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Abstract. A new approximation for designing continuous-
time and discrete-time low-pass filters, presented in this pa-
per, based on the product of Gegenbauer polynomials, pro-
vides the ability of more flexible adjustment of passband and
stopband responses. The design is achieved taking into ac-
count a prescribed specification, leading to a better trade-off
among themagnitude and group delay responses. Manywell-
known continuous-time and discrete-time transitional filter
based on the classical polynomial approximations (Cheby-
shev, Legendre, Butterworth) are shown to be special cases
of proposed approximation method.
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1. Introduction
The high-performance lowpass filter should exhibit high

selectivity, low passband insertion loss, and small group de-
lay variations in the passband. As these requirements are
contradictory, a lowpass filter is often optimized for one of
these parameters by using some of the well-known approxi-
mation methods: Chebyshev, Butterworth or Bessel among
others. Chebyshev filter [1] exhibits higher selectivity than
Butterworth filter but also has ripples and significant varia-
tions of group delay in the passband. On the contrary, Bessel
filter exhibits maximally flat group delay but very low selec-
tivity

A particular class of the all-pole filters includes filters
derived from the product of two orthogonal polynomial com-
ponents such as products of Legendre polynomials [2], prod-
uct of Chebyshev polynomials [3], transitional Butterworth-
Chebyshev [4], [5], product of Chebyshev of the first kind and
Chebyshev of the second kind [6], Butterworth-Legendre [7],
etc. Filter synthesis using product of orthogonal Gegenbauer
(ultraspherical) [8] polynomials is proposed in this paper.

The idea to use prototypes derived in this way comes from
the consideration that they exhibit continuous behavior be-
tween Chebyshev and Butterworth prototypes, via the above-
mentioned prototypes derived from products of orthogonal
polynomials.

The discrete-timefilter design is based on expressing the
squaredmagnitude function |H (e−jΩ) |2 as a rational function
of tan(Ω/2) or sin(Ω/2), whereΩ is digital angular frequency
in radians-per-sample1. Filters designed using this approach
are popularly known as the tangent type and the sine type of
filters or simpler tan and sine filters [9]. A new family of
continuous-time and discrete-time filters, termed as product
of Gegenbauer polynomials, has been proposed, and their
performances analyzed.

2. Approximation
In general, the squared magnitude response of the low-

pass prototype filter transfer function is represented as:

H2
n (x) =

1
1 + ε2φ2

n(x)
(1)

where x is a real frequency variable, φn(x) is the approximat-
ing or characteristic function of the lowpass filter which at
the passband edge holds φn(1) = 1 and ε is a design parame-
ter related to the maximal passband attenuation amax (in dB)
as ε =

√
100.1amax − 1. Using (1), we introduce a new filters

approximation with the characteristic function composed as
the product of two Gegenbauer polynomials:

φn(x) =
Cν1
k

(x)

Cν1
k

(1)

Cν2
n−k

(x)

Cν2
n−k

(1)
(2)

where Cν
k

(x) is a Gegenbauer polynomial [10] of order
ν > −0.5 and degree k, n is the filter’s degree, k is the
interpolator factor, and:

Cν
k (1) =

(
k + 2ν − 1

k

)
=
Γ(k + 2ν)
Γ(k + 1)Γ(2ν)

(3)

1Ω |rad/sample = f |Hz
2π
fs
, where fs is sampling frequency in Hz.
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where Γ(x) is well known gamma function. Note that for
k = 0 filter presents Cν2

n (x), for k = n filter presents Cν1
n (x),

and for 0 ≤ k ≤ n the filter presents mixture of Cν1
k

(x) and
Cν2
n−k

(x) components.

The desired transfer function can be generated from (1)
by analytic continuation to the complex domain and selecting
poles so that transfer function is stable.

Five degrees of freedom are available for the filter de-
sign by using the product of Gegenbauer polynomials: the
filter degree n, the interpolator factor k, design parameter ε,
and orders of Gegenbauer polynomials, ν1 and ν2.

3. Continuous-Time Filters
The continuous-time transfer functions Hn(s) are de-

termined from H2
n (x) by replacing frequency variable x with

x = −js. At real frequencies is s = jω. The squared magni-
tude function (1) is transformed into:

H2
n (x)���x=−js

= Hn(s)Hn(−s). (4)

The poles of (4) are zeros of the following equation:

1 + ε2
[ Cν1

k
(x)

Cν1
k

(1)

Cν2
n−k

(x)

Cν2
n−k

(1)

]2���x=−js
= 0. (5)

The continuous-time transfer functions Hn(s) have to be sta-
ble with all their poles lying in the left half of the s-plane.
Symbolic toolbox package from Matlab can be used to find
all zeros of the polynomial (5).

