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Abstrakt
Tato diplomova prace se zabyva multibiometrickypstémy, specificky potom biometrickou fuzi.

Prace popisuje biometrii oka, tedy rozpoznavardakdad sitnice a duhovky. &tejnicast tvdi
navrh a implementace biometrického systému, kiegajoZeny na rozpoznéni sitnice a duhovky.

Abstract

This diploma thesis focuses on multibiometric sysespecifically on biometric fusion. The thesis
describes eye biometrics, i.e. recognition basegttina and iris. The key part consists of desigth a
implementation specification of a biometric systeased on retina and iris recognition.
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1 Introduction

In today’s security world, biometrics is an inténeg approach. Ideally, the user interacts with
a simple interface and in a matter of secondsbitbraetric system scans the biometric, whether it is
a fingerprint or the iris of the eye, and deciddhe user is allowed to pass.

However, such systems are not perfect and theakvisys room for improvement. Recently, it
has been discovered that a viable course of tlhegubf biometrics may lie in multibiometric
systems [1], which combine more than one sourcki@hetric information for evaluation (such as
fingerprint and palm veins), unlike unibiometricsgyms, which only use one.

This thesis focuses on multibiometric systems, ifipaty on biometric fusion, which, as
the name suggests, fuses the various sourcesraétrio information in order to determine the user’s
identity. Furthermore, it focuses on ocular-basenktrics. The purpose of this thesis is to develop
a multimodal biometric system combining iris antina.

In the proceeding chapter, multibiometric systems expanded upon. The focal point is
biometric fusion and its methods. The third chaptercentred on eye biometrics, mainly on
the modalities crucial for the multimodal biometsgstem — iris and retina. Each modality and
the algorithms associated with it are discusséts irespective subchapter.

Next, the thesis focuses on the design of the matial biometric system. The architecture of
the system is detailed along with the descriptibalgorithms used for the selected modalities amd f
the fusion itself. The proceeding chapter conceésdraon the implementation of the system and
the technologies used. In the penultimate chafherresults of the developed biometric system are
presented. The conclusion of the performance aizabf the system is the primary topic of the last
chapter.



2 Multibiometric Systems

2.1 Biometrics

Before the topic of this chapter can be discusbametricsshould be introduced. The word itself
originates from Greek language and literally memessurement of life [2]. The term was coined by
an English polymath Francis Galton.

In the world of information technology, biometricefers to technologies and algorithms
employed to measure and analyze anatomic or dyn#&saiwres for security purposes such as
authentication or recognition.

Not to be confused with biometrics definition abplé@metric is a physical trait that can be
measured, recorded, and quantified [3]. Iris, frpget, face, and the veins of the hand count arsbng
such traits and are one of the most frequent biocsaised.

Figure 2.1: Fingeprint [4], iris [5], and palmprint [4] biométs.

2.2 Biometric System

According to [6], a biometric system is a systemt tineasures one or more physical characteristics,
or modalities, of an individual in order to detenmior verify their identity.
These two methods present two different princigE®iometric systems. While verification
serves to confirm a person’s identity, the tasideftification is to find that identity first. Irhé case
of the former, the user inputs their identity alawith the biometric trait. In the case of the latieis
up to the system to find the user in its databaslenaatch the supplied trait with a stored template.
The general schema of a biometric system, as @ebict Figure 2.2, is divided into two
modules:

* enrolment

« verification/identification

The user has to register with the system first.yTpr@vide their identity and a sensor captures
their biometric feature, which is then passed teature extractor for further processing. Aftervaard
the obtained feature set is stored in atemplatabdae and the user successfully completes
the enrolment phase.
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Figure 2.2: Biometric system schema.

Whenever a user is required to interact with tloengtric system (e.g. for gaining access to
a building), they undergo a similar procedure. Delieg on whether the system is set to verify or
identify, the user either specifies their identiy not. Then the sensor scans the modality and
the module proceeds with feature extraction, wiintcesses the acquired information and extracts
the features that can be compared to a templadke idatabase.

In essence, a biometric system thus comprises thesks [6]:

* sensor
» feature extractor

* template database

+ feature comparator and decision maker

The sensor consists of a user interface and a mischavhich scans biometric data. These data
are usually unrefined. In many cases (e.g. facegrdtion, iris recognition), the data are image-
based, but they need not to be limited to thateBdvmodalities are obtained by different means,
such as a person’s DNA.

Before the collected information is passed to daUre extractor, it is usually pre-processed in
order to make the desired features more saliem.cbimmon pre-processing methods involve quality
assessment, segmentation, and enhancement [6].
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Figure 2.3: Features extracted from chosen modalities [6].



Then the feature extractor processes the datagotixiy the features that contain compact and
the most prominent details tied to a person’s itient

In the case of enrolment, the feature set is staedtemplatein the template database. In
the case of verification, the corresponding tengplatobtained from the database and then compared
with the recently extracted feature set. The resgfiltthis comparison is a score of similarity.
The feature comparator is usually programmed teptcscores exceeding a certain threshold while
rejecting those below it. In the case of identtiima, the extracted features are compared to ttieeen
database and the most probable identity surpagisinipreshold is selected.

2.2.1 Measuring Performance of a Biometric System

One of the most important aspects of every biomedsistem is arguably its performance. For
the purpose of measuring performance, many meteagst. Gathered below are the most
common [8]:
» False Acceptance RatéFAR) — the rate of comparisons of a particulamietric of two
different individuals which lead to acceptanceislicomplemented by Genuine Rejection
Rate (GRR).
» False Rejection RatdFRR) — the rate of comparisons of a particulamntgtric of the same
individual which lead to rejection. It is complentet by Genuine Acceptance Rate (GAR).

» False Non-Match Rate(FNMR) — the proportion of matching decisions fraomparing
two biometric captures from the same individual §iald a non-match. Unlike with FRR,
attempts that fail before comparison are excluded.

» False Match Rate (FMR) — the proportion of matching decisions frammparing two
biometric captures from the two different individu#hat yield a match. Unlike with FAR,
attempts that fail before comparison are excluded.

* Receiver Operating Characteristic (ROC) Curve — a graph plotting the FMR against
1 - FNMR, summarizing system performance, depistdeigure 2.4.

» Equal Error Rate (EER) — the rate at which FNMR equals FMR.

There are a number of other metrics, such as leaituAcquire, Failure to Enrol, and Failure to
Match, etc.

Receiver Operating Characteristic (ROC)
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Figure 2.4:ROC Curve [9]



2.2.2 Advantages and Issues of Multibiometric Systems

The generalized model of a biometric system meetiobefore could be considered a unibiometric
system, i.e. one that uses a single source of msidéor identifying a person or verifying their
identity. In contrast to this model stands the ibidmetric system. As the name suggests,
a multibiometric system uses more than one souregidence [1].

If designed correctly, these systems can be expetde be more accurate than their
unibiometric counterparts [10]. Also, security ctsiramongst the most prominent benefits of
multibiometric systems. By using more sources dafience, the security of the system can be vastly
increased.

In the case of a unibiometric system, specificaflg that scans fingerprints, it might be easy to
spoof the sensor with alatent fingerprint and beaen very intricate liveness detection
algorithms [11]. The deployment of a multibiometsigstem can effectively prevent this by requiring
another modality. One biometric trait might be hambugh for a malefactor to obtain, but any
surplus traits will present them with an additiopabblem that will greatly increase the difficulty
their endeavour.

Multibiometric systems can also help with situasoim which unibiometrics systems are
considered discriminative. If an individual lackgarticular trait (e.g. has missing fingers in thse
of fingerprints), or the trait might be severelyfaened that the algorithm cannot acquire it (e.qg.
cataract in the case of iris recognition), they lmhige able to provide another biometric and thus
the system will allow them to enrol.

Another advantage lies in the fact that some bidosgtsuch as voice, can be marred by
a noisy data signal. Multibiometric systems caneéynthis inconvenience by using a supplementary
algorithm or a different modality.

Multibiometric systems can operate faster in emunents that necessitate a large database.
Using more than one biometric trait as searchrait@ database that contains thousands of entries
might be traversed more efficiently. For examplege arait would refine the list of potential
candidates for an identity match, while another idog¢ then used to determine the identity from this
reduced list [12].

That being said, multibiometric systems are noheut a disadvantage. There are a number of
methods of implementing such a system and somernpeigoorer than others with certain biometrics
while others perform better. It is therefore impoittto contemplate the aims of the system and desig
it accordingly.

A multibiometric system usually brings forth theegtion of additional cost. Not only does
the system have to accommodate additional resowuebk as a sensor or achip for a surplus
algorithm, but the cost of fusion of the acquiredadhas to be taken into account as well. Also, any
new biometric trait required from the user mightiga them significant inconvenience. The question
that arises from these facts is whether the costsried by the aforementioned are outweighed by
the overall benefits of the system [1].

While designing a multibiometric system, severakdes have to be considered. Besides cost,
the following should be mentioned: determining sbarces of biometric information, the moment of
fusing the sources, and the method of fusing.



2.2.3 Sources of Multibiometric Evidence

Depending on where the multiple sources of bioroetfiormation originate, multibiometric systems
can be classified into six categories [1]:

1. multi-sensor systems

2. multi-algorithm systems
3. multi-instance systems
4. multi-sample systems
5. multimodal systems
6. hybrid systems
Multiple sensors
Optical Multispactral

Multiple representations . Multiple traits

Muitibiornetric

SOurces

Minutiae Texture Iris Face

Multiple instances Multiple samples

. -

Figure 2.5: Sources of biometric information in multibiometsgstems [13].

Multi-sensorsystems capture a specific biometric trait with tipl¢ sensors, aiming to acquire
distinct information about it. For example, faceghti be chosen as the desired modality. For
capturing, aregular camera might be used togethtr a thermal infrared one. This particular
combination of sensors has been demonstratedaa baprovement over a regular unibiometric face
recognition system [14].

Incorporating a new sensor is tied to additionadtgobut it also supplies the system with
additional data regarding the selected modalityiciwltan assist image pre-processing performance
and thus achieve clearer and more noise-free sgdif}.



Multi-algorithm systems represent another group of multibiometyistems. In this model,
the system works with a single piece of biometnfoimation provided by the sensor. Instead of
duplicity in the capturing section, there may be tw more algorithms integrated.

An algorithm is developed only once and is deplowtti every system. Therefore, additional
finances are expended only once. The cost of gsgem is significantly reduced in comparison to
the previous variant, where an additional sensotresses the necessary spending tied to
the production of each device. However, it showditentioned that a new algorithm might mandate
surplus computational power.

Aninstance of a multiple algorithm system is prasd in [16], where the authors have
implemented three face recognition algorithms, rgmealman Filtering, Block-Independent
Component Analysis, and discrete cosine transfooupled with Fisher’s linear discriminant.
According to the results of the authors’ endeavthig particular approach outperforms other face
recognition approaches.

Multi-instance systems rely on using multiple instances of thmesdiometric information.
Examples of this usage include fingerprints of inflagers of both hands (depicted in Figure 2.5),
irises of both eyes, or retinas of both eyes.

Unlike the multi-sensor variant, this normally doed require an additional sensor, and unlike
the multi-algorithm variant, this does not requae additional algorithm. Therefore, the cost of
designing and implementing this kind of systemvisrelower in most cases.

However, certain situations demand the introduotiba secondary sensor (or sensors), such as
when concurrent acquisition of biometric traitsmieded. Obtaining the fingerprints of every finger
simultaneously serves as an example.

The multibiometric option is used mainly in systewigh large databases. It is also useful in
situations where a single instance of the biomesimot sufficient. Two irises can offer better
biometric details if the individual's eyes are alsd too much by eyelids. Therefore, a multi-
instance system can mitigate the problem of urfaatsry biometric information.

