
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA

UNIFIED NETWORK AUTHENTICATION FOR LINUX

DIPLOMOVÁ PRÁCE
MASTER’S THESIS

AUTOR PRÁCE PAVEL ZŮNA
AUTHOR

BRNO 2010

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA

JEDNOTNÁ SÍŤOVÁ AUTENTIZACE PRO LINUX
UNIFIED NETWORK AUTHENTICATION FOR LINUX

DIPLOMOVÁ PRÁCE
MASTER’S THESIS

AUTOR PRÁCE PAVEL ZŮNA
AUTHOR

VEDOUCÍ PRÁCE Ing. JOZEF MLÍCH
SUPERVISOR

BRNO 2010

Abstrakt
Tato práce se zabývá návrhem a implementací řešení pro jednotnou síťovou autentizaci
pro operační systém Linux založeného na integraci systémových démonů WinBind a SSSD.
Cílem je navrhnout takové řešení, které umožní autentizaci Linuxových klientů do domén
spravovaných adresářovými službami Windows Active Directory a domén spravovaných
adresářovými službami dostupnými na Linuxu současně. První dvě kapitoly seznámí čtenáře
s autentizačními mechanizmy a technologiemi, které se pro tyto účely použivají na oper-
ačních systémech Windows a Linux. Třetí kapitola se zabývá jádrem práce a vysvětluje
rozhodnutí učiněná při návrhu implementovaného řešení. Samotná implementace ja pak
popsána v kapitole čtyři. Poslední kapitoly popisují experimenty a testování pro vybrané
případy užití s návrhy a popisem možných rozšíření do budoucna.

Abstract
This thesis discusses the design and implementation of an unified network authentication
solution for the Linux operating system based on the integration of WinBind and SSSD
system daemons. The goal is to be able to authenticate Linux clients against multiple
domains based on different platforms. In the first two chapters, readers are introduced
to authentication mechanisms and related technologies used in Windows and Linux based
computer network infrastructures. The third chapter is focused on the core of this work and
discusses decisions made during the design phase. Implementation details are described in
chapter four. The last part of the thesis describes experiments and tests for selected use
cases along with ideas for future improvements.

Klíčová slova
bezpečnost, autentizace, adresářové služby, LDAP, Active Directory, Linux, WinBind,
SSSD, NSS, PAM

Keywords
security, authentication, directory services, LDAP, Active Directory, Linux, WinBind,
SSSD, NSS, PAM

Citace
Pavel Zůna: Unified Network Authentication for Linux, diplomová práce, Brno, FIT VUT
v Brně, 2010

Unified Network Authentication for Linux

Prohlášení
Prohlašuji, že jsem tuto diplomovou práci vypracoval samostatně pod vedením pana Ing.
Jozefa Mlícha

. .
Pavel Zůna

May 25, 2011

Poděkování
Na tomto místě bych chtěl poděkovat všem, kteří mi s touto prací pomohli ať už přímo nebo
nepřímo. Zejména svému vedoucímu Jozefu Mlíchovi za věcné připomínky k textu, Simovi
Sorceovi a Stephenovi Gallagherovi za exkurzi kódem SSSD, Dmitri Palovi za možnost na
tomto projektu pracovat, Víťovi, Kačence a dalším kamarádům za podporu.

c© Pavel Zůna, 2010.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brně, Fakultě in-
formačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení
oprávnění autorem je nezákonné, s výjimkou zákonem definovaných případů.

Contents

1 Introduction 3

2 Managing Network Accounts 4
2.1 Network Information Service . 4
2.2 LDAP Based Solutions . 5
2.3 Kerberos . 6
2.4 FreeIPA . 6
2.5 Microsoft NT Directory Services . 7
2.6 Microsoft Active Directory Domain Services 7
2.7 Interoperability . 8

3 Network Authentication on Linux 9
3.1 Name Service Switch . 9
3.2 Pluggable Authentication Modules . 10
3.3 Authentication Against LDAP . 10
3.4 WinBind Daemon . 10
3.5 System Security Services Daemon . 11

4 Integrating WinBind and SSSD 12
4.1 NSS and PAM responders . 13
4.2 Talking to WinBind . 14
4.3 Controlling WinBind . 16
4.4 Configuration . 17

5 Implementing WinBind providers 20
5.1 SSSD backend framework . 20
5.2 Initialization . 22
5.3 Spawning WinBind . 23
5.4 ID provider . 24
5.5 AUTH provider . 26

6 Testing and evaluation 28
6.1 Environment preparations . 28
6.2 Testing procedures . 29
6.3 Future roadmap . 30

7 Conclusion 32

A List of abbreviations 33

1

B Comparison of Directory Services 34

C Configuration samples 35

D Code samples 37

E CD contents 38

2

Chapter 1

Introduction

Computer networks are a key component in the information infrastructure of any modern
day organization. Unconnected computers are becoming an ever shrinking minority used
only for special applications. Virtually the only place where we can find computers not con-
nected to any network today are embedded systems and even there, completely standalone
machines are becoming rare.

Over the years as computers were becoming cheaper and more common as everyday
tools, the size of computers networks grew accordingly. As they were becoming larger
and more data and resources were made available through them, it was necessary to take
security into account. Access control was nothing new and standalone multi-user systems
implemented them, but it had to be extended over the whole network and adequately
represent the organizational structure of organizations, which led to the creation of software
solutions for centralised management of networks and sub-networks.

Such centralised solutions have existed on both Windows and Linux platforms (the plat-
forms this thesis is concerned about) for a long time and are constantly being improved as
requirements on network management grow. Unfortunately, the existing solutions targeted
at one of the two platforms are mostly uncompatible with solutions targeted at the other
one. Selected solutions for both platforms with emphasis on user account management and
their potential interoperability are discussed in chapter 2.

There are ways for Windows clients to enroll in a Linux domain and vise-versa, but there
is no standard solution for unified network authentication of Linux clients in the sense of
authenticating against a Windows based and Linux based domain simultaneously. The
goal of this thesis is to stand up to the challenge of creating such a solution using existing
facilities. The existing facilities in question are the NSS and PAM services available on most
if not all Linux distributions and the WinBind and SSSD system daemons implemented on
top of them. All of the mentioned technologies are described in details in chapter 3.

The core of this thesis is dedicated to the design and implementation of an integration
scheme for WinBind and SSSD, but it wouldn’t be complete without proper testing of the
resulting implementation for target use cases. Chapter 4 and chapter 5 are focused on
designing the integration and on implementation details respectively.

It is a personal goal of me, the author of this work, to get the results
”
out there“ and

eventually make the life of network administrators of mixed platform domains easier. Chap-
ter 6 discusses the results of this work, what goals have been met and possible enhancements
and follow up work in the future.

3

Chapter 2

Managing Network Accounts

The core of this thesis is focused on the problem of client network authentication. Never-
theless, we’re going to start by looking at the server side as it is crutial to understand the
protocols and technologies against which we’re going to authenticate.

Before we get to more sophisticated solutions used in practice. Let’s outline the simplest
possible scheme for authenticating users used on the historically first computer networks.
Each computer had the information about accounts stored in files (e.g. /etc/passwd)
locally. In the case of an update to this information, a new version of the file would be
distributed to all computers.

The scheme described in the previous paragraph might be acceptable for small networks
consisting of a few nodes. However, as the network grows and the number of nodes increases,
distribution of user account information becomes very expensive and unmanageable. It also
creates an environment were synchronization errors can occur and lead to potentially ex-
ploitable security threats. This and other difficulties like the unability to create fine grained
security policies have led to the developement of new solutions with centrally managed user
accounts.

Let this serve as a brief introduction to the topic of managing user accounts along with
other shared information on computer networks. We’re now going to explore the most
commonly used technologies created for this purpose, although the scope will be limited
to Linux and Windows platforms only. Other platforms are left out as they are of no
interest for the goals of this thesis. Some of the solutions described in the following sections
are becoming outdated, but knowledge of them might be helpful to readers in a better
understanding of current designs and practices.

2.1 Network Information Service

Network Information Service (NIS) is one of the first protocols that emerged for the purpose
of sharing network wide information. It follows the client-server model where clients retrieve
shared information from a directory service.

In this context, a directory service is a software system that stores, organizes and
provides access to information stored in directory, which is a database optimized for reading
entries and name value pairs associated with them.

Apart from user accounts, NIS can be used to maintain information about hostnames/
machine addresses, security information, mail information, Ethernet interfaces and network
services [3]. Note that NIS predates DNS.

4

Being one of the directory service pioneers, NIS has s few drawbacks especially when it
comes to security. There is no support for encryption and some of the mechanisms it uses
are unsecure by design. For example, clients had to do a broadcast to find a running NIS
server on the network; a weak spot for man-in-the-middle attacks as anyone could answer
the broadcasted queries and impersonate the real server.

An improved version of the protocol named NIS+ later developed. Although similar in
name and purpose, the implementations are completely different. Unlike NIS, NIS+ uses a
hierarchical directory, that can/should be serviced by multiple servers. The primary server
is known as master and other (backup) servers are known as replicas or slaves [3]. Both
types hold copies of the directory data. All updates have to be committed to the master
server and is then propagated to replicas in increments. NIS+ is also based around Secure
RPC where servers must authenticate clients and vice-versa [10].

The protocol was developed by Sun Microsystems for their own Solaris operating system.
It was very successful and got licenced to virtually all other Unix vendors. Altough NIS
and it’s successor are still in use today they aren’t developed or supported by any major
vendors anymore in favor of new more modern and secure directory services such as LDAP.

Prior to the release of Solaris 9, Sun Microsystems has announced it intends to drop
NIS+ in future releases and started shipping tools to migrate NIS+ data to LDAP [2].

2.2 LDAP Based Solutions

Similar to NIS in certain aspects, LDAP is another client-server directory service protocol.
It is based on the X.500 specification for directory services [23].