The transfer function of the proposed filter has one of
the following forms:

Hn(s) =
h0∏n−1

i=0 (s − si)
=

h0∑n
i=0 ai+1sn−i

=
1∑n

i=0 di+1sn−i

(6)

where si are poles of the transfer function Hn(s) and
h0 = an+1

√
H2

n (0) is constant which ensures that magni-
tude response Hn(ω) is bounded above by unity. If n is odd
at the zero-frequency the characteristic function is also equal
to zero, that is Hn(0) = 1 which gives h0 = an+1.

For filters considered here, the comparison of slope
steepness at the cutoff frequency (cutoff slope) can be de-
termined by calculating slope of the magnitude function
taken with negative sign at the passband edge, defined by
Sct = −|d|Hn(jω)/dω | |ω=1. Denoting the cutoff slope of the
magnitude frequency response (1) at ω = 1 by Sct, we have:

Sct = 2−
3
2

�����
1

Cν1
k

(1)

dCν1
k

(ω)

dω
+

1
Cν2
n−k

(1)

dCν1
n−k

(ω)

dω
�����ω=1

(7)

where ε = 1 and
dCν

j (ω)

dω
���ω=1
= 2νCν+1

j−1 (1), j = k or n − k . (8)
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Fig. 1. Cutoff slope contour plot of the eight-degree filter derived
from product of Gegenbauer polynomials with k = 3.
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Fig. 2. Frequency responses of the proposed filters.

The cutoff slope obtained by putting (8) into (7) is given
by:

Sct = 2−
3
2

[ k (k + 2ν1)
2ν1 + 1

+
(n − k)(n − k + 2ν2)

2ν2 + 1
]
. (9)

In Fig. 1, the three-dimensional plot of the cutoff slope
of the eight-degree filter obtained using the product of two
Gegenbauer polynomials with k = 3 is given.

As an illustration, the frequency responses of
continuous-time lowpass filters designed by proposed
method are plotted in Fig. 2 for n = 8, k = 2, ν1 = 3
and various values of ν2. In all cases the 3 dB (ε = 1) cutoff
frequency is Ωc = 1.

Finally, in order to facilitate the practical application
of these filter functions, the denominator coefficients of the
continuous-time transfer functions (ε = 1, k = 2, ν1 = 3
and ν2 = 0.5) derived from (5) and (6) for n = 4 to 10 are
presented in Tab. 1. In all cases the frequency is normalized
so that ω3dB = 1. Pascal matrix is a numerical algorithm by
means of which it is possible to transform the coefficients of
continuous-time filters (given in Tab. 1) to the coefficients of
discrete-time filters [11]. Synthesis of the discrete-time fil-
ters directly in the z-domain is given in the following section.
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D(s) = d1s
n + d2s

n−1 + · · · + dns + dn+1

n d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11

4 1.7143 3.3376 4.0347 2.8245 1.0025
5 2.8571 5.8054 7.9694 6.8151 3.6981 1.0000
6 5.0000 10.5041 15.9443 15.5406 10.6017 4.5968 1.0014
7 9.0000 19.4225 32.0824 34.4486 27.4285 15.2518 5.5295 1.0000
8 16.5000 36.4136 64.7428 75.0433 67.1877 44.0691 20.9217 6.4629 1.0010
9 30.6429 68.9289 130.8556 161.5178 159.0185 117.8603 66.9725 27.4717 7.4190 1.0000
10 57.4554 131.4054 264.6998 344.5520 367.5141 299.9290 194.8424 96.4683 35.0584 8.3688 1.0008

Tab. 1. Coefficients of filters derived from the product of Gegenbauer polynomialsC3
2 (ω)C0.5

n−2 (ω).

4. Discrete-Time Filters
Discrete-time filters are specified by its squared magni-

tude function using procedure akin to continuous-time one.
Accordingly, the corresponding discrete-time filter’s mag-
nitude function can be obtained from the magnitude re-
sponse (1) by replacing x with sin (Ω/2) / sin (Ωc/2) for
the sine filter and with tan(Ω/2)/ tan(Ωc/2) for the tan fil-
ter [7], [12], where Ω is discrete-time frequency, and Ωc
discrete-time cutoff frequency. In the first case the so-called
discrete-time sine filter or all-pole filter is obtained, whereas
the second case gives the discrete-time tan filter or pole-zero
filter [7], [12].