Multi-samplesystems usually employ one sensor that captusegyie biometric several times
to ameliorate the issues that stem from noise arétion occurring in the biometric. Providing
multiple samples to the system can result in areteand more precise interpretation of the evatliate
trait.

The system might photograph the user from variongles and then proceed to fuse
the gathered data, or it might scan the user'sefimgnt twice and merge the images into one,
possibly negating the deficiencies of the separatbes, such as missing or blurred regions of
the fingerprint.

Multimodal systems combine two or more biometric traits. Eoample, the subject of this
thesis is a multimodal biometric system that corebiriris and retinal recognition. Obviously,
the combinations of modalities are abundant, thoagbtystem scarcely uses more than three
modalities at once due to practical reasons.

While the cost of these systems is higher in comparto the previously mentioned variants
due to the need for more sensors, interfaces, utitams, it can be compensated by increased
efficiency, as evidenced in a particular face apidesrecognition biometric system [17].

Hybrid systems represent a specific category which rdfersystems incorporating two or
more of the aforementioned groups. In[18], fortanse, the authors demonstrate a system that
extracts face as well as fingerprint features. Beahis then analyzed by three distinct algorishm

This particular variation of multibiometric systeris a subject of research and offers viable
possibilities in the foreseeable future [19].



2.2.4 Biometric Fusion

An important aspect of a multibiometric systemhis tusion of the gathered information. At certain

point during the recognition routine, it is necegda merge the data to a single entity before
proceeding further.

Digital Input Opinion .
Signal Features (Score) Decision

Sensor Feature Comparison Decision
Extraction P Maker

A

Database

Figure 2.6: Biometric system model.

This in itself poses a significant challenge in dasigning phase of multibiometric system
development. As shown in Figure 2.6, there are $eyparate operations that the system performs. At
each, fusion can generally be introduced in théesys

It is worth noting that as the data advance throtighsystem, their amount is compressed
along the way. However, this does not necessariply that the sooner the fusion occurs, the better
the results.

While the data at sensor level are arguably ofelarguantity than those at feature level,
the latter have usually been stripped of superiutetails and noise. On the other hand, it is ptessi
that the feature extraction module could have preduspecious results which could have been
remedied at sensor level otherwise.

The classification of biometric fusion is depictazlow:

| Biometric Fusion |

Y Y

Prior to Comparison ‘ After Comparison

Y Y Y Y Y

Feature Level

Sensor Level ’

‘ Score Level ’ ‘ Rank Level ’ ‘Decision Level

Figure 2.7: Level of biometric fusion.

Biometric fusion is broadly divided into two sect®— fusion before comparison and after
comparison. The reason for this classification inates from the fact that after comparison,

the amount of information available to the systestrdases by a significant margin, which is
commonly far greater than in the other cases [1].
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2.2.5 Sensor-level Fusion

The first possibility of performing biometric fusiois present at sensor level. It involves joining
multiple sources of raw evidence prior to extragtiieatures. This can encompass text, images,
videos, etc.

At this level, the obtained data contain the mo&tirmation available. As such, these data are
very likely to be marred by noise. However, this ¢@ remedied by a carefully constructed fusion
algorithm.

In image processing, a particular method of fussoemployed, often referred to amsaicing
In this process, a composite image is constructemh foverlapping component images [21]. This
technique is used in biometrics to improve perforogaof a biometric system.

Mosaicing can enhance multi-sample systems that d@msame biometric several times [1].
For example, many consecutive fingerprint captungght reveal more detail of the ridge structure
and present more salient information about the ti@au

Mosaicing is particularly useful for devices thanmmoy sweeping technique to obtain
a person’s fingerprint [22]. Each image produced tye sensor represents asegment of
the fingerprint, which then needs to be joined wfith rest.

The technique of mosaicing can be used in facegregon as evidenced in [23]. First,
a number of cameras acquired the photographs dateefrom distinct angles. The authors attached
markers of different colours to the face in orderhelp identify the corresponding points in each
picture through colour segmentation. Afterwardsedir transformations were carried out to create
a mosaic of the face.

Another usage of sensor-level fusion can also beddn face recognition, in which several
two-dimensional images captured at various angkes produce a three-dimensional model of
the face.

Sensor-level fusion does not limit itself to needsensors of the same type or sensors scanning
the same biometric. An example is displayed in f@g@.8. In this arrangement, there are two
sensors — one capturing the user's face, anottelizing the user by sound. The information
extracted from the sensors is then fused to prawitteo-dimensional image.

Sound Localization Image Color Image

Fused Image

Figure 2.8: Fusion based on sound localization and face capady.
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This implies that the user is required to be speakn order for the biometric system to work
correctly. Also, both sensors are required to ls#red on a common area of interest in order todavoi
attributing biometric information falsely, espetyaf there are several people present in range.

Besides one-time authorization, this system cowdddeployed for speaker recognition or
continuous scanning useful in surveillance efforts.

Voice recognition can benefit from sensor-levelidgnsas well. The quality of captured voice
samples of an individual depends not only on trediguof the sensor device but also on the sound
generated in the background. Most superfluous soane deemed sources of noise and therefore,
their reduction is a desirable.

This can be achieved by the deployment of two orenmaicrophone sensors. The simultaneous
input signals can be used to cancel the noise oh emmponent and help with blind source
separation [25].

2.2.6 Feature-level Fusion

In feature-level fusion, sources of evidence amsobdated after features have been extracted from
their respective samples. Following this, fuseduiea data are then passed to feature comparator
module and the system proceeds as if dealing wsthgle source of biometric evidence.

Feature

Sample 1—> -
Extraction 1

N Non Match
Feature . ..
- Comparison Decision
Fusion
A Score Match

Feature

Sample 2—> -
Extraction 2

Templates

Figure 2.9: Schema of a biometric system using feature-laygbh.

Feature sets of distinct modalities, or features s#t identical modalities that have been
extracted by different algorithms pose a challdiog@umerous reasons [1]:

1. It may be a problem to fuse two chosen modalitiehe basis on which they should be
fused is not known. In these cases, it may beaditfito produce a fused set of features that
would satisfy the demands on improvement over biomietric system.

2. The previous might be exacerbated by the situationwhich feature sets of different
modalities are not compatible. This occurs in thsecof fingerprint minutiae and eigen-
coefficients of face. The former are varied in lgmgvhile the latter are a fixed-length set
of features.

3. Considering the usage of fixed-length sets of femtua superset of the separate sets might
be created by concatenation. However, this mayym®én undesirable effect of curse-of-
dimensionality, which states that an increasing lmemof dimensions does not necessarily
ensure higher performance of a system, but rathgrades it [26].
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In the case of concatenation, the process of fedtwel fusion of distinct modalities or
algorithms can undergo two stage$eature normalizatiorandfeature selectior- in order to fuse
the multiple sources of biometric evidence [27]slhecessary to denote feature veckoendY to be
fused:

X ={% %.... %}, X R,
Y={¥% Y% ¥h W R

Separately, these feature vectors would be utilizedunibiometric system and compared
against a template. Combined, they need to be mi¢oge final feature vecta before such
a comparison. In order to achieve this, the disme@s of vectorX andY in dimension and
distribution have to be managed first. This staigh® fusing algorithm is called feature
normalization

The objective of feature normalization is to attex location and the scale of a feature vector
so that the contribution of each component to traparison process is comparable [28]. It also
ameliorates the issue of outlying values.

There are several techniques of feature normadizator example thenin-max techniqudt
definesx’ as follows:

(2.1)

L x—min(F,)
~ max(F, )- minE,)

(2.2)

whereF, is a function which generatgsmin(F) is the minimum of alk values, angnax(F) is
the maximum value of all values. The min-max technique is efficient whestinimum and
maximum are available before the calculation itdéthat is not the case, however, it may be
possible to acquire this information from outlyivajues.

Another technique, which is also relatively indiffat to noise, is based on median. It defines
X" accordingly:

= x—mediarf F)
mediarf] x- mediaf §|)

(2.3)

The denominator is called tivedian Absolute DeviatiotWhile this function is mostly
insensitive to outliers due to the nature of megiigreffectiveness might not be adequate in saoat
where the distribution of the score is not Gausdiacause of the poor estimation of location and
scale by median.

By applying either technique (or any other not rnwred), the altered feature vectdfsandY’
will be obtained:

X'={X, X,...., X, }
Y'={Yy Yoo Yo}

Then, the next step towards fusiXigandY’ vectors is feature selection. Taking the curse-of-
dimensionality issue into account, a simple contien may not yield the most viable outcome.
Additionally, some values acquired can be damagetbise. Therefore, a fruitful approach might lie
in selecting a minimized feature set of diz&vherek < (m + n), in order to produce satisfactory
results.

(2.4)
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Chosen solutions of this problem could be [29]:

* Sequential forward selectipm which we start with an empty set and the nsogtificant
features are added iteratively.

* Sequential backward selectiom, which we start with the full set and the lesgmnificant
features are deleted iteratively.

» Sequential forward floating searcWwhich combines the previous methods.

Every approach mentioned requires criteria thaindethe significance of each feature value.
There are several criteria, many of which are basedhe metrics in Chapter 2.2.1. For example,
the Equal Error Rate can be used, although it doesummarize the performance of all thresholds.
One option of defining an objective function coldd the average of GAR corresponding to four
different FARs [27].

The final vectoiZ, which represents the fused vectdrandy, is the result of feature selection.

There are many studies which elaborate on the wifieature-level fusion. For example, there
exists a biometric system fusing face recognitimmsed on Scale Invariant Feature Transform, and
fingerprint verification, based on minutiae [30hvariance to rotation and translation of the SIFT
features and keypoint descriptors around minutgtiom ensure the compatibility of the two sets.

The feature sets are subsequently concatenatedotad@ a single fused set. Further data
reduction is achieved with three techniques (K-msealustering neighbourhood eliminatiorand
specific regions selection).

Another system which incorporates feature-leveliciusis proposed in[31]. The authors
combined fingerprints and finger veins biometris feature extraction technique of both biometric
traits, they chose Gabor filter. To fuse thesddrahe authors utilized canonical correlation gsial
(proposed by Hotelling as a statistical tool foentfying linear relationships between two sets of
variables [32]). According to theresults of theeaarch, it is arobust method of personal
identification and could be further expanded updth wther modalities of the finger.

A third example of feature-level fusion is demoat#d with merging face and palmprint traits
for small sample biometric recognition [33]. Thelars used Gabor filter to extract features as.well
In order to fuse the biometrics, they joined thetdiee sets vertically and normalized the values by
using mean values. Afterwards, with nonlinear disicration analysis in Kernel space they created
the resulting feature vector. Following experimewith the system proved this to be an efficient
solution to small sample biometric recognition.

2.2.7 Score-level Fusion

At score level, the data are fused after the featurave been examined and a score has been
produced. It is relatively undemanding to combihe scores generated at this level. Additionally,
the score data contain salient information aboatiriput pattern, thus fusion at score level is also
the most frequently employed approach in multibitiioesystems.
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Iris ST Alice: 0.9
Sample —> c > Bob: 0.4
__Comparafor | Charlie: 0.6 Aice. 081
Fingerprint Fnaerornt ) Alice: 0.9 Charlie: 0.24
Sample —> Clngerprlnt > Bob: 0.6
__Comparator | Charlie: 0.4

Figure 2.10: Example of biometric fusion at score level.

This type of fusion could be divided into threeegadries [1]:
* density-based
» transformation-based

+ classifier-based

2.2.7.1 Normalization

Individual comparison units might not produce hoewaus data. For example, the data may differ in
their range, representation, and probability distiion. Therefore, it is necessary to addressishise
and normalize the comparison outputs.

