
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF COMPUTER SYSTEMS
ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ

AUTOMATED FILE EDITING USING GENETIC
PROGRAMMING
AUTOMATIZOVANÁ ÚPRAVA SOUBORŮ POMOCÍ GENETICKÉHO PROGRAMOVÁNÍ

MASTER’S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Bc. MAREK SEDLÁČEK
AUTOR PRÁCE

SUPERVISOR prof. Ing. LUKÁŠ SEKANINA, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2022

Brno University of Technology
Faculty of Information Technology

 Department of Computer Systems (DCSY) Academic year 2021/2022

 Master's Thesis Specification

Student: Sedláček Marek, Bc.
Programme: Information Technology and Artificial Intelligence
Specialization: Bioinformatics and Biocomputing
Title: Automated File Editing Using Genetic Programming
Category: Artificial Intelligence
Assignment:

1. Familiarize yourself with principles of genetic programming and genetic improvement of
software.

2. Design a software tool that allows the user to specify an input-output file transformation by
examples and enables learning this transformation using genetic programming.

3. Propose a suitable internal representation of the transformation code and an appropriate
compiler.

4. Propose a suitable problem encoding, genetic operators, search method, and fitness
function for the genetic programming method.

5. Implement the tool in the chosen programming language.
6. Perform detailed statistical and performance evaluation of the implemented tool using

selected benchmarks.
7. Discuss the obtained results and their possible improvements.

Recommended literature:
According to the instructions of the supervisor.

Requirements for the semestral defence:
Items 1 to 4 of the assignment.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Sekanina Lukáš, prof. Ing., Ph.D.
Head of Department: Sekanina Lukáš, prof. Ing., Ph.D.
Beginning of work: November 1, 2021
Submission deadline: May 18, 2022
Approval date: October 29, 2021

Powered by TCPDF (www.tcpdf.org)

Master's Thesis Specification/24981/2021/xsedla1b Page 1/1

Abstract
File editing is an integral part of today’s work for many people, but not everyone has
programming skills or deep knowledge of editing tools to make their editing efficient and
quick. This is exactly what the program presented in this thesis – Ebe – is trying to solve.
Ebe takes snippets of file edits done by the user and using genetic programming it finds the
correct algorithm to transform the whole file or even multiple files into the desired output.
Ebe consist of multiple parts, which had to be designed and implemented to achieve its
goals. For this purpose a new programming language was designed to suite file editing
and work well with genetic programming, an interpreter for this language was implemented
as well as a compiler that uses genetic programming to synthesize the editing algorithm
based on given examples. Ebe was then tested with other tools for file editing. These
experiment focused on the overall editing speed and Ebe ended up having better editing
times than Python 3 and similar editing times as the language AWK in most experiments.
These experiments proved, that for many frequent editing tasks Ebe has a potential as an
alternative tool for file editing.

Abstrakt
Úprava souborů je nedílnou součástí práce pro mnoho lidí, ale ne každý umí programo-
vat a nebo má dostatečnou znalost editovacích nástrojů, aby byl tento proces efektivní a
rychlý. Toto je přesně to, co se snaží program představený v této práci – Ebe – vyřešit.
Ebe z úryvků úprav provedených uživatelem pomocí genetického programovaní nalezne al-
goritmus na požadovanou transformaci souboru, který je pak možné použít na celý soubor
nebo i více souborů najednou. Ebe se skládá z více částí, které musely být navrhnuty
a implementovány ke splnění stanovených cílů. Za tímto účelem byl navrhnut nový pro-
gramovací jazyk pro editaci souborů a kompatibilitu s genetickým programováním. Dále byl
implementován interpreter pro tento jazyk a také překladač, který z poskytnutých ukázek
syntetizuje editační algoritmus. Ebe bylo poté otestován a porovnáno s dalšími nástroji
pro úpravu souborů. Tyto experimenty byly zaměřeny na celkovou editační dobu a Ebe ve
většině experimentů dosáhlo lepších časů než jazyk Python 3 a podobných editačních časů
jako jazyk AWK. Tyto experimenty potvrdily, že pro mnoho často prováděných úprav má
Ebe potenciál jako alternativní nástroj pro tyto úlohy.

Keywords
compiler, interpreter, genetic programming, code synthesis, file editing, programming lan-
guage

Klíčová slova
překladač, interpreter, genetické programování, syntéza kódu, úprava souborů, programovací
jazyk

Reference
SEDLÁČEK, Marek. Automated File Editing Using Genetic Programming. Brno, 2022.
Master’s thesis. Brno University of Technology, Faculty of Information Technology. Super-
visor prof. Ing. Lukáš Sekanina, Ph.D.

Automated File Editing Using Genetic
Programming

Declaration
I hereby declare that this Master’s thesis was prepared as an original work by the author
under the supervision of prof. Ing. Lukáš Sekanina, Ph.D. I have listed all the literary
sources, publications and other sources, which were used during the preparation of this
thesis.

. .
Marek Sedláček

May 9, 2022

Acknowledgements
I would like to thank my supervisor prof. Ing. Lukáš Sekanina, Ph.D. for his help and
interest in this thesis. I would also like to thank my family and friends for all the support
during my studies and working on this thesis. Lastly many thanks to Bc. Klára Ungrová
for the design of Ebe’s logo.

Contents

1 Introduction 4

2 Compilation methods for file editing 6
2.1 Current methods for file editing . 6

2.1.1 Manual file editing . 7
2.1.2 Automated file editing . 7
2.1.3 File editing from examples . 8

2.2 File parsing . 9
2.3 Text file parsing . 11
2.4 Text comparison methods . 11

2.4.1 Levenshtein distance . 12
2.4.2 Jaro distance and Jaro-Winkler distance 13

2.5 Compilation of source code . 13
2.6 Interpretation of source code . 14

2.6.1 Bytecode-like language compilation and interpretation 15

3 Code synthesis using genetic programming 17
3.1 Evolutionary algorithms . 17
3.2 Genetic programming . 17

3.2.1 Genotype and phenotype . 19
3.2.2 Population . 21
3.2.3 Fitness and fitness functions . 21
3.2.4 Crossover . 22
3.2.5 Mutation . 23
3.2.6 Selection . 24

3.3 Symbolic regression . 25

4 Ebe – Edit by Example 27
4.1 Ebel – Ebe Language . 28

4.1.1 Ebel syntax . 30
4.1.2 Ebel passes . 31
4.1.3 Expression passes and user defined expressions 32
4.1.4 Ebel instructions . 34
4.1.5 Ebel pragmas . 36

4.2 Eben – Ebe engine . 36
4.3 Ebec – Ebe compiler . 37

4.3.1 Lexical, syntactical and semantic analysis of input files 37
4.3.2 Ebel code optimizations . 38

1

4.3.3 Fitness functions . 39
4.4 Ebei – Ebe interpreter . 39

4.4.1 Lexical, syntactical and semantic analysis of Ebel code 42
4.5 Ebe’s text file parsing . 43
4.6 Examples of Ebe workflow . 44

5 Implementation 48
5.1 Ebe testing and benchmarks . 49
5.2 Internal representation . 53
5.3 Implemented engines . 55

5.3.1 Genetic engine Jenn . 58
5.3.2 Mutation engine Taylor . 59
5.3.3 Random engine MiRANDa . 59

5.4 Implemented optimizations . 61
5.4.1 Dead code elimination . 61
5.4.2 Redundant code elimination . 61
5.4.3 Constant folding . 62

5.5 Ebe’s modularity and extendability . 62

6 Experiments and evaluation 67
6.1 Experiment 1 – Markdown table value extraction 68

6.1.1 Ebe solution . 69
6.1.2 Ebel solution . 70
6.1.3 AWK solution . 71
6.1.4 Python 3 solution . 71
6.1.5 Linux tools solution . 71
6.1.6 Results and conclusions . 72

6.2 Experiment 2 – GTF file value adjustments 72
6.2.1 Ebe solution . 73
6.2.2 Ebel solution . 73
6.2.3 AWK solution . 75
6.2.4 Python 3 solution . 75
6.2.5 Results and conclusions . 76

6.3 Experiment 3 – CSV file transformation . 76
6.3.1 Ebe solution . 77
6.3.2 Ebel solution . 77
6.3.3 AWK solution . 77
6.3.4 Python 3 solution . 78
6.3.5 Linux tools solution . 78
6.3.6 Results and conclusions . 79

6.4 Experiment 4 – JSON file formatting . 79
6.4.1 Ebe solution . 79
6.4.2 Ebel solution . 80
6.4.3 AWK solution . 81
6.4.4 Python 3 solution . 81
6.4.5 Linux tools solution . 81
6.4.6 Results and conclusions . 82

2

7 Conclusion 83

Bibliography 84

A Project file structure 90
A.1 Ebe file structure . 90
A.2 Ebe tools file structure . 92

B Benchmark results 93

C Manual 95
C.1 Ebe installation . 95
C.2 Simple edit example to test Ebe . 96
C.3 Generating Doxygen documentation . 97
C.4 Ebe command line arguments . 98
C.5 Running Ebe benchmarks . 99

D Contents of the included storage media 100

3

Chapter 1

Introduction

This thesis introduces a program for automated file editing from given examples and its un-
derlying components – a compiler, which does a code synthesis using genetic programming,
a new language designed for file editing and to work well with genetic programming and an
interpreter, which can interpret programs written in this language. The goal of this thesis
is not just to showcase a working program for the aforementioned task, but also to explore
the possibilities of using genetic programming to synthesise programs. The evolutionary
approach and more specifically genetic programming display potential to help solving tasks,
which would be for a pure algorithmic approach very time consuming or in other ways too
overwhelming. The given problem of finding an algorithm to transform one given example
into another one is just fit for genetic programming, because these two examples can be
easily used to calculate the fitness of some candidate solution. On top of this, many editing
tasks done in real life are not too complex and do not require complex algorithms to realize
them, which simplifies the task for genetic programming and helps with the time required
to find a solution.

The proposed program requires the user to only provide two examples and then perform
the desired edits over the whole file. This means that the user does not have to have any
programming knowledge and only needs to know how to use the program. For many non-
programmers doing editing tasks on large files might mean spending many hours in an
editor and doing all these repetitive edits by hand. The proposed tool could help cut down
this time immensely.

The goal for this program is to allow non-programmers, but generally anyone who uses
it, to achieve editing speeds similar or even better to those knowledgeable in programming
and algorithmic thinking, and thus, provide a tool, that could compete with other currently
used tools. On top of promising low editing times, the tool also promises minimum required
knowledge of it and no need for external interaction once the examples are provided. On
the other hand it also promises to allow for customization and tweaks from the outside, if
the users wishes to do so.

This program can also prove beneficial to programmers, to whom it might offer an
alternative tool, which would solve the problem at hand without any need to think about
the algorithm needed, debugging the code and checking output correctness.

In the next chapter the overall problem with editing files and tools used for this are
described. Since file parsing is a big part of all these tools and of file editing in general,
this is also mentioned here with emphasis on text file editing. Comparison methods for
text similarity are mentioned here as well. This chapter also generally describes code
compilation and interpretation and mentions some problems in these fields. Bytecode is

4

discussed as it is a big part of interpretation. Chapter 3 deals with evolutionary methods
and discusses more in detail genetic programming and its use for code synthesis. The
main parts of genetic programming are described with examples and some comparisons of
different approaches are given. This final section in this chapter also outlines the problems
with exact expression generation and introduces symbolic regression method. Chapter 4
introduces and in detail describes the implemented program Ebe. All its parts including
the language (Ebel) designed for it are described with many examples and argumentation
for the choices made. Furthermore some experiments and comparisons are presented to
support these choices. The end of this chapter is designated to help understand the tool’s
usage and some advanced features it offers. Chapter 5 then in more detail describes Ebe’s
implementation and all the supporting tools and the structure around it to support its
potential as a full-fledged and usable tool. Examples of interesting problems and their
solutions are also mentioned. The final chapter contains 4 experiments that compare Ebe
with other tools used for the similar task. This gives some rough approximation of how
well Ebe can compare to these tools and if it even can compete with them.

5

Chapter 2

Compilation methods for file
editing

A file editing program can be thought of as a special case of a compiler or rather transpiler.
Transpiler is a program, that converts one source code program into another [49]. Such
example can be one of the very first transpilers XLT86, which converted 8080 assembly
code into 8086 code and nowadays transpilers are quite popular for converting code into
web languages such as Java Script [49]. In a case of a file editing program, this “transcom-
pilation” is in many cases from one format to the same, but only changing some values or
doing other small edits, which are far away from what usual transpilers do. But the reason
for this comparison is to showcase, that many techniques used in compilers, interpreters
and transpilers can be also used for automated file editing.

2.1 Current methods for file editing
Nowadays there are many methods and tools for specialized file editing and file transfor-
mation. These tools are not only needed in the IT sector, but in many other sectors. File
types and their formats vary a lot, and thus, only one tool cannot handle all these types,
but rather specializes on certain file type and format. But there still exist tools, which can
handle almost all possible formats, but those tools then require the user to put in a lot of
effort to make them correctly work for all the possible inputs and cases. Such example can
be the programming language AWK, which was designed in the late 1980s by Alfred Aho,
Peter Weinberger and Brian Kernighan for the sole purpose of file editing [3]. The whole
problem with file editing in computers is very well described in the preface of their book:

Computer users spend a lot of time doing simple, mechanical data manipulation
– changing the format of data, checking its validity, finding items with some
property, adding up numbers, printing reports, and the like. All of these jobs
ought to be mechanized, but it’s a real nuisance to have to write a special purpose
program in a standard language like C or Pascal each time such a task comes
up.
Awk is a programming language that makes it possible to handle such tasks with
very short programs, often only one or two lines long [3].

This short quote very well conveys, that even in the infancy of modern computing, there
was a big need for effective and fast file editing and transformation. And since AWK is used

6

till this day and is a built-in tool for many operating systems [12] only suggests that this
need has not gone away, but in fact may have even gone up, with the rise of high computing
and large storage capabilities for computers.

But even though tool such as AWK offers file editing in a few lines, as the authors say,
writing these lines requires knowledge of the tool and in this case some programming skills.
Furthermore the created program is often designed for exactly one file format.

2.1.1 Manual file editing

One of the simplest file editing methods is file editing done manually by hand in a file
editor. This approach is fine for small one time edits, but can get very impractical and take
a lot of time, when done on a large file or even multiple files and may very easily lead to
errors.

The biggest upside to this approach is that it can be done by someone, who has no
programming skills and only very little knowledge regarding the use of a file editor.

There are also editors like Vim (Vi iMproved), which allow for more advanced editing
using special shortcuts, editing modes and methods. Examples of this are replacing text
based on regular expression, editing multiple lines at once using vertical selection or even
doing calculations with selected numeric values [48]. On the other hand such editors are
usual not very intuitive and require the user to learn the tool more in depth.

2.1.2 Automated file editing

Automated file editing in this sense means a program that takes an input file, transforms it
and outputs this newly edited file. For example this can be a script written in any language
that does this job, such as a script in the AWK programming language, as mentioned in
the chapter intro. Another example of automated file editing can be a specialized tools,
such as converters from one file format to another or in some sense even a compiler, which
converts input program into a program in a different language.

Unlike manual approach, use of an automated file editing brings in the option to write
the script once and then execute it over any number of files that have the same format.
On the other hand it requires someone skilled in programming to write such a script. This
approach can also bring in errors like manual file editing, since the written script might not
account for all the cases or even contain errors itself.

1 awk ’BEGIN{RS=""; FS="\n"} {split($1,a,","); host[a[42]] = 0; for (i=1; i<=
NF; i++) if (match($i,"closed") != 0) host[a[42]]++} END{for (each in
host) print each ": " host[each]}’ in.nmap

Listing 2.1: AWK example of file editing, which might even be illegible to those who are
programmers, but don’t use AWK.

1 import csv
2 import sys
3
4 if len(sys.argv) < 2:
5 exit(1)
6 out_text = []
7 with open(sys.argv[1], "r") as gtf_file:
8 reader = csv.reader(gtf_file, delimiter=’\t’)

7

9 for line in reader:
10 line[3] = str(int(line[3]) - 153350000)
11 line[4] = str(int(line[4]) - 153350000)
12 out_text.append("\t".join(line))
13 with open(sys.argv[1]+".out", "w") as out_file:
14 out_file.write("\n".join(out_text))

Listing 2.2: Python 3 example of file editing, which might be more legible, than AWK, but
require more lines of code.

2.1.3 File editing from examples

For special cases, such as working with tables, there are tools, which allow for automated file,
or rather cell, editing with detection of the editing pattern. Example of this is the Google
Sheets Smart Fill feature or Microsoft Excel Flash Fill feature, which detects simple patterns
used and applies these to other similar rows (this can be seen in Figure 2.1), unfortunately
this algorithm cannot find all combinations and might fail even with quite a simple one (see
Figure 2.2).

Figure 2.1: Google Sheets Smart Fill feature.

Figure 2.2: Example, where Google Sheets Smart Fill feature cannot find the correct pat-
tern.

Microsoft also offers framework PROSE, which can from given examples provide a pro-
gram in domain-specific language, which adheres to given examples [51] [2]. This framework
consists of multiple other projects, that do programming by example, such as FlashEx-
tract [37] or FlashRelate [6]. Part of this framework is also the aforementioned Flash Fill.

8

PROSE offers also an interactive interface (see Figure 2.3), where the user can select
values for extraction or other operations and have the generated program be executed over
the input as well.

Figure 2.3: Screenshot of PROSE framework extracting data from the values selected by
the user.

2.2 File parsing
Parsing is a process, where a parser derives a syntactic structure for the program, fitting
the words into a grammatical model. Before such structure can be created, a scanner needs
to parse so-called lexemes from the input source [61]. These lexemes are defined by creator
of the scanner and parser. In case of programming languages the lexmes are objects such
as keywords, variables, constants. . . .

Parsers and scanners process certain language. If the input does not adhere to this
language – meaning a string is not generated by grammar of such language [29] – the parser
won’t accept this string. In the sense of general file parsing this language can be very
strict, such as in a case of a file, which may contain only numbers. This file format could
be very easily parsed using regular grammar. Example of such a grammar can be seen in
specification 2.1, where a regular grammar 𝑅𝐺 is as a quadruple 𝑅𝐺 = (Σ,∆, 𝑅, 𝑆), where
Σ is a finite alphabet of non-terminal symbols, ∆ is a finite alphabet of terminal symbols
and Σ∩∆ = ∅, 𝑆 is a starting non-terminal (𝑆 ∈ Σ) and 𝑅 is a finite set of rules in a form
of 𝛾 → 𝛼, where 𝛾 ∈ Σ and 𝛼 is either a non-terminal or a non-terminal and a terminal.

𝐺𝑛𝑢𝑚𝑏𝑒𝑟𝑠 = ({𝑆}, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, {𝑆 → 𝑆𝑆|0|1|2|3|4|5|6|7|8|9}, {𝑆}) (2.1)

9

In theory and mainly in practice regular expressions are frequently used tool for defining
regular languages and can be therefore used for file parsing. The regular expressions over
a finite alphabet ∆ and the language that these expressions denote are defined recursively
as follows [29]:

1. ∅ is a regular expression denoting the empty set,

2. 𝜀 is a regular expression denoting {𝜀},

3. 𝑎, where 𝑎 ∈ ∆, is a regular expression denoting {𝑎},

4. if 𝑟 and 𝑠 are regular expressions denoting languages 𝑅 and 𝑆, respectively, then

(a) (𝑟|𝑠) is a regular expression denoting 𝑅 ∪ 𝑆,
(b) (𝑟𝑠) is a regular expression denoting 𝑅𝑆,
(c) (𝑟)* is a regular expression denoting 𝑅*.

Regular expressions are quite popular and many languages offer built-in libraries for
regular expressions, but the syntax used to write regular expressions may differ in each
language [21].

In other cases to parse a file, a stronger grammar might be needed. For example, a
file containing a simple C-based language code with conditional statements and simple
expressions could not be parsed using a regular grammar. For this case a context-free
grammar can be used, which is defined once again as a quadruple 𝐶𝐹𝐺 = (Σ,∆, 𝑅, 𝑆),
where Σ, ∆ and 𝑆 follow previous definitions, but the rules for 𝑅 are following 𝛾 → 𝛼,
where 𝛾 ∈ Σ and 𝛼 ∈ (Σ ∩∆)* [29]. Then a context free grammar for this simple language
could look the following:

𝐺𝐶 = (Σ, {𝑖𝑓, (,), {, }, 𝑥, 𝑦,+,−, *, /,=, ; , 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, 𝑅, ⟨𝑆𝑇𝑀𝑇 ⟩)
Σ = {⟨𝑆𝑇𝑀𝑇 ⟩, ⟨𝐼𝐷⟩, ⟨𝐸𝑋𝑃𝑅⟩, ⟨𝑆𝑇𝑀𝐿𝐼𝑆𝑇 ⟩, ⟨𝑁𝑈𝑀⟩, ⟨𝑂𝑃 ⟩}
𝑅 = {
⟨𝑆𝑇𝑀𝑇 ⟩ → {⟨𝑆𝑇𝑀𝐿𝐼𝑆𝑇 ⟩}
⟨𝑆𝑇𝑀𝑇 ⟩ → ⟨𝐼𝐷⟩ = ⟨𝐸𝑋𝑃𝑅⟩;
⟨𝑆𝑇𝑀𝑇 ⟩ → 𝑖𝑓(⟨𝐸𝑋𝑃𝑅⟩)⟨𝑆𝑇𝑀𝑇 ⟩
⟨𝑆𝑇𝑀𝐿𝐼𝑆𝑇 ⟩ → ⟨𝑆𝑇𝑀𝑇 ⟩
⟨𝑆𝑇𝑀𝐿𝐼𝑆𝑇 ⟩ → ⟨𝑆𝑇𝑀𝐿𝐼𝑆𝑇 ⟩⟨𝑆𝑇𝑀𝑇 ⟩
⟨𝐸𝑋𝑃𝑅⟩ → ⟨𝐼𝐷⟩ | ⟨𝑁𝑈𝑀⟩ | ⟨𝐸𝑋𝑃𝑅⟩⟨𝑂𝑃 ⟩⟨𝐸𝑋𝑃𝑅⟩
⟨𝑁𝑈𝑀⟩ → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
⟨𝐼𝐷⟩ → 𝑥 | 𝑦
⟨𝑂𝑃 ⟩ → + | − | / | *
}

(2.2)

As showcased in specification 2.2, a grammar can be a very powerful tool for file parsing,
that guarantees its correctness based on its mathematical grounds. Its implementation can
be done in many ways. There are many tools for implementing these grammars such as
YACC and LEX [33]. These tools can save a lot of time hand writing a parser, its debugging
and checking for correctness by just writing a grammar.

