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ABSTRACT
This thesis focuses on the analysis of selected part of GPON frame using machine learning
algorithms implemented by using TensorFlow library. Considering that the GPON pro-
tocol is defined as a set of recommendations, implementation by various device vendors
may be different to designed protocol. Therefore, an analysis by a push-down automaton
is not sufficient. The main goal is to create a system of models using TensorFlow li-
brary in Python3 capable of abnormality detection in the communication. These models
use various architectures of neural networks (e.g. LSTM, autoencoder) and focus on
different types of analysis. This system learns from baseline traffic and notifies about
irregularities found in the newly captured traffic. As a result, the system estimates the
similarity level of current traffic compared to the baseline.

KEYWORDS
Autoencoder, GPON, LSTM, machine learning, neural network, passive optical network,
Python3, TensorFlow

ABSTRAKT
Táto práca sa zameriava na analýzu vybraných častí GPON rámca pomocou algoritmov
strojového učenia implementovaných pomocou knižnice TensorFlow. Vzhľadom na to,
že GPON protokol je definovaný ako sada odporúčaní, implementácia naprieč spoloč-
nosťami sa môže líšiť od navrhnutého protokolu. Preto analýza pomocou zásobníkového
automatu nie je dostatočná. Hlavnou myšlienkou je vytvoriť systém modelov za použitia
knižnice TensorFlow v Python3, ktoré sú schopné detekovať abnormality v komunikácií.
Tieto modely používajú viaceré architektúry neuronových sietí (napr. LSTM, autoenco-
der) a zameriavajú sa na rôzne typy analýzy. Tento systém sa naučí na vzorovej vzorke
dát a upozorní na nájdené odlišnosti v novozachytenej komunikácií. Výstupom systému
odhad podobnosti aktuálnej komunikácie v porovnaní so vzorovou komunikáciou.
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ROZŠÍRENÝ ABSTRAKT

S rastúcim dopytom poskytovaných služieb rastú aj požiadavky na distribučné
siete, ktoré musia podporovať rôzne typy služieb. Každá z nich spotrebuje výraznú
časť dostupnej šírky pásma. Aby poskytovatelia sieťových služieb a výrobcovia
zariadení udržali krok s rastúcim dopytom na trhu, musia napredovať vo vývoji
distribučných sietí.

Jeden z krokov v evolúcií je výmena prenosového média z metalických (medených)
káblov na optické. Ich výhodou je, že podporujú dátový prenos na veľké vzdialenosti,
sú odolné voči elektromagnetickému rušeniu a dosahujú oveľa väčšie prenosové rých-
losti. Prenos cez optické médium s použitím pasívnych optických prvkov sa uplatňuje
aj v distribučných sieťach pre koncových užívateľov, kde sa využíva stromová topoló-
gia. Takýto typ siete vyžaduje aj nový komunikačný protokol/štandard, ktorým je
napríklad GPON. V prípade Medzinárodnej telekomunikačnej únie (ITU) sú všetky
protokoly definované ako odporúčania, takže každý výrobca si ich môže prispôsobiť
podľa vlastných potrieb. Analýza takéhoto protokolu vyžaduje pokročilé techniky.

Strojové učenie, ktoré je súčasťou umelej inteligencie, rozhodne patrí medzi
pokročilejšie techniky dátovej analýzy. Tieto algoritmy sú schopné naučiť sa ro-
zoznávať rôzne vzory v dátach. Často sa používajú na klasifikáciu dát do prís-
lušnej množiny, rozlišovanie vzorov alebo spracovávanie prirodzeného jazyka. Práve
posledná zo zmienených oblastí je veľmi podobná problému, ktorou sa táto práca
zaoberá a to je analýza čiastočne známeho protokolu.

Jazyk Python3 je veľmi populárny medzi vedcami z oblasti dolovania dát a stro-
jového učenia aj kvôli svojej jednoduchosti a obratnosti. Existuje niekoľko knižníc
pre strojové učenie, ktoré majú jadro napísané v inom jazyku ako Python3 a posky-
tujú iba aplikačné rozhranie. Týmto získame výhody oboch jazykov, takže výsledná
knižnica je rýchla a jednoduchá na používanie s podporou hardvérovej akcelerácie.
Medzi tieto knižnice patrí napríklad TensorFlow, ktorá tvorí jadro analyzujúcich
modelov v tejto práci.

Skôr než je vyhotovený návrh analyzačného systému je dôležité overiť, či je takáto
analýza pomocou umelých neurónových sietí vôbec možná. Preto je vytvorených
niekoľko experimentov s rôznymi modelmi strojového učenia, ktoré overia schopnosti
detekcie neštandardnej komunikácie a slúžia ako vzor pre implementáciu modelov
v konečnom analyzátore. Analýza správ sa zameriava na dve oblasti kontroly. Prvá
je syntaktická kontrola, ktorá overí či daná správa vyhovuje štandardu. Zameriava
sa najmä na hodnoty v jednotlivých poliach PLOAMd správy. Za týmto účelom boli
otestované a dva modely. Prvý z nich je OneClassSVM, z knižnice scikit-learn.
Tento model sa učí charakteristické rysy zo vzorovej komunikácie, a na jej základe



vie určiť či nový analyzovaný vzor je, alebo nie je podobný vzorovej komunikácií.
Proces učenia je len aproximácia n-rozmernej matematickej funkcie k učiacim dá-
tam. So znižujúcou sa odchýlkou tejto funkcie sa zvyšuje citlivosť naučeného modelu
na abnormálnu komunikáciu. V experimentoch tento model správne odhalil väčšinu
náhodne generovaných správ a dokonca aj tých, ktoré boli podobné vzorovým sprá-
vam.

Druhý model analyzujúci syntax správy je autoenkodér. Tento model sa skladá
z dvoch menších modelov: kodér a dekodér. Kodér má za úlohu zredukovať počet
dimenzií vstupnej správy a zakódovať správu do komprimovanej formy. Dekóder
má komplementárnu funkciu ku kodéru a to rekonštrukciu pôvodnej správy z kom-
primovanej formy. Aby celý model správne pracoval, musí sa naučiť extrahovať
dôležité informácie zo správy. Autoenkodér používa učenia bez učiteľa a tréningovú
množinu tvoria prvky, ktorých vstup a očakávaný výstup majú rovnaké hodnoty.
Autoenkodér naučený na vzorovej komunikácií je použitý na detekciu neštandard-
ných správ tak, že analyzujúca správa je vyhodnotená a následne je spočítaná chyba
siete pomocou chybovej funkcie. Pokiaľ je chyba menšia ako prahová hodnota, an-
alyzátor usúdi, že daný vstup je podobný vzorovej komunikácií. Ak je chyba siete
väčšia ako prahová hodnota, tak je správa považovaná za abnormálnu, takže v tomto
prípade za neštandardnú.

Druhá oblasť je sémantická analýza, ktorá kontroluje nadväznosť jednotlivých
správ a obsah jednotlivých polí medzi správami. Inšpiráciou pre túto analýzu sú
neurónové siete spracovávajúce písanú ľudskú reč. Ich základ je tvorený z vrstiev
LSTM buniek, ktoré si dokážu udržať vnútorný stav naprieč spracovávanými dá-
tami. Analýza GPON štandardu je tomu veľmi podobná, pretože kontroluje správy
v danej postupnosti. Vstupné dáta sú rozdelené do časových okien konštantnej dĺžky,
aby bolo možné model učiť a následne identifikovať kde sa chyba nachádza. Tento
model je schopný správne rozpoznávať správne a chybné sekvencie správ, ale kvalita
jeho predikcie je závislá na učiacich dátach, ktoré musia obsahovať vyvážený počet
vzorových sekvencií z oboch klasifikovaných množín.

Pre analýzu sémantiky bol tiež vyskúšaný autoenkodér, ktorý je v svojej podstate
rovnaký ako autoekodér použitý v syntaktickej kontrole. Jedinou odlišnosťou je
počet vrstiev a počet neurónov v každej vrstve. Vstupné dáta sú taktiež rozdelené
do časových okien konštantnej dĺžky, ale naviac je každé okne ešte sploštené na
jednorozmerný vektor. Tento model dokázal správne označiť väčšinu časových okien,
ktoré boli úmyselne poškodené, ako neštandardné.

Navrhnutý GPON analyzátor sa skladá z niekoľkých komponentov. Ako prvý
v poradí je čitateľ dát, ktorý dokáže načítať dáta rôznych formátov. Ďalší v po-
radí je dátový filter, ktorý pred-spracuje dáta do tvaru vyhovujúcemu požiadavkám
vstupu modelov. Nasleduje sada modelov pre syntaktickú a sémantickú analýzu,



ktoré hľadajú odchýlky v komunikácií. Ako posledný v tomto návrhu je hodnotiteľ
(Evaluator), ktorý analyzuje výsledky jednotlivých modelov a vyhodnotí, na koľko
je daná komunikácia podobná vzorovej.

Navrhnutý model je implementovaný v jazyku Python3 s využitím objektovo-
orientovaného paradigma, takže každá časť z návrhu predstavuje objekt a analyzátor
len riadi tok dát a správ medzi komponentami. Hlavná funkčná časť analyzujúcich
modelov je prevzatá z experimentov, ale je zjednotená na rovnaké rozhranie, aby
narábanie s modelmi bolo jednotné. Všetky modeli sú implementované pomocou
Tensorflow s použitím zjednodušeného rozhrania, ktoré definuje knižnica Keras.

Tento projekt je podporuje dva spôsoby používania. Prvý spôsob je spustenie
programu priamo z príkazového riadku a pomocou argumentov meniť chovanie danej
aplikácie. Druhý spôsob je používať analyzátor ako knižnicu, čo umožňuje väčšiu
interakciu s jednotlivými modelmi, prípadne si definovať vlastné a zaradiť ich do
analýzy. Súčasťou projektu je aj virtuálne prostredie, v ktorom sú špecifikované
všetky externé knižnice, aby bol projekt ľahko spustiteľný na rôznych systémoch.

Na overenia kvality detekčných schopností systému pre analýzu GPON rámcov
je vytvorených niekoľko úmyselne poškodených vzoriek komunikácie, ktoré obsahujú
syntaktické aj sémantické chyby. Tieto vzorky sú následne analyzované naučeným
systémom. Z výsledkov je jasne vidieť, že oba modely pre syntaktickú analýzu
sú funkčné a zachytili väčšinu syntaktických chýb. Modely analyzujúce sémantiku
taktiež objavili väčšinu vložených chýb s podobnou presnosťou. Testy obsahujúce
chyby v komunikácií dokázali, že GPON analyzátor má schopnosti na odhalenie
chýb v komunikácií a porovnať, ako veľmi sú dve sekvencie komunikácie podobné.
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Introduction
As customers service demands grow through time, requirements on service distri-
bution network grow too. They need to support various types of services and each
consumes a significant part of bandwidth. To keep pace with customer needs, dis-
tribution network has to evolve.

One of the evolution steps is to substitute old copper cables with modern fiber
optic cables. Organizations largely replaced old copper with fiber optic cables in
point-to-point world area networks, because of their bandwidth capabilities, long
range and resistance of electromagnetic and radio frequency interference. These
days, they have been replacing last mile distribution network, especially because
of higher bandwidth capabilities and longer range. With new medium on phys-
ical layer, which creates tree-like topology, it is necessary to create new commu-
nication protocol. Several organizations take this opportunity and design various
protocols and recommendation with support of diverse services. In case of Inter-
national Telecommunication Union, all solutions are released as recommendations,
which means device vendors may keep them in mind, but also can modify them
a little according their special requirements. Considering these changes in recom-
mended protocol, analysis and reliable verification process is much more difficult
and requires more advanced techniques.

Machine learning (part of artificial intelligence science field) certainly belongs
into advanced techniques of data analysis. These algorithms are able to recognize
and learn various patterns based on learning dataset. They are widely used for classi-
fication, pattern recognition and natural language processing. The last of mentioned
areas is very similar to our problem, which is analysis and classification of unknown
language or protocol.

The main goal is to create and learn model, which should be able to detect new
or different characteristics inside captured communication compared to referenced
baseline (learning dataset). Those different characteristics may be new internal
message type, bad frame field usage or anything else what is distinct from referenced
communication.