4.1 Sine Filters
The discrete-time sine transfer functions Hn(z) are ob-

tained from squared magnitude function (1) by replacing fre-
quency variable x with x = −j(z−1)/(2β

√
z), where z = ejΩ

at the real frequencies. Thus, for the sine filters we have:

H2
n (x)���x=−j 1

β
z−1
2
√
z

= Hn(z)Hn(1/z). (10)

The poles of (10) are zeros of the following equation:

1 + ε2
[ Cν1

k
(x)

Cν1
k

(1)

Cν2
n−k

(x)

Cν2
n−k

(1)

]2���x=−j 1
β

z−1
2
√
z

= 0 (11)

where β = sin(Ωc/2). Therefore, by finding all zeros of (11)
and selecting poles inside the unit circle in the z-plane, H (z)
is obtained. Poles that lie outside the unit circle corresponds
to H (1/z). This method leads to the design of all-pole (poly-
nomial) discrete-time filter :

Hn(z) =
h

1 + a1z−1 + · · · + an−1z−n+1 + anz−n
(12)

where h =
√
|Hn(x) |2

x=0(1 +
∑n

i=1 ai). This system has n-th
order zero at z = 0. Notice that any sine transfer function
Hn(z) of degree n can be implemented with only n + 1 mul-
tipliers and n adders with two inputs and one output.
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Fig. 3. Frequency responses of the proposed sine filters.

Coeff. ν2 = 0.01 ν2 = 0.5 ν2 = 2

a1 −5.3207216 −4.9242926 −4.4063349
a2 13.4121170 11.5588036 9.3351183
a3 −20.6660404 −16.6244965 −12.1505060
a4 21.1314583 15.8754463 10.5017481
a5 −14.6079473 −10.2432365 −6.1246138
a6 6.6421704 4.3415184 2.3409913
a7 −1.8110809 −1.1014919 −0.5340554
a8 0.2262488 0.1277661 0.0555098

h 0.0061459 0.0100078 0.0178570

Tab. 2. Polynomial coefficients for the eight degree sine filters
based on the product of Gegenbauer polynomials.

As an illustration, the frequency responses of the sine
lowpass filters designed using thismethod are plotted in Fig. 3
for n = 8, k = 2, ν1 = 3 and various values of ν2. In all
cases the 3 dB cutoff frequency is Ωc = 0.3π. Correspond-
ing coefficients of the eight degree transfer function, whose
frequency responses are displayed in Fig. 3, are given in
Tab. 2.

Cutoff slope of the proposed sine filters is given by:

Ssin
dt = Sct

d
dΩ

sin (Ω/2)
sin (Ωc/2)

�����Ω=Ωc

= Sct
1

2 tan (Ωc/2)
(13)

where Sct is given by (9). The cutoff slope of the sine filter is
steeper than that of the corresponding continuous-time filter,
in the range 0 < Ωc < 0.2952π, but less than in the range
0.2952π < Ωc < π.
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Coeff. ν2 = 0.01 ν2 = 0.5 ν2 = 2

a1 −5.1821237 −4.7691240 −4.2156720
a2 12.8581362 10.9932613 8.7220345
a3 −19.6069736 −15.6234627 −11.1696520
a4 19.9167213 14.8075218 9.5507011
a5 −13.7207289 −9.5154219 −5.5327225
a6 6.2357187 4.0292683 2.1079929
a7 −1.7047225 −1.0244730 −0.4809017
a8 0.2142912 0.1194846 0.0501430

h 0.0000399 0.0000666 0.0001247

Tab. 3. Polynomial coefficients for the 8th degree tan filters
based on the product of Gegenbauer polynomials.
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Fig. 4. Frequency responses of the proposed tan filters.

4.2 Tan Filters
The discrete-time tan transfer functions are obtained

from the squared magnitude function (1) by replacing fre-
quency variable x with x = −j(z − 1)/(α(z + 1)), where
z = ejΩ at the real frequencies. Thus, for the tan filters we
use transformation:

H2
n (x)���x=−j 1

α
z−1
z+1
= Hn(z)Hn(1/z), (14)

known as the bilinear transformation. The poles of (14) are
the zeros of the following equation:

1 + ε2
[ Cν1

k
(x)

Cν1
k

(1)

Cν2
n−k

(x)

Cν2
n−k

(1)

]2���x=−j 1
α

z−1
z+1
= 0 (15)

where α = tan(Ωc/2). Therefore, by finding zeros of (15)
and by selecting the ones that lie inside the unit circle, H (z)
can be obtained. This method leads to the design of the
pole-zero discrete-time filter which has a zero of order n at
z = −1 :

Hn(z) =
h(1 + z−1)n

1 + a1z−1 + · · · + an−1z−n+1 + anz−n
. (16)

where h =
√
|Hn(x) |2

x=0(1+
∑n

i=1 ai)/2n. This transfer func-
tion requires 2n+1 multipliers and n three-input and one out-
put adders (carry-save 3-to-2 adder followed by a standard
full-adder) for implementation.