LDAP can be used to store and retrieve arbitrary data (including binary). Its directory
is organized as a tree of entries called directory information tree (DIT). An entry consists
of a set of attributes that can have one or more values. Each entry in DIT has a unique
identifier refered to as a distinguished name (DN). DNs are constructed from two parts.
First part is taken from the most relevant attribute and is called the relative destinguished
name (RDN). Second part is the parent entry DN.

Attributes in LDAP can also hold references to other LDAP server making it possible
to have a directory spanning multiple servers.

The contents of entries in DIT are governed by the so called schema - a special entry
stored outside of the directory tree. It defines attribute types and object classes. Object
classes define what attributes must or may be stored in an entry of a certain type. All
entries in LDAP must have an objectClass attribute. An example of an user account is
shown on figure 2.1.

The protocol comes in two version currently being used. Version 2 (LDAPv2) was
superseded by version 3 (LDAPv3) in 1997, which added support for extensibility, improved
security and better alignment with the latest X.500 specification [20].

Thanks to its universal design, extensibility and platform independence, LDAP popu-
larity grew rapidly since it being published and the protocol has become a de facto industry
standard of directory service protocols.

LDAP supports SSL encryption, but it doesn’t have a native authentication mechanism.
It does, however, support the Simple Authentication and Security Layer (SASL) and is often
coupled with the Kerberos protocol.

5

dn: cn=John Doe,ou=people,dc=example,dc=com
cn: John Doe
givenName: John
sn: Doe
telephoneNumber: +1 888 555 6789
telephoneNumber: +1 888 555 1232
mail: john@example.com
manager: cn=Barbara Doe,dc=example,dc=com
objectClass: inetOrgPerson
objectClass: organizationalPerson
objectClass: person
objectClass: top

Figure 2.1: Example of user entry in LDAP

2.3 Kerberos

While Kerberos isn’t a network management system, but rather an authentication protocol,
it still deserves its own section in this chapter, because of its popularity and pairing with
many directory services.

It’s behind the scope of this article to explain the Keberos protocol in details, but
because of its immense popularity when it comes to securing LDAP, readers should be
familiar with its fundamentals and most imporatant advantages.

Kerberos uses as its basis the symmetric Needham-Schroeder protocol. It makes use of a
trusted third party named a key distribution center (KDC), which consists of two logically
separate parts. First part is an authentication server (AS) and a ticket granting server.
The KDC maintains a database of secret keys. Each entity on in the domain secured by
Kerberos (called a realm in Kerberos terminology) shares a secret key known only to itself
and the KDC. Knowledge of this key servers to prove identity. When two entities on the
network want to communicate, they ask KDC to generate an encrypted session key they
can use for secure interactions [14].

The main feature of Kerberos is that entities on the network have to authenticate only
once with the authentication server and access to all other entities is negotiated trans-
parently with the tiget grantig server. The principle of authenticating only once is called
single-sign on. The main advantage of it are that users have to remember only one password
and are entering it in only one place when logging in into the network.

One disadvantage of Kerberos is that it hasn’t been standardized and various existing
implementations use incompatible APIs. Fortunately, many (if not all) Kerberos flavors
can be translated through the Generic Security Services Application Program Interface
(GSS-API) to procedures that SASL can understand.

2.4 FreeIPA

FreeIPA is a fully integrated security information solution. It combines a LDAP directory
service (389 Directory Server, formerly known as Fedora DS), MIT implementation of the
Kerberos protocol, certificate server (Dogtag), DNS (Bind) and NTP for Kerberos ticket
synchronization on networks spread over different time zones.

It offers a plugin-extensible management framework with tools providing a higher level
of abstration over its directory schema. Client can manage information stored with FreeIPA
through the framework a special XML-RPC API or by using direct LDAP calls. The schema
included by default is a compatible extension to the schema used in 389 Directory Server.

6

As 389 Directory Server supports multi-master replication, network security architects
and administrators deploying FreeIPA can make user of this feature as well.

Since version 2.0, a web based user interface with self-service capabilities for the end
users (users of the network without administrative privileges), although it’s still in BETA
phase at the time writing this thesis.

The project is developed by Red Hat as an alternative to current LDAP and Kerberos
based systems. It’s goal is to become the standard solution when it comes to network
management. Integration with Microsoft Active Directory Domain Services (discussed later
in this chapter) is planned for version 3.0, which is currently in the design phase.

2.5 Microsoft NT Directory Services

NT Directory Services (NTDS) is the commercial name for a network directory service used
in networks made up of Windows clients. A network of clients sharing the directory service
provided by NTDS is called a Windows Server Domain. In such a domain, the directory
database resides on server configured as domain controllers. All domain controllers respond
to security authentication requests, but only one of them can be configured as the Primary
Domain Controllers (PDC). All other domain controllers are setup as Backup Domain
Controllers (BDC). BDC are read-only and all updates must be propagated through the
PDC. In other words, NTDS doesn’t support multi-master replication. An existing BDC
can be readily promoted to PDC in case of the previous PDC being unavailable for some
reason mitigating this disadvantage [17].

Clients can communicate with domain controllers only by using the proprietary Mi-
crosoft RPC, which is a modified version of The Open Group’s DCE/RPC standard. Com-
munication in an NT domain is secured using the NT LAN Manager (NTLM) suite of
Microsoft’s security protocols that provides authentication, integrity and confidentiality of
the transmited information [4].

Since the release of Windows 2000 Server, NT Directory Services are now deprecated
in favor of the more sophisticated Active Directory Domain Services, but backwards com-
patibility with the older system is still maintained.

2.6 Microsoft Active Directory Domain Services

With the introduction of Windows 2000 Server, the previously discussed NT Directory
Services were replaced with Active Directory Domain Services (ADDS). It isn’t just an
incremental version update, but a completely new system.

The Primary/Backup Domain Controller model of NTDS wasn’t good enough for new
constantly growing networks and was superseded with a new one supporting multi-master
replication. All domain controllers in an Active Directory domain can propagate updates
over the network [17].

Communication between client and domain controllers has also been improved and uses
Microsoft Message Passing Interface (MS MPI), which is a proprietary implementation of
the MPI-2 standard designed for message passing between high performance computing
nodes. Active Directory also supports both LDAPv2 and LDAPv3 protocols and allows
direct access to the directory using LDAP commands [17].

Active Directory is secured with Microsofts own, again proprietary, implementation of
Kerberos and therefore provides single sign-on for user access to managed network resources.

7

It replaces the old NTLM suite of protocols used in NT Directory Services, but is still
used by Active Directory is some special cases of inbound authentication such as client
authenticating using an IP address (instead of hostname) or if Kerberos ports are restriced
by firewall rules [17].

Other features of ADDS include, but are not limited to: DNS services, security policies,
access control, integration with other Microsoft products (such as Exchange) and graphical
management tools such as the Microsoft Management Console.

2.7 Interoperability

After reading the previous section of this chapter, the reader should be familiar with the
most common systems for managing network user accounts. While both Linux and Windows
solution use similar technologies, it isn’t easy to integrate them. The main causes are
different implementations of these technologies and different representation of user account
data.

Integration of Windows network services with Unix has been a long term goal of the
Samba community project. Samba version 3 and higher can integrate with NT Directory
Services and act as a Primary Domain Controller. It can also become part of an Active
Directory domain, but only as a member. The ability of Samba acting as a Active Directory
domain controller is planned for version 4 [12].

As mentioned before in this chapter, the FreeIPA project is aiming for Active Directory
integration in its upcoming major release.

Microsoft has its own answer to Windows and Unix interoperability called Windows
Services for UNIX (SFU). SFU’s focus isn’t the integration of Windows and UNIX directory
services, but provides a Unix subsystem and other parts of a full Unix environment on
Windows machines. It does however provide NIS server capabilities linked with Active
Directory and tools for transparent handling of NFS mount points as Windows shared
directories and vise-versa [6].

8

Chapter 3

Network Authentication on Linux

At this point, we’ve been throught the systems used for managing network user accounts
on Windows and Linux networks and will now

”
switch to the client side“. As this chapter

name suggests, you won’t find any information here, that relates to the authentication of
Windows clients, as it is outside of the scope of this thesis.

We’re going to look at standard facilities developed over the years available to Linux
clients for authenticating against the systems and technologies described in the previous
chapter.

Our main area of interest is the authentication of Linux client in mixed network environ-
ments and the possiblities of authenticating against multiple domains, or against multiple
directory services if you prefer.

3.1 Name Service Switch

Name Service Switch (NSS) is a facility in the Unix family of operating systems that enables
these systems to define a variety of sources for common configuration databases and name
resolution mechanisms [9].

Configuration of NSS usually takes place in the file etc/nsswitch.conf. This con-
figuration file enables system administrators to set a list of modules of name resolution
services for different types of objects such as users, groups, machines (hosts) and possible
others [15].

Name resolution services that want to be configurable with NSS have to implement
special modules, that NSS can load and execute when the service is requested. These
modules are implemented as static libraries. NSS find the appropriate modules using an
enforced naming conventions. Names of NSS modules are prefixed with the string

”
nss “.

NSS is implemented as part of the standard C library, so that calls to functions such as
getent calls the appropriate NSS module [5]. This assures that existing applications don’t
have to be changed and recompiled when NSS configuration changes or a new NSS module
is loaded.

One major disadvantage of NSS is that its configuration allows only a list with static
order of name resolutions services to be defined for the supported objects. When NSS
handles a name resolution request, it calls the first module in this list and only after it fails,
the next module in line is invoked. This can be a problem if a user needs to authenticate
against more than one domain.

9

3.2 Pluggable Authentication Modules

Pluggable authentication modules (PAM) is a similar mechanism to NSS in concept. When
a PAM aware application is started, it activates its attachement to the PAM API. Config-
uration files are read and the appropriate module routines are invoked.

PAM needs to be configured independently for every program or service that wants to
take advantage of its features. Each consumer of the PAM framwork needs to have its
configuration stored in a separate file under /etc/pam.d. For example, the SSH daemon
settings can be found in /etc/pam.d/sshd.