10

2.3 Text file parsing
Any file can be parsed including byte files such as images, pdfs or music files, but more
often file parsing based on lexemes makes more sense for text files, where one file might be
correct representation of multiple file formats. For example s simple C code might represent
a valid C program, C++ program and a raw text file.

When parsing a raw text file, meaning a text file without specified format, its content
is always valid and a parser should account for this. Automated text editor for raw text
files should account for this. In its parser numerous lexemes can be defined (for example
numbers, delimiters, mathematical operators. . .), but at the same time there should be a
special case for symbol or string, which cannot be parsed into any other lexeme.

Let’s assume a parser and a scanner, which defines the following lexemes and regu-
lar expressions for parsing them: number ([0-9]+), delimiter ([,.;!| \/-\n]), symbol
([#$&(){}\[\]]) and text ([a-zA-Z]). This parser would accept and parse many simple
text files, but would halt (not accept) for example the following file:

1 FACT:
2 Otakar Borůvka was a Czech mathematician.

Listing 2.3: Example of text file, which might require special lexemes for unexpected input.

It is also worth mentioning, that in the case of Listing 2.3 just adding a special lexeme
for anything that cannot be parsed by any other lexeme does not solve all the problems,
since this approach might bring other problems. This special lexeme might be defined for
a single character, which in a case of character : would be the correct approach, but then
for parsing the name Borůvka the parser (scanner) would split this name into 3 different
lexemes (text Bor, other ů and text vka). In this case connecting the special symbol to
the last and following lexeme would be correct, but then this would create lexeme FACT:,
which might cause other problems. This problem might get even more complicated when
working with UNICODE text, where characters may differ in byte size or the text might
containing characters like emojis [14].

Another problem could arise from localization, where a different format might be used
for certain lexeme based on the authors culture and local standards. Example could be the
number “42.200” and “42,200”, where both notations are valid format for real number with
decimal expansion and also for an integer [40].

2.4 Text comparison methods
Often when working with text files, there is a need to compare two strings. This comparison
might be as simple as to check if the strings fully match, but sometimes more complex
comparison might be needed, where the strings are compared for their similarity. Methods
for string comparisons are needed in many fields and there is already a lot of research
behind these methods. For example, bioinformatics often works with genetic sequences,
which are represented as strings of letters and here the difference between two sequences
(strings) is often needed to determine correct alignment or deduct some properties [7].
Since these methods are looking at the differences between two strings, they often use the
word “distance” between two strings. This distance usually represents how many edits (for
example deletions or insertions of single characters) are needed to make the two strings
identical [38]. If this distance 𝑑 is then divided by the overall length of the longer string

11

and multiplied by 100 this results in the similarity 𝑠 of these strings in percentage (see
Equation 2.3).

𝑠𝑡1,𝑡2 =
𝑑

max (|𝑡1|, |𝑡2|)
· 100 (2.3)

2.4.1 Levenshtein distance

In 1966 a Russian mathematician Vladimir I. Levenshtein published his paper titled in
English as “Binary codes capable of correcting deletions, insertions, and reversals” [38],
which was based on an earlier paper by R. W. Hamming [27]. In this paper, Levenshtein
presents his method for measuring how much two string are different (their edit distance)
from each other based on three possible operations done to one of the strings:

• deletion – a character is removed form the string,

• insertion – a new character is inserted into the string,

• reversal – two characters are swapped.

Each operation executed increments the overall distance by one.

Input: Strings 𝑠 and 𝑡.
Data: Levenshtein distance between 𝑠 and 𝑡.
𝑚← |𝑠|
𝑛← |𝑡|
𝑑 = matrix[0..𝑚, 0..𝑛] of zeroes
for 𝑖← 1 to 𝑚 do

𝑑[𝑖, 0]← 𝑖
end
for 𝑖← 1 to 𝑛 do

𝑑[0, 𝑖]← 𝑖
end
for 𝑗 ← 1 to 𝑛 do

for 𝑖← 1 to 𝑚 do
𝑐← 1 if 𝑠[𝑖] = 𝑡[𝑗] then

𝑐← 0
end
𝑑[𝑖, 𝑗]← min(𝑑[𝑖− 1, 𝑗] + 1, 𝑑[𝑖, 𝑗 − 1] + 1, 𝑑[𝑖− 1, 𝑗 − 1] + 𝑐)

end
end
return 𝑑[𝑚,𝑛]

Algorithm 1: Pseudo code for Levenshtein distance algorithm.

As seen in Algorithm 1, Levenshtein distance uses a matrix of size 𝑚 × 𝑛, where 𝑚
and 𝑛 are lengths of the 2 compared strings. When comparing 2 strings with same or very
similar lengths this results in space complexity of 𝑂(𝑛2). This complexity unfortunately
appears in most string comparing methods that measure edit distance, because of the use
of dynamic programming approach [26]. It is also unfortunately proven that this algorithm
cannot run in strongly subquadratic time (𝑂(𝑛2−𝛿) for some constant 𝛿 > 0) unless the
strong exponential time hypothesis is false [5].

12

2.4.2 Jaro distance and Jaro-Winkler distance

In 1985 Matthew A. Jaro proposed a new method for measuring similarity of two strings [31]
(now referred to as the Jaro distance) and in 1990 this method was built on by William
E. Winkler [63] (now referred to as the Jaro-Winkler distance). The latter method mostly
only adjusts the first method results with additional computations, so it will take longer,
but might calculate more accurate similarity. Unlike Levenshtein’s method, these methods
return the similarity, where 0 means no similarity and 1 means identity [11].

Φ𝑗(𝑠, 𝑡) =
1

3

(︂
𝑁

|𝑠|
+

𝑁

|𝑡|
+

0.5𝑇

𝑁

)︂
(2.4)

𝑑𝑚(𝑠, 𝑡) =

⌊︃
max(|𝑠|, |𝑡|)

2

⌋︃
− 1 (2.5)

The Equation 2.4 showcases Jaro’s approach to calculating the similarity [11] of strings
𝑠 and 𝑡, where 𝑁 is the number of matching characters of strings 𝑠 and 𝑡. Matching
characters are characters, which are the same or are not farther than distance 𝑑𝑚 specified
in expression 2.5.

Winkler then uses the same formula, but gives higher similarity values for strings, which
match from the beginning for a set prefix length, i.e.:

Φ𝑤(𝑠, 𝑡) = Φ𝑗(𝑠, 𝑡) + 𝛼 · 𝑃 (1− Φ𝑗), (2.6)

where 𝛼 is the length of common prefix of 𝑠 and 𝑡 up to 4 characters and 𝑃 is a constant
scaling factor, where Winkler used the value of 0.1 in his original paper [63].

2.5 Compilation of source code
Compilation is a process of transforming program in some input language into another
language, which in many cases is assembly language or binary code [61]. Compilation into
binary code is not always needed and some compilers, such as the Java compiler, compiles
into some simpler intermediate language, which is still above the binary code [41]. But
to achieve this transformation, there are many steps in between and many other optional
ones to optimize or achieve other results. A very general and simplified syntax-directed
compilation process could be described as following [61]:

1. The source program is loaded into a lexical analyzer (also called scanner), which,
once called by a syntax analyzer (parser), returns a token (scanners and parsers are
also described in Section 2.2). These tokens (also called lexemes) the scanner extracts
from the code are defined by the language’s grammar and there are many methods of
extracting them, where one of the popular ones is using regular expressions [39].

2. The parser is continuously requesting tokens from the scanner and constructing from
them parse trees. These trees are then analyzed for their semantic correctness in
semantic analyzer, which may or may not be its own separate unit. The semantic
analyzer creates an abstract syntax tree from a parse tree.

3. The abstract syntax tree then goes into an intermediate code generator, which gen-
erates some intermediate representation, which level of abstraction is way lower than

13

the input program, but still above the binary code. Example of such representation
might be a three-address code or even something more complex such as internal LLVM
representation [47]. Even though it is possible to generate a binary code right from the
input program it would be ill-advised, because nevertheless the chosen representation,
lowering the abstraction heavily simplifies and helps with following steps.

4. If one were to choose the path of not generating an intermediate code, the compilation
could end there, but one of the main reasons for using an intermediate code is to do
optimizations and there are many optimizations that can be done here.

5. Once the code has been optimized it can be finally transformed into the binary rep-
resentation with a code generator and with this step the compilation had produced
the target program.

It is worth mentioning, that the above process is in no way the only approach, quite the
opposite. In some cases the the compilation might require some steps to be added, some
to be removed, some to be repeated multiple times. And in practice many of the processes
might appear in other units, such as optimization, which might appear already in the
parser in a form of constant folding for example (see Listing 2.4). It should also be noted
that each step might be a very complex unit with many sub-units and problems, which
needs to be solved to make a working compiler. For example, even the final part – binary
code generation – brings in many problems such as register allocation, communication with
operating system or just the general problem of different instruction sets [61].

1 expr : NUMBER { $$ = atoi($1); }
2 | ’(’ expr ’)’ { $$ = $2; }
3 | expr ’%’ expr { $$ = $1 % $3; }
4 | expr ’*’ expr { $$ = $1 * $3; }
5 | expr ’/’ expr { $$ = $1 / $3; }
6 | expr ’-’ expr { $$ = $1 - $3; }
7 | expr ’+’ expr { $$ = $1 + $3; }
8 ;

Listing 2.4: A snippet of YACC code to showcase the optimization done already in the
parser. The code defines an integer expression expr and when working with only constants
it already computes arithmetical operations at compile time.

2.6 Interpretation of source code
Interpretation is a process, where the input source code is executed by an interpreter.
The main difference from compilation (described in Section 2.5) is that interpreter does
not generate binary code or some other output program, but rather executes the code
(in a form of a binary code) right away [49]. There can be as usual some exceptions,
where such exception is the language Java, which uses both processes – compilation and
interpretation – the Java compiler generates a Java Bytecode, which is then run in the Java
Virtual Machine, which acts as the interpreter [41]. And quite similar to compilation, the
interpretation process can be very complex. Many interpreters, such as CPython [53], also
generate intermediate code, which can be optimized and then executed. In this case the

14

interpretation process is the same as the compilation process described in Section 2.5, but
the last step is code execution instead of binary code generation.

There are many advantages to interpretation compare to compilation. Nowadays inter-
preters are becoming more and more popular because of the increasing speed of comput-
ers [49]. This increase of course also helps speeding up compilers, but interpreters usually
allow for quicker development since the binary code generation might be a very difficult
task. This can be simplified by using a framework such as LLVM, which already offers
“backends” for binary code generation [47], but interpreters also can be chosen for the
other features they offer, such as being able to modify the code during interpretation or
just the fact, that most checks are done on runtime, which allows for easy prototyping.

There are also many disadvantages to interpretation compare to compilation. As already
mentioned, interpretation in practice should take longer, since the scanning and parsing
has to be done during the code interpretation. Compiled code also gets rid of the need
to share the full source code, which in many cases might be a needed feature and many
other features, which are quite often dependent on the compiler or language. For example,
J. Merelo-Guervós et al. [43] ranked different languages for genetic algorithm tasks and
showcased, that even many of the interpreted languages have high performance and it’s not
only about being interpreted or compiled, but about other aspects as well.

It is worth mentioning, that in many cases language definitions do not specify if a
compiler or interpreter should be used [32], since this would be equal to specifying which
parsing methods should be used, and thus, one language might have multiple compilers as
well as interpreters.

2.6.1 Bytecode-like language compilation and interpretation

Bytecode is a low abstraction language, which might represent an intermediate code in an
interpreter or a compiler [25] [41]. As already mentioned in previous sections, the bytecode
(which might serve as intermediate code) is used for the purpose of simpler optimization
and binary code generation (for compilers) or code execution (for interpreters). Bytecode
has other positive features, such as its speed, where for example Java, which interprets a
bytecode has performance very similar to compiled code [43]. Bytecode also showcased to
be one of the best representations for formal code verification [10] and if compiler outputs
a bytecode, then the source code does not have to be shared.

1 0 LOAD_GLOBAL 0 (print)
2 2 LOAD_CONST 1 (’Hello, there!’)
3 4 CALL_FUNCTION 1
4 6 POP_TOP
5 8 LOAD_CONST 0 (None)
6 10 RETURN_VALUE

Listing 2.5: Bytecode generated by CPython 3 interpreter for simple method, which prints
text “Hello, there!”.

1 void sayHello();
2 Code:
3 0: getstatic #3
4 3: ldc #4
5 5: invokevirtual #5

15

6 8: return

Listing 2.6: Bytecode generated by Java compiler for simple method, which prints text
“Hello, there!”.

1 function sayHello() --line 1 through 3
2 1 GETTABUP 0 0 0 ; _ENV "print"
3 2 GETTABUP 1 0 1 ; _ENV "i"
4 3 GETTABUP 2 0 2 ; _ENV "v"
5 4 CALL 0 3 1 ; 2 in 0 out
6 5 RETURN0
7 end

Listing 2.7: Bytecode generated by Lua compiler for simple method, which prints text
“Hello, there!”.

Listings 2.5, 2.6 and 2.7 showcase different bytecodes used by different compilers and
interpreters. All of the examples do the same task, but very much differ from each other.
A good bytecode design can be as important as the input language design, since the byte-
code has to be able to perform everything the input code does so that the output code
is semantically the same. Not only that the bytecode has to correctly map to the input
code, it should also justify its use, by bringing in already discussed features, like having
optimizations done over it.

If a language is compiled, but outputs a bytecode, then this bytecode can always be
compiled into binary code, if needed be. For Java there exists multiple compilers, that can
do this task, such as Launch4j1.

In case of interpreted languages, there can also be optimization in a form of “just-in-time
compilation”, which is a process in which a code that is often executed (such as code inside
a loop) is compiled right into a binary code for faster execution [24]. Since the process of
compiling a bytecode into a binary code during its interpretation requires the compilation
itself and then the execution of the binary code, it is not very beneficial to do just-in-
time compilation for the whole code, but rather for parts of the code, where the binary
code speedup would overcome the just-in-time compilation time. This task of detecting
when to do just-in-time compilation is quite difficult, since it might not be possible to
determine during compilation, which parts would benefit this. For example Java calls these
parts of code “HotSpots™” and has its own HotSpot™ detection system, which at runtime
identifies such parts of the code and does just-in-time compilation [44]. With this approach
the whole process of HotSpot™ detection increases the interpretation time since it has to
run alongside the interpretation. For the detection to be beneficial, it has to bring in more
speedups with its just-in-time compilations, then it takes away by being present and doing
runtime analysis. Another example can be Numba2, which is a just-in-time compiler for
Python and its library Numpy. Unlike Java’s HotSpot™, Numba uses decorators, so the
user has to manually specify, which parts should be compiled.

1http://launch4j.sourceforge.net/
2https://numba.pydata.org/

16

http://launch4j.sourceforge.net/
https://numba.pydata.org/

Chapter 3

Code synthesis using genetic
programming

Genetic programming has a large use, from hardware circuit design [22] [45] to many other
fields, but this section will focus only on its use regarding code synthesis.

Genetic programming might for people, who are unacquainted with it, seem like only
a random process that is very much similar to just a random generation, but this is not
the case. Even though randomness plays a big part in genetic programming and evolution-
based algorithms, it is not a random process. Randomness is merely here to help find new
path for evolution. Genetic programming is in more details described in Section 3.2

3.1 Evolutionary algorithms
For evolution to happen in the nature, there needs to be the following [35]:

• Ability to reproduce.

• There needs to be a population of such reproducing entities.

• There needs to be some variety among the entities in a population.

• Some difference in ability to survive in the environment is associated with the variety.
In nature the variety is manifested in the form of chromosomes and results in differences

that either helps the entities survive or the opposite. Evolution is all about survival of the
fittest, meaning that the entities with the best fitness are the ones that survive and their
valuable attributes (in a form of chromosomes) are passed to future generations [17].

The genetic algorithms are inspired by Darwin’s evolutionary process. Evolutionary
algorithms transform a set (population) of individual objects into a new population using
their fitness and genetic operations [35].

The strength of evolutionary algorithms is that they can effectively search complex
spaces with having only a fitness function capable of assigning a fitness score to each
candidate solution. Nothing else, such as its derivative, is supposed.

3.2 Genetic programming
Genetic programming (GP) is a technique popularized by John Koza in the 1990s as a
method for automated programming [34]. The whole process of genetic programming some-

17

what imitates evolution in nature. It starts with randomly initialized population of candi-
date solutions, which in the case of evolving algorithms would be simple programs, but in
other cases it could be circuits or just anything else. Quite often in genetic programming
these phenotypes are represented as trees [36], although this representation is not the only
one possible, as can be seen in later chapters. These candidate solutions (phenotypes) are
crossed with each other, mutated, scored and then the best ones are selected into future
populations based on the scoring [19].

The fitness function guides the evolution, by favoring phenotypes showing a better
performance [34]. Without a fitness function, there is no way to guide the evolution.On the
other hand, this limits genetic programming to a specific set of problems, where it can be
employed.

The need for fitness function, somewhat limits the use for code generation, since often
the implementation of fitness function would result in no longer needing the GP. This
would be because the fitness function would be the solution itself. An example of this
would be when one were to evolve a sorting algorithm using genetic programming. The
input would an unsorted list of values and the synthesised program needs to sort these
values in ascending order. The problem here would be scoring the phenotypes. To score
them, the fitness function would not only need to have the final sorted list, but also some
means of telling how close is some partially sorted list to a fully sorted one. If the fitness
function had these means, the fitness function could be used for this job instead of the
generated program. This approach could find some use, if it was utilized to find a new
algorithm or optimize an existing one.

But this limitation does not mean that genetic programming has no use in this field.
On top of generating code, where fitness function can be provided (such as algorithms
for file editing), it can help optimize programs (their time or even space complexity), by
evolving parts of the code into ways a programmer would not think of [15] or it can also
help automatically fix bugs [20]. In other fields GP can be used for tasks such as classifier
or predictor design [45], generating computer art [62], composing music [42], help with
problems in quantum computing [57] and many other uses.

Nowadays there is a big popularity of using neural network and deep learning for solving
many problems. These approaches are in some ways also similar to evolutionary approach
by using loss functions, which are very similar to fitness functions – a function that is
guiding the learning [64]. But as showcased in this paper and many cited papers, there
can be found many cases, where genetic programming could take place for neural networks,
which could bring in many advantages and simplification.

Genetic programming takes the approach of genetic algorithms (described in Section 3.1)
and uses crossovers, mutations and selections to find desired solution. Most of the ap-
proaches have similar features with some alterations (J. Koza’s approach can be seen in
Figure 3.1) and here are the features:

1. Initial random population of phenotypes is generated.

2. Every phenotype is scored using fitness function.

3. Main evolutionary cycle starts and ends once a perfectly fitting phenotype is found or
other termination condition is met (such as exceeding the evolution time or iterations
done).

4. In the cycle selected phenotypes are crossed over, some may be mutated and then
new population is created by selection from all these phenotypes.

18

Gen := 0

Create initial random
popultation

Designate result

End

Evaluate fitness of
each individual in

population

i := 0

Termination criterion
satisfied?

i = M?Gen := Gen + 1

Select genetic operation
probabilistically?

Select one individual
based on fitness

Select 2 individuals
based on fitness

Perform reproduction i := i + 1

Copy into new
population

Perform crossover

Insert 2 offspring into
new population

i := i + 1

Yes

No

Pr Pt

No

Yes

Figure 3.1: Flowchart for the genetic programming paradigm described by J. Koza [35],
where 𝑀 is the size of population and 𝐺𝑒𝑛 hold the current generation number.

5. New population is once again scored and main cycle repeats.

The general process of genetic programming and its parameters (such as the population
size, probability of crossover. . .) may vary and should vary depending on the problem
begin solved. There is not one specific algorithm that would always deliver the best results.
The following sections talk more in detail about the specific parts and operations in genetic
programming.

3.2.1 Genotype and phenotype

In nature a phenotype is set of characteristics of a living organism, resulting from its
combination of genes and the effects of its environment [56]. In genetic programming
this is very much similar. Phenotype is the product of a genotype, where genotype is
some structure (an abstract syntax tree, a string of bits, a graph. . .) and phenotype is a

19

candidate solution to some problem [50]. Example of this can be an abstract syntax tree
holding some expression, which would represent the genotype and applying it to a problem
(converting to an expression) would represent the phenotype (see Figure 3.2).

÷

×

n +

n 1

2

y = n * (n + 1) / 2

Figure 3.2: Transformation of genotype to a phenotype. An abstract syntax tree (left) is
the genotype and a generated expression from it (right) is the phenotype.

There are many ways to represent a genotype in a computer for the purpose of genetic
programming. One of the popular representations is a tree representation, which allows
for easy genetic operations [36]. Another example of genotype can be list of integers (or
possibly just string of bits) used in Cartesian genetic programming. But a genotype can
be represented in any way, which is beneficial to the genetic algorithm and which allows to
apply genetic operations.

The tree representation allows for simple operations by working with subtrees or chang-
ing values of nodes. In case of using a bit string, the positions of bits play a big role and
determine their semantic value [45]. Genetic operations can work with these sections and
swap them between phenotypes in case of crossovers or “flip” one bit to apply a mutation.
Figure 3.5 showcases how a crossover operation could work for a genotype represented by
a graph and Figure 3.7 showcases possible mutation operation on such genotype.

Genotype representation might be in many cases quite an important choice, since the
genetic operations done over will happen hundred or even thousands of times, and so, a
representation, which is slow will drastically slowdown the evolution process. This fact can
be seen in Figure 3.3, which displays results from the same genetic programming algorithm,
but using two different genotype representations. In reality this algorithm only simulated
Cartesian genetic programming by having a genotype with 𝑛 triplets of boolean values.
Even though this algorithm wasn’t solving any real world problem it did all the operations
discussed – crossover, mutation, population evaluation and selection. Both versions evolved
1000 times one population with 50 phenotypes with the size of 12 triplets. The results clearly
showcase that the internal representation of genotype matters, when it comes to the GP’s
time performance. But this facts is not surprising since this is rather a problem of language
abstractions and its overhead. In this case Python 3 language was used, but if a language
with lower overhead was used, such as C++ [59], then the difference could be way lower.
Nonetheless it is always good to keep in mind that the genetic operations will be executed
frequently, and hence, they are a good place for optimizations.