One of the methods of score normalization is cafledimal scaling.This is usually applied

when the scores are on a logarithmic scale:

St

nsg =—L (2.5)
b0t
wheren, =log,, max’,§ ands;is thei" score produced by t§& comparator.

In case of problems with outlying values or unetaih distribution, the median and median
absolute deviation can be used. Unfortunately, thethod does not perform well when score
distribution is not Gaussian.

s, — mediaf}, s

mediarl, | $- medigh |4

ns, (2.6)

Tanh-estimator§34] present arobust and highly efficient way séore normalization.

The function is defined as
s -
ns =L tann 0.0 3 Fen || (2.7)
2 Ocn

whereugy is the mean andgy is the standard deviation estimate given by Hangséimators and
their parameters, b, c. The estimators are defined by the following fimmct
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u O<|ul<a
a*sigr{ y as|u|<b
u) = - 2.8
yu a*sigr(l)*(lul) b<|u|<sc (28)
c-b
0 c< |ul
where
+1 if u=
sign(u) = T u O (2.9)
-1 otherwise

Tanh-estimators significantly reduce the influenoé the scores at the tail section of
distribution and are not sensitive to outlying veduHowever, if there are many values in the tail,
the method might not prove efficient. In order thiave the best results, the parameters have to be
selected carefully.

2.2.7.2 Theoretical Framework

Score-level fusion was discussed in length in [38], which the authors define a theoretical
framework for combining scores of distinct compainis.

Given the problem of classifying an input patt&rinto one ofM possible classesd, w,,...,
ww), let there beR classifiers, each representing a given biometitepn by a specific measurement
vector. Denote the vector used by ifeclassifier by x. Each classw, is represented by
the probability density functiop(x; | m,) and its probability i$(wy).

According to Bayesian theory, given measuremgnis= 1,...,R, and the patterX, should be
assigned to class; so that the a posteriori probability of that intetation is maximum:

assign X- « if
M (2.10)
Pl@|X,....% )2 rﬂ?xP@ IX ... %

where k = 1..M. The a posteriori probabilitieB(a, | X ,...,%; ) can be expressed using Bayes
theorem as follows:

P(X, - % W )P@y)
P(X,.. %)

wherep(xy,...Xg) is the unconditional measurement joint probaptiénsity. It is defined in terms of
conditional measurement distributions as

P(ad [ X, %)= (2.11)

PXu %)= Y, PO % 9P @12
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2.2.7.3 Transformation-based Fusion

The previous definitions can be used to deducesrtde score-level fusion, where the number of
classedM can be reduced to two, because there are onlytyipes of classes — genuine users and
impostors. Namely:

e product rule

e sumrule
e maxrule
e minrule

 median rule

Theproduct rule is based on the assumption that the feature remiE®Ns x...,.Xz are
statistically independent. It can be denoted adoghgas

assign X- aw |if
i R (2.13)
ﬂ P(w | %)z ” Pl [ ), k=1,...M

| |

The issue with the product rule is that it is sévesito errors. If merely one classifier yields
a probability close to zero, the resulting prodadhen also lowered to a near-zero value andhbig
lead to an incorrect classification decision.

Thesum ruleis based on the assumption that the a posterabgbilities do not deviate
notably from a priori probabilities, although itigrth noting that this assumption might not always
be true. The rule is resistant to errors in thamedion of a posteriori probabilities.

It can be defined as

assign X- «w if

> P@ )23 P@ | ), k=10 (2.14)

i=1
Themax ruleestimates the mean of the a posteriori probadslitiy their maximum value as
follows:

assign X- aw if

R R (2.15)
m_al1xP(a)r |% )= rr]?xP@ X ). k= 1,..M
Themin ruleis the exact opposite of the max rule and canefieedd accordingly:
assign X- a if
(2.16)

minP(@ %)= MinP@, [x), k= 1...M

If a priori probabilities are assumed to be eqtled,sum rule can be regarded as the average of
the a posteriori probabilities. However, if one tife classifiers produces an outlying value,
the average will be affected and this may resulhaorrect decision. This can be remedied by using
the median, leading to tmeedian rule

assign X- w if
R R (2.17)
meizgian Rw | X= rrilgldian@ | x *1,.. 1
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2.2.7.4 Density-based Fusion

The next technique idensity-basedn this case, it is necessary to defthg, which denotes genuine
comparison scores an8y, which denotes impostor comparison scores. Alsb, Ag{s) be
the distribution function o%;e, andfy.{S) be the corresponding density [1]:

P(Sens 9= Rl 3=[ fo(¥d (2.18)

Accordingly, Fimp(s) is the distribution function &, andfiny(S) is the corresponding density
function:

P(Sm< 9= Fu(3=] f(¥d (2.19)

The densitiedg{S) and fi,,(S) represent the probability density functions oé domparison
score. They are usually not known beforehand amve bha be approximated from a training set of
genuine and impostor classes. The estimation catiobe either by parametric or non-parametric
methods [36].

In the case of the former, the form of the functierknown, but the parameters have to be
estimated from the training data. In comparisos,|#iiter do not assume any shape of the function,
but rather rely on the data.

Because of the limited availability of training datit is imperative to select the density
estimation method carefully.

However, in certain situations, the data are socedhat estimation is not possible. Under such
conditions, it is far more viable to combine conipan scores directly without converting them into
a posteriori probabilities.

2.2.7.5 Classifier-based Fusion

The last approach islassifier-basedusion. In this technique, a pattern classifieuged to learn
the relationship between the score vector and tipesteriori probabilities of the genuine and
impostor classes [36].

In this method, the vectors are split into two gatées based on the aforementioned classes.
Given atraining set, the pattern classifier deyiveboundary between the two classes. Because
the classifier is able to learn the decision bompndegardless of the format of the score vectdrsy t
are not required to be homogenous [1]. With thiprapch, there are several models on which
the classifiers can be based, including but natdidto [37]:

» k-nearest neighbour
» decision tree

» logistic regression

* linear discriminant

For example, the authors of [38] implemented a leimim system fusing data on score level
with decision tree and linear discriminate class#fi They combined fingerprint, face, and hand
geometry modalities.
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2.2.8 Rank-level Fusion

It should be noted that rank-level fusion is ontplacable in biometric systems that are set totifien
a person, not to verify their identity. Howeverisittill one of the more frequent levels of fusion

After processing the feature vector and acquirimg domparison score, the set of probable
matching identities can be sorted in descendingroechd thus create a ranked list of candidate
identities.

The aim of this level of fusion is to merge thekmproduced by individual biometric modules
in order to gain a consolidated list of ranks facte identity. While ranks provide more information
than decisions, they reveal less than scores.

However, there is a significant advantage in rauel fusion in comparison to score-level
fusion. Ranks are comparable directly and thereftmenot need to be normalized. As a result,
biometric systems using this level of fusion areegally easier to design.

Given M of users enrolled in a database &hdf comparators, let, be the rank assigned to
userk by thej"™ comparatorj = 1,...,Randk = 1,...,M. Lets, be a statistic computed for usesuch
that the user with the lowest value 2ifs assigned the highest consensus rank. Therg #rerthree
methods to compute the statitif39]:

* highest ranking method
* Borda count method
* logistic regression method

In thehighest ranking metheeach user is assigned the best of the ranks dechpy different

comparators. The statistic for useran thus be defined as
R
S = rrl1:|ln Mk (2.20)

If the resulting statistics contain ties, they egsolved randomly. The highest ranking method
is good for combining a small number of classifieemch of which specializes on inputs of
a particular type. It is especially useful in sttaas where few classifiers (comparators) are atbdel
yet there are several classes (users). In casesd#rébeing ranked high only once, it is still @ble
that they will be assigned a high rank after fusion the other hand, this method is not very pecatti
in situations involving a large number of classHie

TheBorda Count methods a generalization of majority voting. It calcgs the sum of
the ranks in order to deduce the final rank.

R
S = jZ::1 M (2.21)

It is simple to implement the Borda count method &m addition, it does not necessitate
training. However, because it considers that tmepavators perform equally and the ranks are
statistically independent, it does not take intecamt the differences of individual comparators.
Therefore, in situations where certain comparappmide more accurate results than others, this
method may not be suitable.

Logistic regressioncan be obtained by modifying the Borda count methnd assigning
weights to the ranks produced by each comparatwtefore, it deals with the issue of difference of
comparator quality.

Mo

1
iy

SERTS (2.22)

J
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The weight denoted by, is based on logistic regression [40]. Unlike theddocount method,
it requires training before it can efficiently deeithe weights.

The aforementioned methods are gathered in TahleA? first, comparators assign the ranks
to the enrolled users separately. The acquiredsrank& then fused by respective methods, yielding
varying results.

Separate Comparators Highest Rank Borda Count Lx?ft(')(f;?(:gr:eg?'zon
Comparator Comparator] Fused Reordered Fused Reordered Fused Reordered
User 1 2 Score Rank Score Rank Score Rank
Alice 2 4 2 3 6 3 2.4 2
Bob 3 1 1 1 4 2 2.6 3
Clara 1 2 1 2 3 1 1.2 1
David 4 3 3 4 7 4 3.8 4
Table 2.1:Example of rank-level fusion methods.
2.2.9 Decision-level Fusion

Decision-level fusion is particularly useful in w@tions where two or more finished biometric
systems are available and they need to be fuserk dften than not, decision-level fusion is theyonl
option in this case. There are several ways ohfudata at this point [1]:

* AND/OR rules

e majority voting

» weighted majority voting

» Bayesian decision fusion

» Dempster-Shafer theory of evidence

» Behaviour knowledge space

The easiest method in a multibiometric system infiecation mode is to implememAND/OR
rules The result of an AND rule is a match when all plagts of the system decide that the input and
the template match. In the case of an OR rule, onlg affirmative output is required to declare
the user as genuine.

When AND rule is effected, the FAR of the systemlawer than the FAR of individual
comparators, while the FRR is higher than the FRiRdividual comparators. On the contrary, OR
rule produces higher FAR and lower FRR than sepa@nparators.

One of the main downsides of AND/OR rules methodhet if one of the comparators has
a significantly higher EER, this method may actydikcrease the performance of the multibiometric
system [41].

Majority votingis one the most frequent techniques of decisivatfsion [1]. In this method,
the input data are proclaimed to match with thatitieon which a majority of the comparators agree.
If there is no majority consensus on the user'stitle the resulting decision is a rejection.

Because standard majority voting approach doesappty weights, it does not take into
account the possible inequality of individual comgtars. However, it is arelatively easy and
effective method that does not need training andsdoot require a priori knowledge about
the comparators. Although it is a common methodl@fision-level fusion, there are limits to its
accuracy [42].
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Weighted majority votingolves the aforementioned issue of imbalanced acaqrs. In order
to facilitate weighting, the labels output by theividual comparators are converted to degrees of
support for theM classes accordingly [1]:

1 if output of the™ matcher is cla
. :{ P 9 8 (2.23)

0 otherwise

wherej = 1,...,Randk = 1,..., M. The discriminant function for class computed using weighted
voting is

R
g =D Ws, (2.24)
j=1

wherew, is the weight assigned to tffecomparator.

Bayesian decision fusioconverts the decisions of respective classifierprobability values.
First, a confusion matrix has to be generated f@ryeclassifier by using a training set. The Bayes
rule for this situation can be defined as follows:

P(cle) P@,) .25
P(Y) |

P(a [c)=

wherem,denotes classes f&r=1,..., M. Because the denominator is independent of ttss cilacan
be omitted, resulting in the discriminant

9. = P(cla,) Aaw,) (2.26)

This method selects the class with the largestidigtant value. The accuracy of this fusion
rule is considered robust [43].

Dempster-Shafer theory of eviderassigns a level of belief to uncertain events.[#4% more
flexible than using probabilities and useful wherormation concerning the decision problem is
incomplete.