Unfortunately, PAM isn’t problem free. Configuration requires extensive knowledge
of the handled security protocol and application it applies to. Another problem is that
limitations of the PAM API don’t allow a PAM module to request Kerberos service tickets
from a Kerberos Key Distribution Center (KDC) and only allow it to get ticket granting
tickets [8]. Therefore, users have to re-enter their password if they wish to authenticate
with Kerberos through a PAM enabled applications, that isn’t specifically coded for it,
which hinders the single-sign on principle.

3.3 Authentication Against LDAP

Authentication of client machines against LDAP is widely supported by most if not all
Unix distributions including Linux. Open source modules that communicate with LDAP
are available for both NSS and LDAP.

Both modules read the same configuration file named /etc/ldap.conf on most sys-
tems [1]. The most important configurable values include: LDAP protocol version, the
server hostname or IP address and port, the distinguished name of the directory root, a
search filter to identify user entries and encryption settings for PAM.

As most solutions involing LDAP are secured using Keberos, because the default au-
thentication mechanism in LDAP is consider weak and doesn’t offer the advantages of
single-sign on, pam ldap is rarely used in favor of a specialized Keberos PAM modules. In
the case of the MIT implementation Kerberos V prevalent on Linux, the module pam krb5
is used. pam krb5 uses its own configuration file named /etc/krb5.conf [8].

3.4 WinBind Daemon

WinBind is a daemon that allows its host system to become a full member of an NT or
Active Directory domain. Once this is done, the host system will see users and groups in
the Windows domain as if they were native to the host system. This is achieve throught
WinBind provided NSS and PAM modules allowing name resolution and authentication
with a Windows domain controller. The result is that whenever a program on the host
system asks to look up a user or group name, the query will be redirected by NSS to Win-
Bind and consequently to the Windows directory service. The whole process is completely
transparent.

A subset of Microsoft RPC procedures is implemented by WinBind to communicate with
NT domain controllers and Microsoft MPI to do the same with Active Directory domain
controllers [13]. This means that WinBind uses the native communication protocols which
results in the host system being undistinguishable from a Windows box in the target domain.

10

WinBind maintains a database called winbind idmap.tdb in which it stores mappings
between UNIX user and group IDs (UID/GID) and NT security IDs (SID; used both for
users and groups). This mapping is used only for users and groups that do not have a local
UID/GID. WinBind allocates a portion of the range of possible IDs and maps NT SID
into it. Instead of the winbind idmap.tdb file, an idmap backend can be specified and the
mapping is retrieved using it instead. For this purpose an LDAP backend is available [13].

Both NT and Active Directory systems can generate a lot of user and group name
lookups. To reduce the bandwidth cost of these lookups, WinBind uses a caching scheme
based on the sequence number of requests generated by domain controllers [13]. This
sequence number is incremented every time account information is modified in the directory
and is called SAM. Lookup results returned by domain controllers are cached by WinBind
along with SAMs. If the cache expires, the current SAM is requested from a primary
domain controller. In case the requested SAM doesn’t match the one stored locally, the
cached information is discarded a new up to date information is requested.

The main use case of WinBind is for organizations that have an existing NT or Active
Directory domain infrastructure into which they wish to put Linux workstations and servers.

WinBind is part of the Samba community project.

3.5 System Security Services Daemon

System Security Services Daemon (SSSD) is another daemon similar in function to Win-
Bind. It also provides NSS and PAM modules and handles the authentication against
directory services on the network.

SSSD implements a generic interface for authentication. Requests against different di-
rectory services are handled by service backends. Backends for communicating with LDAP
and FreeIPA are available. The FreeIPA backend implements the IPA XML-RPC and en-
ables native mode communication independent of the underlying LDAP schema. Using the
LDAP backend, SSSD can communicate with Active Directory since it supports the LDAP
protocol, but special configuration is needed because of the uncompatible schema. It also
isn’t the native communication protocol for Active Directory and is therefore susceptible
to entry format changes in the ADs directory service.

Kerberos is well supported by SSSD. It can automatically renew tickets and also works
around the inability of PAM to get service tickets from key distribution centers.

For the same reasons as WinBind (expensive directory lookups in terms of bandwidth),
SSSD also implements a caching mechanism. Unlike WinBinds caching scheme, it doesn’t
rely on any specific features such as SAM sequence numbers and was designed to be more
universal in order to support third party service backends.

Because of its importance for the capability to resolving authentication information of
the host system, SSSD features an indepedently running daemon service called monitor.
The role of this monitor service is to periodically check if SSSD is running and responding.
If for some reason SSSD needs to be restarted, the monitor is responsible for handling this
task.

SSSD is a young project developed since late 2008 by Red Hat. It was originally devel-
oped for the Fedora Linux operating system, but it is open source and has been designed
with portability in mind from the very beginning. Other distributions such as Debian,
Ubuntu or Gentoo have packages of SSSD available in their repositories. SSSD is the
default authentication provider in Fedora 14 and upcoming releases.

11

Chapter 4

Integrating WinBind and SSSD

With introductory chapters over, we’re ready to get to the core of the problem this thesis
is trying to solve.

The goal is to have a simple solution for authenticating Linux clients against multiple
domains in mixed environment networks. The solution should take advantage of facilities
already in place needs to be transparent to the end user.

This thesis proposes the integration of the WinBind daemon and the SSSD daemon
with the following traits:

• SSSD is the only authority for authenticating users

• WinBind acts as a gateway between SSSD and Windows directory services

• There is only one cache: SSSD and WinBind caches are unified

• The integration is transparent to the end user

Another solution would be to design and implement a completely new backend for
SSSD, that would handle requests directed at NT and AD domain controllers using native
RPC calls the same way WinBind does. However this would require a lot of new code
with functionality already available to us in WinBind. It would take a considerably larger
amount of time and would be very expensive. WinBind has been in developement for
several years and has a time-tested mature code base. It’s being actively developed by the
Samba team, which is also an advantage, because they’re working closely togheter with
Red Hat on common AD integration solutions for Linux based operating systems. All of
the mentioned reasons contributed to the decision of integrating WinBind with SSSD.

Some readers with more in depth knowledge of the subject this work is dealing with
might object the NSS and PAM responders of WinBind and SSSD can coexist and both
work on the same host system. The same would be true for currently existing solutions
for LDAP identity retrieval and authentication solutions that connect to NSS and PAM.
However, it is the whole purpose of SSSD to aleviate system administrators from having to
manage several configuration files and setting up the corresponding daemons independently
on each client of the network.

To meet the required traits listed at the start of this chapter, this work proposes the cre-
ation of a new SSSD backend with providers for identity, authentication, password changes
and possibly security policy enforcement. NSS and PAM are going to send requests to the
generic SSSD responders, which will automatically forward them to the newly implemented

12

providers if they cannot be satisfied from SSSD internal cache. Each provider will handle
its tasks by querying WinBind if necessary. The high level diagram in figure 4.1 depicts
the proposed solution.

Figure 4.1: WinBind and SSSD integration: high level diagram

4.1 NSS and PAM responders

At this point, after reading section 3 of this paper, readers should be familiar with the
purpose and basic functionality of both NSS and PAM. Now, we’re going to look a bit
deeper and discuss the sturcture of and how NSS and PAM responders are constructed. We
already know that both are extended using static libraries called modules. These modules
must implement a strictly defined interface described in the following paragraphs. Let’s
take a look at NSS first.

NSS responder

User and group identity information (NSS can also handle hostnames, netgroups, etc., but
these are out of the scope of this work) are retrieved from the standard C library using
the getpwnam and getgrid functions respectively. Both are then forwarded to NSS central
routing mechanism handled by the nsdispatch function. All of these calls are defined in
the header file nsswitch.h. The routing mechanism sequentially queries modules as they
are written in the configuration file. If the module contains a handler for the requested
operation, it is called and if it fails, the next module in row gets queried. The exception to
this rule is enumeration where all modules are queried idependently if they support it [11].

PAM responder

The architectures of NSS and PAM are very similar. However, PAM is more complex as
it provides more functionality. This funcitonality is split between four types of modules.
The primary purpose of PAM is to do authentication, but it also provides for account and
session management, and changing authentication tokens (such as passwords). If you’re

13

creating a new authentication mechanism, you don’t have to define all of the supported
module types, because some of them might be common to another mechanism already in
place. Available module types are described shortly in table 4.1 [22].

Type Purpose
Account Account management

Has user access at this time or on this console?
Auth Authentication

Is user who he claims to be?
Password Changing authentication tokens

Usually a password, finger print, ID card, . . .
Session Performing tasks when user starts/ends a session.

Displaying last login, mail, mounting directories, . . .

Table 4.1: PAM module types

This section was more of a detour for the purpose of understanding the internals, as
SSSD already implements universal responders for both NSS and PAM available for all of
its providers. It is however useful to understand the inner workings to be able to identify a
good solution we’re going to build on top of it. More information about writing new NSS
and PAM modules can be found in [11] and [22] respectively.

4.2 Talking to WinBind

As we’ve seen in the previous section about NSS and PAM, the interface between those
system services and SSSD (or any other identity/authentication provider) is standardized
and well defined. SSSD already has all the necessary hooks with the universal responders
and lets us concentrate on developing specific responders. What’s left for us to decide is
how we’re going to tackle communication with WinBind. We already know that WinBind
has its own NSS and PAM responders, but they can’t be just plugged into SSSD. In theory,
it might be possible to export the appropriate calls from them and use SSSD as a mere
proxy, but it would require some tricky linking and probably cause conflicts as SSSD already
exports the same calls (by name). Therefore, we need to find another interface, that we
can use to forward requests throught.

WinBind, like many other system daemons, has a named pipe it uses for communication
with the outside world. On Fedora and many other distributions, this named pipe has a file,
which can be found at /var/run/winbind/pipe. The problem is, that the communication
protocol over this pipe is binary and isn’t documented anywhere. It’s only used internally by
Samba. Even though Samba (the whole suite including WinBind) is open source software,
it would still require a lot of reverse engineering to figure the protocol out and there’s no
guarantee it’s not going to change in the future.

