting in amino acid Valine, we can mutate (change) the second U to any other base (C,
A, G) and it would not change the resulting amino acid because all of the sequences GUU,
GUC, GUA, GUG are translated as Valine. Other types of mutations, which tend to have
an impact on the resulting sequence, are:
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Non-synonimical mutations are the opposite of synonymical. It means that the change
in the nucleic base will result in the change of the amino acid.

Mutations encoding stop codon will prematurely end the translation of the polypep-
tide chain.

Mutations changing reading frame tend to greatly change the resulting polypeptide
chain and also prematurely end the translation.

2.6.2 Causes of mutations

Two main causes how mutations occur can be observed:
Spontaneous mutations happen during DNA replication. Even though DNA replica-

tion tends to be very precise and it is expected to make less than a single mistake per 105

bases, which is followed by a self-correction mechanism that brings the chance to less than
1 : 107, mutations can still happen.

Induced mutations are often induced through external factors. Physical mutations
are results of the ionizing or ultraviolet radiation and the damage to the DNA strand is
dependent on the amount of the radiation. Chemical mutation is a result of so-called
genotoxins. And lastly, biological mutations are results of oncogenic viruses.
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Chapter 3

Protein stability

Protein stability is a net balance of forces, which determines whether given protein will
be in its native folded conformation or a denatured state [59]. Factors affecting protein
stability are mainly atomic/group interactions, such as hydrophobic, electrostatic, hydro-
gen bonding, van der Waals and disulphide bonds. The approximations of their relative
contributions depicted in Table 3.1. Contrary to the stabilizing factors, there are many
aspects that can cause the protein to desaturate: temperature, pH value, salt type, and
concentration, co-solvents, as well as mechanical forces. To increase protein stability means
to increase its resistance to said factors. In this thesis, thermodynamic stability (function
of the change in free energy) is the main concern as it’s a good predictor of whether a
protein will be folded [123] and together with melting temperature represents the two most
commonly used metrics for the estimation of protein stability [59] .

3.1 Stable mutants
There has been a growing need for the usage of biocatalyst (components that speed up
chemical reactions) for the production of fine chemicals and pharmaceuticals in industrial-
scale, or for the creation of enzymes that remain stable even at human body temperature
[52, 2]. The need for protein stabilization is nothing new. Its origin can be traced as far
as to the late eighties of the past century [118]. Unfortunately, most random mutations
would be deleterious [158] and a single mutation usually has a small effect on proteins
stability. Greater stability arises from small but additive effects distributed over the entire
molecule [152].

Free energy Contribution (%)
Hydrophobic 50.8
Hydrogen bonding 27.1
van der Waals 27.1
Electrostatic 6.4
Disulfide 1.1

Table 3.1: Relative contributions of free energies to protein stability. Adapted from the

”Protein Bioinformatics: From Sequence to Function“ [59]
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As proteins evolve together with their host to be better suited for the surrounding
environment (increase their fitness for the given conditions), proteins of hyperthermophilic
and thermophilic organisms (organisms that thrive in hot or extremely hot environments
surviving temperatures as high as a hundred degrees Celsius ) became a promising resource
for learning about protein stability in increased temperatures [158].

Pioneers of stability research observed that the following amino acids are often substi-
tuted in thermophilic proteins: Gly for Ala, Ser for Thr, Lys for Arg, Asp for Glu, and
Trp for Tyr [10, 60] . Furthermore, in thermophilic proteins, charged residues are present
in large numbers, contrary to polar residues which are scarce [51]. When studying hyper-
thermophilic proteins, it has been found that optimum placement of charged amino acid
residues within the protein structure enhances electrostatic interactions [59].

With the utilization of more structural data, it has been found that the main difference
between thermophilic and mesophilic proteins in the amino acid composition is mainly on
the protein surface, whereas the interior composition is more similar [51]. Another exam-
ple of utilizing structural information about a thermophilic organism is Baldasseroni et.
al. [15], where authors describe how enhanced compactness at subunit interfaces increases
the stability of hyperthermophilic enzymes.

This thesis focuses solely on the enhancement of protein stability via protein engineering.
Other possible methods like immobilization, Lyophilization, or chemical modifications [123]
are out of scope of this thesis.

3.2 Measuring protein stability
As it was mentioned before, there are many ways how to measure protein stability. In this
thesis, we will mainly use the change in Gibbs free energy (∆𝐺) and melting temperature
(𝑇𝑚), which will be discussed in the following sections. Force fields estimating the forces
between atoms and molecules inside protein and specific bioinformatics tools and their
principles will be also outlined.

The process of measuring protein stability is mainly performed by experiments such as
circular dichroism (CD), differential scanning calorimetry (DSC) and absorbance (Abs) [59]
as can be seen in Figure 3.1.

Another thermodynamic quantities include enthalpy change (∆𝐻),entropy change (∆𝑆),
and heat capacity change (∆𝐶𝑝) at unfolding. By determining those values, we obtain
deeper insight into the forces that affect proteins stability [59].

3.2.1 Gibbs free energy

The Gibbs free energy (Gibbs energy or Gibbs function or free enthalpy (𝐺) ) is a ther-
modynamic potential that measures the maximum of reversible work by a thermodynamic
system at a constant temperature and pressure [58].

Gibbs free energy is defined as follows:

𝐺 = 𝐻 − 𝑇𝑆 (3.1)

where T is the temperature (SI unit: kelvin), S is the entropy (SI unit: joule per kelvin)
and H is the enthalpy (SI unit: joule). The official SI unit for Gibbs free energy is Joule,
however, usage of Calories is more common.
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Figure 3.1: Results obtained from differential scanning calorimetry ∆𝐶𝑝 is the difference
between heat capacity of native and denatured states. 𝑇𝑚 is the melting temperature,
∆𝐻𝑐𝑎𝑙 is the calorimetric enthalpy and ∆𝐻𝑣𝐻 is van’t Hoff enthalpy. Source of figure:
https://www.malvernpanalytical.com/en/products/technology/microcalorimetry/differential-
scanning-calorimetry/

The protein stability is generally represented by the change in the Gibbs free energy
upon folding (∆𝐺).

∆𝐺 = 𝐺𝑓𝑜𝑙𝑑𝑒𝑑 −𝐺𝑢𝑛𝑓𝑜𝑙𝑑𝑒𝑑 (3.2)

In words: the difference between the free energy of the folded and unfolded state of the
protein.

Finally, we need to measure whether mutated protein is more stable than the original
(wild type) protein. For this, the following formula will be used:

∆∆𝐺 = ∆𝐺𝑚𝑢𝑡𝑎𝑛𝑡 −∆𝐺𝑤𝑖𝑙𝑑_𝑡𝑦𝑝𝑒 (3.3)

This difference says a lot about change in protein stability. In this case, lesser (more
negative) values indicate more stabilizing mutation and positive values indicate destabilizing
mutations. Although the reader should focus on the definition of ∆∆𝐺, as its format is not
standardized and the order of mutant and wild_type can be switched, thus interpretation
of results will be reversed.

3.2.2 Melting temperature

Another way to quantify protein stability is by the usage of the melting temperature (𝑇𝑚).
The definition of melting temperature is following:

∆𝐺𝑓𝑜𝑙𝑑𝑖𝑛𝑔(𝑇𝑚) = 0 (3.4)

in other words, the temperature at which the free energy of the unfolded and folded protein
is equal and half of the protein is unfolded and the other half is folded. Naturally, an
increase in said temperature (𝑇𝑚) means that the protein is more stable. There is a strong
correlation between melting temperature (𝑇𝑚) and Gibbs free energy (∆𝐺), although it is
not linear [1]. Nevertheless, the usage of Gibbs free energy seems to be more common [127].
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3.2.3 Force fields

To fully automate computational design for protein stability, we need a computational
method, which replaces tiresome manual experimental evaluation. Force fields represent
a computational method that is utilized to estimate the forces between atoms within and
between molecules. The Force field method is used for calculation of free energy inside the
protein and employing the physical and chemical properties of the proteins.

Force fields based methods are usefull for calculating 𝐺𝑓𝑜𝑙𝑑𝑒𝑑 (and analogicaly 𝐺𝑢𝑛𝑓𝑜𝑙𝑑𝑒𝑑)
via the formula presented in [124] which goes as follows

𝐺𝐹 = 𝐺ℎ𝑦 +𝐺𝑒𝑙 +𝐺ℎ𝑏 +𝐺𝑣𝑤 +𝐺𝑠𝑠 (3.5)

Where:

𝐺ℎ𝑦 = Hydrophobic free energy [45]
𝐺𝑒𝑙 = Electrostatic free energy
𝐺ℎ𝑏 = Hydrogen bonding free energy
𝐺𝑣𝑤 = Van der Waals free energy
𝐺𝑠𝑠 = Disulphide bonding free energy
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Chapter 4

Sequence based identification of
stabilizing mutations

The simplest and for more than two decades the only known [161] form of identifying
potentially stabilizing mutations is based on the analysis of its amino acid sequence. The
main source of information for this operation is obtained through protein evolution. For
this purpose, we firstly need to identify homologous sequences and create so-called multiple
sequence alignment (MSA). Once the MSA is created, we can utilize various evolution-based
methods to find out which mutations might be beneficial.

4.1 Sequence alignment
Sequence alignment is an essential tool for protein structure and function prediction, phy-
logeny inference and other common tasks in sequence analysis [44]. Because of substitutions
(mutations) introduced by evolution, some residues in the protein differ between related
proteins. Furthermore, insertions and deletions may occur, and therefore, just calculating
letters in the same place is not possible as just single insertion / deletion shifts the reading
frame.

Following restrictions are imposed when constructing an alignment [59]:

• All residues should be used in the alignment and all should be in the same order.

• Align one residue from the first sequence with another from the second one.

• A residue can be aligned with a blank symbol (representing evolutionary gap).

• Two blanks (gaps) cannot be aligned.

The alignment of sequences can be either done as local when one sequence is notably
longer than the other. Moreover, only the area of the match is needed. The second case is
global alignment where the sequences are of similar length and we need to penalize all of
the gaps and semi-global which doesn’t penalize the gaps at the beginning and the end
of the alignment.

Firstly, alignment of only two sequences will be described to better understand how this
problem is solved. After that, multiple sequence alignment (MSA) will be described as it
utilizes alignment of two sequences.
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Figure 4.1: BLOSUM 62 substitution matrix (Lower) and difference matrix (Upper) ob-
tained by subtracting the PAM 160 matrix position by position. Adapted from Henikoff et.
al. [68]

4.1.1 Alignment of two sequences

Substitution matrices

There is a need to reflect that some amino acids are more likely to be substituted with
one another than with others - for instance, there is a lower probability that the positively
charged amino acid mutates into one with negative charge than to the amino acid that is
either positive or neutral. Also with the knowledge that amino acids are determined by
codons (triplets) it is more likely that just single nucleotide will be mutated.