To compute the belief functions, a decision peofitatrix has to be calculated [1]. It is given
by

Sa o Sk o S

DP=ls; .. §x - Sy (2.27)

Si o Sk v S

wheresis the degree of support defined in Equation 2E2ém the matrix, this method calculates
the belief values and the template with the higkiakte is matched with the user.

Behaviour knowledge spaagses a training data set and alookup table irerotd map
the decisions of multiple classifiers to a singhe 0Also, a vector of classifier decisians [cy,...,Cr]
is used. This vector represents a point inRkBmensional space, hamed behaviour knowledge space.
These points are then sorted into bins.

During the training phase, the decision with thghbist number of samples is estimated. During
the verification phase, atest pattern is passecalassifiers and a decision vector is retrieved.
Afterwards, the corresponding bin is identifiedthkre is more than one possible result in the bin,
the decision is chosen at random [1].
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3 Eye Biometrics

The eye is a sensory organ, but besides its prirhamgtion, it can also serve another particular
purpose. Because of its complex structure and ditails of its parts, it is a viable candidate for
biometric recognition.

Fovea

Pupil

Lens ——— Ins

Figure 3.1: Eye anatomy [46].

There are three main sources of biometric inforomathat have been extensively studied and
are used in biometric systems [6]:

o iris

* retina

e conjunctival vasculature

While iris and retina are one of the most commaniatric modalities and are proved to be
efficient, conjunctival vasculature does not reacich levels of security and therefore is not as
frequent a modality as the other two [45].

3.1 lris

Annular in shape, theiris is located between tngilpand the sclera. Its purpose is to limit
the amount of light entering the eye. It does sadmtrolling the size and the diameter of the pupil
case of too much light, the iris expands and sBrthke pupil, while doing the exact opposite if tigh
insufficient.

Anatomically, the iris is a multilayered structuteconsists of pigmented fibrovascular tissue,
called stromg and pigmented epithelial cells. The stroma iachid to sphincter muscles that are
responsible for pupil contraction in circular mati@and dilator muscles that are responsible for
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pulling the iris radially in order to enlarge thepil. The back layer contains epithelial cells thet
rich in pigment and are impassable by light [6].

The pigment that gives the iris its unique colaucalledmelanin The stroma, muscles, and
border layers comprise the foremost visible portbthe iris. This portion is divided into the ceait
pupilary section and the surrounding ciliary sattidbhese sections are separated by a meandering
circular ridgeline called theollarette

In close proximity of the collarette, there are ¢j&p structures, calledrypts which allow
easy transmission of fluids in the iris for theoses of dilation and contraction. In the area
delimited by the pigment frill (the boundary betwethe pupil and the iris) and the collarette, there
are spoke-shaped formations caltadial furrows

crypts

radial furrows

pigment frill

pupilary area

ciliary area

collarette

Figure 3.2: Iris detail [47].

The iris provides a detailed texture that is vemerse across human population. While some
biometric traits change with age, the iris stopgetigping around the age of two. In the case of $win
iris recognition has an advantage over face retiogniMonozygotic twins may be nigh identical in
terms of facial features, but their irises are hidiiely to display several differences in texture

The colour of the iris depends on the level of pgmation present. It is defined by the number
of melanin granules, which is genetically deterrdinelowever, there are other factors that affect
the colour, such as the cellular density of thers# [6]. It is worth noting that the hue of thesidoes
not bear any significance in iris recognition. Tmportant source of information in this modality is
the texture detail.

3.1.1 Advantages and Disadvantages

Iris scanning is considered unintrusive becauseetli® no direct contact between the user and
the sensor. It is non-invasive, unlike retinal stag. People wearing contact lenses or glasses
generally do not pose any difficulty to the sensor.

Iris recognition is relatively fast because of stmall template. It also offers a broad level of
scalability. As such, this modality is frequentlged with large-scale applications, for example in
ATMs.

Because the iris is relatively small, it is not wesuitable for long distance recognition.
Additionally, theiris can be obscured by the ey®liand eyelashes, which can complicate
the acquisition of the biometric trait.
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Iris recognition can be discriminative, as there amumber of illnesses, especially those that
come with age (e.g. cataracts), which can sevelieiynish the ability of a person to be enrolled in
the database.

While the intrusiveness of iris scanning is minipthk user is still required to cooperate with
the system in order to enrol and authenticate. Eedpe non-invasiveness of iris recognition, some
people may be reluctant to cooperate because iofi¢élae of damaging their eye.

Although iris recognition is considered reliabledats performance places it amongst the best
biometrics, there are concerns as to its secufity.example, it may be possible to spoof some iris
sensors by wearing a contact lens designed fop#riscular purpose.

Also, the costs of developing and maintaining ar@tric system based on iris recognition can
prove very expensive.

3.1.2 Iris Recognition

Iris recognition follows the general schema of batne systems that was introduced earlier. For
the purposes of simplicity, a system in authernitcamode will be taken into account. The goal of
such a system is to compare two images of irisesdar to provide a final comparison score.

The system can be divided into modules:

* image acquisition
* segmentation
* normalization
» feature extraction

e comparison

Enrolment
Iris Image . |Localization &| Image .| Feature Enrolled
Acquisition| [Normalization| ~|Enhancement| | extraction Database

e R ( APt
R S g
Iris Image |Localization &| Image | Feature
Acquisition| "|Normalization| ~[Enhancement| [ extraction Compare
Authentication Match

Score

Figure 3.3: Iris recognition system [6].
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3.1.2.1 Acquisition

At first, the system proceeds through acquisitimge. Usually, a camera that is sensitive to near-
infrared light (700nm — 900nm range of the infrd-igpectrum) is used because the iris pigment,
melanin, absorbs the majority of this electromaignsignal. Therefore, the image contains salient
information about the iris texture.

While visible light might be used to acquire images some cases, it might hamper
the efficiency of the resulting system due to tbmpromise in quality. Because the iris can be of
distinct colour, a visible-light camera might preduwarying results.

Also, near-infrared light has a significant advgetaover visible light — it is not deemed
intrusive, because human eyes are not equippededognize this portion of electromagnetic
spectrum. The illumination is thus nigh impercelgtito the user.

To obtain the image, most sensors require a cdaa@l of user cooperation. The user is asked
to position themselves in front of the camera ideorfor it to be able to acquire the best possible
images.

The majority of iris recognition systems work wihsingle acquired image. Although some
obtain more and discard everything besides thenagthethe best quality, it is also possible to acgui
two or more images.

Usually, iris recognition algorithms work with imeg with at least 100 pixels across the iris in
order to get enough detail. However, there areraéwssues that might diminish the salience of
the iris texture, such as partially closed eyeliegelashes obscuring the iris, inadequate lighting
conditions, or excessively constricted or dilategbip Fortunately, most of these problems can be
avoided with user cooperation [6].

In addition, there are illnesses and conditionsciitian severely hamper, if not even prevent,
the enrolment of a user. Such conditions incluéegbma and cataract.

Glaucoma is the name for a group of ocular disardeat arise from ocular nerve damage
primarily caused by abnormal pressure in the eyeile\glaucoma is generally connected with vision
impairment, not all types of glaucoma damage thetire of the iris.

Cataract is aterm for clouding of the lens. Itcemused mainly by aging and considerably
degrades vision quality. Also, its effects sigrafitly alter the structure of the pupil and iris. In
advanced stages, the iris might become almost igteak

Both conditions are displayed in Figure 3.4.

Figure 3.4: Eye diseases (acute glaucoma — left, cataraght) impairing the possibility of
enrolment. [48, 49]
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Most cameras used for iris recognition are desigonethpture the image from close distance.
For this purpose, there are several commercialngzaravailable. However, systems that scan irises
of moving people from the distance exist as well.

This kind of iris biometric usage presents a cagrsitlle challenge, as there are several
problems that need to be solved. This technologgtiisunder development and requires a certain
level of user cooperation.

Unlike in the case of face recognition, which iemed the primary biometric when moving
individuals are to be scanned, the cameras nebd gpecially equipped. As mentioned above, near-
infrared illumination is required. Because the &ye relatively small object, the camera has to be
adjusted accordingly and has to contain a lens lartf focal length.

3.1.2.2 Segmentation

Once the image of the eye is acquired, the systanpooceed with segmentation. Unfortunately, this
part of processing is complicated for numerousaes$6]. The iris texture exhibits a great degree o
irregularity and varies substantially from persoipérson.

The iris can be considered stochastic texture willye-like features randomly distributed
across its surface. Because of this, it is diffitalmodel the iris based on its visual appeardace
localization.

As mentioned before, the iris is annular in shaeiimited by the pupil on the inner boundary,
and the sclera and eyelids on its outer boundarysdme cases, the change of intensity along
the boundaries, especially the outer one, might lbetvery prominent. Wrong estimation of
the boundaries can lead to incorrect localizatibthe iris and thus significantly skew the companis
at the end of the entire recognition process.

Furthermore, eyelids might drastically reduce tiséble portion of theiris. They create
an additional, irregular border that can diminist éfficiency of a segmentation algorithm. Eyelashe
occluding the iris also contribute to this probleas,they can be much harder to detect, depending on
the contrast and quality of the acquired image.

Most common approaches to iris segmentation aredoas boundary detection. They rely on
two facts:

» The iris and the pupil can be estimated with cgcle

* The change of intensity along the boundaries isq@tible enough.

There are two main algorithms that are associatddsggmentation of the iris [6]:
» integro-differential operator

* geodesic active contours

Theintegro-differential operators defined as follows

|
max( X, ,Y, *Gg (r )*%@rlxojyo% d% (3.1)

where | is the input imagel(x, y) is the pixel intensity. The image is convoluteithwa radial

Gaussian filteiG,(r) of scales and radius. The purpose of the filter is to smooth the imagerder
to blur the crypts, furrows, and other artefactsfbin the structure of the iris.
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After filtering, the operator calculates the irgityn gradient of the pixels located on
the circumference of the circle defined by radiasnd centre aix{, y,). For each pixel, the gradient is
computed along the line connecting it to the ceotrhe circle (denoted by the differential operato

Then, the sum of the gradient values, normalizedheyfactor 2r, is calculated, which is
denoted by the integral operator. The parametets Yo, that result in the maximum sum are chosen
as the circular contour of the pupil boundary.

The operator is then used to detect the limbus deynin the same way. However, the fact
that the eyelids can interfere with the circle teabe taken into account, with emphasis on thelpixe
located on the horizontal diameter. The eyelids lsardetected by searching for a parabolic edge
within the area defined by the outer boundary. Atke eyelashes can be detected by seeking near-
vertical edges in the iris.

It is worth noting that the iris and the pupil aaely perfectly concentric. In most cases,
the pupil centre is actually situated closer to rtbee in comparison to the centre of the iris.
Additionally, both theiris and the pupil are nofways exactly circular in shape. Therefore,
the operator may need to be adjusted to an ebiptiriant.

Another approach of iris segmentation uG&sodesic Active Contouf8]. While the integro-
differential operator relies on estimating the ivisth circles, the GAC approach can deal with
irregular edges. The integro-differential operatetects the iris and the eyelids have to be edit¢d
afterwards, but with the GAC, the iris can be daratad by a single, special contour.

This method is based on the relation between ttrecacontours and the calculation of
minimal length curves. Its aim is to evolve an @ebily initialized curve from within the iris and
perform adjustments according to the geometric gntags of the iris boundary.