As an illustration, the frequency responses of the tan
lowpass filters, designed using this method, are plotted in
Fig. 4 for n = 8, k = 2, ν1 = 3 and various values of ν2. In
all cases the 3 dB cutoff frequency is Ωc = 0.3π.
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Fig. 5. Frequency responses comparison of tan and sine narrow-
band lowpass filters of degree 8.
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and filters derived from products of the other orthogonal
polynomials.

Corresponding coefficients of the eight-degree transfer
function whose frequency responses are displayed in Fig. 4
are given in Tab. 3.

At the cutoff frequency Ω = Ωc, the discrete-time tan
filters magnitude response slope can be calculated as:

Stan
dt = Sct

d
dΩ

tan (Ω/2)
tan (Ωc/2)

�����Ω=Ωc

= Sct
1

sin (Ωc)
. (17)

Since 0 < Ωc < π, that is sin(Ωc) ≤ 1 it can be concluded
that the tan filter has steeper or equal cutoff slope than the
corresponding continuous-time counterpart.

5. Results of Approximation
In applications where high ripple values in the passband

are not tolerable, one could use filter derived from the prod-
uct of Gegenbauer polynomials of degrees k = 2 and n − 2
with orders ν1 = 0.5 and ν2 = 0.1 respectively. If n = 7
proposed filter has a small hump of about 0.0576 dB in the
passband magnitude response, better group delay character-
istic compared to Chebyshev filter and a higher cutoff slope
than the Butterworth filter.

When Ωc � 1, from (13) and (17), we have that
Ssin
dt ≈ Stan

dt . In other words, if Ωc � 1 frequency responses
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for the sine and tan filter are similar as shown in Fig. 5, where
3 dB cutoff frequency is Ωc = 0.15π.

The sine filter compared to the tan one (i.e. standard
approximation) proves to bemore economical if narrow-band
lowpass filter is to be designed, due to a lower hardware re-
quirements for implementation: n multipliers less needed,
and n three-input one-output adders replaced with standard
n-bit carry propagate adder.

5.1 Comparison with Other Systems
The frequency response of the proposed tan filter (with

k = 2 and n = 8) is compared with those of various 8th-
degree filters derived from the product of orthogonal poly-
nomials: Chebyshev, Legendre and transitional Butterworth-
Chebyshev (TBC) as shown in Fig. 6. The attenuation at the
passband edge frequency, Ωc = 0.3π, equals to 3 dB (ε = 1)
for all approximations. The tradeoff between the maximum
pass-band ripple and the group delay deviation can be no-
ticed.

The passband magnitude frequency responses of fil-
ters derived from product of Legendre, Gegenbauer and
Butterworth-Chebyshev polynomials exhibit the attenuation
whose maxima is increasing function of frequency, while fil-
ter derived from product of Chebyshev polynomials exhibit
the attenuation whose maxima is decreasing function of the
frequency. Note that if the attenuation maxima are a de-
creased function of frequency in the passband, the sensitivity
is also decreased. The minimum amount of maximum pass-
band ripple corresponds to a filter derived from the product
of Legendre polynomials. However, cutoff slope of TBC fil-
ter (132.87) is greater than cutoff slope of proposed (116.37),
Chebyshev (118.16) and Legendre (83.91) filters.

The group delay characteristics of these filters are also
shown in Fig. 6. The group delay of the proposed filter is
similar to a group delay of filter derived from the product of
Chebyshev polynomials. Increasement of ν2 leads to a re-
duction of group delay peak value.

6. Conclusion
A new type of continuous- and discrete-time filters us-

ing products of two Gegenbauer polynomials are investigated
in this paper. A number of known filter approximations can
be also obtained by the specifications of the order and degree
of the Gegenbauer polynomials.

The fact that the proposed filter has two degrees of free-
dom, i.e. order of Gegenbauer polynomials can be adjusted
(keeping the same filter degree) to meet specific require-
ments, proves proposed filter to be a suitable alternative to
many classical choices. These free parameters allow one to
obtain continuous smoothing of the magnitude frequency re-
sponse in the passband compared to Chebyshev and higher
cutoff rate compared to Butterworth filter.

The passband and stopband performances of the
discrete-time sine and tan filters have been studied. It is
shown that the tan filter is superior in comparison to both
continuous-time and discrete-time sine filter. The cutoff
slope depends on the cutoff frequency and increases in the
case of the tan filter, decreases in the case of the sine filter, as
the cutoff frequency approaches half the sampling frequency.
However, for narrow-band lowpass filter the sine filter so-
lution is better solution because its implementation requires
less hardware.
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