To reflect this situation, substitution matrices were designed. After the candidate align-
ments of two sequences is created, every position is evaluated by the scoring matrix and
summed up. Gaps are subtracted from the final score and the alignment with the highest
score is selected. Most common substitution matrices are PAM and BLOSSUM [110, 68].
PAM matrices are used to score alignments between closely related sequences and are based
on global alignments. Furthermore, higher numbers in matrix naming indicates greater
evolutionary distance. On the other hand, BLOSUM matrices are used to score alignment
between evolutionary more divergent sequences and are calculated based on the local align-
ments. In comparison to PAM, higher numbers in matrix naming indicates greater sequence
similarity. Therefore, PAM100 and BLOSUM90 can be used for closely related sequences,
while PAM250 and BLOSUM45 for divergent ones. Examples of both BLOSUM and PAM
matrices can be seen in Figure 4.1.

Alignment calculation

For pairwise alignment, algorithms based on dynamic programming were designed.
Those algorithms try to simplify the problem by dividing it into subtasks, whose optimal
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solutions can be utilized to solve the original task. This solution can be also reused when
calculating more complicated tasks. Most notable algorithms, utilizing dynamic program-
ming for pairwise alignment, are Needleman and Wunsch [113] and Smith-Waterman [138].
Those algorithms are guaranteed to find the optimal solution with respect to selected sub-
stitution matrix and the gap-scoring scheme. To create optimal alignment with dynamic
programming, the table has to be created. Each row corresponds with a character from
one sequence and each column corresponds with a character from the second. The table
represents the possible alignments as every possible comparison can now be represented as
a pathway through the array. Next we need to fill in the array. In the first step, we can
either align first characters or put a gap into one of the sequences. In the next step we
calculate rest of the table so the values are maximum of three possibilities:

1. value on the left with penalization for gap (we take character from the sequence
representing the columns and nothing from the sequence representing rows)

2. value from the above with penalization for gap (we take character from the sequence
representing the rows and nothing from the sequence representing columns)

3. value from the upper left diagonal with the score for match / mismatch of the char-
acters

After the whole table is filled, the value in right bottom corner represents the optimal
solution. By backtracking the path from bottom right corner to upper left we gain the path
representing the optimal alignment.

4.1.2 Multiple sequence alignment

Multiple sequence alignment is often utilized to indicate which regions of each sequence are
conserved (unchanging during the course of evolution) and to detect a potential co-evolution
between amino acids or nucleotides in the given set of sequences.

Here, we can again distinguish between two cases of alignment: global alignment in
which the proteins have maintained a correspondence over the entire sequence length, and
local alignment where the alignment consists only from most similar parts of proteins.

The trivial approach for finding an alignment of 𝑛 sequences would require n-dimensional
matrix formed in standard pairwise alignment and as such, the complexity would be

𝑂(𝐿𝑒𝑛𝑔ℎ𝑡𝑁𝑠𝑒𝑞𝑠)

which is not feasible considering hundreds of protein sequences containing hundreds of
amino acid. In result, novel algorithms utilizing dynamic programing or some form of
heuristics were designed. We can roughly split them into two categories: progressive and
iterative methods.

Progressive methods

Progressive methods utilize guided tree that was constructed based on the sequence sim-
ilarity using UPGMA [61]. From the k sequences, two of them are aligned resulting in
𝑘 − 1 sequences. This process is repeated until all of the sequences are aligned. The main
disadvantage of this method lies in the optimal selection of sequences to align as the guided
tree is not necessarily optimal. Another problem is the relatively slow speed of this method.
Examples of software utilizing iterative methods is CLUSTAL and T-COFFE.
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Iterative methods

Iterative methods aim to be able to change the alignment during the computation. The
main idea behind iterative methods is to realign already aligned sequences when adding
a new one. The process is as follows: at first, guided tree is created. Tree is then split
into two parts for which two independent alignments are created and then aligned together.
If a better score than the previous alignment is achieved, the alignment and the tree are
replaced and the method is repeated. An example of software utilizing iterative methods is
MUSCLE.

Tools for creating MSA

CLUSTALW [145] was introduced in 1994. The main advantage is its low memory consump-
tion when aligning a small number of extraordinarily large sequences. Clustal Omega [137]
is a newer version of CLUSTAL, which uses seeded guided trees and the hidden Markov
model engine that focuses on two profiles to generate the alignment.

MAFFT [85, 84] or MUSCLE [43, 42], which find faster and more accurate representa-
tions, while offering lower accuracy options as a trade off for computational speed [44].

Other tools for construction of the high-quality MSA are T-COFFEE [117] and PROB-
CONS [38], which has the highest accuracy score on several benchmarks for the price of
larger computational power, especially for larger number of sequences. Furthermore, when
structural homologs are available, tools such as 3D-Coffee [11] utilize them to provide out-
standing results.

Generally speaking, there is not a single best MSA tool and the user should consider
benchmarking of the available solutions for his use case or at least consider the advantages
of different tools [44, 37].

4.2 Homolog search
Homology has the precise meaning in the biology as “having a common evolutionary origin”,
but also carries the loose meaning of “possessing similarity or being matched” [128]. In
this thesis the term homologous sequences is used to describe similar sequences which
are expected to have a common evolutionary ancestor. When strong similarity is observed
between sequences, it is usually a sign that the proteins are related by evolutionary changes.
To measure how similar some sequences are, the percent homology was historically used.
Percent homology indicated the percentage of identical residues between the sequences.
However, this metric was replaced by similarity score, as it is more rational, and has stronger
scientific basis [70]. Furthermore, it doesn’t collide with the original meaning of homology
as much as percent homology (having a common evolutionary origin is a binary relation
and as such, it is hard to describe it in percents [70]).

Another use case, apart of the creation of a set of evolutionarily related sequences,
is that homologous sequences can also be useful as a template for modeling protein with
previously unknown structure [121]. The most common tools for finding homologous se-
quences are BLAST and FASTA, both utilizing modifications of original Smith-Waterman
alogrithm [138], and profile based HMMER.

BLAST - basic local alignment search tool [8] is widely used to search for homologue
sequences.
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BLAST starts by finding similar sequences by locating short matches between the two
sequences which are performed by seeding: splitting the sequence into words of three char-
acters (word size three is default, but customizable) and utilizing a sliding window with
selected size and offset of one. For every word, set of all alternative words is created (by
substitutions). All the alternative words are compared with the original word with the
usage of a similarity matrix. Next, words under the certain threshold are filtered out. All
the remaining words are used to find them in the other sequence or database. If the word
is found, the algorithm tries to extend it to both sides to obtain the highest score match.
Those sequences are then evaluated. Sequences with low e-value are deemed statistically
insignificant and disposed of. Other sequences are then joined together if possible. BLAST
suite of programs is still considered as the workhorse for most of the bioinformatic applica-
tions [41]. However, other promising tools, utilizing novel approaches including HMMER or
commercial tools like PatternHunter [100], are promising good results at a relatively small
computational cost.

FASTA [98] works on the similar basis as BLAST. However, it doesn’t consider al-
ternative words (only identical matches) and doesn’t try to extend those words, only to
join the matches together instead. This feature makes FASTA more precise at the cost of
computational time.

Tools such as BLAST, FASTA and SSEARCH produce accurate statistical estimates
that can be used to reliably infer homology. Searches with protein sequences (BLASTP,
FASTP, SSEARCH) or translated DNA sequences (BLASTX, FASTX) are preferred as
they are 5- to 10-fold more sensitive than DNA:DNA sequence comparison [120].

HMMER [46] utilizes a method based on the comparison of the profiles of hidden
Markov models (HMM) and uses heuristic filters to speed up the evaluation time.

4.3 Evolution based methods
Evolutionary (also called phylogenetic) analysis consists of methods that are utilizing the
different information contained in the set of homolog sequences.

In this section, we will focus mainly on the consensus design, briefly mention ancestral
reconstruction, and further explain correlated pairs and conservation analysis methods.

4.3.1 Back to consensus

Consensus design (CD), also known as back to consensus, works with multiple sequence
alignment (MSA). After it builds given alignment with reasonable amount of homolog
sequences, it examines its individual columns. If there is a column where some of the
amino acids are more significant than others, there is a chance, that given amino acids
are conserved and might have a stabilizing effect [81, 125]. The visual explanation can
be seen in the Figure 4.2. Consensus design can be used in those positions, where the
amino acid in a given column of the target protein differs from the prevailing amino acids
in MSA (regarding the same column). The mutation to this prevailing amino acid is likely
to have a stabilizing effect. The success of consensus design may vary, but about 50 % of
conserved residues are associated with improved stability, with 10 % being stability neutral
and 40% being destabilizing [125]. Another advantage is that consensus design doesn’t
require large sets of homologs. It has been presented that as few as four homolog sequences
can be utilized [119], although nowadays, finding multiple homolog sequences doesn’t seem
to be the bottleneck and tend to yield better results. Furthermore, when utilizing library-
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Figure 4.2: Consensus design figure illustrating prevailing amino acid in MSA. In the figure,
a dash is a gap, whilst a plus sign is an ambiguous position with no consensus. The most
conserved residues are highlighted. Adapted from Porebski and Buckle [125]

based consensus design, there is no need for structurally and functionally related natural
homologs [82]. One of the problems that might arise is phylogenetic bias. Works af Christian
Jäckel et. al. [82] show that this can be precluded a priori by randomization of just a single
parental sequence, followed by functional selection. Due to its low computational demands,
this makes consensus design an ideal ”first step“ when finding beneficial mutations.

4.3.2 Conserved and correlated positions

As protein usually contains hundreds of amino acids, the knowledge of which positions are
crucial for the protein functionality may be useful to filter them out from possible mutations.
The main two categories are conserved and correlated positions.

Conserved positions [24] are such positions that preserved mostly the same amino
acid during the course of evolution. When the amino acid was not changed throughout
evolution, it is assumed that it is crucial for the protein function [27, 72] (as mutating it
probably doesn’t possess the same evolutionary fitness).

Similarly, correlated residues are sets of residues that always change together. Those
correlations are usually an indication of probable physical contact in three dimensional
structure and are sometimes even used for protein modeling [64]. An example of such
interactions are spatially close amino acids with different charge - mutating them to the
state with identical charge might break the attraction and thus negatively affect the protein
stability [143]. With this knowledge, one can use correlated residues as a filter - mutating
only one residue in a way that is not compatible with the others would be unwise.