First, the curve(t) has to be defined as a curve that gravitatesrttsithe outer edge of the iris
at a certain time that corresponds with the number of iteration. nfhet y be the function that
measures the distance from the cuifge

0 if (x,y) is on the curve
W(x y)=4<0 if(x,y) is inside the curve (3.2)
>0 if (x,y) is outside the cun

The functiony is of the same dimension as the im&gey). The curvey(t) is called the level
set of the functiony, which means the set of all pointsyirwherey is a constant. For instange= 1
is the first level set ang = 2 is the second level set.
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w is called the embedding function because it emlitee®volution ofy(t). The evolution of
the embedding function is influenced by image gratlto ensure it approaches the real boundary of
the iris. The initial curve(t) is generally designed as a circle close to th@llauy edge.

The evolution of the embedding function can bereiioed to the following equation:

wﬁl _wit,j _ , t . t t t t
——ZE——-ﬂwaDwH—KM(ﬂﬁuuww+w1DKu (3.3)
whereAt is the time step. The first term is the velocitymehat acts as an inflation force. The second
term is the curvature. The third term is a diseegton of central differences.ande are constantsv
is the gradient operatdk is the stopping function, given by

1

K(xy)= "
HUWQKWKXWDG

(3.4)

k

wherel(x, y) is the image an(X, y) is a Gaussian filter, antlandk are constants. The purpose of
the stopping function is to provide a stoppingesi@n for the evolution of the curvature. It slows
down the process of changing shape of the curumtilfit settles.

However, in certain cases when the stopping ooiteis not sufficient enough, this may lead to
over-evolution of the contour. This can be mitighby calculating the difference in energy between
two successive contours and using a thresholthelflifference does not exceed the given threshold,
the process is halted and the last result deflreéinal shape of the contour.

Because of the potential presence of visible edgsn the iris region, especially in the form
of radial fibres and crypts, there arises the mobbf local minima. However, it is possible forghi
method to overcome the issue by splitting at tlmeisgma and merging afterward.

— = e —— I — . — [
-

Figure 3.6: Iterative process of geodesic active contours atkef8].

3.1.2.3 Normalization

After segmenting the image, the system proceedwitmalize the localized iris. The area of the iris
texture is affected by several factors. Key amotigsin is pupil contraction and dilation. Another
factor is the resolution of the sensor. Furthermahe size of the pupil and the iris, as well as
the amount of occlusion caused by eyelids and slyefs varies across individuals.

In order to address these inconsistencies, théagssto be unwrapped to a stripe, converted
from Cartesian coordinate system to a polar coatdigystem.
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The annular shape is thus unrolled to arectangiutaage. The rows correspond to
the concentric regions of the iris. The polar cautes are represented by the dimensiand 6,
wherer [0, 1] andé [0, 2x]. The method is called Daugman’s rubber sheetiamndkepicted in
the following figure.

N

Figure 3.7: Daugman's rubber sheet model.

The conversion can be denoted as [50]:

I (x(r,ﬁ),y(r,@)) o ((r 6’)) (3.5)

where

x(r,8)=(1-r)x,(6)+rx (6) (3.6)

y(r.0)=(1-r)y,(8)+ry,(6) (3.7)

where x,, y, are the coordinates from the pupillary boundarg &ny, are the coordinates from
the limbus boundary. The segmented iris image catam noise masks that filter out the occlusions
caused by eyelids and eyelashes.

Because the GAC method does not usually produadareghapes and because of the effect of
the occlusions on the GAC scheme, only the pootated on the boundary of the sclera and the iris
are used for centre and radius estimation.

As an example, six points along the edge, closthédorizontal diameter but with different
angles, can be selected. Their mean distance fieroentre then represents the approximated radius
of the iris.

Afterwards, acircle is fitted through the choseoings and the limbus boundary is thus
estimated. Then, the system can proceed with theecsion to polar coordinates using Daugman’s
rubber sheet.

Figure 3.8: Unrolled iris stripe using the Daugman’s rubbegettmethod (with visible eyelid occlusion in

the corners).
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3.1.2.4 Encoding and Comparison

In order to acquire a feature set of the iris textthe acquired sheet has to be encoded accordingl
To achieve this, atwo-dimensional Gabor filterused on the unrolled image. It is defined as
follows [50]:

G(x y) = en[(x %) 1a®+(y- %) 87 éZn[%(Hw (¥ (3.8)
wherex,, Yo are the coordinates of a point in the image are the width and length of the image,
andu, Vp is the wave direction with a spatial frequency

Wy =Ug +V; (3.9)

Separately, the real and imaginary componentseofvidivelet can be denoted as:
D{G( X »} - e‘ﬂ[(x—%)zla2+(Y‘lb)zlﬁz]cos(—277'1: l.é( X— 6) + y( v y):l) (310)
D{q X y} — e_”[(x_)%)Z/az-‘—(y_X))Z/ﬁz]Sin (—2]]‘[ ld( = ?9 + M y— (yil) (311)

Figure 3.9: Real and imaginary outputs of an image after uai@® Gabor wavelet [6].

After convoluting the unrolled iris texture with Ba filter, the results are then demodulated in
order to achieve data compression. This can be bgrguantizing the phase information into four
levels, each representing one quadrant of the aonpdane.

Given the normalized iris imadé, ¢), the demodulation can be denoted accordingly:

Mo = SiQNce ] [, 1(09) €479 071" @809 p gy g (312)

wherehgre im iS @ complex value whose components are definethdgign of the integrali, f are
the width and length of the image, ¢ are the polar coordinates, ang 6, represent the centre
frequency of the wavelet.

Im

[0,1] [1,1]

Re

[0,0] [1,0]

Figure 3.10: Four possible values of quantization.
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The resulting size of the iris code depends orrdbelution of the and # axes. Commonly,
a length of 2048 bits is preferred.

In order to compare two feature sets obtained a&pgrying the aforementioned procedure,
Hamming distance is used [50]. Taking noise maske iaccount to filter out noisy regions,
the Hamming distance can be calculated accordibly

_|[(irisCodeAT IrisCodeBn MaskA Mal

HD
|MaskAn Mask

(3.13)

The XOR operator is used to detect dissimilaritigsile the AND operator is used to mask
the noisy regions. The purpose of the denominatdbinormalize the value so that it falls within
the interval of <0, 1>. The lower the score, theergimilar the two codes are.

Additionally, the two codes might have originaten two images captured at slightly
different angles. Therefore, adjustments such &sing the iris code may be needed in order to
achieve the best performance.

Also, it is necessary to define an appropriate stwéd for the Hamming distance during
the decision process, which may vary across imphatiens of iris biometric systems. Numerous
factors, such as the quality of the original imageguired by the sensor, can influence the optimum
threshold.

The aforementioned algorithm is patented by Johagben and is considered standard in iris
biometrics. Although there are other approachesienof them are as efficient as Daugman’s
algorithm.

Different methods include:

» zero-crossings of wavelet transformation
* neural networks

« 2D Hilbert transform

3.1.3 Performance

Iris recognition ranks amongst the most popular eoimlist approaches to biometrics and security.
This owes to the fact that the complex structur¢hefiris provides recognition algorithms with rich
detail.

Algorithm FAR/FRR
Zero-crossings 0.03%/2.08%%
Neural network 0.02%/1.989
2D Hilbert transform  1.84%/8.79%6
Iris code 0.01%/0.099

Table 3.1:Performance of selected iris recognition algoritf&ig.
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3.2 Retina

The retina is a layer located at the back of thee #yis light-sensitive and covers more than lodlf
the interior surface. It is composed of photoseresitells — rods and cones. The rods, of whichether
are approximately 120 million, are more sensithantthe cones and are responsible for perception of
light intensity. The cones, of which there are appnately 6 million, are responsible for colour
perception.

Human retina

Figure 3.11:Human retina [52].

The retina is 0.5 millimetre thick. As is visible Figure 3.11, there are two special areas on
the retina. The first is the optic disc, where ¢heling of the optic nerve is located. It connelotsaye
with the brain and supplies the brain with inforiroatabout the light and colour entering the eye.

From the optic nerve, arteries and veins radiatthéosurface of the retina. The place where
the optic nerve leaves the eye is calldiohd spotdue to the absence of rods and cones and thus
nonexistent sensitivity to light.

The second area of interest is calledea It contains a high concentration of cones, bateh
are fewer rods in comparison to the rest of thi@aiefThis means the spot is very sensitive to golou
but not light intensity. The fovea is located ire thiddle of themaculg which lacks blood vessels
and is relatively dark in comparison to its surrmgs.

As can be seen in Figure 3.11, the texture of eliea is nuanced, specifically due to
the location of the optic nerve and the networlblobd vessels originating from it. The vessels can
be considered as a source of high-density, stdchim§brmation, which can be used in biometric
recognition.

3.2.1 Advantages and Disadvantages

Like the iris, retina is regarded as a reliablent®tric due to its high level of detail and varidiil It
ranks amongst the most accurate biometrics angetdagnition procedure is generally fast. Currently,
there is no simple and definitive way of duplicgtiretinal information and spoofing a robust retinal
sensor effectively.
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Upon death or eye extraction, the cells of thelmgn to deteriorate rapidly, rendering useless
the post-mortem usability of the eye for biometriecognition. Due to this, the possibility of
impersonation is diminished and so is the requirdrfe liveness detection.

Also, because of the complexity of structure of hheod vessels, this biometric can be
considered unique for each person. Even identidgaktdo not share an identical pattern.

Unlike iris recognition, retinal scanning is deemattusive. Some users believe the sensor
technology to be harmful to the eye and therefttey can show a certain level of reluctance in
cooperation.

In addition, this biometric is not only regarded iagasive because of the aforementioned
problem, but also because the retina can reveahghakh condition of an individual to a certain
degree.

The cost of this biometric system is very expenslvés arguably one of the most expensive
biometric technologies.

3.2.2 Retina Recognition

Although retina recognition follows the general excia of every biometric system, there is no
preferred approach (unlike in the case of iris Bladigman’s algorithm). The feature sets extracted
differ across algorithms.

Possible methods of retina recognition can be based

* blood vessel bifurcation

* Fourier and/or wavelet transform

The mentioned approaches can be divided into medule
* image acquisition

* normalization

» feature extraction

e comparison

3.2.2.1 Acquisition

The part that is common to all algorithms is theuasition of the input image. The user is requited
position their eye close to the camera in ordeplitain a precise image of the retina. Occlusive
objects such as glasses have to be removed tovadiest results.

For the purpose of retina recognition, infra-reghtiis utilized. Blood vessels absorb infra-red
light, but the retinal background does not. Themfohe blood vessels in the acquired image are in
visible contrast with their surroundings.

Unlike in the case of iris recognition, there are technologies that would allow scanning
retinas from the distance without the knowledgehefscanned user. This is caused by the necessity
of user cooperation.

The level of cooperation required of the user ighbr than in the case of iris recognition.
The user has to focus on the sensor, which thedssarbeam of light on the pupil, illuminating
the retina and capturing its image.
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As was discussed in the earlier chapter concerttiagris, the problem with the inability of
the user to enrol is present in retinal recogni@isrwell.

llinesses can severely affect the structure obtbed vessel network and the hue of the retina.
Depending on the subsequently used algorithm, i oramay not be able to extract the features
correctly. Thus, it could discriminate the potehtiger. Furthermore, this problem affects retina
recognition more than it does iris recognition.

Conditions that alter the retina visibly includéagcoma, diabetes, macular degeneration, and
retinitis pigmentosa. While macular degeneratiomisgally caused by age and results in moderate
vision loss, retinitis pigmentosa is a hereditasgedse that can be responsible for blindness.

Figure 3.12:Retina affected by glaucoma (left) and by retingigmentosa (right) [52].

Due to the nature of retinal scanning, it is neass deal with sources of light noise arising
from corneal reflections and ambient illuminatidrhis problem is often solved by sensors during
image acquisition, so that the system does not taviter and pre-process the image during later
phases [52].

3.2.2.2 Normalization

Because the image acquired from the previous pisasentred on the retina, there is no need for
a segmentation phase. However, algorithms that theevascular structure usually resort to its
segmentation.