20

Object List
Genotype representation

0.0

0.2

0.4

0.6

0.8

1.0

1.2

t [
s]

Figure 3.3: Median values from 10 measured runs of the same algorithm, which simulated
genetic programming in Python 3. The algorithm used for “Object” value genotype repre-
sentation in form of an object with public attributes and for “List” it used only a simple
list, where the positions represented the attributes.

3.2.2 Population

Population is set of candidate solutions (phenotypes), in which the phenotypes crossover
with other selected phenotypes from this population and changes to the population are
done with the means of selection [35]. In the GP process described by J. Koza [35], there
is only one population, but there are also some approaches utilizing multiple populations –
“sub-populations” – and migrate phenotypes between them. This approach even displayed
some performance improvements [55]. Sometimes it might be also beneficial to run multiple
populations (multiple evolutions) instead of having just one that is being evolved until fit.

3.2.3 Fitness and fitness functions

Fitness is the driving force of Darwinian natural selection and, likewise, for genetic algo-
rithms and genetic programming. In nature fitness is the the probability that the entity
survives until reproduction age and reproduces [35]. In genetic programming fitness should
also measure the probability of achieving phenotype’s goal. Fitness can often be explicit
and measured by a fitness function, but it is also possible to use implicit fitness [8].

Fitness can have many representations. In case of symbolic regression, fitness can be the
error between phenotype’s results on a given data set and expected results [30] (more about
symbolic regression can be found in Section 3.3). In case of working with strings, it can be
the Levenshtein distance between phenotype’s string and desired result and in video games
it could be the phenotype’s score, where higher score is better. . . . In all these cases, it does
not really matter the way we express the fitness as long as we have a way to compare one
phenotype with other and tell if it has a better, the same or worse fitness. So the fitness

21

could be a real value, integer, but using something like string would require additional
function that could compare these values. This fact is based on fitness’ definition, where
if two fitness values cannot be compared, then it is impossible to tell, which phenotype
has a “better” fitness. Mathematically speaking, this implies that a set of fitness function
values have to be totally ordered. It is worth mentioning, that the “better” fitness does
not necessary have to be a higher value. In fact this rather depends on the range of values.
In case of symbolic regression, where we measure the error, then a lower value represent
better fitness and the value 0 represents a perfect fitness. On the other hand, if the fitness
function is for instance a score in a video game, then a higher value would be a better
fitness and there might not be any best (maximum value) fitness.

3.2.4 Crossover

Crossover is a genetic operation, which allows the creation of a new individual into the
population, and thus, new parts of the search space to be tested [35]. J. Koza described
in [35] crossover as an operation, where two phenotypes picked based on their fitness create
two new individuals, which both contain some genetic material from their parents. As was
already mention in the section about genetic programming, this operation can differ, but
still accomplishes the task of creating a new individual to explore the search space. In some
cases it might be, for the reasons of computation time or genotype representation, more
beneficial to create only one offspring. In some cases it might be even possible to modify one
of the parents instead of creating a new copy, modifying it and then not putting the parent
into next population, but this is rather an implementation detail and the new individual
would be the same as if a copy was done. Figure 3.5 displays example of crossover done
over a genotype represented by an undirected graph. In this example, only one offspring
is created, but it would be very easy to create the second one by selecting the not selected
nodes and connecting those.

× = 2

5

43

Figure 3.5: Example of a crossover operation on two genotypes represented by an undirected
graphs (for the purpose of graph coloring). In this case a random subgraph is selected from
the second genotype (red outlined nodes) and an inverse of this is taken from the first
genotype. These two subrgaphs are then connected together to create a new genotype.

In genetic programming, in some cases such as Cartesian genetic programming, it is
possible to not have crossovers and rely only on mutations [45]. The main thing, which
crossovers bring into the evolution is a creation and modification the the genotype structure.
For example if some process was working with bit strings as genotype representation, then
the structure is always the same (a string of bits) only its length might change, which in

22

÷

×

n 42

2

+

+

n 1

n

X: Y:

÷

×

n

2

+

42 n

X': Y':

+

n 1

Figure 3.4: Example of a crossover operation on two genotypes represented by an abstract
syntax tree. In this case a random subtree is selected for both parent genotypes 𝑋 and 𝑌
and these subtrees are swapped creating two new genotypes 𝑋 ′ and 𝑌 ′.

some cases might not be desirable. Another example could be the undirected graph from
Figure 3.5. This graph is the exact representation of the graph, which is being colored
by genetic programming and therefore it cannot change its structure. On the other hand,
where for example a tree is being evolved (such as in symbolic regression), there it might
and probably is desirable to change the structure, which just ordinary mutation cannot do.

3.2.5 Mutation

Mutation is an asexual operation, meaning that it operates on only one individual. It works
by altering the value or values in the genotype’s structure [35]. In the Cartesian genetic
programming over a list of integers it could for example randomly change one integer or,
as it is depicted in the Figure 3.7, it could choose a random node in the genotype’s graph
and change its color to another random color.

Unlike crossover mutation might be necessary in some cases for the population to be
converging. This is because the mutation can bring back some VALUE that was lost during
evolution. This can be very well described on an example. Let’s suppose we are trying to k-
color an undirected graph, just as is depicted in Figures 3.5 and 3.7. The initial population
gets initialized and even here it might be possible, that some color is missing and using
crossovers it will never be possible to find correct coloring, since there is not enough colors.
But let us say that the initialization makes sure to include all colors needed by coloring
each node in different color. In this case it might be possible, that the crossover gets rid of
one or multiple colors by creating new individuals that have the some colors missing (which

23

is unavoidable to achieve minimal graph coloring or k-coloring with 𝑘 < |𝑁 |). After a few
crossovers it might happen that none of the phenotypes in the population contains some
color and consequently it is not possible to correctly k-color the graph in this evolution.
For this exact reason it is good to have a mutation operation in place. Mutation usually
has quite a low probability chance of it happening [35] and the chance that it generates the
missing color also lowers the overall chance of value reintroduction, but this chance is there
and makes sure that the population could converge in time.

+

42 n

Y: +

n

Y':

+

n 1

Figure 3.6: Example of a mutation of a genotype represented by an abstract syntax tree.
Random subtree is selected and is replaced by new randomly generated tree.

Mutate

Figure 3.7: Example of a mutation of a genotype represented by an undirected graph (for
the purpose of graph coloring). Random node is selected and its color is changed to a
random one.

It is also possible to allow mutation do other operations, than just randomly changing
an attribute of some chromosome. In case of working with tree genotypes, mutation might
often do the operation of removing a selected node and all its child nodes and replacing this
with newly generated subtree [35]. It would be also viable for the mutation to only remove
the node and reconnect its child nodes to its parent. The behavior should be adjusted to
the problem and what brings better results.

3.2.6 Selection

Selection is a process of choosing, which phenotypes will participate in creation of new
phenotypes. After the process of crossover and possibly mutation the new phenotypes are
without any alteration placed from the old population into the new one and used in next
evolution generation [35]. Selection is often based on fitness. One such popular selection

24

method was described by J. Holland in [28]. His selection uses the following equation for the
chance 𝑝(𝑠𝑖) that the individual 𝑠𝑖 will be chosen into the new population, where 𝑓(𝑠𝑖(𝑡)) is
the fitness (which should be normalized) of 𝑠𝑖 at time 𝑡 and 𝑀 is the size of the population:

𝑝(𝑠𝑖) =
𝑓(𝑠𝑖(𝑡))

𝑀∑︀
𝑗=1

𝑓(𝑠𝑗(𝑡))

(3.1)

Other alternative selections are “rank selection” and “tournament selection”. In rank
selection, the selection is based on the rank of the fitness values in the population [23] [35].
In the tournament selection a subset of the population (usually 2 phenotypes) is selected
and these phenotypes “battle” with each other, meaning that the one with the best fitness
is chosen into the new population [23].

Note that during the selection parents are also part of the selection process and often
one phenotype gets to be in multiple populations [35]. This is even more so, if elitism is
used. In case of elitism, the phenotype with the best fitness is unaltered and always placed
in the new population. This approach makes sure, that the best fitness never worsens [18].

3.3 Symbolic regression
Symbolic regression (SR) is one of the examples of real world use for genetic programming.
Symbolic regression can be used for many tasks such as econometric modeling and fore-
casting, empirical discovery of scientific laws, solution of equations yielding a function in
symbolic form, programmatic image compression and many others [35]. Symbolic regres-
sion searches the space of mathematical expressions trying to find the best model for given
data set. It is a set of processes for approximating the relationships between input and
output pairs performed by methods, which minimize various error metrics [30] and J. Koza
even called symbolic regression an “error-driven evolution” [35]. There is not only one, but
multiple approaches for symbolic regression [4] [13], but the general principle is the same
and it is in the process of genetic programming.

Symbolic regression uses already mentioned phenotype representation as a tree. In this
specific case, since SR works with expression, it is an abstract syntax tree (AST). In this
representation internal (non-leaf) nodes hold the operation (function, operator. . .) and
leaves hold constants or variables [61] (example AST can be seen in Figure 3.4).

One of the problems with finding an exact expression for given problem using not only
symbolic regression, but any approach, is ambiguity. Given a data set it might be possible
to find multiple solutions for given inputs and outputs. This can be easily showcased on a
very simple example. The task is to find an expression for a given data set:

x y
0 0
4 64
17.4 5268.024
42 74088

Table 3.1: Example data set for symbolic regression.

25

In almost no time, symbolic regression might find a quite simple solution 𝑦 = 𝑥3, but
when run once more the result might this time differ and the found solution could be
𝑦 =
√
𝑥6, but these two equations are not the same. If 𝑥 = −3 the first solution outputs

𝑦 = −27, whereas the second solution outputs imaginary result 𝑦 = 27𝑖 or depending on
the language might result in an exception. The reason can be easily seen in Figure 3.8.
As the graph shows, the two equations are identical on the interval of ⟨0,∞) and because
the given data set covers only this range it is impossible to decide, which was the correct
original equation, that produces these outputs.

0-5 5 10

-5

5

10

Figure 3.8: Plot of function 𝑥3 (solid line) and
√
𝑥6 (dotted line).

The problem gets even worse with non-continuous or discrete functions. What if the
function, that generated given outputs is a discrete function defined only in the inputs given?
Another problem might be function with some constant since the evolution would have to
have means of generating a correct constant, but a random generation could take immense
time and what if the constant won’t even fit in the datatype for a given computational
platform? For example if symbolic regression was to find the equation for the Planck-
Einstein relation 𝐸 = 𝑛ℎ𝑣 [46] it would need to have the means of producing Planck constant
ℎ = 6.62606957 × 10−34 [58]. An argument could be given, that the symbolic regression
could contain this and other constants that could be placed at the time of generation, which
is a valid argument, but this approach works only if it is certain, that other constants won’t
be present, such as ones, which might be completely random. The same could be said
for special functions, such as trigonometric functions or other that might often appear.
But in general it is impossible to cover all possible constants and functions for all possible
expressions, since there is infinitely many of them.

But more than often symbolic regression is used for the means of predicting the shape of
the original function for the real world uses mentioned in the beginning of this section. For
this task this approach is well suited and problems described above do not really concern
this, since it is expected for the generated function to not be exact, but rather be as similar
to the original one as possible.

Generalization also plays an important role for the found expression. The expression
can be then tested on a testing data set, so that the expression is not only valid for the
data set it was trained on.

26

Chapter 4

Ebe – Edit by Example

Ebe, which is an abbreviation for Edit by example, is a program,
that uses genetic programming to edit files based on example pat-
terns defined by the user.

Ebe was made and designed as an alternative approach for edit-
ing files, which could be used even by people with no programming
skills at all. It should also help save time to those, who know pro-

gramming and would spend some non-negligible time writing a code to do some file editing.
Ebe is quite unique to the other methods for file editing in its use of genetic programming
and the input required from the user.

For the user to do their file editing, all they have to do is provide a part (in many cases
just one line is sufficient) of the input file and also this part edited by hand. Ebe, more
specifically Eben (Ebe engine), then generates Ebel code to find a fitting transformation of
the input file into the output file, which can be then used to edit the whole input file or
even multiple files with similar structure.

Ebe can be thought of as a compiler, called Ebec (Ebe compiler), and interpreter, called
Ebei (Ebe interpreter). This whole compilation and interpretation process can be for in-
stance compared to a Java programming language compiler javac. This compiler takes Java
source code and compiles it into a Java bytecode, where the bytecode is a lower abstraction,
almost instruction-like level language, which can be then interpreted by the Java Virtual
Machine [41]. Ebe takes a very similar approach, but instead of accepting some input lan-
guage, it takes in two files and tries to “compile” (evolve using genetic programming) a
code, which transforms the first input file into the second one. The compiled code is very
much similar to Java’s bytecode and is written in Ebel programming language, which is the
language, that the Ebei (Ebe interpreter) understands. Such compiled code can be then
interpreted using again Ebe, but this time taking multiple files with same structure as the
input file provided during the compilation. The interpretation transforms all input files
into new output, with structure similar to the one provided by the user during compilation
(example output file). The whole compilation and interpretation process can be seen in
Figure 4.1.

Cases, where Ebe should be the most fitting is when one is editing either a large file or
multiple files with defined structure and repetition of this structure in those files. Example
of such files can be, for instance, comma separated values (.csv files), some configuration
files (e.g., .ini files) or some files defining a structure (e.g., .gtf, .fastq or .rdf files).

On the other hand, Ebe can not be efficiently used for some files, where there is no set
structure or periodicity and where is no pattern to the editing done. Although even in some

27

of these cases Ebe might be able to find the correct Ebel to do the editing and overall it is
dependant on the specific case and examples provided.

For value transformations, Ebe can work with user defined expressions, since exact
expression generation would be otherwise very difficult if not impossible (see Section 3.3).
So the user can override the compiler editing decision and force some specific operation
(expression) without rewriting the Ebel code by hand.

It is also worth mentioning that even though Ebe might be able to find a fitting program
for some quite difficult case, this might take a long time for the evolution, which might not
be for many users acceptable. But overall Ebe focuses on short execution time and offers a
lot of options for the user the set up the compilation, so that is suits his or hers needs. On
top of these user options, Ebe tries to be as user-friendly as possible and accounts for users
that have little to no experience with compilers. Because of this the advanced user options
for compilations are rather meant for more skilled users and by default the compiler does
all the configuration.

Since Ebe is also an interpreter of Ebel language and this language can be also written
quite easily by hand, it is possible for users to do file editing by writing out the Ebel code
themselves. Although this approach somewhat loses the purpose of avoiding having to write
a code to edit a file, it might be useful in cases, where the compilation wouldn’t be able to
find a fitting program or in cases where editing the expected output file would take as long
as writing the Ebel code itself. The advantage to using in such cases Ebel instead of some
other programming language is that Ebel was designed exactly for file editing, and thus, it
is a fitting choice that might result in lot shorter source code, than in case of some general
purpose language.

Input file scanner

Preprocessor
Lexer Parser

Ebel scanner
Lexer Parser

Engine

Interpreter

Exam-
ple

input

Exam-
ple

output

*.ebel

input1input2inputn ...

outputnoutput2output1 ...

Compilation

Interpretation

Ebe

Figure 4.1: Diagram of the Ebe workflow.

4.1 Ebel – Ebe Language
Ebel, which stands for Ebe language, is an imperative, case insensitive, dynamically typed,
programming language designed for file editing. This language was designed as a lower level

28

target language and is in such a way used by Ebe, more specifically Ebec (Ebe compiler). It
is interpreted over a file, where the Ebel code can be thought of as a pipeline of instructions
through which the file objects (called words) go and get modified by.

Ebel is composed of multiple sections called passes. Such pass defines in which way the
input file is read (passes are more in detail described in Section 4.1.2). These passes are
then composed of instructions (that are described in Section 4.1.4), which work with the
pass object (word or a line).

Since Ebel programs are generated by genetic programming, it might be used by non-
programmers and there are no constraints on the input format. Ebe’s philosophy is to not
cause exceptions and errors as long as it is not necessary. Meaning that, when an incorrect
instruction or input is encountered, rather than exiting the execution with error, only a
warning is printed and the instruction or input is ignored (see Figure 4.2). This approach
might be profitable also to the evolution since it might use this behavior to its advantage.
This approach also allows for minor differences in the structure of the interpreted files.

Figure 4.2: Screenshot of Ebe’s output, showcasing Ebe’s philosophy when encountering an
error. Since input led to a division by zero exception, this expression was skipped and no
changes were done to this input and a warning was emitted.

1 PASS Words
2 NOP
3 DEL
4 DEL
5 PASS number Expression
6 SUB $1, $0, 32
7 MUL $2, $1, 5
8 DIV $0, $2, 9
9 RETURN NOP

10 PASS derived Expression
11 RETURN DEL
12 PASS Lines
13 SWAP 1
14 LOOP

Listing 4.1: Example of Ebel code.

The Ebel code in Listing 4.1 will do the following:

1. PASS Words - file will be interpreted word by word and for each line:

1.1. NOP - 1st object will be left as is,
1.2. DEL - 2nd object will be deleted,
1.3. DEL - 3rd object will be deleted,
1.4. PASS number Expression - 4th object, if it is a number will be:

1.4.1. SUB $1,$0,32 - subtract 32 from its value,
1.4.2. MUL $2,$1,5 - multiply the new result by 5,

29

1.4.3. DIV $0,$2,9 - divide the result by 9 and save it as the new value for the
object,

1.4.4. RETURN NOP - end expression and do not modify the new result.
1.5. PASS derived Expression - if 4th object was not a number, then use the fol-

lowing without regarding its type:
1.5.1. RETURN DEL - delete the object.

2. PASS Lines - file will be interpreted line by line and for each line:

2.1. SWAP 1 - swap current line with the following one,
2.2. LOOP - repeat until all lines were processed.

4.1.1 Ebel syntax

One of the reasons for Ebel to be syntactically very simple language, similar to a bytecode,
is to simplify and speedup the syntactic and semantic analysis of it (the results of this
can be seen in Figure 4.4). Ebel’s grammar in extended Backus-Naur form can be seen in
Listing 4.2.

1 program : EOF
2 | ’\n’
3 | pragma ’\n’ code
4 | code EOF;
5
6 code : instruction
7 | pass
8 | code ’\n’ (instruction|expr_inst|pass)?;
9

10 pragma : ’@pragma’ PRAGMA
11 | pragma ’\n’ ’@pragma’ PRAGMA;
12
13 instruction : ’concat’ INT
14 | ’del’
15 | ’loop’
16 | ’nop’
17 | ’swap’ INT
18 | ’return’ instruction;
19
20 expr_inst : ’add’ VAR ’,’ (VAR|INT|FLOAT) ’,’ (VAR|INT|FLOAT)
21 | ’sub’ VAR ’,’ (VAR|INT|FLOAT) ’,’ (VAR|INT|FLOAT)
22 | ’mul’ VAR ’,’ (VAR|INT|FLOAT) ’,’ (VAR|INT|FLOAT)
23 | ’div’ VAR ’,’ (VAR|INT|FLOAT) ’,’ (VAR|INT|FLOAT)
24 | ’mod’ VAR ’,’ (VAR|INT|FLOAT) ’,’ (VAR|INT|FLOAT)
25 | ’pow’ VAR ’,’ (VAR|INT|FLOAT) ’,’ (VAR|INT|FLOAT)
26 | ’move’ VAR ’,’ (VAR|INT|FLOAT) ’,’ (VAR|INT|FLOAT);
27
28 pass : ’pass’ type ’expression[s]?’
29 | ’pass’ expr_type;
30

30

31 VAR : ’$[0-9]*’;
32 INT : ’[-]?[0-9]+’;
33 FLOAT : ’([-]?[0-9]+\.[0-9]+[eE][+-]?[0-9]+ | [-]?[0-9]+\.[0-9]+)’;
34 PRAGMA : ’sym_table_size’ [1-9][0-9]*
35 | ’requires’ ’([0-9]+\.?
36 | [0-9]+\.[0-9]+\.?
37 | [0-9]+\.[0-9]+\.[0-9]+)’
38
39 expr_type : ’expression[s]?’
40 | ’word[s]?’
41 | ’line[s]?’
42 | ’document[s]?’
43 | ’".*"’;
44
45 type : ’text’
46 | ’number’
47 | ’float’
48 | ’delimiter’
49 | ’symbol’
50 | ’empty’
51 | ’derived’;

Listing 4.2: EBNF grammar for ebel.

4.1.2 Ebel passes

Pass is the main building block of Ebel code, it can be thought of as a block of code, that
does not interact with other passes. Each pass consists of instructions (which are described
in Section 4.1.4) and each pass has a type, which defines in what way the input file will be
read into it. Pass type can be one of the following:

• Words – Reads input word (lexeme) by word. Definition of what is a “word” depends
on the input file type and compile time definitions.

• Lines – Reads input line by line. Meaning that the object lines pass does operations
over is a set of words, where the end of such an object is a new line character.

• Documents – Reserved, but not utilized since no good use was yet found for this
pass.

• Expression – Reads only one specific word from a word pass and does operations
with this word. This pass is more often called a “subpass”, since expression pass can
appear only inside of a words pass. This subpass is needed to realize user defined
expressions (see Section 4.1.3).

Words pass and lines pass always read the input from the start and matches each non-
control instruction to an exactly one object (word or line respectively). If there are no
instructions of input objects to match to the pass code the execution is ended. Only case,
where this is not true is, when there are no more instructions and a LOOP instruction was
used (this is described in Section 4.1.4). Expression subpasses are described in Section
4.1.3.

31

4.1.3 Expression passes and user defined expressions

Expression pass, or rather subpass, can appear only inside of a words pass (called it’s parent
pass) and its input is a word from the parent words pass at the exact position it is in the
pass. It can also contain a word type, which when matched with the input words allows
execution of this subpass. Expression type can also not be defined or defined as DERIVED,
which in both cases allows any word type to be read by it, but this is not recommended since
it might cause runtime errors. The expression subpass is ended when RETURN instruction
is met. RETURN instruction might contain as its argument words pass instruction that will
be executed on the newly transformed word and after this the input processing of the
parent words pass resumes at the position after the expression (input is not read from the
beginning as in case of other passes).

1 PASS Words
2 PASS NUMBER Expression
3 # Number expression instructions
4 RETURN SWAP 42

Listing 4.3: Example of Ebel expression pass.

The need for such pass is for when a specific word needs to be changed, which in case
of, let’s say, text file and a NUMBER type would be, for example, adding some constant to it
or modifying its value in any other way. Such transformations are most likely to be done
by the user for a specific value using user defined expressions.