Fortunately, we’re not bound to use this interface at all and it isn’t recommended by
the Samba team either. Instead of doing IO directly on the pipe, we can use a much
friendlier API exported by the libwbclient library that comes with the WinBind client
Samba package1. This API includes all the necessary calls for retrieving identity information

1It includes utility programs like wbinfo.

14

from NT and AD domain controllers and also for doing authentication against them, which
is exactly what we need.

Using libwbclient as the only interface for requests and responses between SSSD and
WinBind should be very confortable from the implementation point of view, because it’s
only a matter of linking with the correct static library. Required header files (or in this
case only one file: wbclient.h) are packaged with it. We can also use the WinBind clients
utility programs source code to figure out how to use the libwbclient API properly, which
will be very helpful as documentation is sparse.

The only problem with this API is that it is completely synchronous. This effectively
means that any request forwarded to WinBind using it will hang the provider process until
results are returned. It’s not a problem if WinBind doesn’t have to query domain controllers
for information to satisfy the request or if the piece of requested information is small and
latency between the host system and the domain controller is low, but this is hardly the
case in most scenarios. The API was designed for WinBind client utility programs such
as wbinfo, which are very little concerned about performance. On the contrary in SSSD,
we should be very concerned with performance, since our goal is for it to become the main
gateway for identity and authentication for all NSS and PAM enabled applications. This
work proposes to solve this problem by running a request handling process in parallel to
the main provider process. They will communicate using an unnamed pipe. Requests will
be stored in a FIFO buffer by the request handling process and satisfied one by one as
they come in while the main process stays responsive to the environment. The solution is
depicted in figure 4.2.

Figure 4.2: Communication between WinBind providers processes

It’s out of the scope of this work, but it would be beneficial to create an asynchronous
API on top of libwbclient, that could be used by other applications performance aware
applications seeking information from WinBind. More about this in the last chapter about
future work and extensions.

15

4.3 Controlling WinBind

After outlining the high level connections between NSS/PAM, SSSD and WinBind at the
beginning of this chapter and defining the interface between the later two in the previous
section, we’re now standing before the decision of whether we want SSSD to take control
of the WinBind process (in the sense of starting, restarting and stopping it) and to what
extent. The answer for the first part of this decision is straigh forward. Taking control of
the WinBind process is advantageous to us for the following reasons:

• Synchronization

• Unexpected WinBind behaviour (e.g. crashes)

• Configuration

• Multiple WinBind instances?

In this context, synchronization means that we want SSSD to start before WinBind and
being able to know when WinBind is ready to answer request forwarded from NSS/PAM. We
also want to be able to check if everything is well and works as expected. Both requirements
should be easy to fulfill if we’re in control of the daemons process. We won’t discuss the
configuration item in details at this point, as there is a whole section dedicated to it in
this chapter. Let’s just say, that its easier to handle WinBind’s configuration if we can
specify the parameters, which are passed to it on the command line at startup. As readers
have probably noticed, there’s a question mark at the end of the last item the list above
this paragraph. This is not a coincidence or typo. With the current version of Samba and
WinBind it is impossible to have more than one instance of WinBind running at the same
time. It is therefore impossible to join the Linux hosts to more than one Active Directory
domain tree2. Shortly after the project behind this thesis took off, negotiations with the
Samba team for supporting multiple independent instances of WinBind have started. If
these negotiations go well, it would be very advantagous to be able to spawn and kill
WinBind process based on what domains are currently joinned on the host system. This
feature would be very useful especially for laptop users who connect to the outside world
through different domains at different locations (office, home, foreign office, etc.). Support
for as many domains as possible at the same time without the need for reconfiguration is
one of the main concern of SSSD.

Now that we know we want SSSD to take control of WinBind process(es) and we also
know why, it’s time to step a little further and look at the possibilities of how it can be
achieved. There are three ways a daemon process can be controlled on Linux systems, that
we can exploit for out purpose.

1. Using init scripts and/or related utilities (e.g. service)

2. Sending IPC3 signals

3. Spawning the daemon process from whithin another the controlling process

2WinBind can only join one AD domain at the same time, but trusted domains are also supported
effectively allowing access to the whole domain tree if not restricted by site-specific security policies.

3Inter-process communication

16

Init scipts and related utilities are here mostly for completness rather than being a real
option. They are only standardized to a certain extent, each distribution out there handles
them a little bit differently and we’re not even considering other potential target platforms
like Solaris and countless Unix flavors. service and similar utilities are also distribution
specific (there’s no single implementation). Furthermore they are primarily indented to be
used manually by users from their shells.

On the contrary, sending signals is a valid option. They can be sent to any process
running on the system if we have enough privileges to do so. The only requirement is that
we need to know the process ID (PID). On Fedora and many other distributions, WinBind’s
PID can be retrieved from a special file with the .pid extention located in /var/run/.
This file is named after the process, but in the case of WinBind it gets renamed if the
configuration parameter (-n, discusses in section 4.4) is used. As a result of this, the
file name is a little bit less predictable. It can also differ from one Linux distribution to
another. Fortunately, we can always search the /proc file system to find out WinBind’s
PID portably. However, signals are only one component of the solution we’re looking for.
They give us the possibility to stop, kill and possibly (with the right signal handlers) restart
the daemon we want to take control of, but they only work on already running processes.
This means that we can’t start the deamon if it wasn’t started for us before hand by some
external facility.

To take full control of the target deamon. We need to spawn its process ourselves
from within the controlling process, which gets us to option three. In our case this means
starting WinBind from the SSSD provider. This way, we can easily control when and with
what parameters the process is started, we don’t need to retrieve its PID for signal sending,
because we know it first hand, and we have direct access to its return codes. Implementation
details will be described in the next chapter.

As mentioned earlier, only one instance of WinBind can be running at any given time
on the host system. Because of this limitation, we need to detect if it isn’t running already
when we try to spawn our own instance. It could be done by checking for existence of
the PID file in /var/run/ or searching the /proc filesystem as mentioned earlier, but
there is another way easier than both of those. When investigating communication with
the WinBind daemon in the previous section, we discussed the possibility of exploiting its
named pipe. The name of this pipe file is always the same, therefore its easy to check for
its existence for the purpose of determining if Winbind is running or not.

4.4 Configuration

Another problem that needs to be solved is how to handle configuration of Linux clients.
We need to start from configuration is required by WinBind to succesfully connect and
communicate with Windows NT and/or Active Directory domain controllers.

WinBind, like any other service provided by the Samba application suite, is configured
using the smb.conf file. The format of this file is derived from the widely recognized
(although never officially standardized) INI file format introduced by the Windows family
of operating systems.

The INI file format defines properties identified by name and their value. In other
words, it defines key value pairs delimited by equal signs. Each key value pair resides on
a single line. Properties may be grouped into arbitrarily named sections. The start of a
section is characterized by a its name enclosed insquare brackets on a new line by itself.

17

Samba recognizes several types of sections in its configuration file (smb.conf), but the
majority of them is out of the scope of this thesis, as they are unuseful in the goal of
joining Linux clients to Windows domain controllers. The only one we’re interested in, is
the [global] section. This is where all the properties related to WinBind functionality
are located. Relevant properties with a short description of their meaning and acceptable
values can be found in table 4.2.

Option Description
workgroup name of domain WinBind connects to
realm Kerberos realm WinBind uses for authentication

(can also be a KDC network address)
security ’domain’ for NT domains and ’ads’ for AD domains
password server network address of domain controller to use
wins server network address of WINS server if any
winbind enum users Enables or disables user account enumeration.
winbind enum groups Enables or disables user group enumeration.
winbind refresh tickets Enables or disables automatic Kerberos ticket refreshing.
idmap backend name of IDMAP backend to use (tdb, rid, . . .)
idmap uid range of UIDs NT/AD user account SIDs will be mapped to
idmap gid range of GIDs NT/AD user account SIDs will be mapped to
template shell default shell for NT/AD users logging in locally

Table 4.2: smb.conf options related to WinBind

Configuration of SSSD takes place in the sssd.conf file. It’s format is similar to
smb.conf at first sight, but acceptable keys and their values are defined more formally
using a special grammar created specifically for this purpose.

Definitions of acceptable key value pairs are distributed with SSSD and are located in
the sssd.conf.d subdirectory of where the main configuration file is located4.

Since one of our goals defined in the start of this chapter was to make SSSD the only
authority regarding identity and authentication of its host system, we don’t want users to
be required to modify the smb.conf file in order to configure WinBind. The only place
where any configuration takes places should be the SSSD configuration file. To make this
possible, we need to define new configuration options the SSSD WinBind provider, which
map directly (or indirectly if it makes things more meaningful) to WinBind properties in
smb.conf. This thesis proposes the mapping found in table 4.3. Notice that winbind enum
users and winbind enum groups have been unified into the universal option enumerate
that SSSD uses for all identity providers.