In chapter 1, Gigabit-capable passive optical networks (GPON) are described
with physical topology, network components and communication principles. Atten-
tion is focused on Physical line operations, administration and management down-
stream (PLOAMd) messages used to control units in passive optical network.

Chapter 2 describes several machine learning models, which are considered as
a possible solution of this problem. Special attention is dedicated to definition of
neural networks and learning algorithms used in this thesis.

In chapter 3, various Python3 machine learning libraries are described with spe-
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cial focus on TensorFlow and Keras, because the final machine learning model is
written using these libraries.

Chapter 4 consists of system architecture for GPON protocol analysis using ma-
chine learning techniques implemented in TensorFlow and Keras libraries. This
system is designed to focus on frame structure analysis and relations between fol-
lowing messages. The output of this system is traffic similarity level compared to
baseline (learning) traffic.

In chapter 5, several experiments made during the design process are described.
Algorithms and models in this chapter are not considered as a final solution, but they
are sufficient as a proof of concept demonstration and the final implementation may
vary, but ideas and core of models are reused. Especially, the idea of time windows
of specific length, which are helpful during learning and classification process. Time
windows allow finding abnormal sequence in long communication.

Implementation details are described in chapter 6. It focuses mostly on an in-
terface definition of various classes and a usage description. GPON analyzer is
implemented as a python module and supports execution directly from command
line or it can be used as a library used for further development of analyzing models.

Chapter 7 verifies GPON analyzer potential and discuss its detection capabilities.
It also describes dataset generation process with corrupted messages and message
sequences followed by their classification using learned analyzer.
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1 Gigabit-capable passive optical networks
Gigabit-capable passive optical networks (GPON) is technology, which provides
telecommunication and internet services over passive optical network (PON). It
is considered as a great replacement for older technologies (e.g. digital subscriber
line (DSL)), because it achieves much higher transmission speed for various types
of traffic. As its name already suggested, fiber-optic cables are used as a transmis-
sion medium, which makes GPON capable of providing services for longer distance
with higher transmission speed. Recommendation defines limit at 20 km, but it is
possible to extend the range much farther.

GPON uses wavelength division multiplexing to separate upstream and down-
stream communication. Transmission speed supported by GPON in each direction
is defined in table 1.1.

Tab. 1.1: Transmission rates supported by GPON systems.

Upsteam Downstream
1.24416 Gbit/s 2.48832 Gbit/s
2.48832 Gbit/s 2.48832 Gbit/s

GPON is defined by several G.984.x recommendations defined by International
Telecommunication Union - Telecommunication Standardization sector (ITU-T).
This standard is designed to be backward compatible with previous ITU-T PON
standard: asynchronous transfer mode passive optical network (APON), Brodband
passive optical network (BPON).

1.1 Elements of PON
Passive optical networks consist of these basics elements: optical network unit
(ONU), optical line termination (OLT) and optical distribution network (ODN).
Logical topology of these components is shown in figure 1.1.

1.1.1 Optical distribution network (ODN)

ODN mostly uses passive network components, which provide transmission medium
for GPON technology. These components connect single OLT and multiple ONUs
or ONTs using optical cables and splitters creating a tree like topology, which can
be also called point-to-multipoint. PON splitters have various splitting ratio 1 : 𝑁 ,
where 𝑁 is usually multiple of 2. Maximum splitting ration in GPON is 1:128 [9].
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1.1.2 Optical line termination (OLT)

OLT is the root of network tree and implements PON protocol (defined by ITU-
T). It is also responsible for communication and administration of network leaves
(ONU/ONT) according to ITU-T recommendations. It provides a bridge between
GPON network and providing services as internet, video, voice and cable television.
It is also responsible for registration/activation (described in section 1.6) of new
ONUs into network, which includes bandwidth assignment (described in section 1.4)
as well.

1.1.3 Optical network unit (ONU)

ONU1 is a leaf of ODN nearing customer premises capable of communication us-
ing PON protocol and process PON PDUs. It provides bridge between PON and
customer services by converting signal from optical medium into metal cable us-
ing different physical layer protocol and vice versa. It actively communicates with
OLT to gain time slot for upstream data transmission (this process is described in
section 1.4).

Fig. 1.1: Logical topology of passive optical network.

1In GPON recommendation, ONU mostly stands for both ONU and ONT in TC layer, except
special cases. ONT is considered as a single-user ONU.
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1.2 GPON time division multiplexing
ODN consists of a single optical cable, therefore GPON uses wavelength division
multiplexing to separate upstream (from ONUs to OLT) and downstream (from
OLT to ONUs) communication. In case ODN uses two optical cables, the second
one is used only as a backup.

The process of gaining the access to the medium for downstream communication
(generated by OLT) is centralized, because OLT is the only one who gets access
to that media. It labels outgoing GPON encapsulation method (GEM) frames by
GEM Port-ID, which identifies receiver’s logical port. ONU filters the incoming
GEM frame designated to itself based on GEM Port-ID.

In the upstream direction, there may be several ONUs communicating with OLT,
therefore the process of gaining the access is decentralized. OLT assigns time based
windows to ONUs during bandwidth allocation process. ONU uses GEM Port-ID
to select specific logical connection to OLT.

1.3 GTC downstream frame structure
Frames sent by GPON transmission convergence (GTC) layer in downstream direc-
tion have constant time duration of 125 𝜇𝑠. At transmission speed 2.48832 Gbit/s,
it represents 38880 bytes long frames [9]. Structure of this frame is graphically
represented in figure 1.2.

Physical control block downstream (PCBd) contains information necessary for
control and management of certain ONU. The most important are Upstream BWmap
and PLOAMd. Upstream BWmap field gives ONU time slots for upstream communica-
tion bursts. PLOAMd field contains management message and it is more described in
section 1.5.

GTC payload field contains list of variable length GEM frames. Generic encapsu-
lation method (GEM) provides connection-oriented transport mechanism supporting
variable payload length of various data services over PON. GEM encapsulation is
analogy to asynchronous transfer mode (ATM) circuits. ATM was even supported
as a transport mechanism in previous version of GPON recommendation, but today
it is deprecated [9].

OLT and ONU ports (part of transmission container (T-CONT)) create virtual
connection and label it with unique PORT-ID for proper identification. During trans-
mission, PORT-ID in GEM header is set accordingly to identify receiving PORT.
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Fig. 1.2: Structure of downstream GTC frame.

1.4 Bandwidth allocation
From description of PON (in section 1.1), it is obvious that the PON is multiple
access network, where transmission collisions may occur. To avoid this situation,
OLT controls access of ONUs to transmission media. When ONU is willing to
communicate over PON in upstream direction, it needs to have assigned communi-
cation time window. OLT assigns these time windows for each T-CONT of ONU via
bandwidth allocation algorithm. Therefore, it sends Bandwidth Mapping message
(BWMAP), which consists of several bandwidth allocations for specific ONT/ONU
or its T-CONT [10].

1.4.1 Static bandwidth assignment

Bandwidth allocation process is approached by static or dynamic method. Static
method assigns time windows to ONUs regardless of what they need. This may
be beneficial for some technologies/services as VoIP, because of constant uplink
bandwidth and stable delay 2. However, for other IP services, which send data in

2The delay is low, because VoIP packets are usually small enough to fit into one transmission
window.
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bursts, it is not beneficial at all. After packet burst is sent and no more services are
willing to transmit the data, the time window is still allocated for specific ONU. This
prevents others to use this idle time window. Static allocation method is sufficient,
if network is not congested or upstream bandwidth required by all ONUs is less than
1.244Gps3 and is not fully utilized [10].

1.4.2 Dynamic bandwidth allocation

On the other hand, dynamic bandwidth allocation (DBA) method only assigns time
windows to ONUs, which want to send upstream data. That means big packet bursts
can be sent quicker by this method, because ONU might get longer time window
for sending data. This method also cuts off ONUs, which do not have any data to
send. OLT gets notification from ONUs indirectly by GEM idle frames or directly
through buffer status reporting [11]. Dynamic allocation obviously utilizes trans-
mission medium more effectively than static process, but level efficiency depends
on DBA algorithm. GPON recommendation defines tools for DBA, but does not
specify the whole allocation algorithm, which might be modified according to service
providers needs. DBA enables them to oversubscribe PON, resulting in providing
more bandwidth than they really have. This manner relies on customers, who do
not use the whole provided bandwidth at the same moment.

1.5 PLOAM downstream message format
Physical layer operations, administrations and maintenance is one of three methods
used by OLT to directly control ONUs in PON. It is widely used during ONU activa-

Fig. 1.3: PLOAM downstream message format.

31.244Gpbs is maximal upstream bandwidth defined by GPON recommendation by ITU-T.
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tion process, configuration of encryption, management of keys and alarm signalling
[9]. For communication, it uses PLOAM downstream message (PLOAMd), which is
part of Physical control block (PCBd).

PLOAMd message is 13 bytes long and message format is shown in figure 1.3.
Description of each field of PLOAMd message can be found in table 1.2.

Tab. 1.2: Ploam downstream message fields description.

Field name Description
ONU-ID This field represents receiving ONU. This number was as-

signed to specific ONU during its activation process. This
field can cover values from range 0-253 for OLT -> ONU
communication or 255 for broadcast.

Message ID Type of PLOAM message is represented by this field. Mes-
sage IDs are not in direct sequence (1..𝑁), but randomly
assigned in one byte value space (0 − 255).

Message Data Each message can transport additional data and this field
is allocated for this purpose. Format of data field may vary
with respect to Message ID, but it has constant length.

CRC Frame check sequence verifies data integrity of PLOAMd
message. It contains remainder of division of the this
message (with CRC set to 0) by generator polynomial
𝑥8 + 𝑥2 + 𝑥 + 1.

1.5.1 PLOAMd messages

This subsection briefly describes PLOAMd messages defined in ITU-T G.984.3
GPON recommendation. Definition refers to several states of ONU activation pro-
cess defined later in section 1.6. Types of PLOAMd messages with MessageID used
in GPON are defined in table 1.3.

Tab. 1.3: PLOAMd messages definition.

ID Message name Message description
1 Upstream

Overhead
When activation process starts, OLT instructs ONU with
pre-assigned delay settings and number of preamble bytes
for upstream communication. It also may set optical power
of ONU’s laser.

3 Assign
ONI-ID

OLT assigns unique ONU-ID to specific ONU based on
serial number and inform ONU via this message type.
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Tab. 1.3: PLOAMd messages definition.

4 Ranging time During Ranging state (O4) ONU measures equalization
delay to synchronize itself for upstream communication.
ONU sets this delay based on this message sent by OLT.

5 Deactivate
ONU-ID

OLT by this message forces ONU to stop transmitting data
in upstream direction, reset itself and start activation pro-
cess from the beginning. OLT may broadcast this message
to all ONUs.

6 Disable Serial
Number

This message with disable option forces ONU to stop send-
ing data, turn off the laser and move to Emergency state
(O7). To enable ONU, OLT needs to send Disable Serial
Number with enable parameter, which moves ONU to the
state Standby state (O2).

8 Encrypted
Port-ID

ONU is informed about channel encryption via this mes-
sage.

9 Request
Password

It is an optional message used for authentication of ONU
against local password table stored in OLT.

10 Assign
Alloc-ID

OLT uses this message to assign additional Alloc-ID to
ONU, which has multiple T-CONTs.

11 No message It is used when no PLOAM message is willing to be sent
with transitioned GTC frame.

12 POPUP After LoS/LoF alarm ONU moves to the POPUP state
(O6). OLT can rescue ONU from this state by sending
directed/broadcsated POPUP message.

13 Request key If this message is sent by OLT, ONU needs to generate new
encryption key and sent it to OLT.

14 Configure
Port-ID

OLT assigns 12-bit GEM Port-ID to the individual logi-
cal connections via ONU management and control channel
(OMCC), but OMCC needs this ID too. Therefore, OLT
assigns Port-ID to OMCC via this message.

15 Physical
Equipment
Error (PEE)

OLT informs ONU about inability to send GEM and
OMCC frames.

16 Change Power
Level

OLT sets/tunes laser power of ONU by sending this mes-
sage.

17 PST message It verifies status of ONU ⇔ OLT connection via PON.
18 BER Interval It is used for evaluation of bit error rate.
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Tab. 1.3: PLOAMd messages definition.