User defined expressions can appear in the output file at position of the transformed
input word and to define it, this expression can only appear in between the expression start
character sequence ({!) and expression end character sequence (!}). User defined expres-
sions cannot contain assignment operator nor user defined variables and it is a continuous
calculation, which is then assigned to the output word. User might use only one variable,
$, which refers to the read input. Expression can contain following arithmetic operators:

Precedence Associativity Symbol Description
4 Left to right () Parentheses
3 Right to left ^ Exponentiation

2 Left to right
* Multiplication
/ Division
% Modulo

1 Left to right + Addition
- Subtraction

Table 4.1: Ebe expression operator precedence and associativity.

User defined expressions are meant rather for more skilled users and because of Ebe’s
philosophy (mentioned in the introduction of this chapter), to process these expressions, the
user has to specify the usage of expressions at compile time using argument option -expr or
--expression. This is partially because using expressions may cause fatal errors to appear
(such as undefined operator or keyword) and there would be problems with parsing escape
sequence for expression begin ({!), which might occasionally appear in the user input file
and would require even unskilled users to escape these sequences, which would only cause
problems to such users.

32

1 {! $ ^ ($ + 42) * 3 + ($ - 1) !}

Listing 4.4: Example of text file user defined expression for type NUMBER.

On the level of Ebel code, as was already mentioned before, a user defined expression
will be parsed into an expression pass using operator equivalent instructions (described
in Section 4.1.4), where it is now allowed and even needed for more variables to appear.
Since these variables are rather meant to be generated by the compiler, these variables have
numeric names with $ symbol prefix, where the variable number is an index to the symbol
table for the current expression pass. This allows for the symbol table to be implemented
as an array where each index corresponds to a variable with the same name, and so, all
the variables can be accessed in the symbol table in constant time 𝑂(1). The zeroth index
($0) is reserved for the input, which was denoted in the user defined expression as $ and
in Ebel both notations are accepted (meaning that $0 is equivalent to $ and vice versa).
Ebel expression instructions resemble assembly language instructions and are often using
three address code. Meaning that most binary operations have 3 arguments – first is the
destination, which is always a variable, second is the first operation source and third is
the second operation source. For unary operations it would take only 2 arguments – the
destination and the source and for any other arity operation this would be analogical.
Example of generated Ebel code for an expression can be seen in Listing 4.5. Notice that
variables differ from constants by having $ symbol prefix. Also note the last ADD instruction,
which has as its destination $0 variable, meaning that its output will replace the input word
and will appear as the output for this word. In case of generated expressions the compiler
uses the last operation as an assignment, to save the amount of instructions used. Although
it is possible to use MOVE instruction and will be also used by the compiler in case of constant
expression (e.g., {! 42 !}, which would compile into MOVE $0, 42).

1 PASS Words
2 PASS number Expression
3 ADD $1, $0, 42
4 POW $2, $0, $1
5 MUL $3, $2, 3
6 SUB $4, $0, 1
7 ADD $0, $4, $3
8 RETURN NOP
9 DEL

10 NOP
11 NOP
12 SWAP 42
13 PASS Lines
14 CONCAT 2
15 NOP
16 LOOP
17 PASS Words
18 NOP
19 DEL
20 LOOP

Listing 4.5: Ebel expression code generated for user defined expression from Listing 4.4.

33

Ebel is also dynamically typed language, meaning that the variable type might change
during code execution and so might the output word type. The amount of variables is
bound to fixed number, although this is just an implementation choice, so that the symbol
table does not have to change its size dynamically and also there is not much need to
have large amount of variables for one expression. But if larger symbol table is needed the
sym_table_size pragma can be used.

Expression pass also allows for the type to be a string – a so called “match expression”.
Such expression then works as an if statement for specific text value. If the processed word
matches the one in the match expression, then the expression processes it with its actual
type. Example of match expression can be seen in Listing 4.6.

1 Pass Words
2 Pass "42" Expression
3 MUL $0, 3, $0
4 RETURN NOP
5 Pass "null" Expression
6 MOVE $0, 0
7 RETURN NOP
8 Pass Derived Expression
9 RETURN NOP

10 LOOP

Listing 4.6: Example of match expression, which multiplies all occurrences of the number
42 by 3 and replaces all occurrences of the string null with the number 0.

4.1.4 Ebel instructions

Instructions (all listed in Table 4.2 and 4.3) perform the input transformation and based
on their proprieties these instructions can be split into:

• Control instructions – these instructions don’t modify the input object, but change
the interpretation environment. Such example can be the PASS instruction, which
starts a new pass, thus changing the parsing of the input.

• Process instructions – these instructions edit the parsed object, such as deleting it
(DEL), moving it around (SWAP) or not modifying it at all (NOP).

• Expression instructions – these instructions work with word object and can appear
only in Expression pass. Table 4.3 describes these instructions.

Additionally other attributes can be, in which pass an instruction can be executed,
where expression instructions are special case of this. Expression instructions also have a
set of word types they accept, if not met, then expression execution is aborted and warning
emitted.

34

Instruction Definition Arguments Pass Control

CONCAT #ofs
Concatenates current

line with a line
at specified offset

Positive integer offset Lines No

DEL Deletes object Words, Lines No

LOOP

Loops instructions
above this until the

end of input is
reached. Instructions

after this will be
executed and after
there are no more

instruction then the
loop will be executed

(from the start).
LOOP nesting is not

supported; last LOOP
will be used.

Words, Lines Yes

NOP Object is not modified Words, Lines No

PASS name Sets input parsing words/lines/
documents/expression

Expression
in Words Yes

SWAP #ofs
Swaps current object

with an object
at specified offset

Positive integer offset Words, Lines No

Table 4.2: Ebel instructions.

Instruction Definition src1 src2 Note
ADD dst, src1, src2 Addition number/float number/float

DIV dst, src1, src2 Division number/float number/float
If src2 is

0, exception
is raised

MOD dst, src1, src2 Modulo number/float number/float
If src2 is

0, exception
is raised

MOVE dst, src1, src2 Assignment derived
MUL dst, src1, src2 Multiplication number/float number/float
POW dst, src1, src2 Exponentiation number/float number/float
SUB dst, src1, src2 Subtraction number/float number/float

Table 4.3: Ebel expression instructions.

The destination argument in expression instructions is always the first argument and
can be only a variable. Source arguments then can have types based on the instruction

35

(described in Table 4.3), but if not stated otherwise, source arguments have to have a
matching type.

4.1.5 Ebel pragmas

Ebel also has a support for special control instructions called pragmas. Pragmas are meant
for the interpreter and can change internal settings of it, such as the size of symbol table.

In the current state there is not much need for many pragmas, but addition of a new
parser for a new file type could perhaps change this. Currently Ebel recognizes the following
pragmas:

• sym_table_size <positive integer> – this pragma sets the size of symbol table to the
given argument. Choosing a lower value will save a few bytes of memory, but might
cause a run-time exception.

• requires <version string> – this pragma causes the interpreter to check the current
version of Ebe with the argument of the pragma and if the current version is lower
than the argument, then an error is raised and interpretation is aborted. This pragma
should be used for code that contains some newer constructs, which would not work
with older interpreter versions. The main purpose of this instruction is to help with
error identification if such situation were to happen, since the error message would
indicate, that a newer version is required and that the code is valid, otherwise the
user could be searching for the error in the code. Usage of this pragma should be
mostly for scripts that are transferred between systems, which could contain different
Ebe versions.

Each pragma starts with the string @pragma followed by the pragma’s name and then
its arguments if needed. Pragmas can appear only at the beginning of the code and have
to be on separate lines (for detailed description see Ebel’s grammar in Listing 4.1.1 or
example 4.7).

1 @pragma requires 0.3
2 @pragma sym_table_size 5
3 PASS Words
4 PASS float Expression
5 ADD $1, $0, 42.0
6 POW $2, $0, $1
7 MUL $3, $2, 0.2e-3
8 SUB $4, $0, -1.4
9 ADD $0, $4, $3

10 RETURN NOP
11 NOP

Listing 4.7: Ebel code that uses pragmas.

4.2 Eben – Ebe engine
Ebe engine is a unit that is a part of the compilation process. The main purpose of this
unit is to find or rather generate, the Ebel program to transform the user input into the

36

output. Engines are what drives the compilation, finding the best fitting program for set
inputs.

Several engines are currently implemented in Ebe. Most of them employ genetic pro-
gramming, but also a pure random search engine MiRANDa is also available (see Sec-
tion 5.3.3).

Specific engine can be selected by the user during compilation (using --engine option
with engine name following it) and additional engine parameters can be set by the user,
such as:

• the number of evolutionary runs,

• the number of generations (iterations) in one run,

• size of the population,

• fitness function used,

• evolution timeout (time or minimum phenotype precision).

But generally it is Ebe’s job to select the engine that will be used and set its parameters.
More information regarding Eben implementation can be found in Section 5.3.

4.3 Ebec – Ebe compiler
Ebe compiler has multiple tasks to do and is quite different from conventional compilers.
It has to load and parse all the input files and then guide engine in Ebel generation.

Ebe compiler differs quite a lot from other compilers mostly by the fact that it has
to accept all user inputs, since any input file is always correct. Only constrained parts
are user defined expressions, which have to adhere to correct syntax and semantics (see
Section 4.1.3). On the other hand, unlike ordinary compiler, Ebec might for correct input
not always generate correct output. This is of course caused by the engine not being able
to find fitting program using genetic programming (or another heuristic approach). Ebec
still outputs the program even when a 100 % fitting program was not found. This is done
since there might be cases, where even not a fully correct transformation program might
be useful or when the user specified an incorrect expected output. Ebe will notify the user
that the compilation was not 100 % successful and the user might then decide to change
the compilation parameters and rerun the compilation.

Another difference between Ebec and ordinary compilers is that Ebec is not determin-
istic. Meaning that for the same input it might generate a different output. Hence, it is
also a valid approach to redo any compilation even without changing any parameters to
receive a different program, which is mostly wanted in case of compilation not finding a
100 % fitting program.

4.3.1 Lexical, syntactical and semantic analysis of input files

Since all user inputs should be accepted by the lexer and parser for any file format, it has
to work with this assumption and in the very least add a special type for unknown lexemes.
The reason to allow for formats, which are not fully correct based on their specification is
to allow the user to use the tool to fix these incorrect files and also to allow the user to use

37

the parser that is the closest to his or her format to parse the input file and get the best
results.

When it comes to semantic analysis it is not really present as the input will be modified
and not interpreted. The most important part of the analysis is the lexical analysis and in
some formats it might be the only needed unit. The part of Ebe, which adds additional
syntax and semantics to the input files are user defined expressions. But not every format
has to or even can support these.

4.3.2 Ebel code optimizations

Eben uses genetic programming to create candidate programs to achieve desired file trans-
formation, but even if a 100 % fitting program is found it does not necessarily mean, that
the code will be written in the best way possible and it might (and most certainly will)
contain redundant instructions or dead code.

One of special cases is a “tail” (uninterrupted sequence at the end of a pass) of NOP
instructions or other empty instructions. Removing such tail or any instructions, in a way
of keeping the same semantics of the code, might result in faster interpretation times. This
can be seen in Figure 4.3, where two semantically same programs were interpreted over the
same input (the gtf file described in Section 4.4), but one has NOP tail (of the length of 26
to match the gtf format) and the other does not have it.

The main reason for this result is that, when these instructions are omitted the inter-
preter can stop processing the input and even though the NOP instruction does not do any
operations over the IR, the need to load additional objects slows down the interpretation
and results in longer processing time.

Ebel with NOP tail Ebel without NOP tail
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

tim
e

[m
s]

Interpretation time

Figure 4.3: Graphs comparing interpretation speed of Ebei 0.2.4 on code with and without
NOP tail. The values are median from 10 measured runs with the same input examples.

38

4.3.3 Fitness functions

To calculate how correct the output program is, Ebec uses fitness functions since the value
for each candidate program is already computed during evolution in Eben. There are
different fitness function approaches resulting in a different score for the same program,
although it is always the same for the same function and input.

The simplest and very naive fitness function is just a one-to-one mapping, meaning
that the expected output is compared word by word with the generated output at the same
positions. If the words are the same a point is added to the total matched sum and the
final score is calculated by dividing this sum by the total amount of words in the longer file.
Fitness calculation (𝑓(𝑥, 𝑦), where 𝑥 and 𝑦 are files, where each lexeme can be indexed. In
Equation 4.1, 𝑎 and 𝑏 are these lexemes) for One-to-one mapping fitness function would be
as follows:

𝑒𝑞(𝑎, 𝑏) =

{︃
1 for 𝑎 = 𝑏

0 otherwise (4.1)

𝑓(𝑥, 𝑦) =

max (|𝑥|,|𝑦|)∑︀
𝑖=1

𝑒𝑞(𝑥𝑖, 𝑦𝑖)

max (|𝑥|, |𝑦|)
(4.2)

This approach is of course, as already mentioned, very naive and having two identical
inputs, where one would be missing the first word might result in 0 % match. The biggest
advantage of this function is that its time complexity is linear 𝛩(𝑛), where 𝑛 is length of
the shorter input, since unlike in Equation 4.2, in implementation once the shorter string is
processed it is sure that all the remaining symbols in the longer string do not match. This
function was mainly implemented for its simplicity.

Ebe also contains three other fitness functions that can be used and those are: Leven-
shtein distance, Jaro distance and Jaro-Winkler distance (all described in Section 2.4)

There is also a special case, which the fitness functions have to take care of, and that is
an empty file and empty lines. Such cases have the possibility of causing division by zero
in functions which are dividing by string’s length. These cases can be easily handled by
conditional check. Ebe also has a special type for an empty line in a text file.

4.4 Ebei – Ebe interpreter
Ebe interpreter takes an Ebel source code and one or more files as the input for the interpre-
tation. Interpreter adheres to the Ebe principles mentioned in this chapter’s introduction.
It tries not to interrupt the interpretation because of simple problems, but rather the in-
terpreter only warns the user about these problems. The main problem, which would cause
the interpreter to abort the interpretation would be an incorrect Ebel code, but this should
not happen if the user generates this code using Ebe compiler.

Since one of the goals for Ebe is to be fast, the same is also Ebei’s goal. The biggest
slowdown for interpreter is the need to parse every input file into its internal representation
(IR) and even though this slows down the interpretation it is a necessary step to correctly
transform the data. On the other hand in comparison to different interpreted languages
that can be used for file editing such as Python 3, Ebei works with a lot simpler language,
which allows for simpler parsing of this language and for less complicated and therefore
lot faster execution. In the case of Python 3 the Python interpreter has to first parse the

39

language into its bytecode and then do the interpretation [53]. Whereas Ebei works with
Ebel code, which is already in a form of a bytecode (see Section 4.1.4) and can be right
away interpreted. This difference can be seen in Figure 4.4, in which time and CPU usage
were measured for the same input problem solved by Ebe and Python 3. For Ebe the code
was generated by Ebe itself using user defined expressions (the Ebel code can be seen in
Listing 4.8). For Python 3 the code the can be seen in Listing 4.9.

1 PASS Words
2 NOP
3 NOP
4 NOP
5 NOP
6 NOP
7 NOP
8 PASS number Expression
9 SUB $0, $0, 153350000

10 RETURN NOP
11 NOP
12 PASS number Expression
13 SUB $0, $0, 153350000
14 RETURN NOP

Listing 4.8: Ebel code for .gtf file editing.

1 import csv
2 import sys
3
4 if __name__ == ’__main__’:
5 if len(sys.argv) < 2:
6 exit(1)
7 out_text = []
8 with open(sys.argv[1], "r") as gtf_file:
9 reader = csv.reader(gtf_file, delimiter=’\t’)

10 for line in reader:
11 line[3] = str(int(line[3]) - 153350000)
12 line[4] = str(int(line[4]) - 153350000)
13 out_text.append("\t".join(line))
14 print("\n".join(out_text))

Listing 4.9: Python 3 code for .gtf file editing.

The problem solved by these scripts is taken from a real world situation, where a bigger
.gtf (Gene transfer format) file was shorten to contain only part of its previous data. But
because of this change the start and end coordinates (4th and 5th column) were incorrectly
offset by 153350000 and therefore the file had to be modified to subtract this constant for
each line (feature).

Data for Figure 4.4 were gained by executing each script 100 times on a single CPU
core with maximum priority and measured by time utility on Linux. Figure 4.4 displays
median calculated from all of these measurements.

40

Python time Ebei time
0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

tim
e

[m
s]

Interpretation time

Python CPU Ebei CPU
0

20

40

60

80

100

CP
U

us
ag

e
[%

]

Interpretation CPU usage

Figure 4.4: Graphs comparing speed and CPU usage of Ebei 0.2.4 and Python 3. Repre-
sented are median values from 10 measured runs.

Python time Ebei time
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

tim
e

[m
s]

Interpretation time

Python CPU Ebei CPU
0

10

20

30

40

50

60

70

CP
U

us
ag

e
[%

]

Interpretation CPU usage

Figure 4.5: Graphs comparing speed and CPU usage of Ebei 0.2.4 and Python 3 using a
123000 lines long input. Represented are median values from 10 measured runs.

Interpreting these scripts over file with only about 400 lines (which is the case of Fig-
ure 4.4) results in the input file parsing having not as big of an impact on the interpretation

41

time. But if a lot larger input file is used, then the parsing heavily impacts the performance
of Ebei, which can be seen in Figure 4.5.

As already mentioned, the biggest problem with the speed loss in case of a very large
file is that each lexeme has to be parsed, whereas in case of Python 3 code only tab symbols
need to be found to split the input into columns and then only the start and end columns
are parsed as integers.

The example given uses very simple editing, and so, for the very large files the overall
speed of Ebei is worse than the speed of Python 3, but this is only in this case. Other cases
might require the Python script to parse other lexemes as well, which will have a significant
impact on the overall speed of the Python script.

4.4.1 Lexical, syntactical and semantic analysis of Ebel code

On a level of expressions (expression pass), Ebel is very closely tied to the input formats
and their parsing. The types declared and parsed by different input formats become Ebel
types for its expression instructions. On the other hand the general file editing done by
other passes is not dependant on the input file format as long as its own lexer and parser
can create valid internal representation. Meaning that any input file format can be edited
by Ebe, if there is a lexer and a parser for it. For an input format to work with Ebel
expressions it must have its types defined also in Ebel grammar and provide instruction
semantics over this type to the interpreter. The other approach would be to use already
existing types, but this might not always fit the new input format.

Even though Ebel was not designed as a language to be written by programmers, but
rather generated by the compiler, it still offers some “syntactic sugar” for cases when a
programmer would write short Ebel parts or edit generated code (perhaps to suite all cases
not easily expressible in example input files). This use-case is also the reason why Ebel
uses a text format and not binary. Here are some examples of Ebel’s “syntactic sugar”:

• Ebel is case insensitive,

• the return instruction can be omitted and interpreter will return NOP,

• the expression type can be omitted and interpreter will use DERIVED type,

• variable $0 can be written as $. . . .

All of these features are not difficult nor time consuming for the interpreter to handle
and provide more user-friendly environment for users. It is also worth mentioning that all
of these features can even be handled during syntactic or semantic analysis, putting even
less stress on the interpreter’s runtime duties.

Ebel also supports single line comments (denoted by symbol #) and, as already men-
tioned, somewhat allows even for incorrect semantics by not executing this code and warning
the user.

Ebel instruction semantics are also quite simple mostly when it comes to non-expression
instructions. These instructions work over internal representation, which is very much
needed to modify a file in a fast way. More complexity comes with expression instructions,
which work with specific types and have to do additional semantic checks. Such checks are
to ensure, that all instruction types for the instruction are correct, to make sure that used
variables are defined and that all of the values are in the domain of the instruction. Unfor-
tunately most of these checks have to be done at a runtime, since all of these instructions
work with user input.

42

4.5 Ebe’s text file parsing
Unlike Ebel file, the example input file and interpreted file can never have an incorrect
format. In case of example output file, there might be an error in parsing, if incorrect user
defined expression is used and parsed.

Each text file format differs, but this, in many cases, does not really affect the genetic
programming solution finding. Ebe can work with plain text file as well as with CSV files
or any other format. The tasks Ebe cannot solve are the ones it does not have instructions
for, such as generating delimiters, copying words or transforming text. Another problem
could be different formats for certain types, such as floating point values, where the comma
separates the decimal part or not having floating points at all and splitting such number
into 2 integers separated by a dot. These cases are still solvable by changing the text parser
or adding a new one.

But the general text file parser contains word types that are quite popular in many
formats, these are:

• TEXT – A string of alphanumeric symbols including Unicode symbols (see Figure 4.6).

• NUMBER – An integer defined as a string of numeric symbols.

• FLOAT – Floating point number, which can also be written in scientific notation (for
more detailed description see Ebel grammar 4.2, which uses the same FLOAT format).

• DELIMITER – A symbol that is often used as a delimiter: space, tab, vertical tab,
carriage return, form feed, comma, dot, colon, semicolon.

• SYMBOL – All other characters, which do not match the previous definitions.

Figure 4.6: Screenshot of Ebe interpretation showcasing that Ebe can also work with Uni-
code symbols.

Note that the SYMBOL type is used to match any input that was not accounted for.
Meaning, that the lexeme parsing cannot fail.

There are also additional internal types to help with the evolutionary approach:

• EMPTY – Denotes an empty line.

• EXPRESSION – Denotes a user defined expression.

As can be seen, Ebe’s default parser does not use many types, but this helps with
making the default text file parser quite general and also allows users to parse a file “by
hand”, which might be useful when writing Ebel or trying to understand what some Ebel
program exactly does.

43

4.6 Examples of Ebe workflow
Ebe contains simple to use text user interface, where many of the command line options
and the program behavior tries to adhere to the ones in other popular compilers. Examples
of these commands are:

• -h, --help – Prints Ebe usage and simple command line options description.

• --version – Prints compiler’s version.

• -o – Sets the output path.

On top of having these options, that are familiar to those knowledgeable of compiler
use, Ebe also contains alternative versions for most of the command line options, which are
very verbose and should be easy to use by non-programmers. Examples of these commands
are:

• -in – Alternative format is --example-input. Sets the example input file.

• -expr – Alternative format is --expressions. Parses user defined expressions.

• -e – Alternative format is --evolutions. Sets the amount of evolutions to be done,
meaning how many times a new population should be created and evolved.

Ebe contains two main big modules – the compiler and the interpreter and therefore it
makes sense to firstly do the compilation, which produces an Ebel program and then this
program can be interpreted over a file. But quite often one will do both of these operations
right after each other and that is why Ebe also contains “execute” option (invoked by -x),
which will firstly compile the program and then interpret it over any input files. In this
mode it is still possible to use any compilation specific or interpretation specific options as
well as even output the Ebel program.