4.3.3 Ancestral reconstruction

Ancestral sequence reconstruction (ASR) is a method that tries to reconstruct ancient
proteins and to retract their evolution in time. ASR starts similarly to CD - it constructs
multiple sequence alignment of relevant homolog sequences. The main difference lies in
further analysis. While CD only looks on the column of aligned homologs, ASR tries to
grasp evolutionary information which lies inside the phylogenetic tree.
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Reconstructing a protein evolutionary history is an efficient way to identify structural
causes of functional diversity, as it enables a focused identification of causal sequence and
structural features [69]. There are several ways how to do that: the phylogenetic relation-
ships among the sequences can be inferred from the sequence using maximum likelihood or
Bayesian methods [69]. A number of studies are suggesting that protein’s deepest ancestor
promises elevated thermostability and even though the descend of stability is not smooth,
proteins history still holds valuable information [155]. The main challenges of this method
are the selection of the biologically relevant subset of homolog sequences, rooting of the
phylogenetic tree, and the reconstruction of the ancestral gaps. There are novel approaches
that try to mitigate given concerns and make ASR fully automated [111].

4.4 Software using evolutionary based methods
Only about half of mutations identified by evolution-based approaches are truly stabi-
lizing. In many cases, they improve different aspect of proteins functionality (solubility,
activity) [101]. Nevertheless, the evolution-based approaches might be used to filter some
potentially interesting mutations for hybrid models.

Consensus design approach is fairly trivial and as such no dedicated software is needed.
For ASR, there are two main approaches - by using maximum likelihood or Bayesian

inference. The maximum likelihood is utilized in FastML [12], which accounts for uncer-
tainty in ancestral states as it provides not only the posterior probabilities for each character
and indel at each sequence position, but also a sample of ancestral sequences from this pos-
terior distribution and a list of the k-most likely ancestral sequences. Another examples are
RAxML - Randomized Axelerated Maximum Likelihood [140, 139], which utilizes many
enhancements for faster construction of phylogeny and Ancestors [36], which was the first
software to provide the last three steps of the ancestral genome reconstruction procedure
in a single workflow (aligning multiple sequences, reconstructing the insertion and deletion
history and inferring substitutions).

Bayesian inference is used by HandAlign [153], which treats alignments, trees and
model parametres as jointly dependent random variables and samples them via Metropo-
lis–Hastings Markov chain Monte Carlo (MCMC). MrBayes [131] provides convergence
diagnostics and allows multiple analyses to be run in parallel with convergence progress
monitored on the fly.
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Chapter 5

Structure based identification of
stabilizing mutations

This chapter focuses on methods utilizing not only sequential information (order of amino
acids) of protein but also spatial conformation (structure) as spatial information is better
suited for analyzing physicochemical interactions (free energies described in chapter 3).
Additionally, the knowledge of structure is necessary for the energy driven approach trying
to find the structure in the conformation with the least free energy.

5.1 Force fields
Computational design of stable proteins based upon the calculation of the energy force tries
to take all physicochemical properties of a given protein into consideration and to simulate
whether the free energy of folded protein is more advantageous. Naturally, those methods
don’t require large annotated datasets (like machine learning algorithms do) as they are
based upon simulation of real-life physicochemical principles. The most accurate methods
in this category are the free energy methods. Unfortunately, free energy calculation cannot
be expected to replace other methods that are based on fast optimization algorithms due
to its time-demanding constraints [136].

5.1.1 Energy functions

Fortunately, several heuristic approaches were developed to overcome the issue of high
time-demands. For a clearer understanding, we can roughly divide energy functions into
the following categories: PEEF, SEEF, EEEF [104]. This division is for illustrative purposes
as almost all practical methods utilize approaches that would overlap those definitions.

PEEFs - Physical effective energy functions [91] are based on the atomic model of
a given structure and thus allow interactions on an atomical level. Those methods try
to approximate real-life physical laws. Unfortunately, such approach might still be time-
demanding (with current computational power, we are speaking about days of computa-
tional time for a single mutation).

SEEFs - Statistical effective energy functions [91] are based on known protein structure.
They can be used for fast and accurate [32] detection of stability changes. Statistical energy
functions are extracted from databases of known protein structures and do not explicitly
model physical molecular interactions. They are also being dependent on folded protein
structure [104] .
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EEEFs - Empirical effective energy functions [104] are an intermediate stage between
PEEFs and SEEFs as they combine physical principles as well as statistical that are further
weighted, and parametrized [62]. Example of such energy function can be FOLDEF (for
FOLD-X energy function [63]) which can be seen at equation 5.1. The main advantage of
this simple energy function is its low demands on computational resources.

∆𝐺 = 𝑊𝑣𝑑𝑤∆𝐺𝑐𝑑𝑤 +𝑊𝑠𝑜𝑙𝑣𝐻∆𝐺𝑠𝑜𝑙𝑣𝐻 +𝑊𝑠𝑜𝑙𝑣𝑃∆𝐺𝑠𝑜𝑙𝑣𝑃+

∆𝐺𝑤𝑏 +∆𝐺ℎ𝑏𝑜𝑛𝑑 +∆𝐺𝑒𝑙 +𝑊𝑚𝑐𝑇∆𝑆𝑚𝑐 +𝑊𝑠𝑐𝑇∆𝑆𝑠𝑐 (5.1)

Where ∆𝐺𝑤𝑑𝑣 stands for the sum of the van der Walls forces of all atoms, ∆𝐺𝑠𝑜𝑙𝑣𝐻 and
∆𝐺𝑠𝑜𝑙𝑣𝑃 are the differences between solvation energies of apolar and polar groups when
going from unfolded to the folded state. ∆𝐺ℎ𝑏𝑜𝑛𝑑 is the free energy difference between
the intramolecular hydrogen-bond compared with intermolecular hydrogen-bond formation.
∆𝐺𝑤𝑏 is the stabilizing free energy of water bridges, ∆𝐺𝑒𝑙 is the electrostatic contribution
of charged groups interactions, ∆𝑆𝑚𝑐 is the entropy cost for fixing the backbone in the
folded state, and finally the ∆𝑆𝑠𝑐 is the entropic cost of fixing a side-chain in a particular
conformation.

5.1.2 Software using energy based methods

As mentioned above, there is not a strict line between outlined energy functions as even
tools that are considered to be PEEFs utilize statistical approximations as well as SEEFs
tools, which utilize some form of physical data. An overview of software accepting structure
and a single point mutation as input and calculating the ∆∆𝐺 will be presented.

FoldX [135] is an empirical force field that was developed for the evaluation of the
effect of mutations on the stability with concern to speed. It uses FOLDEF outlined above.
In addition to calculating ∆∆𝐺 of the mutation, it allows a calculation of the positions
of the protons and the prediction of water bridges, the prediction of metal-binding sites,
and the analysis of the free energy of complex formation. It achieves the best results when
comparing known structures.

PopMuSiC [33] is using a linear combination of statistical potentials and the force-field
equation is constructed using thirteen physical and biochemical terms with approximate
values determined from experimental data instead of evaluating every physical term.

Rosetta [92, 31, 5] is a versatile software suite for computational modeling and analysis
of protein structures that is freely available for academic use. The suite consists of several
modules, including stability predictions, molecular simulations, and ab-initio modeling. A
notable part of the suite in regards to mutation effect prediction is a ddg_monomer which
is a standalone module for directly predicting ∆∆𝐺 for protein stability analysis [5].

5.2 Machine learning
The main advantage of the machine learning method lies in its non-dependence on un-
derstanding the physio-chemical principles upon which the proteins work. This is a huge
advantage, especially when the underlying principles are not known, if features are hard
to extract, or if it would require tiresome laboratory work, which is impossible to replace
computationally. Furthermore, by not being dependent on the extracted features, the
systems are not limited by them and can for example discover new features, previously
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unknown to human understanding. Even though we mentioned the main advantage of the
machine learning method as being non-dependent on information extrapolated from data,
some methods can work with models that take some form of biological features as an in-
put [144]. The last but not least advantage of machine learning models lies in their speed.
Even though the creation of a fitting model can take a huge amount of time, the inference
(the process of running data points through a machine learning model) is generally much
faster than the usage of complex simulations. The machine learning methods can be loosely
divided into two groups:

Unsupervised learning is employed mostly for data clustering and its main advan-
tage lies in its non-dependence on ”labels“ (expected outputs). Supervised learning on
the other hand requires some form of expected output (”ground truth“) so it can ”learn“
which inputs should produce which outputs and adjust the inner structure of the model
accordingly. Machine learning methods utilize large datasets of known proteins and they
try to extract statistical facts hidden in the large volumes of data. The sizes of datasets
have increased rapidly in the recent years. For example, in years 2016 to 2020 the size of
the sequence database Uniprot quadrupled [4] and the size of the structure database PDB
increased almost by half in the same time [3]. Even though those datasets are large, they
can be rarely fully utilized. Usually, only a small subset of data can be used for a given
task, which is then further burdened with unequal representation of individual features.
Especially for the problem of protein stability, where one has to find a single protein and
then compare it with as close as possible mutants. This dataset still lacks in size due to
the lack of experimental data. Only recently, there are efforts to create such datasets [141],
even though the dataset focuses solely on single point mutations. Furthermore, some ma-
chine learning methods - namely neural networks, have to deal with common problems like
overtraining/overfitting and have utilized some approaches to mitigate those problems. In
recent years, machine learning methods that utilize structure information were developed
and they are superior to other methods that utilize only sequence information. Moreover,
with their reliability, they are being competitive with structure-based energy functions [49].
Machine learning methods tend to use a variety of models such as Support Vector Ma-
chines [49, 144], decision trees [73], or even more and more popular neural networks [23].
To summarize, in many fields of protein engineering, machine learning techniques represent
state-of-the-art methods (for example modeling structure from sequence [80]) and are start-
ing to emerge more in the protein stability domain. Moreover, efforts for creating databases
for single point mutations might greatly accelerate further improvements.

5.2.1 Mechine learning based software

Examples of successful machine learning applications include software utilizing the support
vector machines like I-Mutant [25] or MuPro [26] which are capable of calculating the
single point mutation ∆∆𝐺 for the sequence as well as structure used as an input. EASE-
MM [50] Evolutionary, Amino acid, and Structural Encodings with Multiple Models utilizes
five specialized support vector machine (SVM) models and makes the final prediction from a
consensus of two models selected based on the predicted secondary structure and accessible
surface area of the mutated residue.

Other tools try to employ a random forest algorithm. Such an example can be Pro-
Maya [149] Protein Mutant Stability Analyzer which combines a collaborative filtering
baseline model, Random Forests regression and a diverse set of features, or PROTSRF [97]
which is even capable of calculating multiple point mutations.
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Finally a small note: although almost all of the tools for predicting the stabilizing effect
of mutations have a strong bias toward destabilizing mutations, machine learning methods
tend to be the most affected [126, 147].

5.3 Hybrid approaches
Hybrid approaches try to utilize force-fields calculations as well as evolutionary methods.
It has been shown that those methods are complementary [17]. Moreover, in some cases,
more than a half of evolution-based stabilizing mutations can be evaluated as destabilizing
by force-field calculations [17] and thus be left out by the usage of only evolution-based or
only energy-based design.