19 Key Switching
Time

This message contains specific time, when ONU should use
new encryption key.

20 Extended
Burst Length

OLT forces ONU to use type 3 preamble.

21 PON-ID This message contains mean optical launch power and
PON-ID tag assigned by operator to specific interface of
PON.

22 Swift Popup OLT can force ONUs to move straightly to Operational
state (O5) and clear LoS/LoF alarms with this message.

23 Ranging
Adjustment

This message modifies equalization delay to correct syn-
chronization drift. It can be sent to specific ONU or broad-
casted to all.

1.6 ONU activation process
When ONU powers on, it cannot instantly communicate in PON network, otherwise
it would cause carrier collision due to multiaccess nature of transmission media.
Firstly, it needs to synchronize with OLT, get necessary IDs and activate itself, but
most importantly, it acquires time slot for sending upstream data [8]. The thole life
cycle of ONU in PON is defined by finite state machine, which is shown in figure
1.4. It also contains ONU activation process defined by the first four states of state
machine. This process is responsible for initial communication with OLT, request
of IDs and media access. All states of finite state machine are listed in table 1.4.

Tab. 1.4: ONU operational states.

ONU operational states of finite state machine
ID State name
O1 Initial state
O2 Standby state
O3 Serial_Number state
O4 Ranging state
O5 Operation State
O6 POPUP state
O7 Emergency stop state

In ONU finite state machine several timers are used to prevent getting stumbled
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in specific state during activation process or loss of signal/frame error. These timers
are described in table 1.5. Besides, it uses loss of signal (LoS) and loss of frame
(LoF) flags to indicate transmission failure.

Tab. 1.5: Timers supporting activation process.

Timers used in activation process
TO1 This timer is used to avoid getting state machine stuck in O3 or O4

state during unsuccessful activation process. It is also called serial
number acquisition and ranging timer. Recommenced initial value is
10s [9].

TO2 Timer TO2 also called POPUP timer, avoids getting state machine
stuck while waiting on POPUP message from OLT in state O6. Rec-
ommended value for this timer is 100𝑚𝑠 [9].

Initial state (O1) is the first state coming after ONU powers on. In this
state, ONU passively listens to communication in the PON and tries to detect 𝑀

following PSYNC fields and then tries to detect 𝑀 − 1 whole frames. If this detec-
tion is successful, ONU moves to the next state O2 and clears LoF and LoS flags.
Otherwise, it remains in this state until it receives necessary following uncorrupted
data.

ONU in Standby state (O2) synchronizes itself in upstream direction. It waits
for global network parameters e.g. delimiter value, power level mode and pre-
assigned delay. All of these parameters are in Upstream Overhead message. When
ONU receives this message, configures these parameters and moves to the next state
O3 Serial Number state.

During Serial Number state (O3) ONU lets OLT know about its existence by
sharing its serial number by responding on OLT request. To avoid collisions in the
PON, OLT sends PLOAM messages with empty bandwidth map field, what creates
quite time window for 250 𝜇𝑠 [7]. Through this quite window ONU replies to OLT SN
request with its own serial number. After this step, ONU waits to receive Assign
ONU-ID message, which contains ONU-ID for this specific ONU. With successful
assignment of ONU-ID it moves to the next state, the Ranging state (O4). OLT can
use Extended Burst Length message and force ONU to configure received extended
parameters and use the type 3 preamble lengths [9].

Ranging state (O4) is crucial for synchronization of upstream communication.
All ONUs appear to be in equal distance from OLT even if they are not, in that
case propagation delays are not equal as well. As a consequence of this situation,
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Fig. 1.4: Finite state machine describing ONU life cycle [9].

equalization delay is measured in this state. ONU waits for receiving Ranging time
message and moves to the next state O5.

In Operation state (O5) upstream communication is synchronized between all
ONUs. Thanks to equalization delay each message is received by OLT in correct
upstream GTC frame and collisions in PON are avoided. ONUs are able to commu-
nicate with OLT via PLOAM message and send data in upstream direction. ONU
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remains in this state until errors (LoS/LoF) occur or ONU is being disabled/deac-
tivated.

When LoS or LoF alarm is activated, ONU moves to the POPUP state (O6) and
stops sending upstream data. Transmission silence informs OLT that ONU is in this
state. As the first step, ONU tries to recover from the error state by reacquiring
signal or bring the frame synchronization back, which clears LoS/LoF alarm. When
synchronization is achieved again, ONU waits on PLOAM message from OLT. If
directed POPUP message is received, ONU moves to the state O5. Or if broadcast
POPUP is received, ONU moves to the state O4 and measures equalization delay. If
ONU is unable to recover signal and frame synchronization it moves to the state O1
and starts activation process from the beginning.

When ONU receives Disable Serial Number message with option disable, which
means some malfunction of ONU occurs, ONU instantly appears in Emergency
state (O7). OLT tries to send this message three times and if ONU still does not
move to O7 state OLT sustains receiving upstream messages of ONU and asserts
DFi alarm. In this state, laser has to be turned off and all upstream communica-
tion is prohibited. When malfunction is fixed, OLT sends Disable Serial Number
message with option enable and ONU moves to the state O2 and negotiates all
parameters from the beginning.
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2 Machine Learning
Artificial intelligence is a scientific study, which research learning and data process-
ing systems capable of individual decision. Machine learning, as a subset of artificial
intelligence, studies system learning algorithms [4]. It is used in various cases, where
conventional system designing (writing a computer program) is extremely hard to
achieve. Examples of machine learning application are: image processing, voice
recognition, suspicious task execution analysis and many others.

These days there are many algorithms oriented to machine learning (e.g. neural
networks, decision trees, support vector, machines). Each algorithm has benefits
and disadvantages depending on use-case of project. There are also many frame-
works and libraries in various programming languages, where optimized versions of
algorithms can be found.

2.1 Neural Networks
Neural networks (NN) are one of many implementation methods of machine learning
systems. Inspiration was taken from discovered principles of human brain and the
motivation was to create an artificial version of this complex system. The first
designed system was perceptron and was able to learn classification of input space
into two separate categories. With adding more perceptrons into single layer and
stacking more of these layers, neural networks became to the world.

2.1.1 Perceptron

A core of these networks is an artificial neuron, a very simplified abstract replica
of natural neuron. Graphical representation of perceptron is shown in figure 2.1.

The principle is straightforward. Neuron calculates sum of all inputs signals
according to equation 2.1, where 𝑥𝑖 is input signal, 𝑤𝑖 is weight, 𝜃 represents bias
and 𝑧 is sum of all signals. This part is the same for across all neurons. Then the
result is passed to the activation function, which evaluates the result of this specific
neuron.

𝑧 = −𝜃 +
𝑛∑︁

𝑖=1
𝑥𝑖 * 𝑤𝑖 (2.1)

Each input signal is multiplied by specific weight, which represents its importance
to the neuron [6]. If the sum of signals reaches certain level, the neuron is considered
as activated. The bigger the weight is, the higher the impact of signal to activation
function result will be. Weights are defined by the real number, so it also can be
positive or negative number.
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Fig. 2.1: An artificial neuron.

Definition of activation function is specified by type of neural network and posi-
tion of neuron in this network (neurons in different layers may use other functions).
It adds necessary non-linearity into NN model. Even though, each project using
NN claims extra attention of model designer, who experiments with various combi-
nations of activation function and chooses the best one. The most used activation
functions are shown in figure 2.2.

2.1.2 Feed forward neural network

Huge number of artificial neurons separated into layers are connected together into
neural network. These networks differ with connection scheme of neurons and their
activation function. Inside feed forward neural networks, output of each neuron is
connected into input of all neurons in the next layer (except output layer). Neurons
in single layer are not connected together at all. In mathematical point of view,
it creates an acyclic oriented graph with perceptron as a vertex and connections
in between as edges. These neuron connections are called synapses and scale the
value by weight. For better understanding see figure 2.3, where 𝑥 is input vector,
𝑊1, 𝑊2, 𝑊3 are weight matrices and Y is output vector. This network accepts vector
of four components as an input and transforms it into vector of two (e.g. classifi-
cation of vectors into two sets). The weight matrices have specific weight value for
each synapse and each neuron. The dimension of current matrix in specific layer is
given by number of neurons in previous and following layer.

Input and output layers create an exception in upper connection definition of
NN. The main role of NN input layer is to distribute all parts of input vector to
following perceptron in inner layer, therefore activation function might be linear.
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Fig. 2.2: Examples of neuron activation functions.

At the end of NN, there is output layer, which is not connected to anything, but
provides aggregated output.

2.1.3 Backpropagation

The NN handling process is obvious compared to learning process. All calculations
related to handling are performed by simple equations and the whole system remains
persistent after handle.

Difficult task is to find weight matrices, that calculate output vector from input
vector with the highest precision. This had been the biggest problem and source
of negative opinions about NN, until backpropagation algorithm was found out.
As the title of this algorithm indicates, it evaluates error of NN model and back
propagate error from output layer to previous layers. Error is calculated using loss
function (also called objective function), which can be defined by mean square error,
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Fig. 2.3: A neural network scheme.

cross entropy or function with similar use case. It basically evaluates the difference
between computed and expected output of NN.

Backpropagation algorithm is based on searching gradient of the weight with
respect to loss function. Calculated gradient is used to modify weights in order to
gain higher precision of NN model (minimizing loss) by applying one of the iterative
learning method as a stochastic gradient descent or other alternative [15].

Example of error backpropagation

First of all, suitable learning and testing data are necessary to learn/train NN model
by backpropagation algorithm. Both data sets (training, testing) need to be labeled
with expected output for each input vector, which means these sets should contain
pairs (x, d), where x is input vector and d is output vector.

Assume that NN described in figure 2.3 uses sigmoid as activation in all neurons.
Sigmoid function is defined in equation 2.2.

𝑓(𝑥) = 1
1 + 𝑒−𝑥

(2.2)

For this example of backpropaation algorithms we use mean square loss function
defined in equation 2.3, where y is calculated output, d is expected output and N
is dimension of y, d vectors.

𝐿(y, d) = 1
𝑁

𝑁∑︁
𝑖=1

(𝑦𝑖 − 𝑑𝑖)2 (2.3)
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Finding gradient with respect to 𝑖-th weight to 𝑘-th output neuron is shown in
equation 2.4. By design of NN, evaluation of 𝑦 from 𝑥, 𝑤 and 𝜃 is accomplished
by using several nested function, therefore we can use the chain rule when partial
derivative is being searched.

𝜕𝐿

𝜕𝑤𝑖𝑘

= 𝜕𝐿

𝜕𝑦𝑘

𝜕𝑦𝑘

𝜕𝑧𝑘

𝜕𝑧𝑘

𝜕𝑤𝑖𝑘

= (𝑦𝑘 − 𝑑𝑘)𝑦𝑘(1 − 𝑦𝑘)𝑥𝑖 (2.4)

The weights are changed based on gradients of error function calculated for the whole
training dataset. Hence, gradients for each learning sample are summed together.
If stochastic gradient descent method is used, aggregated gradient is firstly scaled
by learning rate 𝛼 and then added to original weight [15]. Final weight adjustment
is demonstrated in equation 2.5.

𝑤𝑖𝑗 = 𝑤𝑖𝑗 + 𝛼Δ𝑤𝑖𝑗, 𝑤ℎ𝑒𝑟𝑒 Δ𝑤𝑖𝑗 =
𝑇∑︁

𝑡=1

𝜕𝐿(y𝑡, d𝑡)
𝜕𝑤𝑖𝑗

(2.5)

Another neuron parameter which needs to be learned is 𝜃 (the bias). Evaluation of
𝜃 difference is similar to weights. The only change is in partial gradient derivation
of loss function, because it is derived with respect to 𝜃 not 𝑤. The rest of procedure
is exactly the same.

2.2 RNN - recurrent neural network
Feed forward neural networks find their purpose in many areas, but they are not even
close to be considered as a universal tool for data classification or categorization.
Various patterns can be found and learned by NN in single sample, but patterns
occurring across several samples are omitted. This causes difficulties during im-
plementation of model for language analysis. Recurrent neural network might be
a simple solution of this problem. RNN neuron does not calculate output based
purely on input vector, but it considers its inner state as well.