If only the compilation is started without specifying the output Ebel path (-eo), then
the Ebel path will be the same as example input file’s path, the name of the Ebel will be
the same as the example input file’s name, but the extension will be changed to .ebel.
This fact will be conveyed to the user by information message after the compilation. The
user is also notified about the reached Ebel precision (program’s fitness score) and if the
program is perfectly fitting (100 % precision) as well as the overall compile time.

If only an interpretation is executed or compilation with interpretation in one run (-x)
and the output file (or folder in case of multiple input files) is not set, then the edited file
content will be printed to the standard output. In case of multiple input files a line denoting
each file’s name is printed before the output for that file. In case of compilation with
interpretation a line denoting the interpreted output is printed before it. In case someone
wants to output the file to the standard output without the information messages (for
example to use it as an input for other program) a --no-info-print command line option
can be used. Additionally --no-warn-print and --no-error-print can be used so that
the compiler does not emit any warnings or errors during interpretation and compilation,
although these messages are printed to the standard error output and do not effect the
standard output.

The following example showcases Ebe’s use to edit a CSV file containing the following
values in each column: last name, first name, year of birth, chess FIDE rating. Example of
the first 3 lines of the file can be seen in the Listing 4.10.

44

1 Lagrave,Maxime,1990,2758
2 Navara,David,1985,2693
3 Carlsen,Magnus,1990,2864

Listing 4.10: First 3 lines of the file to be edited (players.csv).

The task is to edit this file so that the first column is the first name, followed by the last
name, then players age (in the year 2022) and finally their rating. Since this task requires
the same changes for each line the example input file can only contain copy of the first line
(see Listing 4.11). It is worth noting that alternatively same type lexemes could be used,
such as a,b,1,2, but using the actual line makes it easier to work with.

1 Lagrave,Maxime,1990,2758

Listing 4.11: Contents of the example input file (ex.in).

The example input file, can then be copied and edited by hand. But since the birth
year has to be recalculated, it requires the use of user defined expression. In this case to
convert year of birth into an age for the year 2022, the expression is quite simple, but the
user has to know the starting end ending escape sequence ({! and !}) and also that the
year value will be under the variable $. The contents of the example output file with correct
expression can be seen in Listing 4.12.

1 Maxime,Lagrave,{! 2022 - $!},2758

Listing 4.12: Contents of the example output file (ex.out).

With this step the examples are all setup and now it’s all left to Ebe using either
compilation followed by interpretation (Listing 4.13). But more convenient option using
the -x option can be seen in the Listing 4.14. These two approaches are equivalent. It
needs to be noted, that user defined expressions are not enabled by default (since it is a
technique meant for more skilled users and this avoids possible warnings with files containing
expression escape sequence). To enable parsing of user defined expression the -expr or
--expressions option has to be used.

1 ebe -in ex.in -out ex.out -eo players.ebel --expressions
2 ebe -i players.ebel -o edited.csv players.csv

Listing 4.13: Ebe editing using compilation followed by interpretation. The Ebel file will
be outputted into players.ebel and the edited file will be outputted into edited.csv.

1 ebe -x -in ex.in -out ex.out -eo players.ebel -o edited.csv --expressions
players.csv

Listing 4.14: Ebe editing using compilation and interpretation in one run. The Ebel file
will be outputted into players.ebel and the edited file will be outputted into edited.csv.

The generated Ebel file, players.ebel, will of course vary in each run, because of
the genetic programming approach, but the beginning should be always the user defined
expression followed by the SWAP instruction in a new pass, this might in some generated
cases be followed by other passes, but these will have no impact on the input file as long as it
has the same structure. Possible contents of the generated Ebel can be seen in Listing 4.14.

1 PASS Words
2 NOP
3 NOP

45

4 NOP
5 NOP
6 PASS derived Expression
7 SUB $0, 2022, $0
8 RETURN NOP
9 NOP

10 NOP
11 PASS Words
12 SWAP 2
13 NOP
14 NOP

Listing 4.15: Ebel file players.ebel generated by Ebe from execution of command in
Listing 4.14.

Finally the edited input file will be placed into edited.csv. The first 3 lines of this file
can be seen in the Listing 4.16.

1 Maxime,Lagrave,32,2758
2 David,Navara,37,2693
3 Magnus,Carlsen,32,2864

Listing 4.16: First 3 lines of the output file edited.csv generated by Ebe from execution
of command in Listing 4.14.

This example with simplified description of what Ebe does internally can be seen in
diagram form in Figure 4.7.

From such exhaustively described example it might seem like quite a complicated pro-
cess, but is many cases the whole process consists of 3 simple steps:

1. Create the example input file from the first line (or multiple lines) of the file to be
edited.

2. Copy the example input file and edit it by hand into desired form.

3. Execute Ebe passing it the example files created with the file to be edited.

Once the user is more acquainted with the tool, he or she might start setting up compilation
parameters to achieve better or faster results or possibly even chain multiple Ebe executions
to do more advanced edits or cut down on the compilation time.

46

L
a
g
r
a
v
e
,
M
a
x
i
m
e
,
1
9
9
0
,
2
7
5
8

M
a
x
i
m
e
,
L
a
g
r
a
v
e
,
{
!
2
0
2
2
-
$
!
}
,
2
7
5
8

Scanner,
Parser

(
t
e
x
t
)
L
a
g
r
a
v
e

-
>

(
d
e
l
i
m
)
,

-
>

(
t
e
x
t
)
M
a
x
i
m
e

-
>

(
d
e
l
i
m
)
,

-
>

(
n
u
m
b
e
r
)
1
9
9
0

-
>

(
d
e
l
i
m
)
,

-
>

(
n
u
m
b
e
r
)
2
7
5
8

Scanner,
Parser

(
t
e
x
t
)
M
a
x
i
m
e

-
>

(
d
e
l
i
m
)
,

-
>

(
t
e
x
t
)
L
a
g
r
a
v
e

-
>

(
d
e
l
i
m
)
,

-
>

(
e
x
p
r
e
s
s
i
o
n
)
(
d
e
r
i
v
e
d
)
E
x
p
r
1

-
>

(
d
e
l
i
m
)
,

-
>

(
n
u
m
b
e
r
)
2
7
5
8

-

2022
$

Expr1:

p1
P
a
s
s

W
o
r
d
s

S
W
A
P

3

D
E
L

N
O
P

p2

p3
p4

P
a
s
s

W
o
r
d
s

N
O
P

D
E
L

P
a
s
s

L
i
n
e
s

C
O
N
C
A
T

2

P
a
s
s

W
o
r
d
s

D
E
L

N
O
P

N
O
P

P
a
s
s

W
o
r
d
s

N
O
P

S
W
A
P

4

S
W
A
P

1

Population 1:

p1
P
a
s
s

W
o
r
d
s

S
W
A
P

2

D
E
L

D
E
L

p2

p3
p4

P
a
s
s

W
o
r
d
s

N
O
P

P
a
s
s

L
i
n
e
s

N
O
P

P
a
s
s

W
o
r
d
s

S
W
A
P

2

N
O
P

N
O
P

P
a
s
s

W
o
r
d
s

N
O
P

N
O
P

N
O
P

Population n:

Engine:
U

ser Input:C
om

piler,
O

ptim
izer

Fitting Ebel program
P
A
S
S

W
o
r
d
s

N
O
P

N
O
P

N
O
P

N
O
P

P
A
S
S

d
e
r
i
v
e
d

E
x
p
r
e
s
s
i
o
n

S
U
B

$
0
,

2
0
2
2
,

$
0

R
E
T
U
R
N

N
O
P

N
O
P

N
O
P

P
a
s
s

W
o
r
d
s

S
W
A
P

2

L
a
g
r
a
v
e
,
M
a
x
i
m
e
,
1
9
9
0
,
2
7
5
8

N
a
v
a
r
a
,
D
a
v
i
d
,
1
9
8
5
,
2
6
9
3

C
a
r
l
s
e
n
,
M
a
g
n
u
s
,
1
9
9
0
,
2
8
6
4

G
i
r
i
,
A
n
i
s
h
,
1
9
9
4
,
2
7
7
3

Scanner,
Parser

0
1
.

(
t
e
x
t
)
L
a
g
r
a
v
e

-
>

.
.
.

0
2
.

(
t
e
x
t
)
N
a
v
a
r
a

-
>

.
.
.

0
3
.

(
t
e
x
t
)
C
a
r
l
s
e
n

-
>

.
.
.

0
4
.

(
t
e
x
t
)
G
i
r
i

-
>

.
.
.

Interpreter
M
a
x
i
m
e
,
L
a
g
r
a
v
e
,
3
2
,
2
7
5
8

D
a
v
i
d
,
N
a
v
a
r
a
,
3
7
,
2
6
9
3

M
a
g
n
u
s
,
C
a
r
l
s
e
n
,
3
2
,
2
8
6
4

A
n
i
s
h
,
G
i
r
i
,
2
8
,
2
7
7
3

Figure 4.7: Ebe’s processing pipeline for compilation followed by interpretation.

47

Chapter 5

Implementation

Ebe is written in C++ (using standard C++17) and this choice was done for the purpose
of performance, where speed of the compiler and interpreter was one of the goals for Ebe.
It is designed as a free open-source project, that would not only work as a research project,
but also as a useful tools. For the purpose of longevity, ease of adding changes, extending
and allowing for others to build on Ebe or extend it, Ebe contains the following:

• Documentation comments in the Doxygen1 format for all its source files. This docu-
mentation can then be easily generated using provided script or CMake tool2. Gen-
erated documentation has the form of structured HTML website.

• Unit testing. These tests use GoogleTest library3, which allows to easily test Ebe’s
modules and make sure that no change had undesirable side effects in other parts of
the compiler.

• Flex4 and Bison5 grammar files. These can be used to alter any already existing
parser or scanner and generate it anew.

• Github Wiki page6. This page contains additional information about the project, such
as detailed description of command line arguments, description of Ebel instructions
or patch notes, which inform the users about the differences between Ebe versions.

• All of these resources are in the project’s public Github repository7 and are informally
documented in the projects description (README.md) file with instructions for instal-
lation and some examples on how to use Ebe. Ebe’s stable releases are also released
in this repository.

Many of the parts mentioned above are not needed to compile the project for general use,
but are there to simplify the development. To compile Ebe for general use, it requires only a
C++ compiler and preferably CMake tool to allow for simple compilation. For the purpose
of quick and easy deployment, the projects contains simple bash script (install.sh), which

1https://www.doxygen.nl
2https://cmake.org
3https://github.com/google/googletest
4https://github.com/westes/flex
5https://www.gnu.org/software/bison
6https://github.com/mark-sed/ebe/wiki
7https://github.com/mark-sed/ebe

48

https://www.doxygen.nl
https://cmake.org
https://github.com/google/googletest
https://github.com/westes/flex
https://www.gnu.org/software/bison
https://github.com/mark-sed/ebe/wiki
https://github.com/mark-sed/ebe

runs the compilation and sets up command ebe to use Ebe from anywhere in the computer’s
terminal.

Since Ebe was developed using Linux operating system, it currently was tested and
reliably works only on Linux, this will hopefully change later on.

The code is split into multiple directories (see Appendix A for detailed description of
this structure). The whole project is split into three main parts, which virtually contain
other directories, but are split for the purpose of project’s tidiness. These parts are often
used in literature to describe certain parts of compilers or interpreters [61]:

• Front end – Front end is the part that deals with parsing, scanning, AST genera-
tion and user input (arguments). Front end’s work is the same for compilation and
interpretation.

• Mid end – This section in literature might be a part of the back end, but in this
projects mid end takes care of the internal representation (IR) and works with ex-
pressions. This is used by the compiler and interpreter as well.

• Back end – This section in case of compilation contains also the engine and does
the Ebel generation and then its output. In case of interpretation, the instruction
execution happens in this part and then the interpretation result outputting.

These sections intersect each other and are here mostly to divide the project into some-
what unified virtual sections to help with the development and to add additional modularity
to it.

There are also sections, which either do not belong to any of these sections or belong to
all of them. For example the tests are a separate part, but they utilize all of these sections
in the testing and then the module with utilities and algorithms is used in all sections, since
it is a module with general use.

Ebe also contains detailed logging system. This feature is important in case of an inter-
nal error, where it allows to output logging messages of Ebe’s internal state and processes
that are being done. This feature can be used by users to report any errors and help narrow
search space for the bug. This is enabled using command line option and a list of functions
can be provided for which the logging should be outputted or even all functions can output
their logs. This feature also has a “verbosity level”, which changes how detailed the logging
messages should be. Example of logging messages can be seen in Figure 5.1.

5.1 Ebe testing and benchmarks
Since Ebe has internal heuristics, which set the evolution parameters, there needed to be
a lot of experimenting and benchmarking. For this purpose a special program for Ebe
benchmarking was created. This program is written in Python 3 language and offers simple
command line interface with a few command line options to setup the benchmarks. The
benchmarks are split into two parts. First is benchmarked the compiler and then the
interpreter. Ebe compilation, which uses genetic programming, is very non-deterministic
and therefore each compilation is run multiple times (the exact number can be set using
command line argument) and all of the tests are run on a single core as a process with
maximum priority (using Linux’s nice command) and measured using time command.
Results of these measurements are then saved into a JSON file with additional information,
such as the platform’s technical specification, the CPU usage, the compilation precision

49

Figure 5.1: Snippet of Ebe logging messages.

achieved, version information and others (see Listing 5.1 for example output). Since the
compilation might take a very long time (because code synthesis using genetic programming)
in some cases or might even be impossible to compile by Ebe, a timeout is used. This timeout
is set using Ebe’s timeout option and is by default set for 300 s, but can be changed using
command line arguments for benchmarks. Once the benchmark results are outputted, they
can be plotted into a graph using a Python 3 plotting script, that uses matplotlib library
and allows to plot graphs for separate compilation and interpretation or both graphs in one
image. The plot can also be a box plot or even a horizontal bar plot. Box plot graphs from
this scripts were used throughout this whole thesis (for example see Figure 5.5, 5.4 or 5.7)
and the bar plot can be seen in Figure B.1. The bar plot displays median value from all
the runs, but some bars might have different format (hatching) to signal that no run had
100 % precision. Whereas in case of box plot it can be easily seen, if there are values only
in the 300 s mark.

1 {
2 "benchmark": {
3 "version": "1.0.0",
4 "time:": 1650901857,
5 "args": "-f lev"
6 },

50

7 "platform": {
8 "memory": { "size": 8202158080 },
9 "cpu": {

10 "model": "Intel(R) Core(TM) i5-4690 CPU",
11 "freq_min": 800.0,
12 "freq_max": 3900.0,
13 "cores": 4
14 },
15 "os": "Linux-5.13.0-39-generic-x86_64-with-glibc2.29"
16 },
17 "ebe": { "version": "0.3.1" },
18 "results": {
19 "ebec": {
20 "csv_del_begin": {
21 "times": [2.66, 303.46, 0.03, 0.03, 0.03],
22 "cpus": [99, 99, 96, 96, 96],
23 "precisions": [100.0, 46.1538, 100.0, 100.0, 100.0]
24 }
25 },
26 "ebei": {
27 "log_unit_remove": {
28 "times": [3.91, 3.86, 3.91, 3.88, 3.88],
29 "cpus": [99, 99, 99, 99, 98]
30 }
31 }
32 }
33 }

Listing 5.1: Example output of Ebe benchmarks with only 1 test run 5 times.

Anyone can specify their own benchmarks and use the benchmarking scripts. This is
because benchmarks only require to follow a set directory structure, which is the following
(examples structure can be seen in Listing 5.2 and 5.3):

• Ebec and Ebei tests have to be in their separate folders.

• Each test has to be in its own folder in the top level of the Ebec or Ebei folder.

• Each Ebec test has to have a file with .in and .out extensions, where these files
will be used as the example input file and example output file, respectively. There
can also appear a file with .args extension, which first line would be passed to Ebe
on the command line, meaning that it can be used to specify certain command line
arguments for Ebe (mainly -expr argument).

• Each Ebei test has to have a file with .ebel extension, which will be used as the Ebel
code to interpret and then at least one file with .txt extension, where all of these
files will be used as the input files for interpretation. And just as it was for Ebec,
.args file can appear.

Any other folders and files other than the mentioned ones are ignored by the script.
The test folder name also plays a role, since the name of the folder is then used as the test

51

name in the JSON file with the results and this name can be also used when running only
specific set of tests (using -t option).

1 ebec-tests/
2 |- test1/
3 | |- test1.in
4 | |- test1.out
5 | |- test1.args
6 |- test2/
7 |- test2.in
8 |- test2.out

Listing 5.2: Example of correct benchmark directory structure for Ebec.

1 ebei-tests/
2 |- test1/
3 | |- test1.ebel
4 | |- test1.args
5 | |- a.txt
6 | |- b.txt
7 | |- c.txt
8 |- test2/
9 |- test2.ebel

10 |- test2.txt

Listing 5.3: Example of correct benchmark directory structure for Ebei.

These benchmark problems were designed in order to evaluate Ebe and as well these
problems are trying to simulate the usual problems, for which Ebe could be used:

• Ebec benchmarks:

– csv_del_begin – Multiple line CSV example with header. Where multiple
columns from the beginning are to be removed (only columns 5, 7 and 9 should
be kept).

– csv_del_end – Similar CSV as csv_del_begin, but this time the data to be
kept are at the beginning.

– csv_no_header – Similar CSV as csv_del_end, but there is no header.
– csv_short – CSV with header, where only 2 columns are to be removed.
– human_genome_edit – Test taken from real world Ebe use case. This tests

multiple user defined expressions.
– user_expression1 – Tests a big user defined expression.
– log_unit_remove – Edits are done on Ebe logs (example logs can be seen in

Figure 5.1). This contains more difficult structure and most of it is to be removed
to extract formatted values.

– phone_numbers – Multiple line text file with names followed by phone numbers,
where Ebe should attempt to reformat the numbers.

– ws2811_colors – Test taken from real world Ebe use case. Task is to extract a
column from markdown table.

52

• Ebei benchmarks:

– filter_calc – The Ebel program multiplies all numbers by 0, keeps in delimiters
and removes any other word type. The interpreted file is a 10000 lines long text
with randomly generated symbols, letters and numbers.

– filter_num_sym – The Ebel program removes from the input file everything
that is not a number or text. Input file is the same as for filter_calc.

– human_genome_edit – The Ebel program is the one generated for Ebec test
human_genome_edit. Input is a 389 lines long .gtf file.

– human_genome_edit_big – Same as human_genome_edit, but the input file is a
50 MB big .gtf file.

– log_unit_remove – The Ebel program is the one fitting for Ebec test log_unit_remove.
Input file is part of actual Ebe log with 121810 lines (almost 8 MB).

– ws2811_colors – The Ebel is the one fitting Ebec ws2811_colors test. Input
file is 142 lines long markdown table.

Although not every part of Ebe is tested with these tests, it already gives somewhat
general results for Ebe’s performance, where the main goal is to find differences in runs
based on changed parameters.

5.2 Internal representation
Since most file formats use columns and rows for data representation, this is also manifested
into the internal representation (IR) of the files in Ebe. This means that files are internally
represented as list of lines, where each line is a list of words. This structure is contained in a
IR::Node object, which alongside it hold metadata and methods to simplify its processing.
The IR::Node object is created for every input file (examples as well as files to edit). Each
IR::Word object contains the textual value of the parsed lexeme and its type. Graphical
visualization of a text IR without metadata can be seen in Figure 5.2.

text: Moris

type: IR::TEXT

text: Chance

type: IR::TEXT

text: :

type:
IR::DELIMITER

text: 43

type:
IR::NUMBER

Line 1

Line 2

Line 3

text:

type: IR::EMPTY

text: &

type:
IR::SYMBOL

text: \0x20

type:
IR::DELIMITER

text: amp

type: IR::TEXT

text: ;

type:
IR::DELIMITER

Figure 5.2: Graphical visualization of internal representation for a text file.

Ebel program internal representation is implemented as a list of pass objects (IR::Pass).
This is accompanied with additional metadata, methods and a Pragmas object holding the

53

program pragmas. Each pass in the IR holds a vector of Ebel instructions. The pass
object also contains a vector of additional passes, which is utilized by words pass to hold
its subpasses (expression passes). This acts somewhat as a method table [49], where each
subpass has its index in the vector, which is then used by special CALL instruction that
executes these subpasses. The parser rewrites all the Ebel code into the version with CALL
instruction during parsing. Graphical visualization of an example Ebel program can be
seen in Figure 5.3. Notice that the return instruction is held by the words pass and not the
expression pass. This is because the return instruction processes the value in the context
of the whole line.

1 PASS Words
2 NOP
3 SWAP 42
4 Pass NUMBER Expression
5 MUL $1, 3, $0
6 SUB $0, $1, $0
7 RETURN NOP
8 Pass DERIVED Expression
9 RETURN DEL

10 PASS Lines
11 CONCAT 1
12 LOOP

Listing 5.4: Example Ebel program.

Pass Words

Pass Lines

Pass
NUMBER

Expression
0

Pass
DERIVED

Expression
1

NOP
SWAP

arg1: 42

CALL

arg1: 0

CALL

arg1: 1
NOP

MUL

dst: $1

src1: 3

src2: $0

SUB

dst: $0

src1: $1

src2: $0

DEL

Subpass table:

LOOP
CONCAT

arg1: 1

Figure 5.3: Graphical visualization of internal representation for Ebel program from List-
ing 5.4.

54

5.3 Implemented engines
As already mentioned, Ebe contains multiple engines and allows for addition of new ones.
For all genetic engines it is important to correctly choose evolutionary attributes, such as
the mutation chance, population size or initial phenotype size. But because Ebe aims also
at those, who do not know anything about genetic programming, it is not possible to acquire
these parameters from the user or test out multiple ones during runtime. Rather Ebe relies
on its heuristics learned from experiments in combination with a simple input analysis to
set these parameters. All genetic engines contain special structure GPEngineParams, which
holds all these adjustable attributes. This structure is populated at the time of engine’s
creation, where some of the attributes, that rely on the input, such as initial phenotype
size or the number of iterations (generations), are computed by firstly analyzing example
input and example output using a fitness function. This comparison returns how similar the
examples are. For more similar examples it is more likely, that less edits will be needed, and
therefore, the phenotype can start smaller, with less passes and should probably converge
with less iterations. The other attributes were hand adjusted during development to achieve
the best results. Default values set for all genetic engines can be seen in Table 5.1.