SSSD will read its own configuration and translate relevant parts to WinBind without
the need of any interaction from users. This needs to happen on the fly, because the
configuration can vary in time when the network topology or organizationl struture changes.
Reading and translations are implementations problems, that will be analyzed in later
chapters, but we need to figure out the best way of passing it to the WinBind daemon. We
have basically three options:

1. Writing the translated configuration to the main smb.conf.

4/etc/sssd/ on most systems

18

SSSD option mapping to WinBind option
winbind workgroup workgroup
winbind realm realm
winbind domain type security
winbind pwd server password server
winbind wins server wins server
winbind refresh tickets winbind refresh tickets
winbind idmap be idmap backend
winbind uid min low range limit of idmap uid
winbind uid max high range limit of idmap uid
winbind gid min low range limit of idmap gid
winbind gid max high range limit of idmap gid
winbind temp shell template shell
enumerate winbind enum (users|groups)

Table 4.3: SSSD to WinBind option mapping

2. Writing a stand-alone smb.conf and passing it to the WinBind daemon using it’s -n
command-line option.

3. Using the Samba registry configuration.

Let’s take a look at these options one by one. The first one might seem to be the most
straight forward, but after analyzing the requirements for implementation, it comes out
as the exact opposite. This is because, we can’t just write whatever comes out of SSSD
into the main Samba configuration file as we would be putting ourselves in the danger of
overwritting parts related to other Samba services. We would also have to find the start of
the [global] section and write underneath it. In the end, to make the whole process safe,
we would need to parse the whole configuration file and rewrite it completely, which is an
uneasy and error prone task. The second option, although similar to the first one, is much
easier as we’re only writting the relavant properties into a new blank file. We don’t need
to care about influencing any other Samba services, because the configuration file we’re
writting is isolated. As we’re going to see in the last chapter, it is also advantageous if we
ever want to have more than one instance of the WinBind daemon running at the same
time. The last option makes use of the new configuration interface introduced in Samba
version 3.2.0 - registry based configuration. This interface is derived from the Windows
system-wide registry. While it is a lot more flexible (sections, properties and their values
are hierarchically stored in a TDB5 database) than flat files, it suffers from some of the
same problems as using the main configuration file in the first option. It’s not worth to go
into details at this point, but it’s important for readers to know about this possibility as it
might be exploited in future extensions of Samba. Lookup [7] for more information about
registry based configuration.

After analyzing all the relevant caveats of configuration, we can conclude that for our
purpose, the best approach would be to: create new configuration options for SSSD and map
them to WinBind properties normally found in the Samba configuration file (smb.conf).
SSSD will read and translate them for WinBind on the fly into a new stand-alone configu-
ration file, that will be passed to WinBind on the command-line using the -s option.

5Trivial database, pre-relational database engine developed by the Samba team [21].

19

Chapter 5

Implementing WinBind providers

The whole previous chapter was about the design of the WinBind providers for SSSD, but
it was intentionally stripped of in depth technical details. In other words, it was more about
what then how. In this chapter, we’re going to go through what we planned and descibe
how it was implemented, what tools have been used and what pitfall were encountered.

SSSD is an open source project with very strong emphasis on code culture. It’s written
completely in pure C89 without GNU extensions. Except for talloc and tevent (created
originally for the Samba project), it only uses standard POSIX libraries with high porta-
bility in mind. For the WinBind provider, we need to introduce a new dependency, namely
the wbclient library as discussed in section 4.2. In order to satisfy SSSD configure script,
modifications to its standard issue header file wbclient.h are required, because it doesn’t
define several fixed size integer types (e.g. int32 t) and is therefore not

”
usable“ accord-

ing to the script. The modifications in questions are simple. We only need to add a new
#include directive for the standard C header inttypes.h. Since this way we get a custom
version of the wbclient header file, we need to ship it with SSSD to override the system
wide include.

We also need to make SSSD aware of the new configuration options related to the
WinBind provider we defined in section 4.4. Configuration options are interpreted by
providers freely, but they can’t be arbitrary in the sense, that they need to be predefined
in files localed in the sssd.conf.d directory. The format of these files is as follows:

option = <type>, <subtype>, <mandatory>[, <default>]

Where <type> is either str, int or list according to what type it should be read as by
SSSD configuration API. <subtype> is only useful if <type> is set to list. <mandatory>
is either true or false and doesn’t need further explanation. <default> is optional and
can be anything that can be interpreted as a valid value of the corresponding type. Actual
definitions of options introduced in 4.4 are listed in appendix C.

5.1 SSSD backend framework

SSSD has a built-in framework for creating new backends. The term backend in this context
is just an abstraction for a set of up to four providers each responsible for a specific function.
The four provider types are characterized in table 5.1. In fact, any provider type can exist

20

independently by itself and doesn’t have to be tied to the other types in any way.

Provider Description
ID Identity

used to handle NSS requests
AUTH Authentication

used to handle PAM auth requests
ACCESS Security policy

used to handle PAM account requests
CHPASS Changing authentication tokens

used to handle PAM chpass requests . . .

Table 5.1: SSSD provider types

It’s a common practice in pluggable architectures to have a registration mechanism in
place for new plugins. In SSSD, however, this isn’t the case. New providers don’t have
be registred or listed anywhere and are detected automatically by looking up the expected
initialization function according to the SSSD configuration file. The monitor process, that
keeps all providers well and running, is responsible for this task. For the appropriate
initialization function to be found by the monitor, it needs to have the following signature:

int sssm <backend-name> <provider-type> init(struct be ctx *, struct bet ops **, void **)

Where <backend-name> is the name of the backend this provider will be part of and
<provider-type> is one of the four types found in table 5.1. Both fields need to be
lowercase.

The initialization functions take three arguments out of which only the first one serves
as input and the other two are to be filled in when the function returns. The type struct
be ctx of the first argument represents the backend context. It contains about twenty
different attributes, but most of them are used internally by the framework. Following is a
list of the most important attribute, we’re going to use when implementing the WinBind
providers:

• struct confdb ctx *cdb - configuration database context

• struct sysdb ctx *sysdb - system database context

• struct sss domain info *domain - domain information

Configuration and system database contexts are very important variables used to access
options from the configuration file in case of the first mentioned and cached identities and
authentication tokens in case of the second. We’re going to see them in action later in
this chapter. Domain information, as the name suggests, contains information about the
domain this provider belongs to.

The second argument is supposed to be filled in with a pointer to a struct bet ops
structure. This structure contains function pointers to up to three callbacks:

21

• handler is the main callback for operations handled by the provider.

• check online is used to check if the backend is online.

• finalize is called when SSSD shutdowns.

handler is the most important callback and should be always present. The other two
are optional. Checking if the backend is online or offline is useful when the source of
identity, authentication or policy information is queried remotely over the network, which
is the case of our WinBind provider, because this information is retrieved from NT/AD
domain controllers. When SSSD shutdowns, the monitor process triggers the finalize
callback on all providers to give them the opportunity to free used resources and perform
other necessary clean up procedures. At least, that’s how it’s supposed to be, because at
the time of this writing, finalize is never triggered and providers have to implement their
own mechanisms for cleaning up.

The last argument is used to store private data shared between provider callbacks.

5.2 Initialization

Now that we’ve been throught the basics of the backend framework, it’s time to dwelve
into the specific details of the implemented WinBind providers. Each provider needs to be
initialized separately, but the majority of steps is shared between them. These steps are
ensued from what has been planned in chapter 4 and are as follows:

1. Initializing backend private data

2. Retrieving configuration options

3. Creating a dynamic WinBind configuration file

4. Spawning the WinBind daemon

In step one, we need to initialize a new structure to hold key pieces of information
required for handlers of all the implemented providers. This structure is named struct
winbind id ctx according to the customs introduced by other backend modules. We won’t
show its whole definition here, but it’s important to know that we’re going to use it to store
the WinBind daemon process ID (PID) and options from SSSD configuration file related
to our backend. The whole definition can be found in appendix D.

Step two, on the contrary of what might be expected, doesn’t involve any IO opera-
tions, because the backend framework has already read all configurations options for us
according to what was specified in sssd.conf.d (as described at beginning of this chap-
ter). All that’s left for us to do is to retrieve the relevant values, perform validation and
store them in the private data structure from step one for later use. Retrieving the val-
ues is done using functions defined in providers/dp backend.h such as dp get options,
dp opt get string, dp opt get integer, . . . The first mentioned is used to retrieve all the
relevant values in bulk and needs a statically defined array of struct dp option structures.
This array has to correspond to what is defined in sssd.conf.d. Its definition for our Win-
Bind providers is displayed in Appendix C. All other of the mentioned functions are used
to retrieve single values and are usuful to us for validation of the winbind domain type op-
tion. This step is implemented in providers/winbind/winbind common.h as the function
winbind get options called directly from the ID provider initialization function.

22

Another implementation option for step two would be to use libsmbconf as discussed
in section 4.4, but a desicison against it was made for two main practical reasons implied
by the fact that the library is still in developement and unstable. The first reason is that
it isn’t available anywhere else than in a non-master branch of the Samba git repository,
causing packaging and distribution problems for the final product. The second reason
being that the library compiles with uncorrectly hard-coded paths of crucial Samba files
and directories (such as the path to TDB files).

The third step involves writting a configuration file for WinBind. This is performed on
the fly from what has been retrieved in the previous step according to table 4.3 in function
winbind write config. The file is truncated everytime to ensure that there’s no leftovers
from another run. By default, it’s stored as /var/lib/sssd winbind.conf and this path
is later passed to the WinBind daemon using its -n option. Except for enumerate and
UID/GID ranges, the whole process is implemented by simply using a static conversion
table.

The last step is the most important and complex and therefore deserves its own dedi-
cated section of this paper.

5.3 Spawning WinBind

A common technique of spawning a new program from the executing process on POSIX
operating systems is the so called fork-exec. The technique takes its name from two system
calls it makes use of. It’s probably not a surprise, that the first of these calls is fork. It
effectively creates a new process identical to the the one it was forked from. The parent
process gets the childs PID in the return value and we’re going to store in the struct
winbind id ctx structure, because this will soon become the process ID of the WinBind
daemon. In the child process, we’re going to use the techniques second system call - exec
or more precisely one of its variants - execvp. The exec family of functions overrides the
calling process with a new image created from a file descriptior or, in the case of the variant
we’re going to use, from a file specified with a path string. They also allow us to pass
parameters to the new image.

However, before we start spawning anything, we need to make some preparations. It
was noted in section 4.3, that currently only one instance of the WinBind daemon can be
running at any given time. Even if this state is temporary, as of now we need to check if
the daemon is running or not. Checking it is implemented by using the stat system call on
the WinBind daemon named pipe file. If the call fails and errno is set to ENOENT1 we can
safely continue. Otherwise, we’re going to display an error message and stop the WinBind
provider initialization process. It would be possible to stop the currently running daemon
process, but it was decided not to do so prevent possible configuration breakdown as there’s
no way for us to know why it was started in the first place.