First, the image may require normalization in orderdeal with issues not resolved by
the sensor. Such issues may include inadequatmirléiion, resolution difference, and rotation.
While many sensors try to mitigate the first twoldems to a substantial degree, rotation is often
a problem that is left to the software side ofglistem.

The solution to different resolution lies in reseglthe image. However, the method relying on
blood vessel bifurcation may not need a correctibthis point, because the algorithms used during
the comparison stage may anticipate this issuesaive it.

There are various techniques that deal with diffees in illumination, depending on the level
lighting of the image, such as histogram equalirati

Most methods will require rotation compensationontler to maximize the performance of
the system. To do so, reference points have toefiaedl. For instance, the centre of the fovea and
the optic nerve can be used, or the centre ofntlage and the optic nerve [54].
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At first, the contrast is adjusted, given by theatpn

4
J (X, y) =( ‘]max - Jmin)(Mj + ‘]min (314)
Ima>< - I min
wherel(x, y) andJ(x, y) are the greyscale image representations befaraf@r contrast adjustment.
y IS a constant.
After stretching, the fovea can be located usingydevel slicing and centroid calculation
defined in the following equation [54]:

« _ 2 M(x y)x Y_ZM(xy)y

TIMEY T My 319

where

M (X, y) — {1 If Imin < |(X, y)’ ImaxD Xmins X< Xmax yminS yS ymax (316)
0 otherwise
Imax @ndlinare the limits of the grey levedya, Xmin are the limits in the x-axis anfax Ymin are
the limits in the y-axis.
Similarly, the optic nerve centre can be locatedubing an adjusted Equation 3.15, where
the paramete¥i(x, y) is given as

M(X y): 1 ifImin<|()(’y)1|maxDX> Xfc’ ny> %f (317)
’ 0 otherwise '

wherex is the x-axis value of the fovea centre pdi{k, y) is the radial distance from the fovea, and
Rt is the reference radius.

Afterwards, the two acquired points can be usedlign the images, correcting rotation and
translation by measuring their distances and apglgorresponding transforms.

3.2.2.3 Feature extraction and Comparison

At this point, the methods of extracting featunesrf the retina image vary. An efficient approach to
this is to use Fourier and wavelet transforms [55].
After normalization, Fourier transform is appliedthe image, given by the equation

_iM_lN_l f < j 2r(ux/M +vy/ N)
Fluv=ro2.2, f(xye (3.18)
x=0 y=0

wheref(x, y) is a function of image intensityyl andN are the image dimensions, and&ndv are
frequency variables. The phase angle and the speeire given by

Fv)=[ R(uy+ Fuy] (3.19)
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WU, V) = tg‘l{ | (“’V)} (3.20)
R(u V)
whereR(u, V) is the real ant(u, v) is the imaginary part d¥(u, v).

Then, a method of partitioning is used to divide Bourier spectrum to several half circles
around the centre that include segments with theesarea and degree arc. The pixels that are too
distant from the centre do not contain any usefidrmation and the pixels close to the centre donta
only low-frequency information.

Due to spectrum symmetry, the partitioning can bduced in order to avoid extracting
redundant data.

After the partitioning process, the energy of egmdwtition is calculated according to
the equation

E ZZL:ZK:(F(X, y)) (3.21)

Before being stored as a part of the feature vedtwr results are scaled in order ensure
uniformity in comparison.

The next part of feature extraction is a k-th watvdtansform with low-pass and high-pass
filtering as depicted in Figure 3.13. The input ezch iterationA.1, is the result of the previous
iteration, starting witl®,, which is the original image.

Low-pass
> —>
Filter ¢ 2 Ax
Low-pass ¢ 2
Filter High-pass 5 ¢ ) H
Filter k
Ak-l
Low-pass
. > 2 —> V
High-pass ¢ ) Filter ¢ k
Filter High-pass - ¢ , 5
Filter k

Figure 3.13: Wavelet transform with filters and subsampling.

Using the approximation, horizontal, vertical, adidgonal coefficients®y Hy, Vi, and Dy
k times, the original image is transformed into gubges, from which the respective energies are
calculated according to the following equations:

M N

E =22 (H (%)

x=1 y=1
M N

B =) > (V(xy) (3.22)

x=1 y=1
M N

E =)")(D(x y))

x=1 y=1
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The energies obtained are added to the featureryessulting in a set that contains both
the result of Fourier transform and wavelet tramsfoTo compare two feature vectors, Eucleidan
distance can be computed. If the system is workingdentification mode, the template with
minimum Eucleidan distance is selected on conditigmasses a chosen threshold. If the system is
working in authentication mode, a threshold is mgoptiuring the decision-making process.

Another approach to feature extraction is to ugebtbod vessels present in the retina. Before
the blood vessels are segmented, filters are appdiehe image in order to reduce noise and make
the blood vessels stand out. Then, an edge-dajefitier can be applied in order to segment
the blood vessels. Subsequently, the lines aredhinin this image, bifurcation points are detected
and stored as a feature vector.

There are numerous methods of each step of theraémtioned procedure. Several filters exist
which can assist with blood vessel extraction, sashthe Kirsch’'s templates, which convolve
a rotating matrix with the image. Another methodtds use two wavelet operations, given by
the equations [56]:

W, (b6, a= G ay*(a',(xB) { xd (3.23)

M, (b, @) = max,|W, (b6, 3) (3.24)

wheref is the function representing the finite energy lué image,y is the analyzing waveleg is
the normalizing constan,is the displacement vector, a is the dilation pestr, and is the rotation
angle.

Figure 3.14:Vasculature segmentation using wavelets [56]. Heftito right: original image, image enhanced

by wavelet transform, image after thresholding.

After this step, the vascular pattern is enhanoedtibsequent segmentation. This can be done
with adaptive thresholding. Thinning of the vesselachieved by applying a morphological thinning
operator.

Once the blood vessels are thinned to the widtloraf pixel, vascular bifurcations can be
extracted using the crossing number method [56]:

1 8
C(p :EZ‘ L ( p|m0d8) - lthin( p|—1)‘ (3.25)
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wherep, to p; denotes a clockwise sequence of pixels neighbguhia examined pixgd andly,, is
the thinned imageC(p) = 1 corresponds to vessel endings, wiilp@) = 3 corresponds to vessel
bifurcation.

Once bifurcation points are extracted, they areest@s a feature vector and can be used for
comparison. If the bifurcations do not seem to mmatbey can be aligned by using the iterative
closest point algorithm, which follows the sequefide

For every point in the first feature set, seleet¢hosest point in the second feature set.

2. Compute the corresponding translation and rotation.
3. Perform the correcting translation and rotation.
4. lterate until convergence.

3.2.3 Performance

Retinal recognition is regarded as secure becdud® tigh level of detail in its texture, uniqusse
of the vascular structure, and biological paransetieat make it hard to duplicate. In the table ghow
below, performance results of two implementatiohetinal biometric systems are presented.

Algorithm Total Correct Incorrect
9 Recognitions  Recognitions Recognitions
\Wavelet and Fourier Transform 360 357 3
Bifurcation 354 348 6

Table 3.2:Performance of retina recognition algorithms [55]. 5
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4 Multibiometric System Design

The multibiometric system fuses two biometrics dgsed at length in the previous chapter — iris and
retina. The fusion of the system is performed atestevel. The system adheres to the general schema
of a multibiometric system, but it lacks sensor med because the images have been acquired from
existing biometric databases.

Since iris and retina biometrics are not biolodicalependent, they do not need to belong to
the same individual for the purpose of evaluatibthis system. Therefore, the fact that each datba
originates from a different source cannot invakdtte results. However, the chosen pairing of iris
and retinal samples is fixed and does not change.

Iris

Iris Image Feature Extractor

Iris Comparator —

> Score-level Fusion —> Decision Maker

Retina

Retina Image Feature Extractor

—> Retina Comparator ——

Figure 4.1: Components of the designed multibiometric system.

4.1 Iris

The iris extraction module is divided into secti@ssdepicted in Figure 4.2.

Pt'inI. Ir'is . Iris . Eyel?d ngor Iris Coqle
Localization Localization Unwrapping Masking Filter Generation

Figure 4.2: Iris feature extraction schema.

The method itself is based on Daugman’s algorithecussed in Chapter 3.1.2 and can be
separated into parts:

» Pupil localization — First, median filter is applied to the image.eTgupil is localized by
thresholding a greyscale input image.

» Iris localization — The iris is localized by scanning for intenstyft along horizontal lines
in the image.

» Iris unwrapping — Converting the image from Cartesian to polarrdimates is achieved
with Daugman’s rubber sheet.

» Eyelid masking— Eyelids are detected by scanning for high intgrdifferences alongside
the corresponding border of the unwrapped image.

» Gabor filter — A 2D Gabor filter is applied to the image.

» Iris code — An iris code of 2048 bits is generated.
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The comparison module takes two iris codes. To dédl possible rotational misalignment,
one iris code representation is rotated column-vase slightly adjusted Hamming distance is
calculated for each rotation. The rotation with biest score is selected.

4.1.1 Feature Extraction

As the input database, CASIA-IrisV1 [4] was chosEis database consists of 756 iris images from
108 distinct people. The database contains closgreyscale pictures of varying quality. Some irises
are clearly visible, while others are partially olneed by eyelids and eyelashes.

In this database, the detection of the pupil iatnedly straightforward due to its contrast. There
are almost no anomalies in the images in this aspecdots of light that would require additional
attention.

Thus, the pupil can be localized by applying appete thresholding technique. First,
however, median filter is applied to the image.sT&moothes the image and eliminates pixels with
outlying values, which further assists the segntemtgprocedure.

In order to determine the threshold value, theohistm of the image is calculated. In the lower
half (the darker part) of the histogram, a pron@shgeak can be found. This, together with
the surrounding values, mainly denotes the pixeteepupil.

The desired threshold is therefore to be foundradtdbis peak. The chosen threshold is higher
than the value of the peak in the histogram to enshe majority of the pixels of the pupils are
included.

After thresholding is applied, the largest blackaam the acquired image is bound to denote
the pupil. Because it is elliptical in shape, detegits centre and radius can be determined siroply
seeking its widest areas.

The pupil itself is not entirely circular, but iac be estimated with a circle for the sake of
simplicity and avoiding computational complexity.

Figure 4.3: Segmented pupil.

Next, the iris must be segmented. While the pupd &s surroundings were separated by
a striking shift in intensity, the same does nagplghere. Therefore, a different approach must be
adopted.
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Although the shift in intensity is not as pronouthci¢ is present nevertheless. To help facilitate
its detection, the contrast of the image is adgust@gether with the median filter, this emphasises
the current area of interest, which is the outgesaf the iris.

While not being as sharply defined as in the cddbeopupil, it can be detected by searching
for places where the pixel intensity transitionsrkedly over a certain distance. With this database,
this achieves satisfying results, but this metlwdat always possible because of the quality ofesom
pictures (e.g. pictures with the iris heavily cosleel by the eyelids). To mitigate this issue, s&ie
method using 1D Haar Wavelets is employed.

Although the iris is not entirely circular as well,is safe to estimate it by using a circle.
Additionally, the iris and the pupil are not conten) but to make the algorithm faster and simpiter,
is assumed they are.

Combined with the detected points where the edgiefris is located, the radius of the iris
can be calculated and thus the segmentation afishe completed.

Figure 4.4: Segmented iris. The blue points denote the detesttifts of intensity.

The approach at this point varies, but in this @atbm, unrolling of the iris precedes
the segmentation of the eyelids. For this purp@ajgman’s rubber sheet is used. At this point,
the rubber sheet is reduced to an image with téhvaf 360 pixels.