2.2.1 RNN topology

To achieve connection with its previous state RNN creates cyclic graph by connecting
output of neuron back to the input of the same neuron and passes state h through
this connection. This adds extra matrix of weights 𝑊ℎℎ for state vector h. Scheme
of RNN neuron is shown in left part of figure 2.4, where all inputs and outputs are
defined as vectors, and weights are defined as matrices, because the whole neural
network is represented by this scheme. In the right part, there is the same neuron,
but rolled through time (through state vector h). This visualization shows that
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Fig. 2.4: Neuron scheme of RNN[2].

each new input is handled by neuron as if it was a different one, because of the state
vector.

To compute the next state vector at time step 𝑡, RNN uses equation 2.6, where
𝑊ℎℎ is weight matrix of state vector, h𝑡−1 is previous state vector, 𝑊𝑥ℎ is weight
matrix of input, 𝑥𝑡 is input and bℎ) is bias.

h𝑡 = 𝑡𝑎𝑛ℎ(𝑊ℎℎh𝑡−1 + 𝑊𝑥ℎx𝑡 + bℎ) (2.6)

Prediction 𝑧𝑡 based on current state ℎ𝑡 is evaluated by equation 2.7, where 𝑊ℎ𝑧 is
weight matrix of preditcion and 𝑏𝑧 is bias.

𝑧𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊ℎ𝑧h𝑡 + 𝑏𝑧) (2.7)

2.2.2 Back propagation through time

Proper weight matrices used for input filtering, prediction and next state compu-
tation need also with their biases are necessary for achieving reasonable results.
Similar approach can be used as in regular NN to find these matrices. It is back-
propagation algorithm. Slight difference is that the gradient is searched through
time (i.e. through sequence of samples).

Let 𝐿 be a loss function. Considering 𝑊ℎ𝑧 is shared through time, gradient
with respect to 𝑊ℎ𝑧 is calculated by sum of differences for each time step shown in
equation 2.8 [2].

𝜕𝐿

𝜕𝑊ℎ𝑧

=
∑︁

𝑡

𝜕𝐿

𝜕𝑧𝑡

𝜕𝑧𝑡

𝜕𝑊ℎ𝑧

(2.8)

Gradient with respect to 𝑊ℎℎ is evaluated by sum of fractional gradients for each
time step from 0 to 𝑡 + 1, which also depends on several changes in state vector
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h𝑡. Therefore chain rule is applied on differentiation of state vector in time. This
propagation back in time is demonstrated with red line in figure 2.4. Mathematical
definition of mentioned gradient is shown in equation 2.9 [2].

𝜕𝐿

𝜕𝑊ℎℎ

=
∑︁

𝑡

𝑡+1∑︁
𝑘=1

𝜕𝐿(𝑡 + 1)
𝜕𝑧𝑡+1

𝜕𝑧𝑡+1

𝜕h𝑡+1

𝜕h𝑡+1

𝜕h𝑘

𝜕h𝑘

𝜕𝑊ℎℎ

(2.9)

The gradients of remaining weight matrices or bias vectors can be deduced from
equations: 2.8 and 2.9.

2.3 LSTM - long short term memory
RNNs are the first type of NN, which tried to find patterns in sequences, but they
have several imperfections. The first problem is called the vanishing gradient, which
refers to a situation, when a sum of partial derivations is nearing to zero and as a
consequence RNN does not learn anything. This problem might be a direct opposite
and it is called the exploding gradient. Gradient becomes very big and unstable,
resulting into situation, when RNN does not learn anything as well.

Fig. 2.5: Scheme of LSTM cell with gates [2].

Because of these situations, RNN has problem to find and learn patterns in a
long sequences. LSTM cell tries to provide solution of this problem. It inherits the
design of RNN and add several important features. The topology of LSTM cell is
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shown in figure 2.5, where x𝑡 is input vector, h𝑡−1 is previous state vector, 𝑊 are
weight matrices and bias vectors are omitted.

The first new feature is an internal memory used for storing necessary information
important to patterns of farther distance. Hence, it is called long short, because
it has long memory defined by c𝑡 state, and short memory defined by h𝑡 vector
inherited from the RNN.

The second one is gate mechanism providing control of information flow of the
cell. These gates are defined in table 2.1.

Tab. 2.1: Description of LSTM gates.

Gate name Description
Input and Input
modulation gate

These gates are used to scale input vector x𝑡 and previous
state h𝑡−1 into specific range of values using sigmoid and
tanh activation function.

Forget gate It is responsible for controlling what kind of information
should be stored in or erased from the memory.

Output gate It decides which information is inside state vector h𝑡 and
which information leaks from the memory.

Backpropagation algorithm of LSTM cell is very long, because it has much more
weight matrices and bias vectors, but principle is exactly the same. Mathematical
evaluation is omitted, because it would be out of scope of this thesis.

2.4 Autoencoder
Autoencoder is a type of symmetrical neural network, which uses unsupervised learn-
ing method. It tries to learn sparse (less dimensional) approximation of the input
vector x in hidden layer to be able to reconstruct in the output layer [14]. The
reduction of dimensions allows the model to not just copy input vector to the out-
put, but extract and find features describing characteristic of this vector and then
reconstruct the output vector.

Autoencoder consists of two sub-models. The first one is called encoder and its
main responsibility is to compress input vector x to less dimensional vector space
called latent space. The second sub-model is decoder, which tries to reconstruct
vector x̂ from latent space vector containing compressed original vector x. Ex-
ample of autoencoder with highlighted sub-models is shown in figure 2.6.
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There are many usages of autoencoders, such as anomaly detection (described in
section 2.4.1), noise reduction, dimensionality reduction, information retrieval and
many others.

Fig. 2.6: Autoencoder neural network scheme.

2.4.1 Anomaly detection

One autonencoder neural network usage is anomaly detection. An autoencoder is
learned using normal data, because anomalies are yet to be found. Considering the
fact that autoencoder uses unsupervised learning method, an expected output y is
the same as an input of x [13]. The goal of learning process is to minimize a value
of a loss function. After all learning iteration a anomaly threshold carefully is set
to correctly divide normal samples and possible anomalies.

To classify given vector sample x, it is necessary to predict output y and evaluate
prediction error using loss function. If the error is lower than threshold, the sample
x is considered as normal. Otherwise, it is classified as an anomaly.
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3 Tensorflow and Keras
This chapter contains description of several machine learning libraries in Python3
language. Focus is mostly concentrated on TensorFlow and Keras, because it is used
as a core for ML models designed in the following chapters. Those projects are being
developed, well-supported and documented. TensorFlow also supports export and
deploy model on remote machine.

3.1 Machine learning libraries in Python3
Machine learning algorithms and techniques are developed and shared by open
source communities founded by universities or data analyzing companies. The main
idea is to avoid inventing of solution already known. Taking into consideration all
difficulties during derivation of loss function gradient, it makes sense to share and
reuse the solutions, so data analytic may focus on ML model improvement instead
of mathematical derivation.

Libraries used for machine learning do not only provide easy way to create,
learn and experiment with model, but they are also capable of efficient computation
method. Models based on NNs calculates thousands, even millions of numbers
with simple mathematical operators: [+,-,*]. To improve computational speed,
libraries support hardware offload, which moves calculation into peripheral device
(e.g. graphics processing unit (GPU)).

3.1.1 Scikit-learn

Scikit is a community driven open source project focused on many machine learning
algorithms (e.g. random forest, k-Means, nearest neighbors, support vector ma-
chines, etc.). It is easy to use, therefore more concentration can be targeted on
quality of training data. On the other hand, support GPU offload is missing , which
means it does not scale well on large neural networks [12].

3.1.2 Pytorch

Pytorch is machine a learning library in Python3 language developed by Facebook
research group in 2017 and is based on Torch library written in C. It is mostly
used for natural language processing and computer vision. The main advantage
is capability of tensor operation acceleration on GPU, which allows creating and
training NN with several hidden layers.
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3.2 TensorFlow
TensorFlow library is being developed by artificial intelligence (AI) research com-
munity from Google. Model or program development in TensorFlow consists of two
stages: static computation graph definition and running a computational session of
this graph. Thanks to this model representation, it is easy to evaluate data parallelly
in pipelines especially on GPUs allowing creating and learning deep NN.

3.2.1 Computational graph

The core of TensorFlow calculations creates directed graphs structure used for com-
putation, where node can be for example value or math function, and edges are
tensors (defined in following section 3.2.2). Each node has zero to 𝑁 inputs and
outputs. TensorFlow assigns kernels to node representing math function, which
contain implementation of that function on particular device (e.g. GPU, CPU) [1].

Example of a simple quadratic equation evaluation by computational graph is
shown in listing 3.1. There is only definition of static computational graph, the
second part with session execution is omitted, because TensorFlow runs it implicitly
from version 2.0.0.

Listing 3.1: Simple quadratic equation in TensorFlow.� �
1 >>> import tensorflow as tf
2 >>> assert tf . __version__ >= ’2.0.0 ’
3 >>> a = tf . constant (2 )
4 >>> b = tf . constant ( - 3)
5 >>> c = tf . constant (5 )
6 >>> x = tf . constant ( list ( range ( - 5 ,5 , 1 ) ) )
7 >>> y = a∗x∗∗2 + b∗x + c
8 >>> print ( y )
9 tf . Tensor ( [ 7 0 49 32 19 10 5 4 7 14 2 5 ] , shape =(10 ,) , dtype=int32 )� �

3.2.2 Tensor

This library is designed to work with tensors, to be able to design generic mathemat-
ical structures or functions using computational dataflow graph. Tensor is generic
mathematical structure representing linear mapping from one set to another. From
library perspective, it is generic data structure unifying scalar, vector, matrix and
n-dimensional array. Thanks to tensors, definition of single dense NN layer can be
as easy as 𝑦 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑥 * x + b) and it can be used as a generic definition of NN
layer, but dimensions (shapes) of certain vectors have to match.
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3.2.3 TensorFlow parallelism

TensorFlow is designed to execute graph session on distributed system. Therefore,
scheduling algorithm is a necessary part of this library. Each computing system has
abstract representation used by scheduling algorithm describing available system
resources. Special process called worker runs in this system and executes subgraphs,
which are assigned from master process. To share data between worker processes,
remote direct memory access (RDMA) and transmission control protocol are used.

3.2.4 Gradient evaluation

Considering the fact that the TensorFlow is designed especially for machine learning
using deep neural networks, it directly supports evaluation of gradient for current
graph. When TensorFlow searches gradient for specific tensors with respect to other
tensor, it backtracks to the other tensor and add partial gradients to each node on
the path. Final gradient is found by applying chain rule on this partial gradients
together [1].

3.3 Keras
This library provides an easy to use high-level application programming interface
(API) for designing, learning and evaluation NN models. Today it is a part of
TensorFlow library and makes model definition as a computational graph (needed by
TensorFlow) much easier by abstracting several ML components. Whole ML model
is composed of abstract objects compiled into TensorFlow computational graph to
gain benefits of GPU acceleration. These abstract objects can represent: layers,
model, optimizer, loss functions, activation functions of neurons and many others.
The major part of these objects contains methods used for model serialization and
deserialization. Several abstract objects are briefly described in sections below.

3.3.1 Model

Project Keras contains two main model definitions. The first is model.Sequential,
which is also used in our models. It is capable of stacking abstract NN layers (defined
in section 3.3.2) and creates fully functional NN model.

The second one is model.Model providing API for customized model definition
using inheritance or functional description. One of the use cases is definition of two
ML models with several layers, but one of these layers is shared across models [3].
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Both mentioned model classes share basic API used for model initialization,
training and prediction. Description of several model methods used in thesis can be
found in the following subsections.

Compile

This method specifies necessary information needed for learning process. The most
important parameters are optimizer specifying iterative algorithm used for up-
dating weights based on gradient during learning (e.g. Stochastic gradient descent
(SGD), Adadelta, Adam, etc.) and loss (or objective) function (e.g. mean square
error, crossentropy, etc.) defining prediction error of model. Also, various model
variables can be evaluated during learning process and can be defined by metrics
parameter. Method declaration can be seen in listing 3.2.