Another type of regions that are not suited to be the primary target of mutations apart
from conserved regions are nearby active sites of protein and correlated residues are
often spotted when analyzing multiple sequence alignment. One might notice that some
residues correlate (change together in evolution or between organisms) [112, 56]. This raises
the assumption, that the conserved residues are in some way crucial for the function of the
protein and are signs of intramolecular interaction. Changing them is a high risk (further
discussed in section 7. Methods using a hybrid approach for the design of stable proteins
are thus able to leave those regions untouched for the purpose of a faster and safer design.
In addition to the previously mentioned benefits of the hybrid approach, they show an
improved ability to work with multiple mutations on a single protein. This is important as
single point mutations tend to have a smaller effect on overall protein stability [112].

5.3.1 Hybrid approach based software

Not many tools utilizing combined knowledge of evolutionary approach as well as physio-
chemical properties are known. The three described approaches PROSS [55], FRESCO [157]
and FireProt [112, 16] utilize some form of knowledge mining from the multiple sequence
alignment as well as the incorporation of reliable energy-based tools such as Rosetta and/or
FoldX.

PROSS Protein Repair One Stop Shop [55] is an automated web-based protein stabi-
lization platform. PROSS starts by creating MSA from which it computes position-specific
substitution matrix (PSSM) [7]. The matrix represents the log-likelihood of observing any
amino acid at given positions - which is obviously an evolutionary approach that serves as a
primary filter for all the possible mutations. Furthermore, it utilizes Rosetta with additional
cutoff. This unfortunately misses some stabilizing mutations, however, the results are more
reliable as proposed mutations are more likely to be stable. Lastly, Roseta’s combinatorial
sequence design tool find the potentinally optimal set of stabilizing mutations with energy
function favoring amino acids with higher likelihood.

Framework for Rapid Enzyme Stabilization by Computational libraries FRESCO [157]
can be divided into five steps. The first step is the generation of stabilizing mutations.
FRESCO utilizes Rosetta as well as FoldX as the overlap between proposed mutations
is only about 50% [157]. Furthermore, the novel Dynamic Disulfide Discovery algorithm
which uses molecular dynamics to sample backbone conformational space. After potentially
stabilizing mutations are generated, three screening steps follow: filtering out chemically
unreasonable mutations, elimination of variants with predicted increases in protein flexi-
bility, and experimental verification of improved 𝑇𝑀 and preserved catalytic activity. The
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result of those three steps are experimentally verified stabilizing mutations. The last step
is combining them altogether to gain highly stabilized mutants.

The last mentioned tool FireProt [112, 16] firstly creates MSA for input sequence
followed by consensus, correlation, and conservation analysis which are used as a filter for
stability predictions utilizing FoldX as well as Rosetta. Furthermore, potentially stabilizing
mutations are paired and reevaluated with Rosseta as pair mutations. Lastly, based on
previous results, multi mutants are created. An in-depth description of FireProt will be
given in chapter 7 together with proposed improvement ideas as an extension of this tool
is the main objective of this thesis.
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Chapter 6

Protein structure prediction

Protein structure prediction (also known as protein folding problem) is a process where
we try to predict the spatial conformation (structure) of protein based on its sequence.
As discussed in chapter 2.4 there are intermediate steps when aiming for protein’s final
structure - resolving small substructures as folds and helices.

Through an experimental effort, the structures of around 100,000 unique proteins have
been determined [3]. However, this represents a small fraction of the billions of known
protein sequences [107]. A steadily growing demand for the prediction of protein structure is
the main cause of creating multiple models trying to accomplish this uneasy task. Naturally,
with the increasing number of solutions, the need to evaluate and compare those models
arise. The accuracy of some modeling servers is continuously evaluated by the Continuous
Automated Model Evaluation (CAMEO) project [65] and can be used as a source to find
the most suitable modeling software as well as an overview of existing solutions.

Commonly used methods can be split into the following categories: homology mod-
eling which finds similar sequence with known structure, fold recognition, ab intio, and
combination of multiple methods together with machine learning (mainly neural networks).

6.1 Comparative modeling
Comparative modeling (also known as homology modeling) is based on the knowledge that
the spatial structures of related proteins are more conserved than their sequences. There-
fore, if similarity between two proteins is detectable at the sequence level, structural simi-
larity can usually be assumed [59, 102].

The result of homology modeling varies among the structures as highly-conserved core
regions can be modeled much more reliably than variable loop regions or surface residues [134].

Some notable examples of software based on homology modeling are MODELER [150]
and SWISS-MODEL [134].

The following sections describe the process of homology modeling divided into four
steps: selecting a template, aligning the template with the input sequence, building the
model, and evaluating the result.

6.1.1 Template selection

First, a protein with a similar sequence and known structure needs to be identified. This
protein(s) will be used as a template. The template is the main source of information for
the modeling. Finding the right template is crucial for a good result. Commonly used
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tools for template finding are BLAST and FASTA. For finding more distant homologs, PSI-
BLAST can be utilized. We can choose the template from alignment based on the highest
identity. Templates with moderate (between 30% and 50%) identity strongly depend on
loop modeling as loops among the homologs vary, while the core regions are still relatively
conserved and accurately aligned. Templates with high identity (over 50%) tend to yield
satisfactory results [134, 150].

6.1.2 Alignment

When using multiple structures as templates, they are superposed (structural alignment is
created). Furthermore, alignment of the target sequence and the template is created.

This can be done by conventional multiple sequence alignment tools such as CLUSTAL [75,
137] or finetuned methods that take structural information into account [102]. For example,
MOLDER uses a variable gap penalty function that calculates the gap penalty with the
account of where it is in structure and chemical properties related to that [102].

There is a huge effort in finding the most fitting alignment possible as current homology
modeling methods can’t recover from an incorrect alignment.

6.1.3 Model building

There are several methods how to construct the model: modeling by rigid-body assem-
bly [19, 57], modeling by segment matching [78, 96, 146] which relies on the approximate
positions of conserved atoms in the template, and modeling by satisfaction of spatial re-
straints [13, 67, 133] which tries to find the spatial conformation that has the least conflict
with the restrains.

Rigid bodies method was the first method designed for comparative modeling. This
method begins by selecting the template structures and superposing them. After that, it
averages the coordinates of the C𝛼 atoms of the conserved regions, to take into account
the different fitness of template structures. Their importance is weighted based on their
similarity with input sequence, and significantly deviating atoms are excluded [134]. Next,
which atoms of the main chain in the target model can be generated is based on the
template, followed by generating the loops. The side chains are modeled based on their
conformational preferences and on the conformation of responding template chains. Lastly,
some form of energy minimization can be introduced, but generally, it does not dramatically
improve the results [134, 86]. For example, the modeling tool utilizing the principles above
is COMPOSER [142].

Segment matching is utilizing the knowledge that most hexapeptide segments can be
divided into about one hundred classes [146]. Thus, the model can be constructed by using
selected subsets of atomic positions from a template and finding coresponding sequences
in the input sequence. C𝛼 atoms, which are conserved between the alignment and the
template, are often selected as guiding positions.

Methods based on satisfaction of spatial restraints try to generate many restraints
on the protein conformation (we assume that the corresponding distances and angles be-
tween aligned residues in the template and the target structures are similar). Those re-
straints are then supplemented by stereochemical restraints on bond lengths, bond angles,
dihedral angles, and nonbonded atom-atom contacts obtained from a molecular mechan-
ics force field. Further restraints can be obtained by image reconstruction in electron
microscopy, crosslinking experiments, fluorescence spectroscopy, etc. An example tool uti-
lizing methods based on satisfaction of restraints is MODELER [150].
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All methods mentioned above need to account for loop and side-chain modeling. Dif-
ferences between homologs as a result of substitutions, insertions, and deletions of residues
are the parts that differ between template and input sequence. Those short segments are
extremely hard to predict from templates as segments of up to 9 residues can have en-
tirely unrelated conformations in different proteins [105] Those changes are corresponding
to exposed loop regions which often connect elements of secondary structure in the folded
protein. Loop regions often determine the functional specificity of a given protein as they
largely define the active and binding sites. This makes loop modeling a major factor for
determining how useful the result can be when analyzing the interaction between proteins
and ligands [102]. This problem is out of scope of this thesis and more information can be
found in the ”Modeling of loops in protein structures“ [47].

6.1.4 Evaluation

A good indication of model quality might be C-score which describes the variability of
the template structures at the given position as inaccurate alignments between target and
template are the most frequent source of errors in models [134].

An examples of the model evaluating matrices are Discrete Optimized Protein Energy
(DOPE) [150], which is a scoring function derived from known proteins, or statistically
optimized atomic potentials (SOAP) [40] which uses a Bayesian framework.

The errors can occur as the result of the comparative modeling and can be divided
into five categories: errors in side-chain packing, distortions and shifts, incorrectly aligned
regions, errors in regions without a template, and errors due to misalignments and incorrect
templates [102].

6.2 Fold recognition
Fold recognition, also called threading or three-dimensional profile matching is a method of
modeling spatial structure from protein sequence. This method possesses similar philosophy
to comparison modeling - when we have a similar protein with a known structure we can
use it as a guiding template for folding the input sequence [86]. Where the methods start
to differ is how they choose the template. Comparative modeling relies on homologs (evolu-
tionarily related sequences) with high identity (preferably over 50%), while fold recognition
is not limited to sequences with known homologs as it relies on another principle. It has
been found that there are many types of proteins with high structural similarity yet little
or no similarity in their sequences (less than 15 percent) [77, 59] as unrelated proteins often
adopt similar fold [53]. Thanks to this knowledge, fold recognition methods are much more
potent when the sequence doesn’t have any known homologs [122].

Another notable difference is in how threading treats the template - it tries to align the
input sequence spatially with the template, thus extracting not only sequential information
from the template, but also structural alignment. In other words, the input sequence
is directly fitted (”threaded“) onto the backbone of the template structure in full three-
dimensional space incorporating specific pair interactions explicitly [77].

The spatial information fold recognition can utilize energy-based scoring functions and
are analogical to minimization by a grid search where the grid points are being calculated
on known protein structures [53]. When visualizing this method, a sequence of one pro-
tein is being forced (threaded through) to adopt a structure of another. Thus the name
threading [22, 54].
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For the score calculations, approximations need to be used. Scoring the two sequence
alignment can be reasonably solved through dynamic programming, but energy-based scores
are not local and alignment with nonlocal functions is an NP-complete problem [53]. So-
lutions are using an alignment technique that works with nonlocal scoring functions [22].
Two-level dynamic programming is used to optimize interaction for each possible pair of
aligned residues [76] and they commonly utilize approximations to energy calculations [54]

When analyzing different software realizing threading, it is noticeable that most of the
more effective methods include advanced sequence comparison methods and comparison of
predicted secondary structure strings with those of known folds. They tend to combine
threading with comparative modeling [59, 53]. When the input sequence is low-homology,
the method can rely more on structural information, however, when suitable homologs can
be found, homologous information is utilized [122].