Next, eyelids and eyelashes need to be filtered lauthis algorithm, a simple detector of
change in the intensity along the border of thipstis used. Given the fact that the rough locatibn
the eyelids is predictable, the algorithm definet boundaries within which the detection is
performed.

Once the horizontal borders are determined, tharigiign similarly detects the height of
the eyelid. When this is done, two masks in thenfof tetragons are generated, which are to be taken
into account during the final phase of feature aotton. Of course, this is true only if there any a
eyelids.

g W i T Byt
ol L Y, -l ¥ 3

! o o -
e ¥ . .

Figure 4.5: Eyelid detection and mask generation. Yellow poaénote the borders of the examined regions.

41



The proceeding step entails applying Gabor filtghich can be denoted by an alternate
equation:

_(xcos€+ysin9)2+y2(— X sitf+y cod

) .
Giopoy(XY)=e * CO{ ZTXCOSQ/: ’ Slm+¢j (4.1)

with wavelength of. = 2, orientatior® = 0°, phase offset = 0 and aspect ratio= 0.

Before quantization, the question of reducing tmeant of data has to be addressed. Because
the stripe can be of varying height (dependinglenradius of the iris), the answer to this problem
also involves solving the issue of potentially di#int dimensions of the stripe.

In order to resolve this, certain angular and dasliaes of the rubber band are selected for
guantization, so that the expected feature vestof the desired size. During this part, it is rsseey
to take the eyelid mask into account and mapacicordance with the feature vector.

The guantization itself is achieved by using cosamel sine filters. The values obtained are
depicted in Figure 3.10. After this procedure, a&dee vector of 2048 bits is obtained. This represe
a 128x8 pixel encoding of the iris stripe, with aeal and one imaginary bit for every pixel.

At this point, the feature vector is complementgdilrorresponding mask.

4.1.2 Feature Comparison

Unlike the retinal part, the iris feature companis®relatively simple. Given two feature vectors,
XOR operator is applied to the corresponding litshis algorithm, if the values are equal, simtiar
score is incremented.

The masks of the respective vectors are usedo @ut pixels that do not include the iris. This
reduces the number of compared pixels. Thus, thdtneg score is hormalized so that it fits within
the interval between 0 and 1.

score
score= (4.2)

2048- maskedBit:

Because of potential differences in rotation of itiut image, which was neglected in
the feature extraction phase, the score is cakiffar differing angles ranging approximately frem
16 to 16 degrees. The highest score is then sdlaagethe final score and passed further for
the decision making process.

4.2 Retina

The retina extraction module is based on vascufardation explained in Chapter 3.2.2. Its schema
is shown below:

Image Vascglatgre Thinning Blfurgatlpn
Enhancement Localization Localization

Figure 4.6: Retina feature extraction schema.
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The procedure is split into four sections:

* Image enhancement- The input image is enhanced by using smoothltegd in order to
reduce noise and make the vasculature more visible.

» Vasculature localization — Difference between the filtered image and thgimal, along
with adaptive thresholding is used to segment thedovessels.

* Thinning — Zhang-Shuen thinning algorithm is applied touaxthe width of blood vessels
to one pixel.

o Bifurcation localization — Bifurcation points are localized by analyzing gix
neighbourhood and the resulting points are storedfeature vector.

The comparison module takes two feature vectors.pidsition of the optic disc is utilized to
align the bifurcations. The adjusted vectors ampgared and score is calculated in accordance with
level of similarity. The score is normalized sotthdalls within the interval of <0, 1>, where Higr
value indicates a better match.

4.2.1 Feature Extraction

The database used was kindly supplied by STRaDepgab Faculty of Information Technology of
Brno University of Technology. It contains 684 imeagof both retinas from 110 distinct people,
totalling 220 distinct samples. The images areigh mesolution but varying quality. Unlike the iris
images, they are not greyscale.

Figure 4.7: Sample images from the retina database.

In order to obtain the most salient informatiomfrthe image, the green channel is selected for
further processing. In this channel, the vascullarcture is even more prominent than in a regular
greyscale image.
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Figure 4.8: Grayscale (left) and green-channel image (rightte green-channel image contains a more
pronounced vascular structure.

Next, the contrast of the green-channel image jaséetl by using Contrast limited adaptive
histogram equalization algorithm. This algorithnffetis from simple histogram equalization by
calculating histograms for partitions of the imagae transformation of every pixel is derived from
its neighbourhood. Contrast limiting is added idesrto reduce the amplification of noise inherent t
adaptive histogram equalization [57].

The preceding step to segmenting the veins is ghkcation of median and blurring filters.
This produces arelatively smooth image which ignthcompared to the non-filtered one.
The differential image that is the result of thimparison is calculated according to the following
equation:

diff (x, y) :%(original(x y) - filtered x ))) (4.3)

wheremaxis the maximum value of intensity difference of fhixels.

Although the vascular structure is visible at th@snt, there is a significant level of noise and
the veins need to be segmented perfectly. To psdbesimage further, adaptive thresholding is used.
This highlights not only the retinal veins but alite noise, which must be removed before
bifurcations can be detected. This is achievedillgrihg out blobs and by morphological dilatation
of the image.

Figure 4.9: Differential image (left) and image after the apation of adaptive thresholding (right).
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The last step in blood vessel segmentation is ihinrFor this purpose, Zhang-Suen algorithm
is used. The algorithm is described accordingly:[58

1. While points are deleted do
a. For all pixelsp(i,j) do:
i. If 2<B(R)<6
A(R)=1
P,x P, x R, =0 in odd iterations P, x P, x B =0 in even iterations
P,x P, x B =0 in odd iterations P, x P, x B, =0 in even iterations
ii. Then delete pixgh(i,j)

WhereA(P,) is the number of 0 to 1 transitions in a clockwdgection fromPg back to itself,
andB(P,) is the number of non-zero neighbours of P

Figure 4.10:Blood vessels before and after applying Zhang-Shieming algorithm.

The bifurcations are obtained by evaluating everpitav pixel and its immediate
neighbourhood. If a bifurcation is to be markedrénneed to be at least three separate paths that
converge at a given pixel.

To calculate this, the neighbourhood is analyzedtfe number of white pixels and their
continuity. If three or more separate white aress detected, the algorithm regards the pixel as
a bifurcation.

This way, the algorithm acquires a list of bifuroas of the blood vessels and stores them as
alist of points. In case the thinning yielded mpeérfect image with clustered bifurcations,
the algorithm filters out these bifurcations.

To be able to align the images during comparisasehthe optic disc must be located. For this
purpose, the red channel of the original imagesedyubecause the optic disc is most prominent.there
The image is then processed by CLAHE and mediger fil

In this image, Canny edge detection is performet! ldough circle transform [59] is used to
detect the optic disc. Along with the bifurcatiotise optic disc is stored within the feature vedtor
comparison.
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Figure 4.11:Red channel of the retina image (left), filterethge with optic disc detected (right).

4.2.2 Feature Comparison

First, the two vectors have to be aligned beforamarison. This is achieved by taking the optic disc
centres and translating the bifurcation points né amage. Because the rotation of the images is
minimal, only translation is taken into account.

Next, the similarity score has to be calculatece @lgorithm is as follows:

1. For every bifurcation poirtt; in the smaller array of bifurcatioml
a. For every bifurcation non-matched pomin the larger array of bifurcatiora2

i. If Euclidean distance betweédn andb, is shorter thathresholdand is currently
the shortest, mar as selected

b. If there is a match, mark selectbg as matched and increment number of matched
bifurcationsn

2. Calculate score

Then the score is obtained accordingly:

score= (4.4)

2n
|B1|+[ B2
Like the iris, this score is also normalized to d&tween the interval of 0 and 1 for easier
integration during the fusion phase.

4.3 Fusion

Fusion of this biometric system is performed atreckevel, using transformation-based methods
discussed in Chapter 2.2.7. Because iris and reti@sstatistically independent biometrics (there is
not correlation between them), it is justifiable use different databases for iris and for retina
respectively.
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However, given the fact that the two databasegwiff the number of images and people, they
were merged and the people and the images werdpair
The methods used for transformation are:

e product rule

e sumrule
e maxrule
e minrule

The median rule is excluded because it would ndtens@nse to calculate the median value of
two biometrics. Because of the ease of implemantathND/OR fusion at decision level is also
incorporated, though merely for informative purpmose

Although the scores from the previous blocks of dytem were normalized to fit within
the interval of 0 and 1, the distribution of thems can be uneven (eg. threshold value of 0.5coul
be too strict for the iris but too lenient for tfeina), further normalization is required.

This is achieved by determining the minimum and imaxn values of each biometric
separately. After acquiring these values, the scaee adjusted accordingly and the fusion is
performed.

4.4 Interface

The designed application contains a graphical usgerface that lets the user work with
the multibiometric system. Before system evaluatioexecuted, an introductory dialogue window is
shown, which allows selecting databases for evialnatr loading a previously saved result file.

Evaluate Section

Result Load Section

- J

Figure 4.12: Structure of the introductory screen.

In the evaluate section, the user can select ttietoathe iris and retina databases and can
specify the types of image and the way the imagesdentified. This helps classify the images so
that the system knows what images belong to whabpe

Because the system has to perform more than tersahd comparisons and because the user
may be forced to wait due to this, the user hasfition to load previously stored results. Merely
the path to them needs to be specified.
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After the system is evaluated, the user is predentth results of the process and can peruse
them. The user interface is split into tabs th&trod range of information concerning the efficignc
of the system, such as genuine and impostor disioi, performance statistics, and ROC curve.
The interface also allows switching views betwdenrnethods of fusion.

( Method View Selection )

( Gen/imp ]( Distribution ) ( ROC )

Threshold
and
Statistics
Selected View

Figure 4.13:Once evaluation is done, a screen with performagsgts is shown.

The method view selection allows the user to switetween views. This groups together three
views:

* separate iris and retina view
* min and max rule view
e product and sum rule view

Each view has its separate graphs that displaguhkiation results of the biometric system.
Also, the user can set the threshold of the bian®etThe user can see what the results would be
before the fusion and after it.

The statistics contain FMR, FNMR, false match cpdalse non-match count, true match
count, and true non-match count.

The form can be closed, at which point the intraédgcdialogue window is shown again.
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5 Multibiometric System

Implementation

While the previous chapter detailed the concepghefmultibiometric system and its core functions,
this chapter lists the technologies that were a#tili to develop the system and explains
the implementation of said functions.

5.1 Technologies

The biometric system was developed in MicrosoftudlsStudio 2010, which is a platform for
developing programs for Microsoft Windows, encongirag several programming languages such as
C# or Visual Basic.

This platform incorporates .NET technologies shdngdts languages. It also offers many tools
which made the development of the biometric sys¢éasier. Its upside is the form designer, which
can be utilized to create forms quickly and effithg, so that the programmer can focus on
the backbone of the application.

The system was programmed in C#, which is an olgeented programming language.
The language was selected because of its abiittieandle the compartmentalization of the biometric
system.

The system utilizes a wide range of computer vigiod image processing operations and for
this purpose, the OpenCV library was chosen. OpetgC¥n open-source library for C and C++
containing several toolkits. It is especially opgtied for high performance, which is an important
aspect in biometric systems.

Because the OpenCV is aimed primarily at C++, fbenbtric system employs a library for
C#, called Emgu CV, which is a cross-platform wrapfor .NET compatible languages. Although
a wrapper, it also allows direct invocation of DpenCV functions.

These libraries were used for most filters, sucimadian and blur filters, for CLAHE, image
handling, etc.

As an auxiliary library for image processing, AFeNJET was used. It is a library dedicated to
artificial intelligence and computer vision, origity developed for the .NET Framework. Within
the biometric system, this library provided advahfikers and blob detection.