Listing 3.2: Desclaration of model.compile method [3].� �
1 compile ( optimizer , loss=None , metrics=None , loss_weights=None , sample_weight_mode=

None , weighted_metrics=None , target_tensors=None )� �

Fit

Each model needs to learn on training data and for this purpose fit method exists,
accepting enormous number of arguments, but most importantly it accepts learning
set x, expected results y, number of learning iterations epochs. This method returns
special object History.history containing gathered data learning process, which
can be used to plot accuracy and loss evolution during epochs. Declaration of fit
method is shown in listing 3.3.

Listing 3.3: Desclaration of model.fit method [3].� �
1 fit ( x=None , y=None , batch_size=None , epochs =1, verbose =1, callbacks=None ,

validation_split =0.0 , validation_data=None , shuffle=True , class_weight=None ,
sample_weight=None , initial_epoch =0, steps_per_epoch=None , validation_steps=
None , validation_freq =1, max_queue_size =10, workers =1, use_multiprocessing=
False )� �

Predict

Learned models are usually used for classification or prediction based on current
input. This is achieved using predict method accepting parameter x as input
tensor. Declaration of this method can be seen in listing 3.4.
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Listing 3.4: Desclaration of model.predict method [3].� �
1 predict ( x , batch_size=None , verbose =0, steps=None , callbacks=None , max_queue_size

=10, workers =1, use_multiprocessing=False )� �
3.3.2 Layers

To make model definition a bit easier, Keras contains huge number of abstract
NN layers definitions in keras.layers submodule. All of them share the same
basic API, which is extended for specific layers requiring different parameters. The
major part of layers requires only single parameter during initialization, which is
units specifying number of neurons in that layer. It is also common to set specific
activation function different to default1 using activation parameter. Dimension of
inner layer tensors is derived from number of neurons in adjacent layers. Therefore,
layer input shape can be assigned automatically. Exceptions are the first model
layers, where automatic evaluation may not be possible and tensor dimension has
to be set using shape parameter. Layers used in this thesis are defined in table 3.1.

Tab. 3.1: Definition of Keras layers used in this thesis.

Layer name Description
Dense This is the most used layer representing fully-connected NN

accepting vectors as an input and transform them into output
of desired shape.

Dropout To avoid overfitting during learning and to gain more accured
NN, several randomly chosen neurons may be "turned off"
using this layer.

LSTM This layer is abstract implemetation of LSTM cell (described
in section 2.3) requiring sequences as an input.

TimeDistributed To add Dense layer (or similar accepting vectors instead of
sequences) before LSTM layer, Dense layer needs to be deco-
rated by TimeDistributed decorator, which allows Dense layer
to handle each vector in sequence as single input.

1Default activation function of Keras layer is linear.

41



4 Designing learning model
This chapter contains a design of ML system responsible for traffic verification based
on baseline communication, which follows GPON recommendations. Input data
structure and format are discussed together with preprocessing of learning data and
the whole system component by component. Models in each component are chosen
with respect to TensorFlow.

4.1 Data characteristic
Considering the fact that this is a communication protocol, similar approach may
be used as for natural language processing. Both contain a sequence of related
information in specific order, which means different order may results in a distinct
or even misinterpreted context.

4.1.1 Input data format

Model definition is based on TensorFlow library, which well collaborates with numpy1

library. Thus, it is reasonable to use numpy.array as data structure, where input
vectors are stored. This array has three dimensions defined in table 4.1.

Tab. 4.1: Dimensions of input numpy.array

No. Dimension name Description
1 sequence Model can classify several sequences and by using this

dimension is able to separate them.
2 message Sequence consists of several following messages.
3 feature/field Each PCBd message has several fields and this dimension

divides them.

Single input vector has the same structure as PCBd field of GTC downstream
frame and it is shown in figure 1.2. Field representing length are aggregated to a
single number, but fields representing data (e.g. PLOAMd data field) are divided
into separate features.

1Numpy is Python3 library supporting various mathematical operations with complex multidi-
mensional structures (e.g. vectors, matrices, etc.) and much more.
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4.1.2 Preprocessing data

PCB from captured communication are stored in Microsoft SQL database [8]. This
data cannot be directly injected into analyzing system. During normalization pro-
cess of database design, several changes are applied to achieve certain normal form
resulting in effective data storing and removal of duplicated data. Unfortunately
this format is suitable for ML model, which requires correctly formatted tensors
and data duplication in some field is not considered. Therefore, data is grouped2

together and then extracted in JavaScript Object Notation (JSON) format from
the database. This extract needs to be loaded, all nested arrays expanded to a flat
structure and a result modified into a suitable format described in section 4.1.1.

4.2 System design
GPON verification system consist of several components due to the fact that the
single NN should be primarily focused on a narrow purpose to gain optimal results.
Otherwise, we would have complex NN model, which is hard to train, test and
enhance. This can be sorted out by decomposition into smaller narrowly aimed parts,
which positively influences learning and evaluation speed, because each models has
to learn dependencies between fewer weights. Scheme of this model system is shown
in figure 4.1. Each component of this system is discussed in following subsections.

4.2.1 Data reader

This is the first component in the system and it is mainly responsible for:
• reading data with specific format and load them into memory
• preprocessing RAW data from database and storing in the specific file format

Based on the fact that GPON network can produce thousands of messages per
second, the data reader object should use suitable format for huge numbers of small
vectors. Data are loaded into n-dimensional arrays and passed to model for learning
or classification sequentially, so the performance random data access can be ignored.

4.2.2 Input filter

Input data may contains some mistakes or have different length3. This component is
responsible for filtering such messages and for normalizing rest messages into suitable
format for ML model input. It also helps during learning process by filtering or
reducing long sequences of the same messages, which would prevent correct learning.

2Applying group by operation on certain tables.
3Length of BW Map field is not constant.

43



Fig. 4.1: Analyzing models system scheme.

4.2.3 Syntax verification model

Content of each message field has specific rules, which should be considered during
analysis. This component is responsible for this verification, which can be achieved
by several proposed models.

The first proposed model is a deep neural network consisting of several dense
layers. The model would be trained by supervised learning algorithm requiring
correct and faulty input data to learn. The advantage of this approach is that the
model is able to learn more complex relations. On the other side, it is necessary to
generate synthetic faulty data needed by learning process.

The second option is to use one of outlier detection models capable of classifi-
cation similar and different data compared to learning dataset. This technique uses
unsupervised learning and no additional data has to be generated, but it may not
learn complex relations compare to deep neural network.

4.2.4 Semantic verification model

This model verifies message relations in time. Proposed model may use LSTM cells
(described in section 2.3) to achieve this time based sequence check. LSTM based
networks prove their capabilities in various similar use cases. For example language
translator uses these cells and the whole sentences are processed to a single state and
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then this same state is used to generate similar sentence in a different language. The
first part of mentioned system solves a similar problem, which is finding patterns in
time. This part can be used for message sequence analysis and provided state is not
used for translation to different language, but for a prediction whether it satisfies
GPON recommendation or not. Keras API in TensorFlow has support of LSTM
layers, so the proposed model is possible to create. If combination of dense layers
and LSTM is necessary, each previous layer has to be TimeDistributed, because
LSTM layer input shape has more dimensions.

4.2.5 Evaluator

Evaluator is the final component, which creates human-readable output from pre-
vious classifications. Its responsibility is to create statistics about classification or
prediction of machine learning models used in this system. Based on this informa-
tion it creates aggregated output, which represents similarity to baseline traffic and
highlights strange messages and non-standard message sequences.
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5 PLOAMd analysis experiments
This chapter describes ideas and experiments made during design process of learn-
ing model for analysis of unknown protocol, which should keep definition GPON
recommendation. In the first experiment, the effort is focused on PLOAMd (defined
in section 1.5) message analysis. The goal is to create model used for inspection of
each message field and search for possible abnormalities.

The second experiment is focused on analysis of the whole protocol, which is a
difficult task. Inspiration is taken from natural language processing models based
on RNNs (RNN are defined in section 2.2.) or NN derived from RNNs. Analysis of
network protocol is very similar, because there is sequential data with given syntax.

The third and the fourth experiment use autoencoders based models (described
in section 2.4) for syntax and sequence analysis respectively. These models are very
similar. The only difference is the number of layers, number of neurons in each layer
and the data shape. The model used for sequence analysis accepts input as flatten
message windows of constant length, instead of pure messages.

5.1 PLOAMd data mining
Downstream network traffic in PON was monitored and captured to obtain real
data. Learning data is a building stone for a precision of each artificial intelligence
model. Capturing system do not store the whole GTC frame due to the size of
frames and transmission speed in GPON, but only the PCBd headers. This is not a
problem, because important protocol messages used by GPON are in these headers
and stored in the database.

For the following experiments, models need information from PLOAM field of down-
stream PCB header. During the preprocessing phase, messages are grouped by
MessageID column and counted. Sorted PLOAMd messages with number of occur-
rence are shown in table 5.1.

From filtered data it is obvious that the most used PLOAMd message is NoMessage11

used when no managing instruction is being sent by OLT, which is standard oper-
ating state when no ONU is executing the activation process.

There are four different values in ONU-ID field, which represent three distinct
ONU addresses and the broadcast address. Based on the occurrence of various
AssignONU-ID3 and RangingTime4 messages it is clear that activation processes of
these units are captured.

Among others there is one message, which is not specified or described in GPON
recommendation: 24. This and similar unknown message are the main reason of
protocol analysis with AI/ML.
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Tab. 5.1: Filtered PLOAMd messages from captured data traffic.

ONUid MessageID Data CRC Count
0 4 AAAEuUgAAAAAAA== 196 1
0 8 AvnwAAAAAAAAAA== 12 1
0 10 QAABAAAAAAAAAA== 147 1
0 18 AAE4gAAAAAAAAA== 251 1
1 4 AAAEuUIAAAAAAA== 132 1
1 8 AgAQAAAAAAAAAA== 66 2
1 8 AvngAAAAAAAAAA== 102 1
1 10 QBABAAAAAAAAAA== 75 1
1 18 AAE4gAAAAAAAAA== 166 1
2 10 QCABAAAAAAAAAA== 36 1
2 14 AQAgAAAAAAAAAA== 6 1

255 1 IAAAqqtZgyAAAA== 41 26
255 3 AEhXVEMqiYhpAA== 253 1
255 3 AUhXVENdVdF7AA== 100 1
255 3 AkhXVENdWuF7AA== 239 1
255 11 AAAAAAAAAAAAAA== 158 299945
255 20 HhIAAAAAAAAAAA== 23 12
255 21 IAAAAAAAAAD//w== 212 1
255 24 B+MLFBMb6h0BAA== 66 1

5.2 Syntax analysis experiment
A model in this experiment should detect anomalies in the GPON communication.
Message is considered as an anomaly, when it is not similar to messages in the
training dataset. The model capable of this function choosed for this experiment
is OneClassSVM from scikit library, which approximates mathematical function to
create an envelope, which decides whether classifying vector is normal or outlier.

Listing 5.1: PLOAMd syntax analysis model used in experiment.� �
1 from sklearn import svm
2 model = svm . OneClassSVM ( kernel=’rbf ’ , nu =0.03 , degree =13,
3 gamma =0.00001 , verbose=True , max_iter=- 1)
4 model . fit ( np . concatenate ( [ x_train , x_train + 0 . 5 , x_train - 0 . 5 ] ) )� �

The model used in this experiment is shown in listings 5.1. Approximation
function of model uses radial basis function as a kernel. The gamma coefficient of
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this model is very low to wrap the envelope around normal vectors more tightly,
which raises the sensitivity of this model.

Captured messages shown in table 5.1 are split to learning and testing dataset.
Both these datasets represents standard traffic. The model is learned only learning
datasets with a variation of ± 0.5, because OneClassSVM expects outliers to be in
learning dataset and this guarantees the normal traffic is classified correctly. Testing
datasets verifies whether the model classifies unknown standard traffic correctly.
Outlier detection capabilities are tested with two datasets. The first dataset is
randomly generated within range < 0; 255 > for each field, but the second one
is generated within range < 25; 35 > in MessageID and ONUid fields and range
< 0; 255 > in remaining files, which simulates possible outliers. Classification results
of this model for each dataset is shown in table 5.2.

Tab. 5.2: OneClassSVM outlier detection model classification results.