6.3 Ab intio
Ab intio aims to be independent of template structure [159] as a poor template may have
a negative effect on the whole modeling process, or does not make modeling possible at
all [94]. Furthermore, by striving away from the template methods, we can gain more
insight into how and why a protein adopts its specific structure [94].

Ab intio modeling strays away from the biological concept of finding similar or even ho-
mologous (evolutionary related) structures. Instead, it tries to start from scratch by firstly
modeling the secondary structure (alpha helix, beta sheet, beta turn, etc.) of the protein,
followed by finding the structure with the lowest free energy. Candidate structures are often
generated by models that often run complex simulations, which are guided by composite
knowledge-based force fields and often coupled with molecular dynamics simulations [159].

The main three parts of ab intio modelings are: : energy function design, conformational
search, and model selection [94, 159].

Energy functions can be roughly divided into two categories [94]: physics-based energy
functions (focusing only on the physicochemical properties) and knowledge-based energy
functions (which utilize the statistical knowledge from the existing proteins in protein data
bank (PDB) such as information about hydrogen bonding, local backbone stiffness of a
polypeptide chain, pair-wise residue contact potential, etc).

Conformational search then utilizes the selected energy function to find the global min-
imum energy structure in a complicated energy landscape. Popular solutions are Monte
Carlo and Molecular Dynamics.

Model selection is the last step, where many non-native structure conformations (also
called decoys) need to be selected either by the energy-based or the free energy-based
approach.

Currently, the bioinformatics and knowledge-based methods outperform methods based
on the physicochemical principles in terms of speed and accuracy [94].

The main pitfall of ab intio modeling remains its time complexity, relying on massive
computer performance. The progress of the past decade as well as a summary of used
methods presented in the ”Ab initio protein structure prediction“ [94].
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Figure 6.1: The architecture of AlphaFold2, with further description in text. s - number of
sequences, r - number of residues, c -number of channels. Adapted from Jumper et. al. [79]

6.4 State of the art
With the increase of new methods to model protein structure, there was a growing need to
create some form of unified evaluation and thus Critical assessment of methods of protein
structure prediction (CASP) was created. The main idea behind CASP is that registered
members of the modeling community are given sequences of proteins that are not yet known
(but are about to be) [90]. The results of competitors are then evaluated by a battery of
automated methods and by independent assessors [109]. The experiment is double-blinded
as participants have no access to the experimental structures and assessors do not know
the identity of submiters [89].

CASP13 held in 2018 saw dramatic progress in structure modeling without the use of
structural templates [89] as DeepMind’s entry, AlphaFold, placed first in the Free Modeling
(FM) category [6].

In the most recent CASP14 held in 2020, DeepMind introduced AlphaFold2 whose
results were competitive with experimental accuracy for two-thirds of the targets [90]. Ad-
ditionally, a project to compute the structures of the most structurally challenging proteins
coded for the SARS-CoV-2 genome was launched as a part of the competition as provided
models may aid in the choice of drug targets, development of vaccine strategies and insights
into viral mechanisms [88].

6.4.1 AplhaFold2

AlphaFold is a novel machine learning approach to protein structure modeling that incor-
porates physical and biological knowledge about protein structure and incorporates multi-
sequence alignments into the design of the deep learning algorithm [79].

The architecture of AlphaFold2 depicted in Figure 6.1 . Further descriptions try to
grasp the most important nuances of the concept described in the AlphaFold article [79].

Firstly, external databases are queried to create MSA and structural templates with at
least lower-similarity sequences. Furthermore, a pair representation of sequence residues is
created. Thus, two matrices are created (one of Size Number of sequences to a number of
residues for MSA and the second, a square matrix of size equal to the number of residues
in the input sequence to represent residue pairs).
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Figure 6.2: AlphaFold2 predictions from CASP14 for the following structures as PDB codes
(left to right) 6Y4F, 6YJ1, 6VR4 Alpha fold predictions are in blue whereas the ground
truth (experimentally determined structure) is green. Adapted from Jumper et. al. [79]

After that, a 48 layers deep transformer-like [35] neural network is utilized. This neural
network has two interacting flows of information: one flow for the MSA (evolutionary)
information and the second for pairs (spatial information). Furthermore, two attention
schemas are utilized - one that keeps ”attention“ to information in the rows (the protein
sequence) and one for columns (the different positions of MSA representing the evolutionary
information).

Lastly, the structure module transforms the output of the previous evoformer to create
a 3D representation represented by quaternions. This is performed by a recurrent neural
network that refines the spatial geometry of the proteins. The main idea is to iteratively
update the sequence representation and the backbone transformation of the protein so it is
gradually adjusted to the final form. An important concept that the network is utilizing is
allowing local refinement of all parts of the structure.

Examples of the modeled proteins depicted in Figure 6.2.
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Chapter 7

FireProt

FireProt is a web server for the automated design of multiple-point thermostable mutant
proteins that combines structural and evolutionary predictions to filter out potentially
deleterious mutations [112]. FireProt utilizes physical effective energy function-based tools
as well as tools based on statistical potentials for which the energies are derived from
frequencies of residues or atom contacts.

FireProt aims to be easy to use as bioinformatics knowledge is not required from users
to calculate and analyze the results, yet it is highly configurable, so experienced users can
modify values described in the following section. Section 7.1 will describe how FireProt
can be used to predict a single point as well as multiple mutations from the user’s point
of view, and section 7.2 will describe the workflow of FireProt. Both sections will include
ideas for improvement which were the main goal of this thesis.

7.1 FireProt WEB
When the need to design a more stable protein arises, one can visit the FireProt web in-
terface available though: https://loschmidt.chemi.muni.cz/fireprotweb/. For inexperienced
users, default values are advised and the only necessary input is the PDB code of protein
with known structure. This is the first improvement idea discussed in this thesis - with the
current advances in protein structure prediction tools it could be possible to incorporate
some of the modeling tools and thus, FireProt would be able to work with only sequence as
an input. The software architecture of FireProt WEB consists of three blocks: frontend,
which displays the results and accepts the user input that is then pushed to backend.
Backend validates the task description, creates a configuration file for the task and ensures
that the task is correctly set in the database. Finally, the core module loads the job
configuration file and starts to perform desired calculations.

When submitting a protein for analysis into FireProt, we talk about creating a FireProt
job. First, user either uploads the structure in pdb format or sets the PDB ID and the
structure is downloaded automatically. The next step regarding job options depicted in the
Figure 7.1. Furthermore, the user can set catalytic residues, which can be further utilized
to optimize the results (FireProt will try to load them automatically from SwissProt [14]).
After the options are set (or left default), user can submit the job. This job is assigned
a unique id, which the user should note or bookmark the URL as it will be useful when
collecting the results. The runtime strongly depends on the number of residues in the
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Figure 7.1: Overwiev of FireProt options. The various setting for MSA, identifica-
tion of consensus residues, and the analysis of correlated positions. Furthermore differ-
ent thresholds for FoldX and Rosetta can be set (resulting in providing either a lot of
low confidence mutations or only a few high confidence). Taken as a screenshot from
https://loschmidt.chemi.muni.cz/fireprotweb/ .

target protein. For relatively small-sized protein 4OEE (132 residues), the calculations are
performed in about under four hours.

Through the ID generated in previous steps, users can access the FireProt result browser.
While the job is still in progress, the browser allows the user to monitor which parts of the
calculation were already finished, which are currently running, and which are waiting for
the running modules together with the logs for detailed information about the progress of
the calculation. After the task is finished, the result browser will look somewhat similar to
what depicted in Figure 7.2.

7.2 FireProt core
This section will describe the workflow of the computational core of FireProt. Used tools,
software, algorithms, and other implementation details will then be described in their own
chapter 8. Furthermore, this section aims to describe the state before the implementation
of this thesis and the differences will be discussed in the implementation chapter.

FireProt’s workflow depicted in Figure 7.3 where the orange boxes represent modules
and the arrows their dependencies. The preparation module prepares the structure to be
further processed. This consists of steps like renumbering the structure from indexes that
start at different numbers or utilizing only standard amino acids. Furthermore, additional
user input (like specified catalytic residues) is loaded and mapped onto the structure. The
following MSA module creates the alignment for each chain which is crucial for further
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Figure 7.2: FireProt’s result browser visualizes results obtained by calculations for 4E46.
(A) The Mutant overview panel provides a list of mutations proposed as stabilizing. (B)
The Report panel shows the status of calculation in the individual modules (useful when the
job is still in progress) (C) The Protocol design panel provides general information about
FireProt designs. (D) The JSmol viewer allows interactive visualization of the protein
structure. (E) The Mutant designer panel enables manual adjustment of a new combined
mutant. Adapted from FireProt [112].
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Figure 7.3: Dependency graph describing the workflow of FireProt. Orange boxes are
computational modules implemented in Java.

steps as described in previous chapters. Following modules runs in parallel: back to
consensus module, correlation analysis module and conservation analysis module
which all try to extract the information from the multiple sequence alignment to filter out
potentially deleterious mutations and recommend the stabilizing ones. The computationally
most demanding module is stability module which utilizes FoldX and Rosetta to identify
the ∆∆𝐺 of selected mutations. For the mutations that are deemed as stabilizing FireProt
creates mutation pairs and tries to evaluate ∆∆𝐺 even for them. Multi mutants module
utilizes the information of the stability module to create the most stabilizing mutant. Lastly,
the output module parses the results from previous modules and creates files necessary
for displaying the complete results to the user as well as a pdf report containing the analysis
of different approaches for creating the best possible multi mutant.

FireProt results were experimentally verified on three proteins (PDB ID 4E46, 3A76,
and 4OEE) and provided respective stabilization of proteins ∆𝑇𝑚 = 25, 21, and 15∘𝐶.
Multiple point mutations were validated by the data provided by FRESCO [48] and those
mutations were compared with another online protein stabilization tool PROSS [55] which
showed similar predictive power (29 correctly identified potentially stabilizing mutations by
FireProt and 20 by PROSS).

7.3 FireProt ASR
Another tool from the FireProt suite is a separate webserver for ancestral sequence recon-
struction FireProt ASR [111] that is available at https://loschmidt.chemi.muni.cz/fireprotasr/ .
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The workflow of FireProt ASR requires no user intervention besides providing the se-
quence to analyze and in the case of enzymes also set of catalytic residues. On the other
hand, a more experienced user can also start by providing an initial set of homolog se-
quences, MSA, or even a phylogenetic tree instead of a single sequence.