For visualisation of the data, ZedGraph was choghis. library is designed for plotting graphs
in form or web applications in .NET technologie$. dffers a broad range of configuration
capabilities, but is also aiming for ease of use.
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5.2 Program

GUI
Introductory Form Result Form
Core
Database Extraction Evaluation
Creator Module Module
Feature Vector
Paired Feature Vector
Iris
Iris Feature Iris Feature Iris Feature Vector
Vector Extractor Vector Comparator
Retina

Retina Feature
Vector Extractor

Retina Feature
Vector Comparator

Retina Feature Vector

Results

Figure 5.1: Simplified diagram of the classes of the biomessistem.

Because the technicalities of the program are miaeypresented implementation is simplified
and unimportant details are omitted.

Thel nt roduct ory For mclass entails the graphical interface and the nyidg interfaces
of the first screen of the application. It contathe controls that allow the user to select and set
the databases for evaluation.
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7 T =
il (=] [
Evaluate
Database Path File Format
Iris C\Casial |;| EMP -
Position  Length Position  Length
1D - Prefie 1 3 ID-5Suffec O 0
Retina C:\etina\EBD_RET_PROJ & e -
Position  Length Position  Length
|0 - Prefoe 1 4 |D - Suffec 12 1
Index pasition numbering starts at 1, zet as 0 f not used. Bt
Load Stored Hesults
C:MBioProj'walues td IE Load Results
b =

Figure 5.2:Introduction screen.

This class is connected to tbatabase Creator, Extraction Mdul e and
Eval uati on Modul e classes, which form a bridge between this formtaedesult form.

TheDat abase Creat or is responsible for handling the databases. Itgd¢hd contents of
the folders where the databases are located. Theadeeds to create pairs of iris and retina irmage
which remain fixed throughout the entire evaluatioocess.

The results of this operation are passed toEitta acti on Modul e, which, as the name
suggests, extracts the features from the imagestanels them as feature vectars (s Feat ur e
Vect or andReti na Feature Vector).

For the extraction,Iris Feature Vector Extractor and Retina Feature
Vector Extractor are used. The two classes contain methods fourkeaector extractions as
explained in the design chapter.

The structure of the feature vectors reflects #sgh described earlier. Thei s Feature
Vect or class contains a code of 2048 bits and a correspgrmask. Th&eti na Feature
Vect or class contains an array of bifurcations and tleedinates of the optic disc centre.

Because these vectors belong in pairs, they aredsas such using tiiRai red Feature
Vect or . The results of this stage are stored in a twayarof this class, one for templates and one
for vectors meant for comparison with the templates

These arrays are then processed byetred uat i on Modul e class, which is responsible for
comparing each vector from one array with eachoreftom the other array. To obtain the results,
Iris Feature Vector Conparator and Retina Feature Vector Conparator
classes are used, functioning as detailed in thigechapter. Iris comparison involves using
the binary XOR operation, retina comparison invelagatching bifurcations.
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After this part, the system obtains the comparisgsults, which are stored as instances of
theResul t s class. Thé&eval uat i on Modul e then performs fusion at score level using thesrule
specified previously and adds the results to ttesipectiveResul t s.

Once this is completed, the results are passduet@etsul t For m which is responsible for
displaying them in the form of graphs and statsstiBoth the performance of the chosen biometrics
separately and the performance of the fused bidgreasr shown. The controls on the screens, such as
threshold sliders, are present for assessing pespdSews are available as mentioned in the design
chapter as well.

o Results
[ ins/Retia | Score Min/Ma | Score Sum/Prod [ ROC |
Separate | Digtnbution | ROC |
e Inis 0.465
Iris _
U
Genuine === Impostor Threshold |
FMR: 0.79%
FNMR: 1.39%
s True Match 213
- False Match: 183
S True Non-match 22929
S g0l False Non-match 3
°
z
E
&
005 AND OR
0.00 t + t + FMR 0% 184%
0.3 05 06 07 FNMR 417% 0%
Score True Match: 207 216
False Match 1 426
= True Non-match: 2311 22686
Relina False Non-match: 9 0
Genuine === Impostor Threshold |
2 Retina 0.445
£ B}
3
I ‘s 010 I
E FMR: 1.06%
= FNMR: 2.78%
o True Match: 210
0.05 False Match: 244
True Non-match 22868
False Non-match 6
0.00 ;
03 05 06 07
score
Save Results
Figure 5.3: View of fusion performances.
o) Results e ——— =)
Irs/Retina | Score Min/Max | Score Add/Mut [ ROC_ |
Separate | Distibution [ROC
Iris 0345
Genuine/lmpostor Distribution g
= FAR 08%
[ + Genuines + Impostors | FRR 1309%
09 = = : TrueAcceptance 213
FalseAcceptance: 184
TrueRejection: 22928
0.8 + 5l FalseRejection: 3
2
07 + = 1
AND OR
0.6 + B
g
° FAR 0% 169%
QO (05 + | FRR 5.56% 0%
w i TrueAcceptance: 204 216
o FalseAcceptance: 0 39
E 04 + | TrueRejection: 23112 22721
ia' ) FalseRejection: 12 0
o
0.3 + b
Retina 0344
02 + . 0
i
FAR 09%
0.1 + 4 FRR 417%
TrueAcceptance: 207
FalseAcceptance: 207
0.0 — TrueRejection 22805
FalseRejection: 9
0.1 0.2 0.3 0.4 0.5 0.6 0.7
Iris Score

Figure 5.4: Distribution view.
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6 Results

The developed biometric system was evaluated ordat@bases: CASIA-IrisV1 database for iris and
database from STRaDe group for retina. The formatains 756 iris images of 108 distinct people
and the latter contains 684 images of both retiinash 110 distinct people (220 distinct retina
samples). After pairing these databases, the megudtet contains a total of 324 images of 108
different samples.

In order to evaluate the fusion results, the sépdrmmetrics must be evaluated first. During
the development of the iris recognition algorithparameters of Gabor filter needed to be selected in
order to achieve the best performance possible.

In Table 6.1 and Table 6.2, performance of theesysising different values of wavelength and
orientation of the filter is shown. The performaras®alysis was tested on the full iris databases It
visible that the best results are achieved by usizgelength. = 2 and orientatiofi = 0°.

ERR
Wavelength\Orientation -45° 0° 45° 90°
2 4.7% 1.8% 4.0% 22.6%
4 4.5% 2.8% 3.8% 23.1%
8 4.1% 2.8% 3.7% 23.9%
16 4.3% 2.9% 3.8% 23.8%

Table 6.1:ERR scores of the biometric system with differingwalength and orientation used in Gabor filter.

During the development of the retinal recognitiogoathm, four methods of obtaining score
were considered:

1. average Euclidean distance of all bifurcation pairs

2. average Euclidean distance of bifurcation pairs \Eticlidean distance lower than a given
threshold

3. doubled number of matched bifurcation pairs / totalnt of bifurcations
4. previous two methods combined

Surprisingly, the first algorithm, which was origily intended to be used, didn’'t perform as
well as was expected. Although the fourth algoritttntomparable to the third, it's slightly more
computationally demanding. Therefore, the thirdodthm was selected as the final evaluation
algorithm.

The analysis was done on the paired database.

Algorithm 1. Algorithm 2. Algorithm 3.  Algorithm 4.
EER 9.8% 21.0% 2.4% 3.8%

Table 6.2:ERR scores of the four retina evaluation algorithms
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—— Matchec
—— Distance (All)
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1-FNMR

107

FMR

Figure 6.1: ROC curve of the algorithms. Algorithm 1. is depitby red, 2. by blue, 3. by green, 4. by black.

Before fusion, the performance of both algorithesummed in Table 6.3, tested on the paired
database. The iris recognition algorithm perforfighly better than the retina algorithm. Also,st

recognizably faster due to its small template.

Iris Retina
True Acceptance 213 210
False Acceptance 184 244
True Rejection 22928 22864
False Rejection 3 6
FMR 0.80% 1.06%
FNMR 1.39% 2.78%
EER 1.2% 2.4%

Table 6.3:Results of separate biometric evaluation perforreambe values of FMR and FNMR are

corresponding to the best performance of the réisggesigorithms.
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Figure 6.2:Iris recognition performance.
Reting
[ Genuine === Impostor Thresholc |
0.2¢ T T T T T
0.1¢ + B
-
c
2
a
3]
'g 0.1C + 1
£
aQ
T
[
0.0¢ + B
0.0 ' ; - ; ; :
0.2 0.2 04 0t 0€ 0.7 0.¢
Score

Figure 6.3: Retina recognition performance.

Biometric fusion is done at score-level, using $farmation-based rules: minimum, maximum,
sum, and product. The results are depicted belawmFRthe following figure, it is visible that
the fusion mostly achieved improvement.

ROC - All
\ Iris —— Retina  —— Min Max —— Sum  —— Product |
T I T T T T T T T L L
1.00 &
0.98 / 1
x ] ]
2 096 + B
2 J ]
i
T 094 .,
092 | .
0.90 ]
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
FMR

Figure 6.4: Linear ROC curve of the four fusion methods anditiseand retina algorithms.
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Figure 6.5: Logarithmic ROC curve of all four fusion methodglahe iris and retina algorithms.

Curiously, the performance of the minimum rule wgnerally worse than that of the iris
algorithm. However, the other rules enhanced tntopeance of the biometric system, with all three
having almost identical scores (they overlap sigaiftly in Figure 6.4). However, the best results
were achieved by using the sum rule, albeit byreomamargin.

Iris Retina Min Max Sum  Product
FMR 0.80%  1.06%| 0.13% 0.03% 0.01%  0.06P6
FNMR 1.39%  2.78%| 2.31% 0.00% 0.00%  0.00P6
EER 1.20% 2.40% 1.85% 0.02% 0.01% 0.03%

Table 6.4:Final results. The values of FMR and FNMR are gpoading to the best performance of

the respective algorithms.
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7 Conclusion

The purpose of this thesis was to develop a maottileitric system combining iris and retina. For this
reason, the algorithms for iris and retina recagnitvere designed. A database containing 324 pairs
of images of 108 people was used.

The developed iris algorithm is based on Daugmais €ode, which involves unrolling the iris
annulus to a stripe and demodulating it using azdbor filter. The resulting code is compact and
therefore, the iris recognition algorithm is fagéfith the specified database, the Equal Error Réte o
the system is 1.2%.

The developed retina algorithm is based on matchifugcations. This entails segmentation of
the retinal vascular structure, thinning it to athiof 1 pixel and locating the bifurcation poin@®ut
of four possible evaluation algorithms, the raticnamber of matched bifurcations to the total count
of bifurcations proved to be the best, with EER @R%.

The fusion was performed at score level using foanmsation-based rules, namely min rule,
max rule, sum rule, and product rule. Before trsdin, the results of the separate biometrics
evaluation were normalized using minimum and maxmwalues.

The performance results of this system showedtthisitfusion mostly achieves improvement
over the separate biometric evaluation. Min rulehieeed the worst results (ERR 1.85%).
The remaining three rules achieved much bettedteesnax rule has an EER of 0.02%, sum rule has
an EER of 0.01%, and product rule has an EER &%.00ut of the four tested rules, sum rule has
achieved the best results.

The developed program displays both fused and used results for comparison.
The program also displays statistics and graphsictleyp the performance of the system. In
the program, databases can be selected for exaluati

The program itself could be developed further ia fiiture and expanded with more fusion
methods for comparison. To make other levels abfusnore interesting for study, new modalities
could be introduced to the program.

The conclusion that can be drawn from the resdtshat score-level biometric fusion is
a viable option in the development of biometrictegss combining iris and retina.
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Appendix A: CD Content

» foldersr c — source code of the program
o foldermanual — user manual of the program
- folderi nst al | —install files of the program

+ foldert hesi s —thesis documents
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