Dataset Accuracy Elements Errors
train 100% 14 0
test 100% 5 0
similar outliers 100% 50 0
random 100% 50 0

5.3 Sequence analysis experiment
Model with two LSTM layers suitable for sequence analysis is created to learn system
relations between message type and content using Keras and TensorFlow library.
This model is shown in listings 5.2.

Listing 5.2: Sequence analysis model used for experiment� �
1 from tensorflow import keras
2 model = keras . Sequential ( [
3 keras . layers . LSTM (16 , input_shape=data [ 0 ] . shape ,
4 return_sequences=True , activation=’tanh ’ ) ,
5 keras . layers . LSTM (16 , activation=’tanh ’ ) ,
6 keras . layers . Dense (64 , activation=’relu ’ ) ,
7 keras . layers . Dense (64 , activation=’relu ’ ) ,
8 keras . layers . Dense (2 , activation=’softmax ’ ) ,
9 ] )

10 model . compile ( optimizer=’adam ’ ,
11 loss=’sparse_categorical_crossentropy ’ ,
12 metrics =[’accuracy ’ ] ,
13 )� �
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Experiments with this model are focused on a detection of correct message order.
This model uses supervised learning, which means it needs data samples from both
classified groups. The dataset with correct samples is created by message sequences
from the captured communication and all samples are labeled as good. The dataset
with corrupted message sequences has to be generated using several procedures.
The first one takes the correct dataset and flips the order of messages. The second
procedure drops certain message important for the GPON protocol (e.g. message id
4 or 10 used in activation process). The last procedure duplicates certain messages to
create non-standard sequences as well. All corrupted message sequences are labeled
as bad and simulates possible outliers.

These two datasets are source for generating a learning time window of constant
length by sampling these subsequences. This process uses sliding window of length
30 and shifts this windows by 1 messages after each sample.

Fig. 5.1: Accuracy and loos during learning process.

Several sequences are popped from learning dataset to create a disjunctive val-
idation set and the learning process can start. Accuracy and loss history of both
learning and validation datasets captured during learning is shown in figure 5.1.
Considering the size of dataset,it is hard to say whether it learns input data exactly
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or finds generalized principles, but it is clear that the model is able to distinguish
time sequences.

These results prove that the sequence analysis of GPON is possible with LSTM
cells, but learning generalized rules relies on proper dataset. The biggest disadvan-
tage is that the model needs to be learned with corrupted or improper communica-
tion samples, which are not available.

5.4 Autoencoder syntax experiments
In this experiment, autoencoder is used for anomaly detection in each field of
PLOAMd message. Autoencoder principles are described in section 2.4. Several
model configurations are tried with different number of layers and neurons in each
layer and also with different activation functions. A model with the best performance
is shown in listing 5.3. The model uses exponential linear unit (ELU) function in
the input and hidden layers and sigmoid function in the output layer. In this con-
figuration, model is able to compress and reconstruct input vector into the latent
space with dimension of two with very low error.

Listing 5.3: Syntax verification autoencoder� �
1 from tensorflow import keras
2 model = keras . Sequential ( [
3 keras . layers . Dense ( x_train . shape [ 1 ] , activation=’elu ’ ) ,
4 keras . layers . Dense (8 , activation=’elu ’ ) ,
5 keras . layers . Dense (4 , activation=’elu ’ ) ,
6 keras . layers . Dense (2 , activation=’elu ’ ) ,
7 keras . layers . Dense (4 , activation=’elu ’ ) ,
8 keras . layers . Dense (8 , activation=’elu ’ ) ,
9 keras . layers . Dense ( x_train . shape [ 1 ] , activation=out_act ) ,

10 ] )
11 model . compile (
12 optimizer=keras . optimizers . Adam ( learning_rate =0.01) ,
13 loss=’mean_squared_error ’ ,
14 )
15 model . fit ( x_train . values , x_train . values , shuffle=True , batch_size =3, epochs =200)� �

This model is learned on captured vectors listed in table 5.1, which define normal
traffic. Several vectors are dropped to create a testing dataset. To test anomaly
detection capabilities, two additional datasets are made. The first one contains
randomly generated vectors of proper dimension with maximum number 2551. The
second generated dataset simulates possible real outliers and contains vectors similar
to standard ones (e.g. similar message ID with low values in the other fields, etc.).

1Each PLOAMd field is 1 byte long, so maximal generated number is 255.
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The threshold for outlier detection is set by maximal loss function evaluation of
learning dataset by learned model.

Tab. 5.3: Syntax detection autoencoder classification results for each dataset.

Dataset Accuracy Elements Errors
training 100% 14 0
testing 100% 5 0
similar outliers 93.33% 150 10
outliers 100% 500 0

Classification results for each dataset by learned model are visible in table 5.3.
Mean squared error loss function result histogram for each dataset is shown in figure
B.2, where red doted line represents outlier threshold.

5.5 Autoencoder sequence experiments
Sequence analysis autoencoder searches for differences in time windows of specific
length. By its design, it focuses on different message sequence or usage. It is also
capable to find a missing/additional message or a bad message usage.

In this experiment, the time window has length of 30 messages. This autoencoder
is very similar to the syntax analysis model. The only difference is the input vector
shape, which is 390 (30 messages by 13 features) for this time window, and number of
neurons in each layer, which is [390, 256, 128, 64, 32,64, 128, 256, 390] respectively.
All activation functions are exponential linear unit, except of the activation function
in the output layer, which is sigmoid function.

Tab. 5.4: Sequence detection autoencoder classification results for each dataset.

Dataset Accuracy Elements Errors
training 100% 25 0
testing 100% 3 0
corrupted 51.54% 97 47
random 100% 97 0

The model is learned by training dataset consisting of normal traffic as syntax
autoencoder. This dataset is created from captured frames with omitted message
NoMessage11, but without dropping duplicates. A sliding window of specific length
(30 in this case) travels though frames and generates new data samples, which are
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divided into learning and training dataset. Detection capabilities are tested by two
datasets. The first one contains data windows generated from captured frames, but
some message types (4 and 20 ) are dropped, which clearly create corrupted message
sequences. The second outlier dataset contains randomly generated data.

This anomaly detector correctly classifies training, testing and random datasets
with 100% accuracy. The results are shown in table 5.4, The dataset containing
corrupted frame windows is classified with accuracy below 50%, which means the
autoencoder correctly classifies some corrupted windows, but there are many win-
dows classified as normal. The reason for this is that some windows are still very
similar to standard traffic and are not changed by dropping messages 4 and 20. Loss
function results histogram is shown in figure B.3, where red dashed lines represent
outlier threshold.

5.6 Experiments conclusion
Outlier detection using OneClassSVM is able to correctly classify normal and abnor-
mal GPON frames, but it uses approximate function unable to learn the importance
of frame field usage.

LSTM model is powerful system capable to extract useful information from each
message and use it in the next frame analysis during the sequence classification pro-
cess. This requires correctly labeled sequences of normal and invalid traffic to learn,
which may be difficult if undocumented message appears within the communication.

Both autoencoder models prove their outlier detection capabilities and make
a great alternative to LSTM model, especially because of unsupervised learning.
These models can learn usage and syntax of undocumented messages. LSTM model
uses supervised learning and for higher classification accuracy it requires samples
of normal and abnormal traffic. Abnormal traffic dataset is generated by adding or
dropping certain messages, which creates sequences that does not meet the standard.
This requires adding additional information into learning process, but in case of
unknown messages this information is not available.

All models have relatively good outlier classification accuracy and it is worth
considering these models in GPON analyzing system and to evaluate model capa-
bilities with much bigger dataset. Each of these models has pros and cons, which
makes them individually special. Suggested solution is to use all models in the
GPON analyzing system in parallel and to validate results between them.
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6 GPON analyzer implementation
This chapter contains high level implementation details of GPON analyzer and its
subsystems. It also describes and indicates usage with illustrative examples. De-
tailed implementation description can be found in the source code in docstrings of
each method and class.

The system architecture is described in section 4.2. Each box in this figure
represents an object of GPON analyzing system. The only change in the design is
that the system does not use only two ML models (syntax, semantic), but a list of
𝑁 models to generalize usage of these models. As a result, adding a new analyzing
model is much easier.

6.1 Environment
The whole project is implemented in Python3.6 programming language due to its
cross-platform compatibility across operating systems (Linux and Windows). The
same idea applies on external libraries, which have to be cross-platform as well.

Consistent executing environment is achieved by pipenv program, which down-
loads and installs specific libraries from Python Package Index (PyPI) using pip pro-
gram. These libraries and their versions are specified in special file called Pipfile,
which is the source of information about packages and versions during environment
creation.

6.2 Analyzer
GPON analyzer system is implemented according to principles of object-oriented
programming to gain code re-usability and to allow easier program enhancement in
the future.

Analyzer is implemented as a standalone and executable python module. It sup-
ports two different ways of usage. The first one is running analyzer directly from
command line (CLI) by executing python module using python -m gpon_analyzer
command, which executes __main__.py script of this module, or by executing
gpon_analyzer.py script, which imports and executes the same script. Possible
arguments for this execution are described in section 6.8. The second way is to use
the analyzer as a library, which enables higher data interaction with models, or gives
ability to create and add a new ML model into analyzer. Example of library usage
is show in listing B.3 in appendixes.

The responsibility of GPON analyzer object is to hold references to its objects
(DataReader, list of Models, Evaluator, etc.) and to distribute certain outer method
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calls to correct object, especially learn, classify and evaluate. It also controls
data flow between objects. To be able to reuse learned analyzer models, it supports
methods for loading and persistently storing models into file. This specific process
and file format is described in section 6.7.

6.3 DataReader
DataReader object is responsible for data manipulation. It internally stores the data
in a pandas.Dataframe1 and provides API to data, especially to get data shape2

and values. The data modification is accomplished by applying sequence of filter
objects (described in section 6.4), which are applied on the internal Dataframe.

DataReader can read two different file formats from file system using load class-
method, which accepts single argument containing path. If this path ends with
.parquet suffix, it assumes that the file is in parquet file format and uses pandas
library to read this file. Otherwise, it assumes the data are captured directly from
GPON network and uses proper data read methods.

If the GPON analyzer perform a data preprocesing, the DataReader object stores
result in a parquet format file to reduce data access time in the next execution phase
(e.g. learn, classify).

6.4 Filters
Filters are implemented as a component of DataReader object, therefore all filters
use Pandas library functions for data adjustment/modification and expect the input
and output data to be a pandas.Dataframe. Filters with initial values used in
GPON analyzer are described in subsection 6.4.1. All filters have to match the
same API to be able to stack filters in a row and create a filter pipeline.

6.4.1 Applied filters

During the classification, analyzer focuses on PLOAMd messages, but in captured
data there is stored the whole PCBd header. Therefore, DataReader object needs
to extract relevant information from PCBd header and prepare it for analysis. This
process is done using a list of filters described in table 6.1. These filters are applied
in this specific order to achieve expected behavior.

1Pandas is a python library designated for easy and fast data manipulation.
2Data shape represents number of data dimensions and number of elements in each dimension.
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Tab. 6.1: Applied data filters in GPON analyzer

Filter class Values Description
ExtractSpecific
ColumnFilter

’PLOAM-
downstream’

From dataset drops all columns except
’PLOAMdownstream’, because analyzer is
interested only in PLAOMd messages.

ExpandColumn ’PLOAM-
downstream’

Assuming that in the ’PLOAMdownstream’ field
is nested data structure (field contains dictio-
nary), drops this column from the dataset, cre-
ates a new dataframe from this column and
concatenates this new dataframe to the original
dataset.

RowFilter ’MessageID’,
11

Deletes all NoMessage11 type messages from the
dataset.

Base64Decoder ’Data’ This filter loads values from ’Data’ col-
umn, drops this column, decodes values using
base64debode function and adds decoded val-
ues into new data columns.

6.5 ML models
All models are implemented in ai_models.py submodule of gpon_analyzer mod-
ule. All of them share the same interface by inheriting GenericModel class, which
guarantees and enforces expected behavior and usage of implemented models. Each
model implements abstract methods and overrides some methods to match special
requirements of each ML library. As a result, GPON analyzer handles all models
in the same manner without implementation details knowledge. All public methods
used by GPON analyzer are described in table 6.2.