Parameter Default value
Population size 250
Fitness function One-to-one

Chance of words pass generation
100 % if the input file has 1 line,
80 % if the input file has less than 11 lines,
50 % if the input file has more than 10 lines.

Chance of lines pass generation 100 % − Chance of words pass generation
Mutation chance 15 %
Crossover chance 65 %
Elitism True

Table 5.1: Some default evolution parameters for engines. Phenotype size, number of passes
and pass types are determined based on example input and example output similarity and
example input file length.

When it comes to editing file, each input differs, but some edits are more likely to
happen than others. For example most of the generated and handwritten Ebel solutions
contain many NOP instructions and then very often DEL instruction. For this reason, the
chances for an instruction to be placed into a phenotype of to be mutated into differ. On
top of that, some instructions cannot even appear in certain passes (e.g. CONCAT instruction
in Pass Words). The default chances for instruction to appear in a program can be seen in
Table 5.2.

55

Instruction Words pass chance Lines pass chance
CONCAT 0 % 12.5 %
DEL 31.25 % 25 %
LOOP 12.5 % 12.5 %
NOP 43.75 % 37.5 %
SWAP 12.5 % 12.5 %

Table 5.2: Default instruction chances set for any genetic engine. These values can be
adjusted by the engine and, for example, engine Taylor sets all, but NOP to 0 % and NOP to
100 %.

Engine Jenn and Taylor also contain “bloat removing procedure”, which is a process, in
which instructions, that are not executed during interpretation are removed. This process
makes sure that the phenotypes do not become too long, which would slowdown the evo-
lution, because the genetic operators would be applied to parts of the code, which is not
even being run.

 with
bloat

without
 bloat

90

92

94

96

98

100

tim
e

[s
]

Compilation
Ebe 0.2.4 benchmarks

Figure 5.4: Effects of phenotype bloat to its fitness convergence. Represented are values
from 30 independent runs on the same example inputs (csv_no_header) with the same
evolutionary parameters.

Based on benchmarks, which results can be seen in Figure 5.5, engine Jenn was picked
as the main engine for Ebe.

56

Experiments have also proven, that “bloat” makes the population converge faster (see
Figure 5.4). Because of this the removal of excess instructions happens only once a set
length (which is based on input length) is reached.

Unexpected results were discovered with fitness function comparison, where Ebe bench-
marks showcases, that the best time performance is achieved using the most simple one-to-
one fitness function. Results can be seen in Figure 5.6.

Figure 5.7 showcases very well the results of different population sizes. The lower
quartile displays that the smaller population can achieve the fastest time, which is because
of its smaller size, and thus, lower initialization time of the population and less operations
overall done. On the other hand, the bigger population converges quicker, this is because
of the bigger variety in phenotypes, and therefore, the population covers bigger space of
the problem. This means, that for a simpler problem a smaller population might converge
faster just because of the computational slowdowns, but for a bigger problem, where the
evolution itself takes longer time then the initialization, it might be more beneficial to
choose a bigger population. On the other hand making the population too big might result
in slowdown caused by the computational platform, such as the population taking too much
space resulting in problems with caching data.

57

5.3.1 Genetic engine Jenn

Engine Jenn is a genetic engine, which tries to adhere to the most general approach of
genetic programming for code generation and does not specializes on any file format. But
Jenn still offers lots of parameter customization to aid the code evolution.

For the purpose of speed optimization, crossovers are done by modifying one of the
parents instead of creating a copy of it, which would take a longer time.

Input: An example input file 𝑓𝑖, an example output file 𝑓𝑜
Data: A best Ebel program 𝑝 and its fitness
𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛← generate random population of 𝑛 programs
for 𝑖← 0 to 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 do

foreach 𝑝 ∈ 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 do
𝑝𝑓 ← fitness(𝑝, 𝑓𝑖, 𝑓𝑜)
if 𝑝𝑓 = 100% then

return 𝑝, 𝑝𝑓
end

end
𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛← sort(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛)
foreach 𝑝 ∈ 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 do

if 𝑒𝑙𝑖𝑡𝑖𝑠𝑚 ∧ first(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛) = 𝑝 then
continue

end
if random_chance() < mutation chance then

mutate(𝑝)
end
if random_chance() < crossover chance then

𝑝2 ← random({𝑎 | 𝑎 ∈ 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 ∧ 𝑎 ̸= 𝑝})
𝑝← crossover(𝑝, 𝑝2)

end
end

end
foreach 𝑝 ∈ 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 do

𝑝𝑓 ← fitness(𝑝, 𝑓𝑖, 𝑓𝑜)
end
𝑝𝑏𝑒𝑠𝑡 ← 𝑝 ∈ 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 ∧ 𝑝 has highest fitness
return 𝑝𝑏𝑒𝑠𝑡, 𝑝𝑏𝑒𝑠𝑡𝑓

Algorithm 2: Jenn engine algorithm.

58

5.3.2 Mutation engine Taylor

Engine Taylor is a genetic engine, that uses only mutation in its evolution process. This
engine is mostly experimental, but might bring some speedup in certain cases, mostly there,
where are a lot of NOP operations, since Taylor uses “NOP tails” (hence the name). The use
of NOP tails here, is that at the beginning of the evolution all phenotypes contain only NOP
operations, which are during evolution mutated into different instructions. The use of only
mutations can help with a speedup, since no crossover is done and so the overall evolution
has a simpler computation.

Input: An example input file 𝑓𝑖, an example output file 𝑓𝑜
Data: A best Ebel program 𝑝 and its fitness
𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛← generate random population of 𝑛 programs containing only NOP
instructions in passes

for 𝑖← 0 to 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 do
foreach 𝑝 ∈ 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 do

𝑝𝑓 ← fitness(𝑝, 𝑓𝑖, 𝑓𝑜)
if 𝑝𝑓 = 100% then

return 𝑝, 𝑝𝑓
end

end
𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛← sort(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛)
foreach 𝑝 ∈ 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 do

if 𝑒𝑙𝑖𝑡𝑖𝑠𝑚 ∧ first(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛) = 𝑝 then
continue

end
if random_chance() < mutation chance then

mutate(𝑝)
end

end
end
foreach 𝑝 ∈ 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 do

𝑝𝑓 ← fitness(𝑝, 𝑓𝑖, 𝑓𝑜)
end
𝑝𝑏𝑒𝑠𝑡 ← 𝑝 ∈ 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 ∧ 𝑝 has highest fitness
return 𝑝𝑏𝑒𝑠𝑡, 𝑝𝑏𝑒𝑠𝑡𝑓

Algorithm 3: Taylor engine algorithm.

5.3.3 Random engine MiRANDa

Engine MiRANDa uses pure random approach (see Algorithm 4) and was designed just for
the purpose of engine comparisons and to showcase, that the evolution approach in genetic
engines is far more advanced and is not only about randomness, which does play a big role
in it (this can be seen in Figure 5.8).

59

Input: An example input file 𝑓𝑖, an example output file 𝑓𝑜
Data: A best Ebel program 𝑝 and its fitness
𝑝𝑏𝑒𝑠𝑡 ← NIL
𝑝𝑏𝑒𝑠𝑡𝑓 ← −∞
for 𝑖← 0 to 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 do

𝑝← random_program()
𝑝𝑓 ← fitness(𝑝, 𝑓𝑖, 𝑓𝑜)
if 𝑝𝑓 > 𝑝𝑏𝑒𝑠𝑡𝑓 then

𝑝𝑏𝑒𝑠𝑡 ← 𝑝
𝑝𝑏𝑒𝑠𝑡𝑓 ← 𝑝𝑓

end
end
return 𝑝𝑏𝑒𝑠𝑡, 𝑝𝑏𝑒𝑠𝑡𝑓

Algorithm 4: MiRANDa engine algorithm.

Figure 5.8 showcases the best candidate fitness of 5 independent runs, in which the
same input (markdown table column extraction from experiment 1 in Section 6.1) was
used to evolve a program using genetic algorithm (Engine Jenn) and random approach
(Engine MiRANDa). Not only that the genetic approach could find fitting program in all
of the 5 independent runs within 100 iterations, but it also showcased, that with more time
the population performance (best fitness) only improves, unlike in random approach. The
reason for only growing fitness is the use of elitism, which makes sure that the current best
candidate is not modified and stays in the population. It is also worth mentioning, that the
given problem has quite a simple solution using Ebel. Given long enough time the random
approach can find this program with its brute-force approach.

0 5000 10000 15000 20000 250000.0

0.2

0.4

0.6

0.8

1.0 Evolution 1
Evolution 2
Evolution 3
Evolution 4
Evolution 5

0 20 40 60 80 1000.0

0.2

0.4

0.6

0.8

1.0

Evolution 1
Evolution 2
Evolution 3
Evolution 4
Evolution 5

Figure 5.8: Comparison of 5 program generation evaluations using MiRANDa engine and
Jenn engine. To have both engines process the same amount of evolutionary cycles, Mi-
RANDa uses 25000 iterations and Jenn uses 100 iterations with 250 phenotypes.

60

5.4 Implemented optimizations
Ebel generation is done evolutionary, and therefore, most optimizations are good to apply
once a fitting program is found. But Ebel already has a quite low abstraction and only
variables are in expression passes, which are generated from user defined expressions. Here
can be also very little optimized, but the code generation takes advantage of Ebel expression
instructions (having separate destination argument) and does not use any MOVE instruction,
unless MOVE would be the only instruction.

Ebe’s implementation also plays a big part of the overall compilation and interpretation
speed. That is why C++ language was chosen, which is quite widespread language with
many years of development offering multiple compilers with great optimizations [60]. There
are also garbage collector libraries for C++ [9], but a garbage collector was not used to
not slowdown the compiler and interpreter any further, but mainly to allow for better
portability since many of the libraries are platform dependant.

5.4.1 Dead code elimination

Compiler, more specifically engine, during evolution generates Ebel code. However, since
it has access to the user example inputs, it knows the exact amount of instructions needed,
where this amount is equal to at most the length of the input example file. Dead code
elimination cannot be done just by cutting off part of the code exceeding the input file
length, since some instruction don’t “consume” the input word and also words and lines
pass start the input file processing anew, so this optimization has to be done for each pass.

This can be approached in two ways. The first option is to do static analysis of the
code and input and calculate what part of the code will be executed and what part won’t
be executed for each pass. The second option is to run this code in the interpreter and see
what part of the code is not used. Even though the second option might sounds as more
time consuming, the opposite is the case, since this interpretation is always done in order
to get fitness value of this program (phenotype) for the evolution, and so, this approach
adds only a few more checks.

5.4.2 Redundant code elimination

Ebe engines might create redundant instructions, which are mostly control instructions,
such as LOOP instruction. In Ebe only one LOOP instruction in a pass will be executed and
that is the last one. Because of this, all other previous LOOP instructions can be safely
removed as they do not read in any input and do not change the control flow.

On top of this, if LOOP is the first instruction in a pass it can be removed as well, since
there are no instructions before it to loop over.

61

Figure 5.9: Ebe logging showcasing redundant code elimination over evolved programs.

5.4.3 Constant folding

This is achieved by correctly writing EBNF (Extended Backus-Naur Form) grammar in
Flex, so that constant numeric expressions are evaluated first and folded. Example of this
can be seen in Figure 5.10. This method is also described in Section 2.5 and example can
be seen in Listing 2.4.

Figure 5.10: Constant folding (represented in IR form on the last line) of user defined
expression (line 2).

5.5 Ebe’s modularity and extendability
Ebe’s implementation is done in a way, so that it can be easily extended or build upon. On
top of already mentioned use of Flex and Bison for simple scanner and parser addition, Ebe
is also split into multiple connected, but quite independent parts. Complete separation of
modules was not chosen, since it would slowdown the the compilation and interpretation and
speed is quite important for Ebe. The two main modules are the compiler and interpreter,

62

both of them can be used independently. This allows for projects like the Bee language and
Bee compiler8 to compile down to Ebel and then use just the Ebe interpreter.

If one was to add a new file format to achieve better compilation results, for possibly
even a custom file format, the process would be following:

1. Write a grammar file for Bison and Flex and possibly any additional source files, to
handle the input.

2. Write class, which extends Scanner class and add a method, which returns a new
instance of internal representation of the input file (IR::Node).

3. Once implemented, any call to a parser can be replaced with the new parser.

The main reason for multiple parsers and scanners is to optimize the compilation or
possibly even allow for edits, which the standard parser does not allow because of the
grammar used. This can be easily described on a simple example. Let us assume that one
wants to edit a fasta format file. This file contains a header and then an uninterrupted
string of letters with the possibility to add new lines for better readability [54]. If this
input was given to Ebe’s default text file parser, then the whole sequence would be parsed
as one word with the type TEXT, but what would be rather desired is to parse each letter
as a separate lexeme, which would allow, for example, to use expression pass with string
matching to replace certain letters for different ones.

It would be also possible to add a new parser and scanner for Ebel language, although
this does not seem very useful and it would probably be lot easier to change the current
grammar used. But if this were to be done, the process would be quite the same to the one
described for a new input file parser.

8https://github.com/mark-sed/bee-hs

63

https://github.com/mark-sed/bee-hs

csv_no_
header

ws2811_
colors

csv_del
_begin

phone_n
umbers

user_ex
pressio

n1

human_g
enome_e

dit

csv_sho
rt

csv_del
_end

log_uni
t_remov

e

0

50

100

150

200

250

300
tim

e
[s

]
Compilation

Ebe 0.3.1 benchmarks

csv_no_
header

ws2811_
colors

csv_del
_begin

phone_n
umbers

user_ex
pressio

n1

human_g
enome_e

dit

csv_sho
rt

csv_del
_end

log_uni
t_remov

e

0

50

100

150

200

250

300

tim
e

[s
]

Compilation

Ebe 0.3.1 benchmarks

Figure 5.5: Benchmark results for engine Jenn (top) and engine Taylor (bottom).

64

csv_no_
header

ws2811_
colors

csv_del
_begin

csv_sho
rt

csv_del
_end

0

100

200

300
tim

e
[s

]

Compilation using One-to-one fitness function

csv_no_
header

ws2811_
colors

csv_del
_begin

csv_sho
rt

csv_del
_end

0

100

200

300

tim
e

[s
]

Compilation using Levenshtein distance fitness function

csv_no_
header

ws2811_
colors

csv_del
_begin

csv_sho
rt

csv_del
_end

0

100

200

300

tim
e

[s
]

Compilation using Jaro distance fitness function

csv_no_
header

ws2811_
colors

csv_del
_begin

csv_sho
rt

csv_del
_end

0

100

200

300

tim
e

[s
]

Compilation using Jaro-Winkler distance fitness function

Figure 5.6: Comparisons of compilation times (solution program synthesis) for different Ebe
fitness functions. These functions were tested on a subset of benchmark problems (described
in Section 5.1) and displayed are values of 20 independent runs of each benchmark problem.
Default Ebe parameters were used (see Table 5.1).

65

25 50 100 500
population size

0

50

100

150

200

250

300

tim
e

[s
]

Compilation
Ebe 0.3.1 benchmarks

Figure 5.7: Box plots of times of 10 measured runs of Ebe on the same problem
(log_unit_remove benchmark) with normalized generations (meaning that the amount
of generations was proportioned to the population size). The benchmarks used timeout of
300 s, so runs with this time had precision lower than 100 %.

66

Chapter 6

Experiments and evaluation

Ebe is quite a unique application, and so, it is not very possible to compare its time of
editing program synthesis to some other application. But as was mentioned, Ebe promises
to be an alternative tool for file editing for non-programmers and also programmers and
this is in some way possible to be measured. But here it is not only the time it take some
language to process a file, but also about how long it takes to do the whole editing task.
Where Ebe excels is, that it does the job of writing the editing script for the user, and thus,
saves all of this time. One could also argue, that the compilation time itself should not be
measured and only the preparation of examples, since during the compilation Ebe does not
require any interaction and the user can do other tasks during this time, but for the sake
of as equal grounds as possible the whole process including compilation will be included.
Another big difference is the nondeterministic nature of Ebe, which makes each attempt to
take different time. For this reason each Ebe edit will be done 10 times and a median value
will be used as a result. All results will be in seconds precision.

Another problem with these experiments is the overall knowledge of other measured
approaches, since every person has a different knowledge of some language or tool, it is
impossible to get some general result. There are also many, even infinite, ways to write a
script for one editing task and therefore this can differ based on different libraries or tools
used in some language. But at the same time Ebe also offers different approaches and some
parameters, which can be adjusted to make it work better in certain cases. All of this
is being said to acknowledge, that these results may vary from person to person and the
experiments are here mostly to showcase one of the cases to give some vague idea of the
main differences.

Even though it would be possible to come up with very complicated editing experiments
to limit test all the tools, it seems more useful to test these tools on tasks, that are quite
likely to be solved in real life, but still pose some challenge to the selected tools.

All the experiments were done by hand using environment the author was most com-
fortable with and all was measured from the start of programming or editing to the point,
where the tool created expected output.

As was already mentioned, all the experiments with Ebe were done 10 times including
the example creation and everything was done by hand. In case of editing the file using
text editor, only the first 50 lines were edited, since unlike programming languages or Ebe,
this approach does not scale well, but the 50 lines already give a good sample.

Experiments were solved using tools and languages, which are suitable for the task. It
would be possible to solve these experiments using languages like C or Haskell, but because

67

of the nature of these languages, they do not seem like suitable tools. Used languages and
tools, excluding Ebe, were:

• Text editor – This approach is the least technical, but is included, because this is the
approach that any non-programmer can use and probably will use. This tool should
be also available to any system that works with files, since the editor is also used to
view the contents of the file.

• Linux tools – This is not just a one program, but rather a set of programs usually
available on Linux or Unix systems, where Linux allows to combine these programs
into a working pipeline. Examples of such programs are cat, grep, sed, cut. . . .

• AWK – AWK is also a part of Linux tools, but since it is a program made exactly
for editing files it deserves to be tested on its own. AWK contains its own parser and
extracting tools, which allow for simple file transformation. On the other hand, the
syntax is quite unique and requires some knowledge of it to use the tool properly.

• Python 3 – Python 3 is a popular interpreted general purpose language with many
tools for working with files and even offers some built-in libraries for work with spe-
cific formats, such as CSV (Comma Separated Values) or JSON (JavaScript Object
Notation) [52].

• Handwritten Ebel – This approach is mostly here to showcase the option to write
the Ebel script by hand, although this approach requires deep knowledge of the parser
Ebe uses and the Ebel syntax and semantics. Ebel is quite a simple language, but
quite unique in its computing model and therefore not as straightforward to use by
those, who do not know it well. On the other hand many simple edits can be done
by just matching lexemes and simple instructions (NOP and DEL) in a single pass to
construct a working Ebel program.

6.1 Experiment 1 – Markdown table value extraction
A simple real world problem and therefore a valuable experiment. In this experiment the
task is to extract hexadecimal values from a markdown table containing all predefined
colors in the FastLED library1. The table is extracted from the markdown file without the
header and contains 142 lines and the table has 3 columns with the desired value in the
second column. See Listing 6.1 and 6.2 for the snippet of the file before and after editing,
respectively.

1 | CRGB::AliceBlue | 0xF0F8FF | <img src="http://www.colorcombos.com/images/
colors/hex/F0F8FF.png"/>

2 | CRGB::Amethyst | 0x9966CC | <img src="http://www.colorcombos.com/images/
colors/hex/9966CC.png"/>

3 | CRGB::AntiqueWhite | 0xFAEBD7 | <img src="http://www.colorcombos.com/
images/colors/hex/FAEBD7.png"/>

Listing 6.1: First 3 lines of the markdown file (supported.md) before edits.

1https://github.com/FastLED/FastLED/wiki/Pixel-reference

68

https://github.com/FastLED/FastLED/wiki/Pixel-reference

1 0xF0F8FF
2 0x9966CC
3 0xFAEBD7

Listing 6.2: First 3 lines of the markdown file (edited.md) after edits.

6.1.1 Ebe solution

For Ebe solution the example input file was created by taking the first line from the mark-
down file (see Listing 6.3) and this was then copied and edited by hand to include only
desired value (see Listing 6.4). The final edited file was then generated with single Ebe
execution using the -x option, which allows for compilation and interpretation after each
other. The command was ebe -x -in f.in -out f.out -o edited.md supported.md
and output was placed Ebe into edited.md file. As can be seen in the Table 6.1 the
example generation took the most time, since all compilation runs took way less than a
second.

1 | CRGB::AliceBlue | 0xF0F8FF | <img src="http://www.colorcombos.com/images/
colors/hex/F0F8FF.png"/>

Listing 6.3: Contents of the input example file f.in.

1 0xF0F8FF

Listing 6.4: Contents of the output example file f.out.

The editing algorithm found by Ebe in one of the attempts can be seen in Listing 6.5.
This solution differs very much from a solution, which would be written by a programmer
(see Listing 6.6). This is caused by the nature of how genetic programming works and
synthesises its solutions.

1 PASS Words
2 DEL
3 DEL
4 DEL
5 NOP
6 LOOP
7 DEL
8 PASS Words
9 DEL

10 LOOP
11 NOP
12 SWAP 1
13 PASS Words
14 NOP
15 DEL
16 DEL
17 LOOP
18 DEL

Listing 6.5: Ebel solution generate in one of the experiment 1 attempts by Ebe.

69

Ebe can find the correct solution in very short time (as can be seen in Table 6.1). The
population fitness convergence can be seen in Figure 6.1, where for these 5 runs no more
than 12 iterations of evolution were needed.

0 2 4 6 8 10 12
0.0

0.2

0.4

0.6

0.8

1.0

Evolution 1
Evolution 2
Evolution 3
Evolution 4
Evolution 5

Figure 6.1: Fitness values for 5 independent runs of Ebe for experiment 1. These runs were
not part of the 10 attempts done, since the fitness value logging slows down the editing.

Attempt 1 2 3 4 5 6 7 8 9 10
Edit time 36 s 36 s 31 s 34 s 34 s 31 s 32 s 31 s 31 s 27 s
Ebe time 0.4 s 0.3 s 0.6 s 0.1 s 0.4 s <0.1 s <0.1 s 0.1 s 0.2 s <0.1 s

Table 6.1: Edit times for all attempts solving experiment 2 with Ebe. Median value is 31.5
s (rounded to 32 s).

6.1.2 Ebel solution

Writing Ebel program requires knowledge of the parser and analyzing the input file. First
it is needed to count the number of lexemes before the value, that is to be deleted. Then it
is needed to know, if the extracted value is a single lexeme or multiple and finally, if all the
words after the extracted one are to be deleted a LOOP instruction can be used, otherwise
it would be needed to count the lexemes once again.