Before forking and once the necessary check for running instance of the WinBind dae-
mon, we should also make sure that all opened file descriptors have the CLOEXEC flag set.
This flag ensures that descriptors are closed when exec is called. It’s never set by default,
because it’s a common practice to open an unnamed pipe just before using the fork-exec
technique, so that the parent and child can communicate throught it. Fortunately, the
implemented WinBind providers shouldn’t have any opened file descriptors at this point

1A component of the path does not exist, or the path is an empty string.

23

except for those started by the monitor process and these are already set with the appro-
priate flags.

When everything is setup, we can finally fork the running process and override its child
with the WinBind daemon program. It should be accessible using the PATH environment
variable if the installation of Samba is configured correctly on the host system as winbindd.
The overridden process will receive the following parameters:

winbindd -F -n -s /var/lib/sssd winbind.conf

Where the -F option tells WinBind to run in foreground mode, which means that it’s
not going to deamonize, i.e. double fork and disassociate with the terminal [19]. In our
case, role of the terminal is taken by the child process calling exec. We don’t want it to
deamonize, because its main process PID would change from what we got from fork and it
would be harder to kill when SSSD shutdowns as we’re going to see later in this section. The
-s option is used to specify the configuration file we generated in winbind write config.

Notice that the -n option was intentionally omitted from the description of parameters
in the previous paragraph. It has a special and important meaning. According to [19]
it should disable WinBind caching mechanism, which is one of the main goals we set for
ourselves at the beggining of chapter 4. However, after examining the daemon source code
carefully, the conclusion that it’s not entirely true was reached. At the time of this writting,
negotiations with the Samba team are in progress regarding this issue.

Even after the WinBind daemon is successfully spawned, we’re not done yet. Signal
handlers have to be setup in the parent process specifically SIGTERM and SIGCHLD. The first
one needs to be handled, because we can’t rely on the finalize handler as discussed in the
previous section and we need to get a chance to kill the daemon when SSSD shutdowns.
Killing it is straight forward; it involves nothing more that sending the SIGTERM signal to the
previously stored PID in struct winbind id ctx. The implementation handles SIGCHLD
to detect when the daemon stops running for some reason. If this happens, we can safely
get its return code using the system call waitpid and respawn it if necessary.

All of the tasks discussed in this section (with the exception of signal handlers) are
performed by the winbind start daemon function implemented in providers/winbind/
winbind common.c.

5.4 ID provider

This providers initialization function is called sssm winbind id init according to conven-
tions discussed in the first section of this chapter. You can find it in providers/winbind/
winbind init.c. It performs all of the required preparations such as reading configura-
tion, generating files for the WinBind daemon and spawning it. It also initializes the private
data structure struct winbind id ctx and fills all of its fields. Opposite to what its name
would suggest, it isn’t specific to the ID provider and is shared among all providers of the
implemented backend.

As noted in table 5.1, the main responsibility of ID providers is to handle NSS requests
that can’t be satisfied from SSSD identity cache. winbind account info handler imple-
mented in providers/winbind/winbind id.c is the primary callback for handling such

24

requests. This callback serves as a router for different types of queries and is implemented
as a group of nested switches. Identifying the type of NSS request and choosing the right
query is based determined using the req data field of the struct be req structure that
comes in as the only parameter to the primary handler. This structure is universal to all
providers and must be cast to struct be acct req in the case of ID. From there we can
retrieve what entry type is looked up and with what kind of filter. Both are represented by
constant defined in providers/data provider.h. An overview of possible entry type and
filter constants is shown in table 5.2 and table 5.3 respectively.

Constant Description
BE REQ USER User accounts

BE REQ GROUP User groups

BE REQ INITGROUPS Groups a specific user is member of
BSD introduced concept for group access lists

BE REQ NETGROUP Netgroups
NIS introduces concept of groups containing hosts and users

Table 5.2: NSS entry type constants

Constant Description
BE FILTER NAME Search by name
BE FILTER IDNUM Search by ID (UID/GID/. . .)
BE FILTER ENUM Enumerate all

Table 5.3: NSS filter type constants

An important aspect about ID providers is that they don’t return anything. There’s
no response to requests coming from NSS. Instead these providers just update the internal
cache called sysdb with identity information. The implemented ID provider is no exception
to this rule.

Requests tagged with the BE FILTER NAME and BE FILTER IDNUM constants combined
with BE REQ USER are routed to the winbind get user function. This functions retrieves
the requested identity information from WinBind and stores it using the sysdb API, which
provides functions with parameters mapping to fields in the POSIX defined struct passwd
which is very handy, because that’s exactly what is returned by the wbclient library.
Same goes for these constants combined with BE REQ GROUP, except that it’s routed to
winbind get group and the prominent POSIX structure is struct group.

Any request with the last filter type is only satisfied if emuration for the domain is en-
abled in sssd.conf. The query is executed by winbind enum users or by
winbind enum groups according to the entry type. One specialty of enumeration is that
more than one entry is updated in the cache and the whole operation is therefore non-atomic.
If interrupted for some reasons, it might cause inconsistent states, which is something we
need to avoid. Situations like this were thought of when sysdb was designed and the support
for transactions is available. It only requires programmers to call sysdb transaction start
before updating anything and sysdb transaction commit when complete.

Our ID provider also implements the check online callback. Its operation is simple

25

thanks to the fact, that the wbclient library provides an API call tailored for retrieving
information about NT/AD domains. This information contains various domain flags among
which WBC DOMINFO DOMAIN OFFLINE is what we’re looking for. If present, we know for sure
the domain is offline.

5.5 AUTH provider

The authentication provider relies on the ID provider for performing the required initializa-
tion steps. To be registred by the SSSD monitor daemon it needs a standalone initialization
function named sssm winbind auth init. Since the order of provider registration is not
guaranteed, it start by calling the ID provider initializer that contains checks if it has been
already called or not, so that configuration isn’t read needlessly twice and more importantly,
so that we’re not trying to spawn the WinBind daemon more than once.

AUTH providers are responsible for satisfying PAM requests as noted in table 5.1. The
main callback here is called winbind pam auth handler and can be found in providers/
winbind/winbind auth.c. Similarly to the main ID provider handler, it also serves as a
router for different types of queries and is implemented using switches, although this time
there’s no nesting involved. There is only one switch for PAM operations. These operations
correspond closely to PAM service module functions. These functions are implemented by
responder modules to handle requests and SSSD is no exception. In detail description of
these functions is out of the scope of this thesis, for more information see [16]. Individual
operations are identified on the basis of the req data field of the be req structure. Note that
the handler callback for AUTH providers has the same signature as for ID providers. The
difference is that the prominent field needs to be cast to the struct pam data structure.
A field containing one of the constants in table 5.4 can be dereferenced from it after the
cast.

Constant Description
SSS PAM AUTHENTICATE Authenticate user
SSS PAM SETCRED Alter user credentials
SSS PAM ACCT MGMT Decide if user has access
SSS PAM OPEN SESSION Commence a session
SSS PAM CLOSE Terminate a session
SSS PAM CHAUTHTOK (Re)set authentication token 2
SSS PAM CHAUTHTOK PRELIM (Re)set authentication token 1
SSS CMD RENEW Refresh credentials with limited lifetime

Table 5.4: PAM operation constants

The most important PAM operation handled by the AUTH provider is marked by
the constant SSS PAM AUTHENTICATE and is triggered when a user tries to login using his
password. The main handler routes this to the winbind pam authenticate function. This
function queries the domain controller and tries to authenticate the user with the provided
credentials. The password is sent to WinBind in clear text form, but it doesn’t present a
security risk because the daemon encrypts it before it leaves the host system. If success
is reported, the credentials are cached along with the user entry in sysdb to allow offline
authentication.

A major difference between ID and AUTH providers is that the later must return a value

26

representing the end state of the requested operation. The set of valid values depends
on what was requested. Possible return values for SSS PAM AUTENTICATE are displayed
in table 5.5. winbind pam authenticate translates whatever is returned by WinBind to
one of these values except for PAM CRED INSUFFICIENT, because it doesn’t make sense for
passwords.

Constant Description
PAM AUTH ERR Authentication failure
PAM CRED INSUFFICIENT Not enought credentials
PAM AUTHINFO UNAVAIL Unable to access authentication information
PAM SUCCESS Authentication success
PAM USER UNKNOWN Username provided is invalid
PAM MAXTRIES Maximum number of authentication tries was reached

Table 5.5: PAM Authenticate return values

SSS PAM CHAUTHTOK and SSS PAM CHAUTHTOK PRELIM deserve some additional explana-
tion. They’re both related to a single service module function - pam sm chauthtok. This
function is called when authentication tokens for a specific user are about to be changed.
It’s called twice. Once to check if and a second time to actually change the tokens [16]. The
first call is equivalent to the prelimitary operation and is the only one Our AUTH provider
is going to handle as it’s equivalent to SSS PAM AUTHENTICATE for NT/AD password. Han-
dling the second call if the responsibility of the CHPASS provider.

Remaining operations are unimplemented, because they are uninteresting from network
authentication point of view. The statement isn’t true about SSS CMD RENEW. This operation
is useful for authentication tokens with limited lifetimes such as Kerberos tickets used
by some AD services. However we don’t need to take care of them as WinBind does it
automatically given the correct settings.
check online isn’t implemented as part of the AUTH provider, because it’s already

handled by ID provider, which sets the online/offline status for the whole backend.

27

Chapter 6

Testing and evaluation

In the final chapter of this thesis, we’re going to go through the procedures that have
been continuously used to test the implementation outputs during the whole developement
process. We’re also going to evaluate what has been achieved and where this project is
going in the future. Due to its nature, there are no numbers, nice graphs with performance
curves. Instead we’re going to present the area where the outputs are useful in real life
situations.

To take full advantage of SSSD and the implemented WinBind backend a single machine
is not enough. We need connectivity to a domain controller be it NT or AD. The first section
of this chapter will guide readers through the basic steps of setting up such an environment
where the implementation can be tested for the most part.