In addition to expected model methods as learn, predict and classify, the
interface defines another method called get_report used for data classification.
Compared to classify method, it does not return only the data label, but a triplet3

consisting of model name, input samples and output classification of each sample.
Generic model also implements special property called context, which contains

all attributes of object except itself4 and ML model5. It is used to store all attributes
into file. This property also defines its setter used for restoring object attributes after
load method is called.

3The report triplet is defined using dataclasses library to gain readability and reduce code.
4Python object has attribute called self, which is a pointer to this specific object
5ML model is stored using library functions, wherein is model defined.
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Tab. 6.2: Public interface used by all implemented ML models.

Method name Description
create This classmethod is responsible for correct instance creation of its

class. In case of Keras models, it defines and creates the whole
model and passes it to the object constructor as an argument.

load It is used to load ML model from file and create a new instance
of particular model class.

store Each ML model has different implementation of storing mecha-
nism and it is implemented in this method.

learn Used for learning/fitting model on a provided dataset.
classify Generic method used for dataset evaluation and classification .
get_report This method classifies specific dataset and returns the evaluation

report with model name, input and output.

Implementation of all models is based on experiments from chapter 5, therefore
detailed code description is omitted. GPON analyzer contains implementation of
these analyzing models:

• OneClassSVMSyntaxModel - This class is based on the model described
in section 5.2. It is used as an outlier detector inspecting message fields using
support vector machine.

• LSTMSequenceModel - It is based on experiment described in section 5.3.
Model consists of two LSTM layers followed by two dense layers. It uses
supervised learning and requires samples of corrupted communication to learn.

• AutoEncoderSyntaxModel - This class uses autoencoder model described
in section 5.4. It uses unsupervised learning, therefore no additional learning
data has to be generated.

• AutoEncoderSequenceModel - It is similar to syntax verifying autoen-
coder, but with different number of layers and neurons. The model is based
on the experiment described in section 5.5. Input data is a sequence of 30
messages collapsed into a single dimension.

The inheritance diagram of these models and generic models is shown in figure B.1
in appendixes. This figure shows methods and attributes defined or overridden by
each class. There is also generic KerasModel class, which defines load and store
methods for all TensorFlow models.
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6.6 Evaluator
During classification process, GPON analyzer forwards calculated reports from ML
models to Evaluator. After classification, Evaluator analyzes the results and evalu-
ates similarity level calculated using equation 6.1.

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = 𝑂𝑢𝑡𝑙𝑖𝑒𝑟𝑠

𝑆𝑎𝑚𝑝𝑙𝑒𝑠
(6.1)

All detected outliers are stored into the file using numpy.save for later analysis. In
the end, evaluator prints summary table6 with statistics for each model. Table exam-
ple of learning dataset classification is shown in listings 6.1. The output destination
directory for outlier vectors and summary table is specified using --output-path
argument.

Listing 6.1: Evaluator output example� �
1 $ . / analyzer . py classify −m model . zip −d data . parquet
2 +−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−+
3 | Model | Similarity [%] | Outliers [ N ] | Samples [ N ] |
4 +==========================+==================+================+===============+
5 | OneClassSVMSyntaxModel | 100 .0000 | 0 | 55 |
6 +−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−+
7 | LSTMSequenceModel | 100 .0000 | 0 | 25 |
8 +−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−+
9 | AutoEncoderSyntaxModel | 100 .0000 | 0 | 55 |

10 +−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−+
11 | AutoEncoderSequenceModel | 100 .0000 | 0 | 25 |
12 +−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−+� �

6.7 Storing learned model
GPON analyzer stores learned model data in single zip archive consisting of files
with weights for each learned ML model and a file with analyzer information. Files
with weights are generated directly by ML libraries.

OneClassSVM model from Scikit-learn library used for outlier detection stores
and loads learned model via pickle library, which dumps Python executable code
into binary file.

Keras models use special Hierarchical data format (HDF5) to store weights and
ML model. This data format provides flexible and efficient access into stored data
especially for large data structures (e.g. multidimensional matrices). This is essen-
tial feature for model storing and loading process, because neural networks typically
consist of weight matrix [5].

6Summary table is generated using tabulate python library.
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Metadata file is also created during storing process. It contains necessary in-
formation needed to restore ML model object state. For each model it stores: a
class of this object, a path to stored ML model weights and a context, which holds
local variables of this object. All this data is stored in simple JSON file inside zip
package.

6.8 Command line interface and usage
GPON analyzer can be used as a standard program run from command line (CLI)
as well. Therefore, it has proper CLI API to influence program behavior imple-
mented using argparse library, which is responsible for initializing arguments with
default values, parsing values from CLI and syntax verification of arguments in-
puts. Accepted CLI arguments are defined in table 6.3. All of specified arguments
are optional, except the action argument. Other arguments have defined default
value, which varies from action to action, so default values are not specified in the
argument parser, but in specific objects.

6.8.1 Actions

Possible actions with GPON analyzer using CLI API are described in following
sections. All actions have the same optional arguments described in table 6.3. There
are longer and shorter argument versions, but in following examples only long options
are used for easier usage understanding.

Preprocess

It is used to load captured data from *.txt files, apply data filters if --filter
argument is provided, and store parsed and filtered data in parquet format file
into destination provided by --output-path argument. A usage example is show
in listings 6.2.

Listing 6.2: Example of preprocess action.� �
$ . / gpon_analyzer . py −−data−path data −−output−path data5 . parquet preprocess� �

Learn

This action creates a new GPON analyzer and ML models. These models are learned
on training dataset provided by --data-path. Learned analyzer is stored as a zip
archive in destination provided by --model-path argument.
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Tab. 6.3: GPON analyzer command line arguments.

Argument Description
-h Shows program description, help message and argument de-

scriptions.
-m/--model-path
PATH

This argument specifies a path to persistent data of learned
model. If a new model is created/learned, it is stored into this
location. If path contains existing model, data is rewritten.

-d/--data-path
PATH

Specifies a path to the source of captured and parsed GPON
data (accepting a single file or directory of files with .txt
suffix) or path to pre-processed data in .parquet file.

-o/--output-path
PATH

During execution, GPON analyzer may produce some outputs
and this arguments specifies their destination. For example,
pre-processing action parses and loads data from directory
provided by–data-path argument, applies filters and stores
filtered data in .parquet file into this path.

-f, --filter This argument adds default data filters into DataReader
object. Default filters are described in section 6.4.1.

-l, --log LEVEL Defines GPON analyzer and other components logging level
during execution.

-a, --auto-encoder If set, auto-encoder models are appended to other analyzing
models in GPON system.

ACTION This is the only positional argument in CLI API. It specifies
the type of action executed with current data or/and model.
Possible values are: preprocess,learn,classify,print.
All actions are described in section 6.8.1.

Classify

This action is used for traffic analysis by learned model. It loads analyzer with
models from archive defined by --model-path and runs inspection (classification)
on input data defined by --data-path. It is recommended to use --filter ar-
gument, if this argument was provided on learning dataset during learning or pre-
processing. In the final phase, it invokes the evaluator to analyze the classification
reports and stores detected outliers and a summary table into directory specified by
--output-path. Usage example is shown in listings 6.1.
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Listing 6.3: Example of learn action� �
$ . / gpon_analyzer . py −−data−path data . parquet −−model−path model . zip learn� �
Print

Loads input data from destination defined by --data-path and prints it into CLI,
which suggests data shape and form. It is also possible to apply data filter by
--filter argument. An example of usage and output is shown in listings 6.4. An
example output if this action is show in listings B.1 in appendixes.

Listing 6.4: Example of print action� �
$ . / gpon_analyzer . py −−data−path data . parquet print� �
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7 GPON analyzer detection test
In this chapter, GPON analyzer is tested on knowingly corrupted datasets to verify,
whether the analyzer fulfills expectations in the detection of improper communica-
tion. Datasets generation procedures are described in section 7.1. These corrupted
datasets are examined by learned GPON analyzer models. GPON test results are
described in section 7.2.

7.1 Data preparation
Three additional datasets are generated to test and verify GPON analyzer required
features, which is anomaly and protocol differences detection. All of these datasets
contain corrupted messages or sequences. Corruptions are applied on a dataset cre-
ated from captured traffic by applying preprocessing filters discussed in section 6.1.
Error per dataset summary is shown in table 7.1 and error description with gener-
ating procedure is in following subsections.

Tab. 7.1: Error in testing datasets

Dataset
Error Change random Drop important Add similar

field values messages messages
Syntax dataset 4 8 8

Sequence dataset 8 4 4

All errors dataset 4 4 4

4 - applied 8 - not applied

7.1.1 Change random field value error

Dataset generating procedure runs in three cycles and in each cycle modifies random
10% frames. They vary in number of corrupted fields, which is two, four and six
respectively. These fields are modified according equation 7.1.

𝑉 𝑎𝑙𝑢𝑒𝑛𝑒𝑤 = (𝑉 𝑎𝑙𝑢𝑒𝑜𝑙𝑑 + 128) mod 255 (7.1)

This procedure modifies fifteen messages in total. In other words, this dataset
contains fifteen outliers, which should be detected by GPON analyzer.
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7.1.2 Drop important messages

This dataset is generated by dropping important activation process messages 4 and
10, and critical informational frames used in communication 1 and 20. These mes-
sages are described in section 1.5.1. Each message is dropped from separate instance
of source dataset and results are concatenated together creating the final dataset.
This dataset contains many abnormal sequences, which do not correspond with
GPON recommendation.

7.1.3 Add similar messages

Concept of similar messages is firstly mentioned in experiments in section 5.2. These
messages are outliers, but differences in frame fields are very low compared to normal
traffic, which makes them difficult to find.

This dataset consists of four concatenated source datasets in a row and thirty
similar messages are inserted to random positions, which breaks the communications
rules of GPON recommendation.

7.2 Results evaluation
GPON analyzer classifies generated artificial communication, which contain several
various errors and mistakes. Classification results are shown and discussed in the
following sections.

7.2.1 Learning dataset

The first classified is the learning dataset to verify the correct classification of normal
traffic. The analyzer marks all results as normal. Considering the fact that this is
the learning set, other classification result than normal would mean error in the
learning process. The results are show in listings 7.1.

7.2.2 Syntax dataset

The second dataset contains only syntax errors and focuses on syntax outlier detec-
tors. Both OneClassSVM and autoencoder models find almost all abnormal mes-
sages in the communication. Sequence autoencoder model also finds several outliers,
because it is learned on time windows of specific messages. Messages of this dataset
are corrupted, which means time windows of this dataset are corrupted as well.
LSTM model finds many outliers, because sequences contain unknown message and
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Listing 7.1: Classification of learning dataset� �
1 +−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−+
2 | Model | Similarity [%] | Outliers [ N ] | Samples [ N ] |
3 +==========================+==================+================+===============+
4 | OneClassSVMSyntaxModel | 100 .0000 | 0 | 55 |
5 +−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−+
6 | LSTMSequenceModel | 84 .0000 | 4 | 25 |
7 +−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−+
8 | AutoEncoderSyntaxModel | 100 .0000 | 0 | 55 |
9 +−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−+

10 | AutoEncoderSequenceModel | 100 .0000 | 0 | 25 |
11 +−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−+� �

the model does not know the usage. Therefore, the model classifies those sequences
as outliers. The results are show in listings 7.2.

Listing 7.2: Classification of dataset with syntax errors� �
1 +−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−+
2 | Model | Similarity [%] | Outliers [ N ] | Samples [ N ] |
3 +==========================+==================+================+===============+
4 | OneClassSVMSyntaxModel | 80 .0000 | 11 | 55 |
5 +−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−+
6 | LSTMSequenceModel | 32 .0000 | 17 | 25 |
7 +−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−+
8 | AutoEncoderSyntaxModel | 80 .0000 | 11 | 55 |
9 +−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−+

10 | AutoEncoderSequenceModel | 84 .0000 | 4 | 25 |
11 +−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−+� �

7.2.3 Sequence dataset

The third dataset contains errors in sequences, but message fields remain untouched.
Syntax models do not find any abnormal messages, because this dataset is syntacti-
cally correct. Both sequence analyzing models find many outliers, which is expected
behavior when abnormal message sequences occur in the communication. The re-
sults are shown in listings 7.3.