In this case, there are 9 lexemes before the wanted value, so 9 DEL instructions are
needed to be placed, then a LOOP instruction followed by NOP. This takes advantage of the
way LOOP instruction works (see Section 4.1.4), where the looping commences after the
whole pass was processed. This solution can be seen in Listing 6.6. To interpret the Ebel
ebe command with -i can be used – ebe -i md.ebel -o edited.md supported.md.

70

1 Pass Words
2 DEL
3 DEL
4 DEL
5 DEL
6 DEL
7 DEL
8 DEL
9 DEL

10 DEL
11 LOOP
12 NOP

Listing 6.6: Handwritten Ebel solution (md.ebel) for experiment 1.

6.1.3 AWK solution

This problem is the perfect task for AWK, since it is a value extraction in a file with clearly
defined columns. AWK parses all these columns and these can then be easily indexed and
printed. The used AWK code can be seen in Listing 6.7.

1 {print $4}

Listing 6.7: AWK solution for experiment 1.

6.1.4 Python 3 solution

Since Python 3 is not a language designed purely for file editing, there needs to be a section
for loading the input file and parsing its lines. Once this is done, there are many ways to
solve the task. One of which is to use regular expressions. This approach was used and is
combined right away with writing the extracted output to a file. The regular expression is
quite simple, but requires some basic analysis of the input file. This script can be seen in
Listing 6.8.

1 import re
2
3 lines = []
4 with open("supported.md", "r") as f:
5 for line in f:
6 lines.append(line)
7 with open("edited.md", "w") as o:
8 for l in lines:
9 o.write(re.search("(0x[A-F0-9]*)", l).group(1)+"\n")

Listing 6.8: Python 3 solution for experiment 1.

6.1.5 Linux tools solution

For this task there is no need for a processing pipeline. Excluding AWK solution, this task
is great for tools, that work with regular expressions, such as Grep. It is possible to use the
same expression that was used in the Python 3 solution. See the command in Listing 6.9.

71

1 grep -o "0x[A-F0-9]*" supported.md > edited.md
Listing 6.9: Linux tools (grep) solution for experiment 1.

6.1.6 Results and conclusions

Tool Editing time
By hand (first 50 lines) 3 min 40 s
By hand (calculated from previous) 10 min 25 s
Python 3 4 min 52 s
Linux tools (Grep) 33 s
AWK 23 s
Ebel (handwritten) 50 s
Ebe 32 s

Table 6.2: Editing times for experiment 1.

Table 6.2 contains all editing times. Editing the whole file by hand in this case is viable
as the number of lines is not too high and the edits for each line are quite simple, but still
any other approach is faster and less prone to errors. Using Python 3 takes a long time
mostly because the file has to be open, read from and then new file created and written to,
these are tasks that all the other tools do for the programmer. Using Grep in this case is a
viable option, since all the values adhere to the same format and the values can be easily
extracted using a regular expression. AWK has showcased, that this task is the perfect task
for it, since the values are well split with spaces and extraction only requires to count the
correct column number and then print it. Handwriting an Ebel program is surprisingly fast
in this case, but it requires the knowledge of Ebe’s parser to correctly match instructions
with lexemes.

Finally what Ebe takes the most time is to setup the examples, the overall compilation
takes almost no time, because of the simple algorithm needed. Even though this approach
took a little bit longer than using AWK and almost the same time as using Grep, it required
no thinking about how to solve the editing task, but was all about doing the wanted edits
by hand and then letting Ebe take care of the algorithm needed. This would allow someone
with no programming skills and only basic knowledge of Ebe’s usage to make edits as fast
as someone with programming skills.

6.2 Experiment 2 – GTF file value adjustments
This example was already mentioned in this thesis, but since it is a use case from real world
problem it seems like a good experiment as well. In this experiment the task is to edit
snippet of GTF (Gene Transfer Format) file by subtracting the value 153350000 from 4th
and 5th column, which are the feature start and end positions [1]. This is to be done over
a file with 389 lines. Example of snippet of the file before and after the edits can be seen
in the Listing 6.10 and 6.11. The input file is a snippet of larger file downloaded from the
National Library of Medicine and it is a Homo sapiens (human) genome assembly GRCh38
(hg38) from Genome Reference made for the Human Genome Project2.

2https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.26/

72

https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.26/

1 chr1 hg38_knownGene exon 153357854 153357881 0.000000 + .
gene_id "ENST00000368738.4"; transcript_id "ENST00000368738.4";

2 chr1 hg38_knownGene start_codon 153358284 153358286 0.000000 +
. gene_id "ENST00000368738.4"; transcript_id "ENST00000368738.4";

3 chr1 hg38_knownGene CDS 153358284 153358433 0.000000 + 0
gene_id "ENST00000368738.4"; transcript_id "ENST00000368738.4";

Listing 6.10: First 3 lines of the GTF file (human.gtf) before edits.

1 chr1 hg38_knownGene exon 7854 7881 0.000000 + . gene_id
"ENST00000368738.4"; transcript_id "ENST00000368738.4";

2 chr1 hg38_knownGene start_codon 8284 8286 0.000000 + .
gene_id "ENST00000368738.4"; transcript_id "ENST00000368738.4";

3 chr1 hg38_knownGene CDS 8284 8433 0.000000 + 0 gene_id "
ENST00000368738.4"; transcript_id "ENST00000368738.4";

Listing 6.11: First 3 lines of the GTF file (edited.gtf) after edits.

6.2.1 Ebe solution

Solving this task with Ebe requires knowledge of user defined expression and in fact, it
is the only part of Ebe compilation needed for this. The overall process is almost the
same as in experiment 1. First line of the input file is copied into a new example input
file (see Listing 6.12), this is then copied and the 4th and 5th column value is edited to
contain expression {! $ - 153350000 !} (see Listing 6.13), which tells Ebe to subtract
153350000 from any value in this column. This can be then processed by Ebe using similar
command as in experiment 1, but this time -expr or --expression option has to be used to
parse the expression – ebe -x -in f.in -out f.out -o edited.gtf human.gtf -expr.

1 chr1 hg38_knownGene exon 153357854 153357881 0.000000 + .
gene_id "ENST00000368738.4"; transcript_id "ENST00000368738.4";

Listing 6.12: Example input file (f.in) for Ebe solution.

1 chr1 hg38_knownGene exon {! $-153350000 !} {! $-153350000 !}
0.000000 + . gene_id "ENST00000368738.4"; transcript_id "
ENST00000368738.4";

Listing 6.13: Example output file (f.out) for Ebe solution.

Attempt 1 2 3 4 5 6 7 8 9 10
Edit time 60 s 50 s 48 s 46 s 46 s 40 s 42 s 42 s 41 s 39 s
Ebe time <0.1 s

Table 6.3: Edit times for all attempts solving experiment 2 with Ebe. Median value is 44 s.

6.2.2 Ebel solution

The Ebel solution requires the programmer to have knowledge of the Ebel expression pass
syntax and semantics, but then it is very straightforward. For each word parsed a NOP
instruction is written and then at the 4th column (which is not the 4th instruction, since

73

delimiters are not ignored by Ebe parser) and 5th column an expression pass is written
with the SUB instruction. The program can be seen in Listing 6.14 and notice that, when
handwriting Ebel, $ can be used in place of $0 to make it more similar to the user defined
expression.

1 Pass Words
2 NOP
3 NOP
4 NOP
5 NOP
6 NOP
7 NOP
8 Pass NUMBER Expression
9 SUB $, $, 153350000

10 RETURN NOP
11 NOP
12 Pass NUMBER Expression
13 SUB $, $, 153350000
14 RETURN NOP

Listing 6.14: Handwritten Ebel solution (gtf.ebel) for experiment 2.

If it is not certain, if all the values are of type NUMBER, then it is needed to add “fall-
through” expression passes to catch any other types. For example, if the start index could
be FLOAT or the string “null”, which it is expected to change into 0 then the solution could
look like the one in Listing 6.15. And even if the type was still different, all expression
passes have implicit DERIVED expression pass, that will catch different type and execute NOP
instruction; meaning, that if the type does not match the type in the expression nothing
happens to the word and it is left as is.

1 Pass Words
2 NOP
3 NOP
4 NOP
5 NOP
6 NOP
7 NOP
8 Pass NUMBER Expression
9 SUB $, $, 153350000

10 RETURN NOP
11 Pass FLOAT Expression
12 SUB $, $, 153350000.0
13 RETURN NOP
14 PASS "null" Expression
15 MOVE $, 0
16 RETURN NOP
17 NOP
18 Pass NUMBER Expression
19 SUB $, $, 153350000
20 RETURN NOP
21 Pass FLOAT Expression

74

22 SUB $, $, 153350000.0
23 RETURN NOP
24 PASS "null" Expression
25 MOVE $, 0
26 RETURN NOP

Listing 6.15: Handwritten Ebel solution (gtf.ebel) for experiment 2.

6.2.3 AWK solution

AWK allows to modify a column by assigning it a new value and then it’s possible to print
all the columns at once. Problem is, that unlike Ebe, AWK looses the original separators,
which were tabs, but also spaces in some parts. It is possible to change the delimiter using
OFS argument, but this will change all of the delimiters, and so, the output file differs a bit
from the original, but it is still a valid GTF file.

1 awk -v OFS=’\t’ ’{$4 = $4 - 153350000; $5 = $5 - 153350000; print $0}’
human.gtf > edited.gtf

Listing 6.16: AWK solution for experiment 2.

6.2.4 Python 3 solution

The Python 3 solution once again contains mostly file handling procedures, but in this case
it is possible to use the csv library to parse the GTF file, but using tab symbols instead
of comma as the delimiter. There are also spaces used later on in the file, but since this is
after the values, that are to be changed it does not affect the algorithm. Once the values
are parsed it is needed to parse the string values into type int, subtract the value and then
back to the str type to concatenate it with the rest.

If the programmer did not know how to use the csv library, it would be also possible
to once again extract the values using regular expressions, edit them and then put the line
back together using regular expressions for the parts excluding the edited values, although
this would be quite overcomplicated solution. Alternatively it would be also possible to
parse the file by hand using the split function and then using a similar process used in
Listing 6.17.

1 import csv
2
3 outf = []
4 with open("human.gtf", "r") as f:
5 reader = csv.reader(f, delimiter=’\t’)
6 for row in reader:
7 start = str(int(row[3])-153350000)
8 end = str(int(row[4])-153350000)
9 outf.append("\t".join(row[0:3]+[start]+[end]+row[5:]))

10 with open("edited.gtf", "w") as o:
11 for l in outf:
12 o.write(l+"\n")

Listing 6.17: Python 3 solution for experiment 2.

75

6.2.5 Results and conclusions

Tool Editing time
By hand (first 50 lines) 13 min 14 s
By hand (calculated from previous) 102 min 57 s
Python 3 8 min 5 s
AWK 53 s
Ebel (handwritten) 1 min 39 s
Ebe 44 s

Table 6.4: Editing times for experiment 2.

In this experiment Linux tools were excluded, since the overall processing pipeline would
be very inefficient and probably most people would rather use AWK. Python 3 takes longer
time to write, since it is required to select the correct column, parse it, do the calculations
and then construct the line back together. Ebel approach is viable since the code is quite
straightforward and requires, once again, only to match correctly the words to ignore (use
NOP instruction). AWK displays once again, that it is a powerful tool for file editing for the
skilled users, but this time Ebe even managed to have lower editing time, because of the
simple use of user defined expressions.

6.3 Experiment 3 – CSV file transformation
In this experiment a CSV file from P. Corez et al. [16] was used as the file for editing.
This file has 1600 entries with wine ratings (quality) and their attributes. The task was to
remove all the columns with acidity, meaning column 2, 3 and 4. First few lines from the
file before and after edits can be seen in Listing 6.18 and 6.19.

This CSV file was selected since it is a file with many columns of the same or similar
type. At the same time this data set contains some values placed in quote marks, which
also make it harder for Ebe. Another complication for Ebe is the header, which is left in
the file, since tools like Python 3 have means of easily working with it.

1 "","fixed.acidity","volatile.acidity","citric.acid","residual.sugar","
chlorides","free.sulfur.dioxide","total.sulfur.dioxide","density","pH
","sulphates","alcohol","quality"

2 "1",7.4,0.7,0,1.9,0.076,11,34,0.9978,3.51,0.56,9.4,5
3 "2",7.8,0.88,0,2.6,0.098,25,67,0.9968,3.2,0.68,9.8,5

Listing 6.18: First 3 lines of the CSV file (data.csv) before edits.

1 "","quality","residual.sugar","chlorides","free.sulfur.dioxide","total.
sulfur.dioxide","density","pH","sulphates","alcohol"

2 "1",1.9,0.076,11,34,0.9978,3.51,0.56,9.4,5
3 "2",2.6,0.098,25,67,0.9968,3.2,0.68,9.8,5

Listing 6.19: First 3 lines of the CSV file (edited.csv) after edits.

76

6.3.1 Ebe solution

Solution in Ebe is for this case more complicated, because the input file contains a header,
which has different structure then all the other lines. This would not be a problem, if
the header had contained only one word tags for each column, but in this cased tags are
comprised of multiple words divided by dots. This can be easily solved, by not using the
header in the example, but using the second row for example (see Listings 6.20 and 6.21)
and then, once the output is generated, the incorrect header has to be edited by hand to
fit the data. The editing takes longer time, because of this whole procedure. On top of
this, the compilation takes on average a longer time as well, because of the bigger number
of columns and lexemes in each line.

1 "1",7.4,0.7,0,1.9,0.076,11,34,0.9978,3.51,0.56,9.4,5

Listing 6.20: Input example file for experiment 3.

1 "1",1.9,0.076,11,34,0.9978,3.51,0.56,9.4,5

Listing 6.21: Output example file for experiment 3.

Attempt 1 2 3 4 5 6 7 8 9 10
Edit time 69 s 134 s 61 s 80 s 57 s 51 s 90 s 126 s 64 s 104 s

Compile time 16 s 87.6 s 12 s 30.6 s 0.3 s 5.2 s 47.6 s 85.5 s 24.4 s 60.4 s

Table 6.5: Edit times for all attempts solving experiment 3 with Ebe. Median value is
74.5 s.

6.3.2 Ebel solution

As with previous experiments, Ebel solution is again the same process of counting lexemes
to leave and the ones to delete. The resulting program is quite simple and can be seen in
Listing 6.22.

1 Pass Words
2 NOP
3 NOP
4 NOP
5 NOP
6 DEL
7 DEL
8 DEL
9 DEL

10 DEL
11 DEL

Listing 6.22: Ebel solution for experiment 3

6.3.3 AWK solution

To parse the input CSV file with AWK it is needed to specify the delimiter by using -F
’,’ command line option, then AWK can address each column by its index and because

77

there are no commas in the tags in the header, it will be correctly parsed as well. In this
case it is possible to print the first column and follow this by a for loop printing all the
other columns excluding 2nd, 3rd and 4th (see Listing 6.23).

1 awk -F ’,’ ’{printf $1; for (i=5; i <= NF; i++) printf FS$i; print NL}’
data.csv > edited.csv

Listing 6.23: AWK solution for experiment 3

6.3.4 Python 3 solution

Even though Python 3 offers a library for working with CSV files, in this case it is faster to
use the split method for strings. This is because the CSV library also parses values and
would remove the quotation marks from values that contain them.

The solution consists mostly of reading and writing to a file and the editing is done
during writing to the file, where a list range selector is used to select only the 5th and later
columns and these values are then connected into a string using the join method. The
first column is simply prepended using a list selection operator. The program used can be
seen in the Listing 6.25.

1 lines = []
2 with open("data.csv", "r") as f:
3 lines = f.readlines()
4 with open("edited.csv", "w") as o:
5 for l in lines:
6 cols = l.split(",")
7 o.write(cols[0]+","+",".join(cols[4:]))

Listing 6.24: Python 3 solution for experiment 3

6.3.5 Linux tools solution

This task can be solved multiple ways using Linux tools, but possibly one of the easiest
ones is to use sed program, which can match regular expressions and then output them
in defined format. The solution requires to create regular expressions for the 1st, 2nd, 3rd
and 4th columns and for the rest as well, this can be simply done by using the .* pattern
followed by comma, which will match the entirety of a column, since commas define each
column. The rest is only about outputting just the 1st column followed by a comma and
the last regular expression match.

1 sed -r ’s/(.*),(.*),(.*),(.*),(.*)/\1,\5/g’ data.csv > edited.csv

Listing 6.25: sed solution for experiment 3

78

6.3.6 Results and conclusions

Tool Editing time
By hand (first 50 lines) 3 min 14 s
By hand (calculated from previous) 103 min 28 s
Python 3 1 min 24 s
Linux tools (sed) 45 s
AWK 56 s
Ebel (handwritten) 1 min
Ebe 1 min 15 s

Table 6.6: Editing times for experiment 3.

In this experiment, quite unexpectedly, all tools had almost the same editing time. In case
of Ebe, most of the time was spent doing edits by hand, partially also because the file
format required small tweaks after the compilation and interpretation. Other tools did not
have problems with the file header, which can be associated with the different parsing used
in these tools, where a delimiter is used, whereas Ebe bases its edits on position and the
parsing creates different number of columns. This could be solved in Ebe, if a special CSV
parser was introduced.

6.4 Experiment 4 – JSON file formatting
In this experiment the task is to remove new line symbols from JSON file, meaning that
it will be concatenated into one continuous line. The input file is a JSON file with results
from Ebe benchmarks with 462 lines. The first 3 line of the file can be seen in Listing 6.26
and the first 67 characters of the expected output can be seen in Listing 6.27.

1 {
2 "benchmark": {
3 "version": "1.0.0",

Listing 6.26: First 3 lines of the JSON file (results.json) before edits.

1 {"benchmark": {"version": "1.0.0","time:": 1644005755,"args": ""},

Listing 6.27: First 67 characters of the output JSON file (edited.json) after edits.

6.4.1 Ebe solution

This task requires the use of Ebel’s Pass Lines and CONCAT instruction, but this also
requires the need to provide long enough example, so that Ebe understands, that the
concatenation is to be done over all lines and not just first two or three lines. For this
reason, the example used is 5 lines long (see Listings 6.28 and 6.29). In this example
there is always the chance of Ebe generating 5 CONCAT 1 instructions, but the chance is
way lower than the chance for generating CONCAT 1 followed by LOOP instruction. Using
chances from Table 5.2 and that the instruction argument is picked based on minimum and
maximum meaningful value (in this case only arguments 1 to 5 would be executed), it can

79

be calculated, that the chance for Ebe to generate 5 CONCAT 1 instructions is:

𝑝(five concat) =

(︂
0.125 · 1

5

)︂5

≈ 0.000001%, (6.1)

whereas the chance to generate CONCAT 1 instruction followed by LOOP is:

𝑝(concat loop) =

(︂
0.125 · 1

5

)︂
· 0.125 = 0.3125%, (6.2)

if the example would contain only 2 lines, then the chance for generating 2 CONCAT 1
instructions in a pass would be:

𝑝(two concat) =

(︂
0.125 · 1

5

)︂2

= 0.0625%. (6.3)

Equations 6.1, 6.2 and 6.3 are not exactly what happens during the phenotype genera-
tion and evolution, since there are also other factors, such as the chance for initial phenotype
size, chance for lines pass or even chance for mutation and crossover later during evolution.
But these calculations are here to give a rough estimation on the question of which is more
likely. All of the programs with the mentioned probabilities are correct based on the given
example, but based on the task only one (CONCAT 1 followed by LOOP) is correct and choos-
ing bigger example will make sure, that the chance for the wanted program is more likely,
than the other one.

1 {
2 "benchmark": {
3 "version": "1.0.0",
4 "time:": 1644005755,
5 "args": ""
6 },

Listing 6.28: Input example file for experiment 4.

1 {"benchmark": {"version": "1.0.0","time:": 1644005755,"args": ""},

Listing 6.29: Output example file for experiment 4.

Attempt 1 2 3 4 5 6 7 8 9 10
Edit time 45 a 36 s 32 s 32 s 29 s 30 s 30 s 30 s 29 s 28 s

Compile time <0.0 s 0.2 s 0.2 s 0.2 s 0.2 s 0.2 s 0.1 s 0.1 s 0.2 s <0.0 s

Table 6.7: Edit times for all attempts solving experiment 4 with Ebe. Median value is 30 s.

6.4.2 Ebel solution

Solution in Ebel is very simple, since the task is repetitive concatenation of lines. Unlike
in previous experiments, in this experiment it is needed to start with Pass Lines, because
the implicit pass is Pass Words, then the program is just a CONCAT 1 instruction and LOOP
instruction (see Listing 6.30) to apply this instruction to all lines.

80

1 Pass Lines
2 CONCAT 1
3 LOOP

Listing 6.30: Ebel solution for experiment 4.

6.4.3 AWK solution

AWK allows to set the character, by which each line ends. This character is held by the
ORS variable and it is the new line symbol by default. Changing this variable to an empty
string and printing all lines (see Listing 6.31) removes the new line symbol from each line.

1 awk -v ORS="" ’{print $0}’ results.json > edited.json

Listing 6.31: AWK solution for experiment 4.

6.4.4 Python 3 solution

Python 3 contains a method strip, which can be used to remove new line symbols from
each line, but as was in the previous experiments, it is first needed to read the file and then
write to a new one. To apply the strip method to all lines a list comprehension can be
used (see Listing 6.32).

1 lines = []
2 with open("results.json", "r") as f:
3 lines = f.readlines()
4 with open("edited.json", "w") as o:
5 o.write("".join([x.strip() for x in lines]))

Listing 6.32: Python 3 solution for experiment 4.

6.4.5 Linux tools solution

This experiment can be in Linux solved using the tr program, which can remove certain
characters from a string – in this case the new line character. To load the file into the
program cat can be used. This process pipeline can be seen in Listing 6.33.

1 cat results.json | tr -d ’\n’ > edited.json

Listing 6.33: cat and tr solution for experiment 4.

81

6.4.6 Results and conclusions

Tool Editing time
By hand (first 50 lines) 42 s
By hand (calculated from previous) 6 min 28 s
Python 3 59 s
Linux tools (cat and tr) 15 s
AWK 21 s
Ebel 17 s
Ebe 30 s

Table 6.8: Editing times for experiment 3.