The workflow of FireProt ASR can be split into two phases: the first is the collection
of the initial set of homolog sequences and the second phase is the ancestral sequence
reconstruction.

In the first phase, catalytic residues are either loaded automatically from SwissProt [20]
and the Catalytic Site Atlas [130] or from users input. Next, EnzymeMiner [71] is used to
collect an initial set of homolog sequences. If there are no available catalytic residues (the
user did not provide them and the database search failed to yield any results), BLAST is
used instead. The set of homologous sequences is then filtered by length (homologs length
should be of input sequence length +- 20% by default), by identity (homologs identity
should be higher than 30% but lower than 90%), and lastly remaining sequences are clus-
tered together by identity (90%) and single representative sequence is selected. Applying
these filters produces a diverse set containing hundreds to thousands of homologous se-
quences. Phylogenetic tree is then constructed utilizing PASTA software suite [106] and
Treemer [103]. If the user interaction is desired, the tree is then displayed to the user who
can modify it by deselecting some branches or making other manual adjustments.

After the tree is created, the main calculation of ancestral sequence reconstruction can
begin. First, a new MSA is constructed from the reduced set of homologous sequences. For
the construction of the final phylogenetic tree, best-fitting evolutionary matrix is selected
either via the IQTREE package [115] or selected by the user. The phylogenetic tree is
then constructed by RAxML [140] performing fifty bootstraps by default and rooted using
a minimal ancestor deviation algorithm. The tree together with the evolutionary method
and MSA are then used as an input to the Lazarus method [66]. Next, a structure of the
query sequence is created utilizing BLASTp for finding the homolog template and ProMod3
for modeling. Finally, an algorithm for ancestral gap reconstruction is utilized to remove
the gaps introduced by Lazarus.

The overview of both stages together with intermediate results and used tools depicted
in Figure 7.4.
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Figure 7.4: Workflow diagram for the FireProtASR. Colour coding: yellow denotes inter-
mediate results and blue denotes computational tools. Grey and green denote inputs and
outputs of the calculations, respectively. Adapted from FireProt ASR [111]
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Chapter 8

Implementation

This chapter describes the implementation details of a new version of FireProt. It dis-
tinguishes between the work that has been already done as described in the original arti-
cles [112, 16] and the benefits acquired through the effort as part of this thesis described in
section 8.2 and 8.4 respectively. Furthermore, a section 8.5 regarding the notable changes in
existing modules is present as those modules were more or less completely rewritten. After
the reader is familiar with the purpose of individual modules, features spanning multiple
modules are presented in section 8.3. The complete overview of how the workflow changed
from the previous version depicted in Figure 8.1.

8.1 Technology stack
FireProt is a modular Java1 application which uses MariaDB2 as a platform to store infor-
mation about submitted jobs. As it needs considerable computational resources, it utilizes
Portable Batch System (PBS3) to run jobs on a computational cluster. Those jobs are writ-
ten in BASH4 and are called from the Java application. As connections to the database and
submitting PBS jobs are common for multiple tools developed in Loschmidt Laboratories5,
a library realizing those tasks was developed.

For the integration of ASR [111], which will be thoroughly explained in section 8.4.4, a
whole new application was created. It is a Python36 application utilizing FastAPI frame-
work7 for creating CRUD interface to ASR and SQLAlchemy8 toolset for database manip-
ulation.

8.2 Existing modules
This section will describe modules that were already implemented in FireProt version 1.x
and as such are not the work of the author. The improvements of those modules by the
author will be noted otherwise.

1Java: https://www.java.com/en/
2MariaDB: https://mariadb.org/
3OpenPBS: https://www.openpbs.org/
4Bash: https://www.gnu.org/software/bash/
5Loschmidt Laboratories protein engineering group: https://loschmidt.chemi.muni.cz/peg/
6Python: https://www.python.org/
7FastAPI: https://fastapi.tiangolo.com/
8SQLAlchemy: https://www.sqlalchemy.org/
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Figure 8.1: Workflow of the new version of FireProt. Green nodes denote newly imple-
mented modules, blue is used for user input or output from the module, yellow nodes are
previously implemented modules with small changes, and red modules were heavily re-
worked.
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8.2.1 Preparation module

Preparation module is the first module in the module pipeline. Currently, this module
has conditional dependency based on the user’s input. Users can start the modeling as
before: based on the structure of the selected protein. However, they can now also choose
the option to start with an amino acid sequence. If the sequence option is selected, the
homology modeling module is run first to create the protein structure as it is necessary for
further calculations. The main goal of the preparation module is to perform the following
tasks:

Repairing the structure is done by the FoldX’s RepairPDB command. The main
task of this module is to identify residues which has bad torsion angles, or Van der Waals
clashes, or total energy, and recalculates them. RepairPDB9 command looks for all Asn,
Gln and His residues and flips them by 180 degrees to prevent incorrect rotamer assignment
in the structure, then it does an optimization of the side chains to eliminate small Van der
Waals clashes clashes which will prevent moving side chains in the final step. Lastly, the
residues that show bad energies are mutated together with their neighbours to themselves,
exploring different rotamer combinations so that the new energy minima is found.

Discarding the HETATMs removes the coordinates of hetero-atoms which were
described in section 2.5.

As the pdb file can start with various indexes, and contain nonstandard amino acids
and heatatoms renumbering the structure file needs to be done. This way, we can work
with the array of amino acids and denote the amino acids by their positions in the array.

Next, we minimize the structure file through the Rosetta’s minimize_with_cst com-
mand which imposes harmonic constraints on all C-alpha/C-alpha distances, and then min-
imizes the structure and further creates the constraint file.

Lastly, mapping indexes needs to be done. As the structure that went through the
preparation has undergone some changes and we still need to pair the original sequence
with the current one, MSA between the old and the new sequence is created together with
mapping of indexes for the old and new sequence.

Changes necessary for the preparation module consisted of processing user-defined mu-
tations and processing the input regarding the catalytic residues (which were moved from
the stability module as catalytic residues can now be sent into the ASR right after the
preparation module finishes).

8.2.2 MSA module

For other modules to be able to work, multiple sequence alignment needs to be created.
This module has been heavily reworked. Previously, all steps were calculated locally and
necessary software needed to be present on the machine running the FireProt. Currently,
all the calculations were moved to the computing center, where necessary bash scripts are
run together with the portable batch system to perform all the work. The main reason for
moving the calculations to the computing center was not the computational speed as the
calculation of MSA is nowadays rather quick, but rather a convenient way of decoupling
the responsibilities. It made the setup of FireProt easier as running it doesn’t require all
the MSA dependencies.

If the user uploaded his own MSA, the alignment is parsed, loaded, verified, and mapped
to the prepared sequence (as it can differ from the original one). Otherwise, MSA is created

9RepairPDB: https://foldxsuite.crg.eu/command/RepairPDB
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by running BLAST against uniref9010 database for each chain. Next, the results are filtered
based on three separate filters.

Filtering by identity is done by usearch tool which calculates the identity of the input
protein with the aligned homologs. Sequences with higher than maximal identity (which
users can define or leave to default 90%) are discarded.

Filtering by clustering is also performed by usearch, which identifies the clusters
of sequences with high identity (identity over 90% by default) and only selects a single
representative sequence to keep the selected sequences variable.

Lastly, filtering by coverage is done to ensure less than the maximal number of
homolog sequences is preserved in the final set.

8.2.3 Back to consensus module

Back to consensus module is a simple module that tries to figure out the dominant residue
across the evolution. In other words, it scans the MSA columnwise. Back to consensus
mutations are advised in two cases:

• By majority – if the amino acid is present in more sequences than the majority
threshold (user-defined, default 50%).

• By ratio – if the amino acid is at least N times more frequent in MSA than the
wild-type one (default is 5).

8.2.4 Conservation analysis module

The conservation analysis module is present to estimate the conservation coefficient of each
residue position in the protein based on the Jensen–Shannon entropy. It assigns a mutability
parameter to each residue which is then further represented to the user for human analysis.

8.2.5 Correlation analysis module

Correlation analysis module identifies correlated positions employing a consensual decision
of following metrics: OMES [24], MI [87], aMIc [93], DCA [151], SCA [99], ELSC [34],
McBASC [148], where MI, McBASC, OMES, SCA and ELSC are generated via Fodor
package, DCA score by Freecontact tool and aMIc with the tool of the same name.

Next, the Z-score for each tool is calculated in the following steps

• calculate the mean of the distribution of the score produced by every metric

• calculate the variance of the distribution of score produced by every metric

• calculate standard deviation from previously calculated variance use mean & standard
deviation to calculate Z-scores

The pairs are deemed correlated if the Z-Score of mentioned metrics is above a certain
threshold (user-defined, 3.5 by default).

10Uniref: https://www.uniprot.org/help/uniref
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8.2.6 Stability module

The stability module is the computationally heaviest module as it utilizes both Rosetta and
FoldX to calculate the ∆∆𝐺 of all possible mutations that were not deemed as destabilizing
by the evolutionary filters.

Mutation pool is created. Every residue can be mutated to every other amino acid
(nineteen possibilities). From the pool, those residues which are either catalytic or within
the specified distance from catalytic residues are removed instantly. Furthermore, mutations
that have a low mutability scale class set during the conservation analysis as described in
section 8.2.4 and correlated residues which were described in section 8.2.5 are also removed.
Additional filter was implemented and depends whether user chose low risk or high risk
strategy. More in section 8.3.1. This way, two sets of mutations are created: the energy
approach mutation set and evolution approach mutation set.

Both mutation sets are processed separately. Firstly, they are run through FoldX and
next through Rosetta. After that, mutation pairs are created and evaluated in Rosetta
to help to detect conflicting pairs. Those pairs are evaluated for three types of mutation
combinations: the energy-driven approach, the evolution-driven approach, and both of them
combined.

8.3 Features across multiple modules
Some features cannot be implemented in a single module as they affect the whole compu-
tational workflow.

8.3.1 Risk definition

Previous versions of FireProt considered three mutational strategies: back to consensus,
evolutionary, and combined. The risk definition was implemented so the users analyzing
the protein for enriching its stability can decide whether they want a faster and more safe
design of energetic mutations (low-risk strategy), a design that spans a larger search space,
consists of potentially less beneficial mutations and will have longer computational time
(high risk), or both.

The main task of this module occurs when selecting mutations to evaluate in the stability
module. Before the implementation, only mutations that don’t change the charge of the
amino acids were considered. Now, the low-risk strategy considers only the mutation which
doesn’t change the charge of amino acids and at the same time exists in alignment (based
on the user-defined threshold). On the other hand, the high-risk mutations don’t consider
the charge nor the existence in alignment. The possible combinations of back to consensus
approach and energy-based approach with different risk definition results in the following
mutational strategies:

• BTC - back to consensus approach

• ENERGY - energy-based approach with low risk (mutations exist in alignment and
don’t change charge)

• ENERGY HIGH RISK - energy-based approach with high risk (mutations don’t need
to exist in alignment and they can change charge)

• COMBINED LOW RISK - a combination of BTC and ENERGY
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• COMBINED HIGH RISK - a combination of BTC and ENERGY HIGH RISK

Those strategies are further utilized when designing the potentially most stable multi
mutant. In the resulting reports, the user is informed of the results for all selected strategies
and each mutation in the high-risk strategy is also annotated with risk (if the mutation
would occur even in a low-risk approach).