6.1 Environment preparations

Due to the fact that SSSD is developed by Red Hat, it’s native distribution are the in-house
distribution of Linux: Fedora and Red Hat Enterprise Linux. Not that it wouldn’t run on
other distributions as well, but we still recommend you to use one of them. For the purpose
of this work, we’re going to pick Fedora as it’s available for free and more accessible to a
wider audience. We’re going to use it as the host system for SSSD and a client of the an
Active Directory domain.

We’re going to assume that most readers don’t have access to a readily available AD
domain for testing purposes. Therefore we need to create one. All we need is one domain
controller. Samba can act like one, but everything in this chapter has been tested against an
’original’ Active Directory enabled server running Windows 2008 R2 Server. For reference
about configuring AD on this operating system consult [18].

Both system (the host for SSSD and the domain controller) must have network access to
other preferrably on a private network. Ports required by AD must be open and you might
consider disabling the firewall on both machines if your testing environment is isolated.

The host system needs to join the Active Directory domain as a member. This can be
achieve either manually using the Samba provided net utility:

net ads join -w DOMAIN -I SERVERIP -U USERNAME%PASSWORD

Or by using the join-ad.sh script on the CD that comes with this paper:

28

./join-ad.sh DOMAIN SERVERIP USERNAME PASSWORD

The later is recommended, because it not only joins the domain, but also checks if all
the required packages are installed on the host system.

6.2 Testing procedures

This section focuses on a few selected use cases and simple procedures tailored to demon-
strate the implemented functionality.

Configuration

The first testing procedure is about checking that if configured corretly, the SSSD monitor
process starts the WinBind backend and both of it’s implemented providers.

1. Add an a new accessible AD domain to sssd.conf using WinBind providers

2. Start SSSD: sssd -d 3 -i

3. Analyze the standard error output

4. Check that WinBind is running: service winbind status

5. Check the generated WinBind configuration file

The options used in step two make SSSD start in interactive mode with debug level
three. This effectively means that it will not daemonize and run in the foreground with
debugging messages up to level three showing up on standard error. Without these options,
we wouldn’t be able to analyze the output and see what providers have been initialized. If
the WinBind daemon was already running an error message should be reported.

An example of a valid sssd.conf and the generated configuration file for WinBind used
when writing the testing procedures is on display in appendix C.

Looking up users and groups

This procedures is for checking that looking up identity information for a single entity works
as expected. Successful completion of the previous procedure is a required prerequisite.

1. Make sure SSSD and WinBind are running: service sssd status

2. Create a new user in AD with name ’testuser’

3. Retrieve the newly created user on the host system: getent passwd DOMAIN\testuser

4. Create a new group in AD with name ’testgroup’

5. Retrieve the newly created group on the host system: getent group DOMAIN\testgroup

29

getent is the standard NSS enabled utility for retrieving entries from identity reposi-
tories. passwd ang group are aliases for available user account and user group databases.

If everything works as expected, commands from step three and five should display
information about the newly created entries in AD and should have an UID/GID assigned
to them. Retrieving an entry that doesn’t exist should leave the commands with no output.

Enumerating users and groups

Enumerating users and groups is very similar to the previous procedure except that this
time, we’re retrieving all available entries at once. This includes all available entries and
not just the ones in the AD domain. enumerate must be enabled in sssd.conf.

1. Make sure SSSD and WinBind are running: service sssd status

2. Retrieve all users available on the host system: getent passwd

3. Retrieve all groups available on the host system: getent group

Output of the getent commands should include entries from the AD domain. The
listings can be compared to the output of wbinfo -u and wbinfo -g to make sure that all
entries are really shown. If enumerate is disabled, only users and groups from the local
domain (e.g. from /etc/passwd) should be displayed.

Authenticating as a domain user

The last testing procedure involves authenticating as an AD domain user locally on the
host system. The user we’re going to authenticate as must have a valid unlocked ac-
count in the AD domain and a password set. Another important requirement is that the
winbind temp shell option in sssd.conf must be set to an existing shell on the host
system such as bash or ksh.

1. Make sure SSSD and WinBind are running: service sssd status

2. Create a new user in AD with name ’testauthuser’

3. Login as the newly created user on the host system: su - DOMAIN\testauthuser

4. Check the user is logged in: id

5. Try to create files and analyze the owner and group they belong to

If everything is configured correctly, the current working directory should be changed
to the AD user home directory. This directory should be created automatically on first
login. Files created by the domain user should have owner set to him and group set to
DOMAIN\Domain users.

6.3 Future roadmap

This section discusses some of the planned extension for the future of the whole project
and the motivation behind them. There’s still a lot of work to be done for the project
to become a widely adopted solution for the authentication of Linux clients in Windows
domains. What has been implemented at this point is just the beginning - a seed of a much
larger scheme.

30

Additional providers

Currently, only the ID and AUTH providers of the WinBind backend have been imple-
mented, which means that tasks like changing authentication tokens and enforcing security
policies defined in NT/AD directory services is not possible. A CHPASS provider needs
to be implemented and the wbclient library has means to make it conceivable. When it
comes to security policies, future plans are unclear at the time of this writing. WinBind
doesn’t have any facilities to enforce or even display any of it. Extentsion to the daemon
or another idependent solution will be necessary.

The AUTH provider also need to have more fine grained options and Kerberos possibil-
ities of Active Directory have yet to be fully exploited.

Cross-domain trust

Windows domains can have trust relationships setup between each other. This means that
services provided by one domains can be accessible to users from another one and vice versa.
Cross-domain trust is an important aspect when building complex network infrastructures.
WinBind by itself supports this feature, but SSSD doesn’t.

We will need to implemented support for nested domains in SSSD. Large scale changes
ranging from configuration to the backend framework are going to be necessary. Trust
relationships of Windows domains can be created and removed on the fly at any given
moment and dynamic detection of new domains in the tree has to be implemented.

Multiple domains

As noted in section 4.3, it’s currently impossible to have more than one instance of Win-
Bind running at once. Therefore Linux clients using it can become members of only one
Windows domain at the same time. This is an unconfortable limitation especially for user
authenticating through different domains on a daily basis (e.g. laptop users on business
travels). The only way to solve this is to add the possibility of multiple WinBind instances.
Negotiations with the Samba team have started and look promising.

Asynchronous API for WinBind

The current version of the WinBind API implemented by the wbclient library provides
only synchronous interfaces, which is a major disadvantage especially when dealing with
geographically spread networks. Even thought it’s mitigated to a great extent by SSSD
caching mechanism, it’s still not insignificant.

There are two possible solutions to this problem. One is to update the WinBind API
with asynchronous calls, which would require the collaboration of the Samba team, but
could benefit other projects as well. The second one is to create an asynchronous layer on
top of it for SSSD. This layer could be implemented specifically to our needs and be fitted
directly into the tevent mechanism already in place.

Links to FreeIPA project

The FreeIPA project discussed in section 2.4 is running in parallel with SSSD under the same
leadership. Long term goals include the possibility to create cross-domain trust relationships
between Windows and IPA domains. The plan is to build the trust using the WinBind
backend implemented as part of this work.

31

Chapter 7

Conclusion

The main focus of this thesis was the network authentications of Linux client against dif-
ferent directory services with the goal to design and implement a unified network authenti-
cation solution by integrating the WinBind and SSSD system daemons. The later provides
a generic interface above NSS/PAM for identity and authentication services over the net-
work. By integrating the two daemons, we get more control over available user and group
domains, support for offline authentication, easier and portable configuration and much
more.

According to the given project instructions, this work begins with investigation of the
current state of the art in network authentication solutions in both Linux and Windows
worlds. It starts with legacy technologies like NIS and ends with the latest projects in this
area. A lot of attention was given to designing a robust approach to integrating WinBind as
a new provider into the pluggable backend framework of SSSD. Possibilities were discussed
and decisions made. The following part of the thesis takes it from there and goes through
the technical details and pitfalls associated with implementing the proposed solution. Final
pages are devoted to providing comprehensive instructions to reproduce test performed on
the final product and giving an overview of the projects future roadmap.

Both formal and personal goals behind this work were met with success as the resulting
WinBind provider for SSSD is fully usable. However, there is still much to be done. What
has been implemented at this point is just the beginning - a seed of a much larger scheme
for Active Directory integration.

32

Appendix A

List of abbreviations

ADDS Active Directory Domain Services
AD Active Directory
API Application Programming Interface
AS Authentication Server
BDC Backup Domain Controller
D-H Diffie-Hellman
DC Domain Controller
DIT Directory Information Tree
DNS Domain Name Service
GID Group ID
GSS Generic Security Services
KDC Key Distribution Server
LDAP Lightweight Directory Access Protocol
MIT Massachusetts Institute of Technology
MPI Message Passing Interface
MS Microsoft
NFS Network File System
NIS Network Information Service
NSS Name Service Switch
NTDS NT Directory Services
NTLM NT LAN Manager
NTP Network Time Protocol
NT Windows NT family of operating systems
PAM Pluggable Authentication Modules
PDC Primary Domain Controller
PID Process ID
RPC Remote Procedure Call
SASL Simple Authentication and Security Layer
SFU Windows Services For Unix
SID Security ID
SSL Secure Socket Layer
SSSD System Security Services Daemon
TDB Trivial Database
UID User ID

33

Appendix B

Comparison of Directory Services

NIS NIS+ LDAP FreeIPA
Target Platform POSIX POSIX - Linux
Hierarchical directory ×

√ √ √

Complex Data × ×
√ √

Replication ×
√ √ √

Multi-Master Replication × × ×/
√ √

Security Protocols D-H D-H SSL, SASL/MD5 SSL, Kerberos

Communication Protocol Sun RPC Sun RPC LDAP v2, v3
LDAP v2, v3,
IPA XML-RPC,
IPA JSON-RPC