7.2.4 All errors dataset

The fourth dataset contains both syntax and sequence errors and creates communi-
cation, which is almost completely out of GPON recommendation. Syntax models
find similar percentage of abnormal messages as in the first dataset, which is correct,
because the ratio between syntactically corrupted messages and the normal ones is
the same. Sequence models classify almost the whole communication as abnormal,
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Listing 7.3: Classification of dataset with errors in message sequences� �
1 +−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−+
2 | Model | Similarity [%] | Outliers [ N ] | Samples [ N ] |
3 +==========================+==================+================+===============+
4 | OneClassSVMSyntaxModel | 100 .0000 | 0 | 397 |
5 +−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−+
6 | LSTMSequenceModel | 34 .3324 | 21 | 367 |
7 +−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−+
8 | AutoEncoderSyntaxModel | 100 .0000 | 0 | 397 |
9 +−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−+

10 | AutoEncoderSequenceModel | 39 .7820 | 221 | 367 |
11 +−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−+� �

which makes sense, considering the number of errors in the communication. The
results are shown in listings 7.4.

Listing 7.4: Datasets classification with all errors� �
1 +−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−+
2 | Model | Similarity [%] | Outliers [ N ] | Samples [ N ] |
3 +==========================+==================+================+===============+
4 | OneClassSVMSyntaxModel | 79 .5970 | 81 | 397 |
5 +−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−+
6 | LSTMSequenceModel | 13 .0790 | 319 | 367 |
7 +−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−+
8 | AutoEncoderSyntaxModel | 83 .1234 | 67 | 397 |
9 +−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−+

10 | AutoEncoderSequenceModel | 17 .7112 | 302 | 367 |
11 +−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−+� �
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Conclusion
The main goal of this thesis was to create a GPON analyzing system consisting
of machine learning models defined using TensorFlow library. These models should
have been able to analyze the syntax and the semantic of GPON protocol. The term
syntax referred to verification of each field content in GPON header, whether it was
similar to patterns from baseline traffic or not. The second term semantic referred
to the analysis of patterns found in message sequences, which verified whether the
analyzed traffic used the same messages in the same order and with similar content
as the baseline traffic.

Four experimental models were created and learned on the baseline data to prove
the possibility of analysis using machine learning techniques. The syntax analyzing
model was based on one class support vector machine from scikit library, which ap-
proximated n-dimensional mathematical function to baseline traffic messages. This
model had a high accuracy in detecting abnormalities, even when messages were
very similar to the baseline data.

The model used for the semantic analysis was a neural network based on layers
with LSTM cells capable of recognition patterns in long sequences. This model was
able to learn recognizing correct and corrupted PLOAMd message sequences with
relatively high accuracy, which is shown in figure 5.1. The disadvantage of model
based on the LSTM cells was that it used supervised learning and required samples
of corrupted/abnormal traffic.

Experiments also contained autoencoder neural network models for syntax and
semantic analysis, which compressed input vector into the latent space and tried to
reconstruct original vector from the compressed form. Similarity was evaluated by
using mean squared error function. The key estimated value was outlier threshold,
which separated the data into normal and abnormal traffic. In these experiments, the
threshold was set to the maximal mean squared error of learning dataset in the last
learning epoch. The autoencoder for syntax analysis accepted messages as an input
data, but the sequence analysis autoencoder accepted message windows of constant
length. Both models showed well the outlier detection capabilities. Their biggest
advantage was that they used unsupervised learning and learned only from captured
traffic, so they did not require any dataset with corrupted message sequences. Both
autoencoder models and model with LSTM cells were implemented using Keras
API from TensorFlow library, which allowed to offload demanding calculations into
hardware accelerator (e.g. graphics processing unit).

The GPON analyzer implementation was based on the design described in sec-
tion 4. Each component was represented as an object and the system only routed
the dataflow between these objects. The system did not distinguish between syntax
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and semantic models, but worked with a list of models matching the same interface,
which allowed adding more models with various parameters. All four experimental
models from chapter 5 were implemented in the GPON analyzer using scikit and
TensorFlow libraries. The GPON analyzer implemented two different ways of us-
age. The first one was executing the program directly from the command line and
controlled it by using arguments. The second way was to use GPON analyzer as a
library, which allowed interaction with objects at higher level. Learned system was
stored into a zip package containing attributes of all objects in a JSON file. This
package also contained stored ML models in a library dependent file formats.

The final implementation was tested using synthetically corrupted dataset by
various procedures. Classification of datasets with abnormal messages or message
sequences by learned GPON analyzer confirmed its anomaly detection capabilities.
Both syntax and semantic (sequence) errors were found by designated models with
high accuracy. The similarity value was evaluated as a ratio of normal traffic samples
to all samples, where the sample was a message in case of syntax analyzing models
and a time window (sequence of messages) in case of semantic analyzing models.

This thesis accomplished the assignment in all points. The theoretical part
contained description of several abnormal traffic detection techniques based on su-
pervised and unsupervised learning using neural networks defined in TensorFlow
library. The practical part contained the implementation of GPON analyzing sys-
tem capable of similarity estimation compared to the baseline traffic. This system
used several machine learning models to identify various potential abnormalities in
the communication.
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List of symbols, physical constants and abbre-
viations
AI Artificial intelligence
API Application programming interface
CLI Command line interface
ELU Exponential linear unit
GEM Gigabit-capable passive optical network encapsulation method
GPON Gigabit-capable passive optical network
GPU Graphics processing unit
GTC Gigabit-capable passive optical network Transmission Convergence
HDF hierarchical data format
ITU International Telecommunication Union
JSON JavaScript Object Notation
LSTM Long short term memory
ML Machine learning
NN Neural network
ONU Optical network unit
ODN Optical distribution network
OLT Optical line termination
OAM Operations, administration and management
PCBd Physical control block downstream
PIP Package installer for Python
PLOAM Physical line operations, administration and management
PLOAMd Physical line operations, administration and management

downstream
PON Passive optical networks
PyPI Python package index
RNN Recurrent neural network
SVM Support vector machine
T-CONT Transmission container
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A CD content
Included CD contains source codes of this thesis and source codes of the GPON
analyzer. A structure of important files in the CD is shown below. Several files are
omitted to reduce size and complexity of the shown tree.

/ ........................................................CD root directory
latex/ ...............................Latex source code for of this thesis
python/ ........................... Python source code used in this theses

data/ ............................................Raw captured data
gpon_analyzer/.......................GPON analyzer python module

ai_models.py
analyzer.py
data.py
evaluator.py
filter.py
__init__.py
__main__.py

gpon_analyzer.py .....................Executable of GPON analyzer
model.zip .......................................Learned ML models
Pipfile ....................................Defines all used packages
preproccessed_data/......Direcotry with learning and corrupted data

data.parquet
syntax.parquet
seuence.parquet
all_err.parqute

scratches/............Various python scripts (e.g. model experiments)
dp.pdf..............................This thesis in electronical format pdf
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B Extra data and figures
B.1 ML models of GPON analyzer
ML models inheritance diagram of GPON analyzer is shown in figure B.1.

Fig. B.1: Inheritance diagram of ML models in GPON analyzer.
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B.2 All captured PLOAMd messages
All messages extracted from captured GPON communication are shown in two list-
ings B.1 and B.2 due to number of messages. GPON analyzer print function is
used to generate this output.

Listing B.1: All extracted PLOAMd messages (part1).� �
$ . / gpon_analyzer . py −d preprocessed_data /data . parquet print
Package contains 55 vectors .

ONUid MessageID CRC D0 D1 D2 D3 D4 D5 D6 D7 D8 D9
0 255 1 41 32 0 0 170 171 89 131 32 0 0
1 255 20 23 30 18 0 0 0 0 0 0 0 0
2 255 1 41 32 0 0 170 171 89 131 32 0 0
3 255 20 23 30 18 0 0 0 0 0 0 0 0
4 255 20 23 30 18 0 0 0 0 0 0 0 0
5 255 1 41 32 0 0 170 171 89 131 32 0 0
6 255 1 41 32 0 0 170 171 89 131 32 0 0
7 255 20 23 30 18 0 0 0 0 0 0 0 0
8 255 1 41 32 0 0 170 171 89 131 32 0 0
9 255 1 41 32 0 0 170 171 89 131 32 0 0
10 255 24 66 7 227 11 20 19 27 234 29 1 0
11 255 20 23 30 18 0 0 0 0 0 0 0 0
12 255 1 41 32 0 0 170 171 89 131 32 0 0
13 255 1 41 32 0 0 170 171 89 131 32 0 0
14 255 1 41 32 0 0 170 171 89 131 32 0 0
15 255 1 41 32 0 0 170 171 89 131 32 0 0
16 255 1 41 32 0 0 170 171 89 131 32 0 0
17 255 20 23 30 18 0 0 0 0 0 0 0 0
18 255 1 41 32 0 0 170 171 89 131 32 0 0
19 255 1 41 32 0 0 170 171 89 131 32 0 0
20 255 1 41 32 0 0 170 171 89 131 32 0 0
21 255 20 23 30 18 0 0 0 0 0 0 0 0
22 255 20 23 30 18 0 0 0 0 0 0 0 0
23 255 1 41 32 0 0 170 171 89 131 32 0 0
24 255 1 41 32 0 0 170 171 89 131 32 0 0
25 255 3 239 2 72 87 84 67 93 90 225 123 0
26 255 3 100 1 72 87 84 67 93 85 209 123 0
27 255 3 253 0 72 87 84 67 42 137 136 105 0
28 0 4 196 0 0 4 185 72 0 0 0 0 0
29 1 4 132 0 0 4 185 66 0 0 0 0 0
30 0 18 251 0 1 56 128 0 0 0 0 0 0
31 0 10 147 64 0 1 0 0 0 0 0 0 0� �
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Listing B.2: All extracted PLOAMd messages (part2).� �
32 1 8 66 2 0 16 0 0 0 0 0 0 0
33 1 8 66 2 0 16 0 0 0 0 0 0 0
34 1 18 166 0 1 56 128 0 0 0 0 0 0
35 0 8 12 2 249 240 0 0 0 0 0 0 0
36 1 10 75 64 16 1 0 0 0 0 0 0 0
37 1 8 102 2 249 224 0 0 0 0 0 0 0
38 2 14 6 1 0 32 0 0 0 0 0 0 0
39 2 10 36 64 32 1 0 0 0 0 0 0 0
40 255 21 212 32 0 0 0 0 0 0 0 255 255
41 255 1 41 32 0 0 170 171 89 131 32 0 0
42 255 1 41 32 0 0 170 171 89 131 32 0 0
43 255 20 23 30 18 0 0 0 0 0 0 0 0
44 255 1 41 32 0 0 170 171 89 131 32 0 0
45 255 20 23 30 18 0 0 0 0 0 0 0 0
46 255 1 41 32 0 0 170 171 89 131 32 0 0
47 255 1 41 32 0 0 170 171 89 131 32 0 0
48 255 1 41 32 0 0 170 171 89 131 32 0 0
49 255 1 41 32 0 0 170 171 89 131 32 0 0
50 255 20 23 30 18 0 0 0 0 0 0 0 0
51 255 1 41 32 0 0 170 171 89 131 32 0 0
52 255 20 23 30 18 0 0 0 0 0 0 0 0
53 255 1 41 32 0 0 170 171 89 131 32 0 0
54 255 1 41 32 0 0 170 171 89 131 32 0 0� �

B.3 Library usage example
GPON analyzer is written as a python module and all components can be enhanced.
Example of basic read and learn procedures are shown in listing B.3.

Listing B.3: GPON analyzer library usage� �
1 from gpon_analyzer . analyzer import GPONAnalyzer
2 from gpon_analyzer . ai_models import AutoEncoderSequenceModel
3 from gpon_analyzer . data import Reader
4

5 data_reader = Reader . read_parquet ( ’preprocessed_data /data. parquet ’ )
6 analyzer = GPONAnalyzer (
7 data_reader ,
8 [ AutoEncoderSequenceModel . create ( data_reader . shape ) ]
9 )

10 analyzer . learn ( )
11 analyzer . store ( )� �
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B.4 Syntax autoencoder histogram
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B.5 Sequence autoencoder histogram
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