8.3.2 User-defined mutations

This feature allows the user to enter mutations that the user wants to have evaluated. This
can dramatically speed up computational time as it can decrease search space and the most
time-demanding task - the stability module - will run FoldX only for desired mutations.

Mutations are entered by the user in a format chain, wild-type amino acid, position,
and desired mutations. For example, string ”AL72Y“ means that the leucine on position
seventy-two on-chain ”A“ will be mutated to tyrosine.

When mutations are loaded and validated (only standard amino acids are present, the
wild type in a given position matches the entered one) they are later mapped on the
minimized structure during preparation.

Lastly, when mutations in the stability module are generated for evaluation, user-defined
mutations will be used instead. The output of running FireProt will contain information
about all the mutations and residues, but only the user-defined will contain useful infor-
mation (other mutations will be mostly empty). This is done so the front-end application
can display the data in a consistent way and doesn’t need to treat user-defined mutations
differently.

8.4 New modules
To enrich FireProt functionality and provide a better understanding of the mutated protein,
new features and integrations were made. This section describes the novel work and tries
to describe its benefits.

8.4.1 Homology modeling module

There were two reasons for creating a homology modeling module: first, users can now
design stable proteins not only for proteins with known structure but even for proteins
with only the sequence available as the structure will be modeled during the FireProt
calculation. The second reason is the modeling of the resulting multi mutants for further
visual analysis.

The first idea was to use the new version of AlphaFold, but unfortunately, it was not
infrastructurally possible to prepare the environment for AlphaFold runtime. In result,
ProMod3 [121] was used instead with the idea that only additional parameters will be
passed and it can be replaced by AlphaFold in the future.

The sole input of the module is the protein sequence, which is sent to the computing
cluster and the homology modeling bash script is run. This script firstly searches for
homologous sequences in the uniref90 database with the BLAST tool. Next, it downloads
the protein with the highest identity from the protein data bank. Lastly, it runs ProMod3
which reads a target-template alignment from the alignment and a matching structure from
the downloaded protein as a template and produces a gap-less model. Finally, the resulting
model is downloaded from the computing cluster.
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Figure 8.2: Existence in alignment. The first sequence is the input sequence (stabilized
protein) following are example homologs. Circled amino acids are considered when the
threshold is set to 25% (at least one sequence from four) and the last line shows which
mutations would be recommended with a threshold 50% (at least two sequences contain
given residue). Example sequences were selected as a part of alignment for 4OEE against
the uniref90 database.

If the homology modeling was run for the input sequence, the workflow can continue
by running the preparation module for the modeled structure. In the case of modeling the
multi mutant, this is also the last step and output module can be run.

8.4.2 B-Factors

The amino acids that display the highest B-factors are the ones suitable for mutation
as they are corresponding to the most pronounced degrees of thermal motion and thus
flexibility [129].

To determine the relative flexibility for each residue, all of them are sorted depending on
their average B-factor (which is determined based on the data in the pdb file). After that,
the residues are ranked ranging from 1–100%. Rankings of 1–25%, 26–75% and 76–100%
indicate high, moderate and low levels of relative structural flexibility, respectively. The
idea was taken over from HotSpot Wizard [18]. The information about B-factor is not
utilized as a filter in FireProt, but rather as an additional information included in the
output report for the user to work with.

8.4.3 Existence in alignment

Existence in alignment is a module that analyses the residues in the same positions across
the homologous sequences - in other words, it works with columns in MSA. Users can define
the minimal occurrence in percent upon which mutations are recommended because they

”exist in alignment“. An example depicted in the Figure 8.2.

8.4.4 FireProt ASR

FireProt ASR tool was described earlier in section 7.3. The idea behind the ASR module in
FireProt is that the only mandatory input for the FireProt ASR calculation is the sequence
and preferably catalytical residues, both of which FireProt already has. It would be more
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Figure 8.3: Swagger generated documentation of methods available for FireProt ASR API.

convenient for the user to have a single point of entry for the stability analysis and FireProt
could therefore call FireProt ASR from within.

To make this integration possible, a new API webserver called ”FireProt ASR API“ was
created for FireProt to interact with.

FireProt ASR API

FireProt ASR API is a standalone Python3 application utilizing FastAPI and SQLAlchemy
modules. This application loads the environmental variables for connection to the ASR
database and maps the ASR job table through ORM mapping to Python objects. The
application then listens on a specified port for requests. FastAPI is able to automatically
generate Swagger documentation as depicted in the Figure 8.3.

Methods for submitting a new ASR job require a job definition file together with the
IP address of the submitter, it then stores the job definition file so it can serve it for the
FireProt ASR when requested. It is also capable of automatically generating a necessary
config file for the FireProt ASR when requested (the config URL). The method for getting
job status is used to check whether the ASR job is waiting to be processed, running, failed,
or finished successfully. Lastly, method for checking whether a job with a given id exists is
present, so FireProt can prevent creating jobs with duplicate ids and causing errors.

FireProt ASR Module

In the module itself, the main task is to generate an ASR job file for each protein chain,
which is represented by a file in XML format, where modules are elements with the default
configuration. As catalytic residues are passed into FireProt, they are stripped of chain
information (ASR works only on a single chain and as such, information about the chain is
redundant). The job then contains an info element, global parameters element, and element
for each module: filtering, reconstruction, and reduction.

As protein processed by FireProt can have multiple chains, the pool of ASR jobs is
created and submitted in parallel. The status of these jobs is then periodically queried and
when any of the jobs are finished, the ASR API is queried for the URL of the results, which
are then downloaded and presented in the results of FireProt. FireProt naturally handles
all possible errors and logs the information so it can be further analyzed.
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8.5 Reworked modules

8.5.1 Multi mutant module

For the construction of the multiple point mutations, it is necessary to define the concept of
antagonisic mutations: antagonistic mutations occur if their combined ∆∆𝐺 is significantly
lower than the sum of their individual effects on stability.

The construction of the most promising multi-mutant in the previous version of FireProt
followed a simple approach, where the best mutation was selected and the next possible
mutations were added by iterating over all possible mutations and picking the ones which
were not antagonistic with the mutations already selected.

One of the main goals of this thesis was to design a novel approach that would utilize as
much information as possible and provided the most promising multiple point mutations.

Multi mutant search as a graph problem

The final approach is designed to reduce the problem of finding the best possible mutant
into a graph problem. The input of the module is the set of all possible mutations with
their ∆∆𝐺 and all pairs of spatially close mutations with their ∆∆𝐺. The ∆∆𝐺 value is
not determined for the mutations which are far apart (by default more than 10Å), as they
are considered to be too distant to affect each other and the ∆∆𝐺 of the two mutations
is calculated as the sum of ∆∆𝐺 of individual mutations. With this, we can create a
full graph, where every node represents a single mutation and the edges are the ∆∆𝐺 of
mutation pairs. Next, the edges representing antagonistic mutations are removed from the
graph as depicted in the Figure 8.4.

Figure 8.4: The figure shows the construction of a graph for creating multi mutant. The
graph follows Rosetta’s convention and a smaller value indicates a more stabilizing muta-
tion. In the first graph, A) the relationship of all mutation pairs is described by the values
of edges, the edge between M1 and M3 illustrates the missing edge when dealing with two
mutations in the same position. Graph B) show the state after removing edges between
antagonistic mutations.

The graph obtained as a result of these steps is then representing every possible multi
mutant as a complete induced subgraph - clique. In other words, the solution can be
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represented as a subset of vertices (mutations) of the given graph, where every two distinct
vertices are adjacent (mutations are possible to be together). As the total number of
cliques in a complete graph is 2𝑛, we can further simplify the problem by considering only
maximal cliques. Maximal clique is a clique that cannot be extended by including one more
adjacent vertex, in other words, a clique which does not exist exclusively within the vertex
set of a larger clique. When transferred to the problem of mutli mutant, a clique that is
not maximal represents multi mutant that can be extended by adding further mutation.
Therefore, maximal clique represents multi mutant which cannot be extended with another
mutation. How the number of maximal cliques in the complete graph can be calculated is
described by Moon and Mooser [108]. However, generally speaking, we can consider it as
3𝑛/3, which is a noticeable improvement in the size of the search space and with it related
memory usage and the time requirements.

Finding all possible solutions

To find all possible maximal cliques of undirected graph, Bron–Kerbosch algorithm [21]
with pivot was employed. The pseudocode of this algorithm is as follows:

Algorithm 1 Bron–Kerbosch
1: procedure BronKerbosch(𝑅, 𝑃 , 𝑋)
2: if 𝑃 is empty 𝑎𝑛𝑑 𝑋 is empty then
3: 𝑅 is max clique
4: end if
5:
6: for 𝑣 in 𝑃 do
7: BronKerbosch(𝑅 ∪ {𝑣}, 𝑃 ∪𝑁(𝑣), 𝑋 ∩𝑁(𝑣))
8: 𝑃 = 𝑃 ∖ {𝑣}
9: 𝑋 = 𝑋 ∪ {𝑣}

10: end for
11: end procedure

The algorithm works on the principle of recursive backtracking. 𝑅, 𝑃 and 𝑋 are three
disjoint sets of veriticies, where 𝑅 represents the currently processed clique (result), 𝑃
represents the potentional candidates to add to processed clique, and 𝑋 is an exclusion
set representing verticies that are not possible to add into currently processed clique. The
function representing the Bron–Kerbosch algorithm is firstly setting 𝑅 empty (representing
empty clique), 𝑃 containing all verticies of graph, representing that potentialy all of them
can be added into the cliq, and 𝑋 as empty as no verticies need to be excluded yet. The
recursion step on line seven calls the function for each vertex in the potentional set as added
to the resulting set. The set of verticies that can be added to the clique is represented as
neighbours of added vertex 𝑣 and the same verticies should be excluded if they were added
before. Following lines in the pseudocode, the algorithm updates the potentional candidates
by removing vertex 𝑣 and adding it to the excluded set. Furthermore the algorithm can be
improved by introducing the pivot as follows:

The idea behind selecting a pivot vertex is that every maximal clique must contain
either the pivot vertex or the non-neighboring vertex of the pivot. In other words, if the
clique does not contain a non-neighbor of the vertex, then the vertex can be added to the
clique. This decreases the search space and the algorithm is then more efficient, especially
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Algorithm 2 Bron–Kerbosch with pivot
1: procedure BronKerbosch(𝑅, 𝑃 , 𝑋)
2: if 𝑃 is empmty 𝑎𝑛𝑑 𝑋 is empty then
3: 𝑅 is max clique
4: end if
5:
6: Select pivot vertex 𝑢 in 𝑃 ∪𝑋
7: for 𝑣 in 𝑃 ∖𝑁(𝑢) do
8: BronKerbosch(𝑅 ∪ {𝑣}, 𝑃 ∪𝑁(𝑣), 𝑋 ∩𝑁(𝑣))
9: 𝑃 = 𝑃 ∖ {𝑣}

10: 𝑋 = 𝑋 ∪ {𝑣}
11: end for
12: end procedure

on a graph with a lot of non-maximal cliques. In the algorithm, we can see that before
iterating over the vertices in the main loop, we select the pivot from the nonresulting sets.
In the implementation done as a part of this thesis a selection based upon the number
of neighboring nodes was implemented. In result, we only need to make the size of 𝑃 -
the number of neighbors of selected pivot iterations instead of the size of 𝑃 in the main
loop. The decrease of search space, as well as the progress of the algorithm with visualized
recursion, depicted in the figure 8.5.