Table B.1: Comparison of Linux Directory Services

NTDS ADDS
Target Platform Windows Windows
Hierarchical directory

√ √

Complex Data ×
√

Replication
√ √

Multi-Master Replication ×
√

Security Protocols NTLM Kerberos, NTLM

Communication Protocol MS RPC MS MPI, LDAP
v2, v3

Table B.2: Comparison of Windows Directory Services

34

Appendix C

Configuration samples

WinBind provider option definitions

[provider/winbind]

winbind workgroup = str, None, false

winbind realm = str, None, false

winbind domain type = str, None, false

winbind pwd server = str, None, false

winbind wins server = str, None, false

winbind refresh tickets = bool, None, false

winbind idmap be = str, None, false

winbind uid min = int, None, false

winbind uid max = int, None, false

winbind gid min = int, None, false

winbind gid max = int, None, false

winbind temp shell = str, None, false

Example sssd.conf

[domain/REDHAT]

description = WinBind integration

id provider = winbind

enumerate = true

winbind workgroup = REDHAT

winbind realm = REDHAT.RH

winbind domain type = ads

winbind pwd server = w2k8server.redhat.rh

winbind wins server = w2k8server.redhat.rh

winbind idmap be = rid

winbind refresh tickets = true

winbind uid min = 1000000

winbind uid max = 2000000

winbind gid min = 1000000

winbind gid max = 2000000

winbind temp shell = /bin/bash

35

Example sssd winbind.conf

[global]

workgroup = REDHAT

realm = REDHAT.RH

security = ads

password server = w2k8server.redhat.rh

wins server = w2k8server.redhat.rh

idmap backend = rid

winbind refresh tickets = Yes

template shell = /bin/bash

winbind enum users = Yes

winbind enum groups = Yes

idmap uid = 1000000-2000000

idmap gid = 1000000-2000000

36

Appendix D

Code samples

sample from winbind common.h

struct winbind id ctx {
struct be ctx *be;

int entry cache timeout;

struct dp options *opts;

pid t winbind process pid;

};

sample from winbind common.c

#define WINBIND CONF FILE
’’
/var/lib/sssd winbind.conf‘‘

#define WINBIND PIPE FILE
’’
/var/run/winbindd/pipe‘‘

const char * const winbind daemon argv[] = {

’’
winbindd‘‘,

’’
-F‘‘,

’’
-n‘‘,

’’
-s‘‘, WINBIND CONF FILE, NULL

};

struct dp option default winbind opts[] = {
{
’’
winbind workgroup‘‘, DP OPT STRING, NULL STRING, NULL STRING },

{
’’
winbind realm‘‘, DP OPT STRING, NULL STRING, NULL STRING },

{
’’
winbind domain type‘‘, DP OPT STRING, NULL STRING, NULL STRING },

{
’’
winbind pwd server‘‘, DP OPT STRING, NULL STRING, NULL STRING },

{
’’
winbind wins server‘‘, DP OPT STRING, NULL STRING, NULL STRING },

{
’’
winbind idmap be‘‘, DP OPT STRING, NULL STRING, NULL STRING },

{
’’
winbind refresh tickets‘‘, DP OPT BOOL, BOOL FALSE, BOOL FALSE },

{
’’
winbind uid min‘‘, DP OPT NUMBER, NULL NUMBER, NULL NUMBER },

{
’’
winbind uid max‘‘, DP OPT NUMBER, NULL NUMBER, NULL NUMBER },

{
’’
winbind gid min‘‘, DP OPT NUMBER, NULL NUMBER, NULL NUMBER },

{
’’
winbind gid max‘‘, DP OPT NUMBER, NULL NUMBER, NULL NUMBER },

{
’’
winbind temp shell‘‘, DP OPT STRING, NULL STRING, NULL STRING },

};

37

Appendix E

CD contents

sssd/

GIT snapshot of SSSD branch pzuna-winbind
0001-Winbind-provider-initial-commit.patch

Patch for SSSD master branch
ads-join.sh

Utility script for joining Linux hosts to AD domains
xzunap00.pdf

Thesis text in PDF format

38

Bibliography

[1] LDAP Authentication Using pam ldap and nss ldap.
http://www.saas.nsw.edu.au/solutions/ldap-auth-pam.html. (visited on
January 2011).

[2] NIS+ End-of-Feature (EOF) Announcement FAQ.
http://www.sun.com/software/solaris/faqs/nisplus.xml. (visited in January
2011).

[3] NIS+ to LDAP Migration in the Solaris(tm) Operating Environment.
http://www.sun.com/software/whitepapers/solaris9/nisldap.pdf. (visited in
January 2011).

[4] NT LAN Manager (NTLM) Authentication Protocol Specification.
http://msdn.microsoft.com/en-us/library/cc236701%28v=PROT.10%29.aspx.
(visited on January 2011).

[5] The GNU C Library Reference Manual.
http://netbsd.gw.com/cgi-bin/man-cgi?nsswitch.conf+5+NetBSD-current.
(visited on January 2011).

[6] Windows Services for Unix.
http://technet.microsoft.com/en-us/library/bb496506.aspx. (visited on
January 2011).

[7] Michael Adam. Samba’s New Registry Based Configuration. http://www.samba.
org/~obnox/presentations/linux-kongress-2008/lk2008-obnox.pdf. (visited
on May 2011).

[8] Russ Allbery. pam-krb5. http://www.eyrie.org/~eagle/software/pam-krb5/.
(visited on January 2011).

[9] Beekmans G. Linux From Scratch. IUniverse.com, Inc., 2000. ISBN 0-595-13765-2.

[10] Ray W. Hiltbrand. NIS+ FAQ.
http://www.eng.auburn.edu/users/rayh/solaris/NIS+_FAQ.html. (visited in
January 2011).

[11] The SCO Group. Inc. NSS Overview.
http://uw714doc.sco.com/en/SEC_admin/nssover.html. (visited on May 2011).

[12] David Collier-Brown Jay Ts, Robert Eckstein. Using Samba, 2nd Edition. O’Reilly &
Associates, 2003. ISBN 0-596-00256-4.

39

http://www.saas.nsw.edu.au/solutions/ldap-auth-pam.html
http://www.sun.com/software/solaris/faqs/nisplus.xml
http://www.sun.com/software/whitepapers/solaris9/nisldap.pdf
http://msdn.microsoft.com/en-us/library/cc236701%28v=PROT.10%29.aspx
http://netbsd.gw.com/cgi-bin/man-cgi?nsswitch.conf+5+NetBSD-current
http://technet.microsoft.com/en-us/library/bb496506.aspx
http://www.samba.org/~obnox/presentations/linux-kongress-2008/lk2008-obnox.pdf
http://www.samba.org/~obnox/presentations/linux-kongress-2008/lk2008-obnox.pdf
http://www.eyrie.org/~eagle/software/pam-krb5/
http://www.eng.auburn.edu/users/rayh/solaris/NIS+_FAQ.html
http://uw714doc.sco.com/en/SEC_admin/nssover.html

[13] Gerald Carter Jelmer Vernooij, John Terpstra. The Official Samba 3.5.x HOWTO
and Reference Guide.
http://samba.org/samba/docs/man/Samba-HOWTO-Collection/. (visited on
January 2011).

[14] Theodore Y. T’so John T. Kohl, Clifford Neuman. The Evolution of the Kerberos
Authentication System. IEEE Computer Society Press, 1994. ISBN 0-8186-4292-0.

[15] Luke Mewburn. Name Service Switch Configuration File FreeBSD Manual Page.
http://netbsd.gw.com/cgi-bin/man-cgi?nsswitch.conf+5+NetBSD-current.
(visited on January 2011).

[16] Andrew G. Morgan. The Linux-PAM Module Writers’ Guide. http://www.kernel.
org/pub/linux/libs/pam/Linux-PAM-html/old/pam_modules.html. (visited on
May 2011).

[17] Tony Northrup. Introducing Microsoft Windows 2000 Server. Microsoft Press, 1999.
ISBN 1-57231-875-9.

[18] John Policelli. Active Directory Domain Services 2008 How-To. Sams Publishing,
2009. ISBN 0-672-33045-8.

[19] Tim Potter. winbindd Manual page. http://www.manpagez.com/man/8/winbindd/.
(visited on May 2011).

[20] J. Sermersheim. RFC 4511 - LDAP: The Protocol.
http://tools.ietf.org/html/rfc4510. (visited in January 2011).

[21] Samba team. tdb Documentation. http://tdb.samba.org. (visited on May 2011).

[22] Jennifer Vesperman. Writing PAM Modules.
http://linuxdevcenter.com/pub/a/linux/2002/05/02/pam_modules.html.
(visited on May 2011).

[23] Kurt D. Zeilenga. RFC 4510 - LDAP: Technical Specification Roadmap.
http://tools.ietf.org/html/rfc4510. (visited in January 2011).

40

http://samba.org/samba/docs/man/Samba-HOWTO-Collection/
http://netbsd.gw.com/cgi-bin/man-cgi?nsswitch.conf+5+NetBSD-current
http://www.kernel.org/pub/linux/libs/pam/Linux-PAM-html/old/pam_modules.html
http://www.kernel.org/pub/linux/libs/pam/Linux-PAM-html/old/pam_modules.html
http://www.manpagez.com/man/8/winbindd/
http://tools.ietf.org/html/rfc4510
http://tdb.samba.org
http://linuxdevcenter.com/pub/a/linux/2002/05/02/pam_modules.html
http://tools.ietf.org/html/rfc4510

	Introduction
	Managing Network Accounts
	Network Information Service
	LDAP Based Solutions
	Kerberos
	FreeIPA
	Microsoft NT Directory Services
	Microsoft Active Directory Domain Services
	Interoperability

	Network Authentication on Linux
	Name Service Switch
	Pluggable Authentication Modules
	Authentication Against LDAP
	WinBind Daemon
	System Security Services Daemon

	Integrating WinBind and SSSD
	NSS and PAM responders
	Talking to WinBind
	Controlling WinBind
	Configuration

	Implementing WinBind providers
	SSSD backend framework
	Initialization
	Spawning WinBind
	ID provider
	AUTH provider

	Testing and evaluation
	Environment preparations
	Testing procedures
	Future roadmap

	Conclusion
	List of abbreviations
	Comparison of Directory Services
	Configuration samples
	Code samples
	CD contents