Obtainig final solutions

By applying the Bron-Kerbosch algorithm, all possible solutions were discovered. Every
maximal clique represents a single multi mutant. In Figure 8.5, we can see two solutions:
blue multi mutant formed by mutations 1, 2 and 3 and orange one formed by mutations 3
and 4. To propose the single best one, their values are estimated simply by summing their
∆∆𝐺 and selecting the best one. There is also a possibility to receive multiple different multi
mutants as they are all evaluated and ordered by the sum of their ∆∆𝐺. Construction of
the graphs, finding its maximal cliques, and their evaluation is performed over all selected
strategies: for mutations based simply on back to consensus module, high-risk energetic
mutations, low-risk energetic mutations, and a combination of mutations from a back to
consensus approach with the energetic ones. Depending on the user’s choices, the result
contains up to five different multi mutants.

8.5.2 Output module

To summarize the results of the preovious modules and prepare them for further display,
output module collects the necessary information and concentrates them into two main
files. One containing as much information as possible for every single residue of the protein
and one containing the resulting multi mutants for selected mutational strategies.

Output for every residue

The per residue output is in a format suitable for frontend processing. It is XML format and
the structure is roughly described in Figure 8.6. The root node is protein with attributes
describing protein pdb id and version of FireProt used for calculation. The protein node
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Figure 8.5: Example of Bron Kerbosch algorithm on a simple graph for the unmodified
version as well as the version with pivot. The columns represent the depth of recursion and
the resulting maximum cliques are colored.
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contains general node. This node contains additional information regarding the results,
namely the length of the protein sequence together with used mutational strategies and
mutations obtained by the given approach. Next, under the protein node is chains node,
which contains the node for every chain. The chain nodes contain information about every
residue in separate nodes. The residue node contains various mutability information like
B-factor, conservation score, if the residue is conserved or correlated, and the correlation
score, along with twenty nodes for every possible mutation. The mutation nodes contain
information for the back to consensus approach (whether it is selected by the majority or by
the ratio approach) as well as the energetic approach. The energy node contains information
about FoldX and Rosetta results (which is empty if it did not pass the previous filter and
was considered unsafe). Lastly, every mutation contains multiple mutational strategies
(explained in section 8.3.1) and if this strategy recommends the mutation as well as the
information if the mutation exists in alignment.

Protein
General

Chains
Chain

....

Residue
Mutability
Mutation

btc
energy

Figure 8.6: Organization of resulting XML containing information about every possible
mutation.

Ouput for multi mutants

The generated output for the recommended multi mutants is intended to be human-readable
and as such, the PDF file is generated. This file contains a table for every selected mu-
tational strategy (described in section 8.3.1). The table shows information based on the
selected strategy. There is always a field for the mutation (wild type residue and the mu-
tant) the index of the mutation, the chain id, b-factor, and the FoldX value of the mutation.
The back to consensus approach contains information if the mutation was selected based
on the majority or ratio approach. The energy approach contains information on whether
the mutation is conserved or correlated and the Rosetta energy calculation. The high-risk
mutational strategies contain information on whether the mutation is high risk or would
be recommended even at low risk and the combined table contains information that can
be found in both approaches. The example table for the combined high-risk approach de-
picted in the Figure 8.7 as it contains all described information. An example for tables
representing individual multi mutants are present in appendix.
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Figure 8.7: Resulting multi mutant table for the combined high-risk strategy for a multi
mutant of protein with pdb id 4OEE. Meaning of columns explained in the text.
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Chapter 9

Conclusion

Firstly, the thesis introduced the fundamental concepts of proteins and further focused on
their origin in nucleic acids. The protein origin is described by the definition of protein
folding mechanisms. With these principles in mind, the concept regarding improving the
proteins stability via amino acid mutations is introduced. For the identification of possibly
stabilizing mutants, those approaches were divided into two groups.

At first, the methods concerning sequence-based methods that don’t rely on the spatial
structure of a given protein but only on its sequence (also called primary structure) were
introduced. These methods utilize primary information hidden inside evolutionary close
proteins – homologs, which are aligned into the multiple sequence alignment. The meth-
ods utilizing the evolutionary approach include back to consensus method, correlation and
conservation analysis, and ancestral sequence reconstruction. The second category includes
methods based on the analysis of protein spatial structure that mainly utilize the knowledge
of force fields for the usage of energy-based methods.

As there is a large number of proteins without known spatial structure, the recent
improvement in the field of protein folding was described including the state-of-the-art
method AlphaFold.

The bioinformatics tools which can be used for the realization of the discussed ap-
proaches were mentioned. Sometimes, when the tools are of high importance, key concepts
and algorithms were explained. The most thorough explanation was naturally provided for
the FireProt tool as its improvements are the main focus of this thesis.

Most notably, the benefits of this thesis for the FireProt tool were addressed. Firstly,
the protein modeling module enabled the users to start the analysis not only for the pro-
teins with known structure, but also with a single sequence as an input. An additional
feature available to the users is the definition of the mutations which should be evaluated.
Furthermore, the user can now decide between the ”high risk“ and ”low risk“ strategy of
mutation evaluation which now selects if the mutations that do not exist in the multiple
sequence alignment and that are affecting the amino acid charges should be considered. The
module for the calculation of the multiple sequence alignment is now fully present in the
supercomputing center, contrary to before, when all the calculations were performed locally.
Newly implemented modules include the calculation of relative B-factor, integration of the
FireProt ASR tool through a standalone API server, and a module for calculating whether
newly mutated residue already exists in a given percent of cases in the multiple sequence
alignment. The notable benefit of this thesis is a novel approach to multiple-point mutant
creation. The graph representing every single point mutation (node) and relations between
them (edge) is created, and an algorithm for the detection of all the maximal cliques is uti-
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lized to find possible multi mutants. All of them are evaluated and the best one is selected.
This yields up to five different multi mutants for different mutational strategies (back to
consensus, evolutionary approach with two different risk strategies, and the combination of
evolutionary approach with the energetic one). Lastly, the output module was redefined to
better suit the needs of the frontend application displaying the results and reflecting the
implemented changes and added features.
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Appendix A

Contents of the enclosed DVD

Included DVD contains:

• fireprot directory containing source code for the FireProt tool

• fireprotweb-asr-api directory containing source code for the server designed for
integrating the FireProt ASR into the FireProt tool

• thesis directory containing this thesis and its source codes

• results_4OEE directory containing the complete results for the run of FireProt on
protein 4OEE with both high and low risk definition
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Appendix B

Example of resulting multi mutants

BTC mutant: 4 mutations

Chain
M

uta
tio

n

B-fa
cto

r

M
ajo

rit
y

Rat
io

Fold
X

A S89E HIGH ✓ ✗ -0.32
A L72Y HIGH ✓ ✓ 0.25
A R109K HIGH ✓ ✗ -0.19
A E47V MOD. ✓ ✗ -0.70

Table B.1: Back to consensus multi mutant for protein 4OEE. FoldX and Rosetta values
are in kcal/mol.

ENERGY HIGH RISK mutant: 9 mutations

Chain
M

uta
tio

n

B-fa
cto

r

High
-ri

sk

EIA Con
ser

ve
d

Cor
re

lat
ed

Fold
X

Ros
ett

a

A R96M MOD. ✓ ✗ ✓ ✗ -1.06 -2.33
A K124P HIGH ✓ ✗ ✓ ✗ -1.62 -4.91
A K108T MOD. ✓ ✗ ✓ ✗ -1.26 -2.94
A E67P HIGH ✓ ✗ ✓ ✗ -1.84 -2.93
A Q43I HIGH ✓ ✗ ✓ ✗ -1.48 -2.92
A E88M HIGH ✓ ✗ ✓ ✗ -1.05 -2.04
A A46L MOD. ✓ ✗ ✓ ✗ -1.04 -2.22
A S74Y MOD. ✓ ✗ ✓ ✗ -1.04 -2.11
A K15L HIGH ✓ ✗ ✓ ✗ -1.13 -2.04

Table B.2: High risk energy approach multi mutant for protein 4OEE. FoldX values are in
kcal/mol.
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COMBINED HIGH RISK mutant: 13 mutations

Chain
M

uta
tio

n

B-fa
cto

r

High
-ri

sk

EIA M
ajo

rit
y

Rat
io

Con
ser

ve
d

Cor
re

lat
ed

Fold
X

Ros
ett

a

A R96M MOD. ✓ ✗ ✓ ✗ -1.06 -2.33
A S89E HIGH ✓ ✓ ✓ ✗ ✓ ✗ -0.32
A L72Y HIGH ✗ ✓ ✓ ✓ ✓ ✗ 0.25
A R109K HIGH ✗ ✓ ✓ ✗ ✓ ✗ -0.19
A Q43I HIGH ✓ ✗ ✓ ✗ -1.48 -2.92
A K15L HIGH ✓ ✗ ✓ ✗ -1.13 -2.04
A K124P HIGH ✓ ✗ ✓ ✗ -1.62 -4.91
A K108T MOD. ✓ ✗ ✓ ✗ -1.26 -2.94
A E67P HIGH ✓ ✗ ✓ ✗ -1.84 -2.93
A E88M HIGH ✓ ✗ ✓ ✗ -1.05 -2.04
A A46L MOD. ✓ ✗ ✓ ✗ -1.04 -2.22
A E47V MOD. ✓ ✓ ✓ ✗ ✓ ✗ -0.70
A S74Y MOD. ✓ ✗ ✓ ✗ -1.04 -2.11

Table B.3: Multi mutant which is a result of combination of high risk evolutionary ap-
proach and back to consensus approach for protein 4OEE. FoldX and Rosetta values are in
kcal/mol.
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