Most tools have proven to be quite efficient and fast at completing the given task and their
times are very similar. Python 3 requires additional file operations, which have to be done
by the user and this adds some additional time to writing of the script. AWK requires more
advanced knowledge of the tool, where the programmer has to be aware of the existence
of ORS variable. Using tr has proven to be the fastest and possibly most straightforward
approach, since this task is exactly what the tool is meant for (removing characters or
replacing them). Ebel contains instruction just for this task, and thus, the solution is quite
straightforward and could be written even by less skilled programmer. Ebe requires the
user to know, that giving a bigger example in this case helps with the ambiguity, but even
if not provided, if the user was to check the output, he or she could then try running Ebe
once again or multiple times until Ebe finds the solution, which the user wants.

82

Chapter 7

Conclusion

Ebe was also presented at the Excel@FIT 2022 conference, where it received expert com-
mittee award and AT&T award. It was also picked by the committee to be one of the 8
projects, that were presented at the conference.

The goals of this thesis laid down were to implement a tool for automated file editing
from given user examples, that would use genetic programming to achieve this task. This
was accomplished as well as analysis of the tools performance and the evolutionary approach
itself. On top of this, the tool has proven to be a viable alternative to competitive edit-
ing tools. Ebe, on top of its speed, does not require any programming knowledge or deep
understanding of the tool, that many of the competitors do. The implemented program is
not a universal tool, but rather a tool for a subset of editing problems, but these are the
problems, which are quite often needed to be automatized. The use of genetic programming
for the task of file editing has also been quite successful, because of the new language de-
signed specifically for this task. The language itself, with the implemented interpreter, have
potential to be a useful resource for other projects that deal with file editing. Even though
there are many difficult editing tasks, for which this approach is not suitable, the simpler
edits, which are quite common editing tasks, are not a problem and Ebe handles them
quickly. Additionally, the tool has been made to be build upon, extended and optimized
and many of the tasks, which are not possible or are not optimal in the current state of
the tool, could be fixed with more optimizations focusing on these exact problems. Genetic
programming and more generally evolutionary approach has proven to be an approach with
a lot of potential to tackle many different tasks. There are some underlying constraints to
this approach, but this method showcases other great strengths, such as low computing
requirements or no previous learning process requirements.

Regarding future of this project, there are many parts of it, which could be extended,
tested or changed. Ebe showcases some potential to address even more complex editing
problems and the same stands for the language Ebel. Ebel in the current state contains
only the limited set of instructions to do the most common editing tasks, but it could
be extended to contain even more complex instructions or, for instance, instructions for
generating values, rather than just modifying the existing ones. Although such addition
would require additional changes and optimization of existing methods, since it could effect
editing times for the current tasks it can handle. The Ebel language could be also extended
for the use in other file editing projects, such as aforementioned Bee language, and become
a full-fledged language for editing files with many specialized instructions.

83

Bibliography

[1] GFF/GTF File Format. [cit. 26. April 2022]. Definition and supported options. Available
at: https://www.ensembl.org/info/website/upload/gff.html.

[2] Prose framework. Apr 2022. Available at:
https://www.microsoft.com/en-us/research/project/prose-framework/.

[3] Aho, A. V., Kernighan, B. W. and Weinberger, P. J. The AWK Programming
Language. USA: Addison-Wesley Longman Publishing Co., Inc., 1987. ISBN
020107981X.

[4] Arnaldo, I., Krawiec, K. and O’Reilly, U.-M. Multiple Regression Genetic
Programming. In: Proceedings of the 2014 Annual Conference on Genetic and
Evolutionary Computation. New York, NY, USA: Association for Computing
Machinery, 2014, p. 879–886. GECCO ’14. DOI: 10.1145/2576768.2598291. ISBN
9781450326629. Available at: https://doi.org/10.1145/2576768.2598291.

[5] Backurs, A. and Indyk, P. Edit Distance Cannot Be Computed in Strongly
Subquadratic Time (unless SETH is false). CoRR. 2014, abs/1412.0348. Available at:
http://arxiv.org/abs/1412.0348.

[6] Barowy, D. W., Gulwani, S., Hart, T. and Zorn, B. FlashRelate: Extracting
Relational Data from Semi-Structured Spreadsheets Using Examples. SIGPLAN Not.
New York, NY, USA: Association for Computing Machinery. jun 2015, vol. 50, no. 6,
p. 218–228. DOI: 10.1145/2813885.2737952. ISSN 0362-1340. Available at:
https://doi.org/10.1145/2813885.2737952.

[7] Berger, B., Waterman, M. S. and Yu, Y. W. Levenshtein Distance, Sequence
Comparison and Biological Database Search. IEEE Transactions on Information
Theory. 2021, vol. 67, no. 6, p. 3287–3294. DOI: 10.1109/TIT.2020.2996543.

[8] Bird, J., Husbands, P., Perris, M., Bigge, B. and Brown, P. Implicit Fitness
Functions for Evolving a Drawing Robot. In: Proceedings of the 2008 Conference on
Applications of Evolutionary Computing. Berlin, Heidelberg: Springer-Verlag, 2008,
p. 473–478. Evo’08. ISBN 3540787607.

[9] Boehm, H. j. and Spertus, M. Transparent Programmer-Directed Garbage
Collection for C. 2007.

[10] Braione, P., Denaro, G., Pezze, M. and Křena, B. Verifying LTL Properties of
Bytecode with Symbolic Execution. In: In proceedings of Third Workshop on
Bytecode Semantics, Verification, Analysis and Transformation. Elsevier Science B.
V, 2008. BYTECODE 2008.

84

https://www.ensembl.org/info/website/upload/gff.html
https://www.microsoft.com/en-us/research/project/prose-framework/
https://doi.org/10.1145/2576768.2598291
http://arxiv.org/abs/1412.0348
https://doi.org/10.1145/2813885.2737952

[11] Cahyono, S. Comparison of document similarity measurements in scientific writing
using Jaro-Winkler Distance method and Paragraph Vector method. IOP Conference
Series: Materials Science and Engineering. november 2019, vol. 662, p. 052016. DOI:
10.1088/1757-899X/662/5/052016.

[12] Canonical. Ubuntu Manpage: AWK - pattern scanning and processing language.
[cit. 20. February 2022].
http://manpages.ubuntu.com/manpages/trusty/man1/awk.1posix.html.

[13] Castelli, M., Trujillo, L., Vanneschi, L., Silva, S., Z Flores, E. et al.
Geometric Semantic Genetic Programming with Local Search. In: Proceedings of the
2015 Annual Conference on Genetic and Evolutionary Computation. New York, NY,
USA: Association for Computing Machinery, 2015, p. 999–1006. GECCO ’15. DOI:
10.1145/2739480.2754795. ISBN 9781450334723. Available at:
https://doi.org/10.1145/2739480.2754795.

[14] Consortium, T. U. The Unicode® Standard Version 12.0 – Core Specification.
2019. ISBN 978-1-936213-22-1. Available at:
http://www.unicode.org/versions/Unicode12.0.0/.

[15] Cooper, K. D., Schielke, P. J. and Subramanian, D. Optimizing for Reduced
Code Space Using Genetic Algorithms. In: Proceedings of the ACM SIGPLAN 1999
Workshop on Languages, Compilers, and Tools for Embedded Systems. New York,
NY, USA: Association for Computing Machinery, 1999, p. 1–9. LCTES ’99. DOI:
10.1145/314403.314414. ISBN 1581131364. Available at:
https://doi.org/10.1145/314403.314414.

[16] Cortez, P., Cerdeira, A., Almeida, F., Matos, T. and Reis, J. Modeling wine
preferences by data mining from physicochemical properties. Decision Support
Systems. 2009, vol. 47, no. 4, p. 547–553. DOI:
https://doi.org/10.1016/j.dss.2009.05.016. ISSN 0167-9236. Smart Business
Networks: Concepts and Empirical Evidence. Available at:
https://www.sciencedirect.com/science/article/pii/S0167923609001377.

[17] Darwin, C. On the Origin of Species by Means of Natural Selection. London:
Murray, 1859. Or the Preservation of Favored Races in the Struggle for Life.

[18] Dumitrescu, D., Lazzerini, B., Jain, L. C. and Dumitrescu, A. Evolutionary
Computation. USA: CRC Press, Inc., 2000. ISBN 0849305888.

[19] Ferrel, W. and Alfaro, L. Genetic Programming-Based Code Generation for
Arduino. International Journal of Advanced Computer Science and Applications. The
Science and Information Organization. 2020, vol. 11, no. 11. DOI:
10.14569/IJACSA.2020.0111168. Available at:
http://dx.doi.org/10.14569/IJACSA.2020.0111168.

[20] Forrest, S., Nguyen, T., Weimer, W. and Le Goues, C. A Genetic
Programming Approach to Automated Software Repair. In: Proceedings of the 11th
Annual Conference on Genetic and Evolutionary Computation. New York, NY, USA:
Association for Computing Machinery, 2009, p. 947–954. GECCO ’09. DOI:
10.1145/1569901.1570031. ISBN 9781605583259. Available at:
https://doi.org/10.1145/1569901.1570031.

85

http://manpages.ubuntu.com/manpages/trusty/man1/awk.1posix.html
https://doi.org/10.1145/2739480.2754795
http://www.unicode.org/versions/Unicode12.0.0/
https://doi.org/10.1145/314403.314414
https://www.sciencedirect.com/science/article/pii/S0167923609001377
http://dx.doi.org/10.14569/IJACSA.2020.0111168
https://doi.org/10.1145/1569901.1570031

[21] Friedl, J. E. F. Mastering Regular Expressions. 3rd ed. O’Reilly, 2006. ISBN
978-0-596-52812-6.

[22] Gajda, Z. and Sekanina, L. Gate-Level Optimization of Polymorphic Circuits
Using Cartesian Genetic Programming. In: Proceedings of the Eleventh Conference
on Congress on Evolutionary Computation. IEEE Press, 2009, p. 1599–1604.
CEC’09. ISBN 9781424429585.

[23] Goldberg, D. E. and Deb, K. A Comparative Analysis of Selection Schemes Used
in Genetic Algorithms. In: RAWLINS, G. J., ed. Elsevier, 1991, vol. 1, p. 69–93.
Foundations of Genetic Algorithms. DOI:
https://doi.org/10.1016/B978-0-08-050684-5.50008-2. ISSN 1081-6593. Available at:
https://www.sciencedirect.com/science/article/pii/B9780080506845500082.

[24] Gougol, R. Triggering of Just-In-Time Compilation in the Java Virtual Machine.
San Jose State University, 2009. Master’s thesis.

[25] Griswold, R. E. and Griswold, M. T. The Implementation of the Icon
Programming Language. USA: Princeton University Press, 1986. ISBN 0691084319.

[26] Hadley, G. G. Nonlinear and dynamic programming / by G. Hadley. Reading,
Mass: Addison-Wesley Pub. Co., 1964. Addison-Wesley series in management science
and economics.

[27] Hamming, R. W. Error detecting and error correcting codes. The Bell System
Technical Journal. 1950, vol. 29, no. 2, p. 147–160. DOI:
10.1002/j.1538-7305.1950.tb00463.x.

[28] Holland, J. H. Adaptation in Natural and Artificial Systems: An Introductory
Analysis with Applications to Biology, Control and Artificial Intelligence. Cambridge,
MA, USA: MIT Press, 1992. ISBN 0262082136.

[29] Horáček, P., Meduna, A. and Tomko, M. Handbook of Mathematical Models for
Languages and Computation. The Institution of Engineering and Technology, 2020.
750 p. ISBN 978-1-78561-659-4. Available at:
https://www.fit.vut.cz/research/publication/12041.

[30] Iba, H., Feng, J. and Izadi Rad, H. GP-RVM: Genetic Programing-Based
Symbolic Regression Using Relevance Vector Machine. In: 2018 IEEE International
Conference on Systems, Man, and Cybernetics (SMC). 2018, p. 255–262. DOI:
10.1109/SMC.2018.00054.

[31] Jaro, M. A. Advances in Record-Linkage Methodology as Applied to Matching the
1985 Census of Tampa, Florida. Journal of the American Statistical Association.
[American Statistical Association, Taylor & Francis, Ltd.]. 1989, vol. 84, no. 406,
p. 414–420. ISSN 01621459. Available at: http://www.jstor.org/stable/2289924.

[32] Joint Technical Committee ISO/IEC JTC 1. International Standard ISO/IEC
9899. 2007. Available at:
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf.

[33] Kernighan, B. W. and Ritchie, D. M. The C Programming Language. 2ndth ed.
Prentice Hall Professional Technical Reference, 1988. ISBN 0131103709.

86

https://www.sciencedirect.com/science/article/pii/B9780080506845500082
https://www.fit.vut.cz/research/publication/12041
http://www.jstor.org/stable/2289924
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf

[34] Koza, J. R. Genetic Programming: On the Programming of Computers by Means of
Natural Selection. Cambridge, MA, USA: MIT Press, 1992. ISBN 0-262-11170-5.

[35] Koza, J. R. Genetic programming - on the programming of computers by means of
natural selection. In: Complex adaptive systems. 1993.

[36] Langdon, W. B. and Banzhaf, W. Repeated Patterns in Tree Genetic
Programming. In: Proceedings of the 8th European Conference on Genetic
Programming. Berlin, Heidelberg: Springer-Verlag, 2005, p. 190–202. EuroGP’05.
DOI: 10.1007/978-3-540-31989-4_17. ISBN 3540254366. Available at:
https://doi.org/10.1007/978-3-540-31989-4_17.

[37] Le, V. and Gulwani, S. FlashExtract: A Framework for Data Extraction by
Examples. SIGPLAN Not. New York, NY, USA: Association for Computing
Machinery. jun 2014, vol. 49, no. 6, p. 542–553. DOI: 10.1145/2666356.2594333.
ISSN 0362-1340. Available at: https://doi.org/10.1145/2666356.2594333.

[38] Levenshtein, V. I. Binary codes capable of correcting deletions, insertions and
reversals. Soviet Physics Doklady. 1966, vol. 10, no. 8, p. 707–710. Doklady
Akademii Nauk SSSR, V163 No4 845-848 1965.

[39] Levine, J. R., Mason, T. and Brown, D. Lex & Yacc (2nd Ed.). USA: O’Reilly &
Associates, Inc., 1992. ISBN 1565920007.

[40] Libbrecht, P. Notations Around the World: Census and Exploitation.
In: International Conference on Intelligent Computer Mathematics. April 2010. ISBN
978-3-642-14128-7.

[41] Lindholm, T., Yellin, F., Bracha, G. and Buckley, A. The Java Virtual
Machine Specification, Java SE 8 Edition. Pearson Education, 2014. ISBN
9780133922721.

[42] Matić, D. A genetic algorithm for composing music. Yugoslav Journal of Operations
Research. january 2010, vol. 20. DOI: 10.2298/YJOR1001157M.

[43] Merelo Guervós, J., Blancas Álvarez, I., Castillo, P., Romero, G., García
Sánchez, P. et al. Ranking the Performance of Compiled and Interpreted Languages
in Genetic Algorithms. In: In Proceedings of the 8th International Joint Conference
on Computational Intelligence – ECTA. January 2016, p. 164–170. DOI:
10.5220/0006048101640170.

[44] Microsystems, S. The Java HotSpot TM Virtual Machine Technical White Paper.
In:. 2001.

[45] Miller, J. F. Cartesian Genetic Programming. In: Natural Computing Series book
series (NCS). June 2003, vol. 43. DOI: 10.1007/978-3-642-17310-3. ISBN
978-3-642-17309-7.

[46] Molina, E. On the analytical demonstration of Planck-Einstein relation.
Technological University of Madrid. september 2016. DOI:
10.13140/RG.2.2.35544.39689.

87

https://doi.org/10.1007/978-3-540-31989-4_17
https://doi.org/10.1145/2666356.2594333

[47] Nacke, K. Learn LLVM 12: A Beginner’s Guide to Learning LLVM Compiler Tools
and Core Libraries with C++. Packt Publishing, 2021. ISBN 9781839213502.
Available at: https://books.google.cz/books?id=5atJzgEACAAJ.

[48] Neil, D. Practical Vim: Edit Text at the Speed of Thought. 2ndth ed. Pragmatic
Bookshelf, 2015. ISBN 1680501275.

[49] Nystrom, R. Crafting Interpreters. Genever Benning, 2021. ISBN 9780990582939.
Available at: https://books.google.cz/books?id=ySOBzgEACAAJ.

[50] O’Reilly, U.-M. Genetic Programming II: Automatic Discovery of Reusable
Programs. Artificial Life. 1994, vol. 1, no. 4. DOI: 10.1162/artl.1994.1.4.439.

[51] Polozov, O. A Framework for Mass-Market Inductive Program Synthesis.
Dissertation.

[52] Ramalho, L. Fluent Python: Clear, Concise, and Effective Programming. O’Reilly
Media, 2015. ISBN 9781491946251. Available at:
https://books.google.co.in/books?id=bIZHCgAAQBAJ.

[53] Shaw, A. CPython Internals: Your Guide to the Python 3 Interpreter. Real Python
(Realpython.Com), 2021. ISBN 9781775093343. Available at:
https://books.google.cz/books?id=fKZwzgEACAAJ.

[54] Shelton, J. M. and Brown, S. J. Fasta-O-Matic: a tool to sanity check and if
needed reformat FASTA files. BioRxiv. Cold Spring Harbor Laboratory. 2015. DOI:
10.1101/024448. Available at:
https://www.biorxiv.org/content/early/2015/08/21/024448.

[55] Shi, X., Long, W., Li, Y. and Deng, D. Multi-population genetic algorithm with
ER network for solving flexible job shop scheduling problems. PLOS ONE. Public
Library of Science (PLoS). may 2020, vol. 15, no. 5, p. e0233759. DOI:
10.1371/journal.pone.0233759. Available at:
https://doi.org/10.1371/journal.pone.0233759.

[56] Soanes, C. and Stevenson, A., ed. Oxford dictionary of English. London, England:
Oxford University Press, 2005.

[57] Spector, L. Automatic Quantum Computer Programming: A Genetic Programming
Approach (Genetic Programming). Berlin, Heidelberg: Springer-Verlag, 2006. ISBN
038736496X.

[58] Steiner, R. History and progress on accurate measurements of the Planck constant.
Reports on Progress in Physics. IOP Publishing. december 2012, vol. 76, no. 1,
p. 016101. DOI: 10.1088/0034-4885/76/1/016101. Available at:
https://doi.org/10.1088/0034-4885/76/1/016101.

[59] Stroustrup, B. Foundations of C++. In: Seidl, H., ed. Programming Languages
and Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, p. 1–25. ISBN
978-3-642-28869-2.

[60] Stroustrup, B. The C++ Programming Language. 4thth ed. Addison-Wesley
Professional, 2013. ISBN 0321563840.

88

https://books.google.cz/books?id=5atJzgEACAAJ
https://books.google.cz/books?id=ySOBzgEACAAJ
https://books.google.co.in/books?id=bIZHCgAAQBAJ
https://books.google.cz/books?id=fKZwzgEACAAJ
https://www.biorxiv.org/content/early/2015/08/21/024448
https://doi.org/10.1371/journal.pone.0233759
https://doi.org/10.1088/0034-4885/76/1/016101

[61] Torczon, L. and Cooper, K. Engineering A Compiler. 2ndth ed. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 2007. ISBN 012088478X.

[62] Wang, Y. and Xie, R. Pixel-Based Approach for Generating Original and Imitating
Evolutionary Art. Electronics. 2020, vol. 9, no. 8. DOI: 10.3390/electronics9081311.
ISSN 2079-9292. Available at: https://www.mdpi.com/2079-9292/9/8/1311.

[63] Winkler, W. String Comparator Metrics and Enhanced Decision Rules in the
Fellegi-Sunter Model of Record Linkage. Proceedings of the Section on Survey
Research Methods. january 1990.

[64] Zhao, H., Gallo, O., Frosio, I. and Kautz, J. Loss Functions for Neural
Networks for Image Processing. arXiv, 2015. DOI: 10.48550/ARXIV.1511.08861.
Available at: https://arxiv.org/abs/1511.08861.

89

https://www.mdpi.com/2079-9292/9/8/1311
https://arxiv.org/abs/1511.08861

Appendix A

Project file structure

A.1 Ebe file structure
Ebe is organized into multiple directories for easier navigation and working with the project.
The project structure is as follows:

• backend/

– compiler – base compiler class,
– instruction – Ebel instruction implementation,
– interpreter – Ebei implmenetation,
– symbol_table – symbol table implementation used by Ebei.

• docs/ – Contains Doxyfile and images used in readme.md. Doxygen output is saved
into this folder into html subfolder.

• engine/

– engine_jenn – engine Jenn implementation,
– engine_miRANDa – engine MiRANDa implementation,
– engine_taylor – engine Taylor implementation,
– engine – base engine and genetic engine class.

• frontend/

– grammars/

∗ lexer_ebel.ll – Flex grammar file for Ebel lexer,
∗ lexer_text.ll – Flex grammar file for text file lexer,
∗ parser_ebel.yy – Bison grammar file for Ebel parser,
∗ parser_text.yy – Bison grammar file for text file parser.

– FlexLexer.h – Flex’s header file created by The Regents of the University of
California (more information regarding the copyright of this file can be find in
the file’s header comment),

– lexel_ebel – Ebel lexer generated by Flex from lexer_ebel.ll,
– lexer_text – Text file lexer generated by Flex from lexer_text.ll,

90

– parser_ebel – Ebel parser generated by Bison from parser_ebel.yy (more
information regarding the copyright of this file can be find in the file’s header
comment),

– parser_text – Text file parser generated by Bison from parser_text.yy (more
information regarding the copyright of this file can be find in the file’s header
comment),

– pragmas – Ebel pragma parser and pragma class implementation,
– preprocessor – text file and Ebel program preprocessor,
– scanner_ebel – implementation of Ebel code scanner and parser, which creates

the internal Ebel representation from input Ebel source code,
– scanner_text – implementation of text file scanner and parser, which creates

the internal representation from provided text file,
– scanner – base scanner class,

• gp/

– fitness – implementations of fitness functions,
– gp – implementation of certain genetic programming objects (phenotypes and

population).

• midend/

– expression – structures for working with user defined expressions,
– ir – implementations for internal representations and its accompanying con-

structs,
– tree – expression tree implementation.

• tests/

– googletest/ – Googletests library for unit testing with copyright belonging to
its rightful owners (see LICENSE file inside of this folder),

– test_argparse – unit tests for Ebe argument parsing,
– test_interpreter – unit tests for Ebei,
– test_pragmas – unit tests for Ebel pragmas parsing,
– test_scanner – unit tests for Ebe’s scanners,
– test_utils – unit tests for general utility functions.

• utils/

– arg_parser – Ebe’s argument parsing with custom implementation to provide
descriptive information and error messages,

– exceptions – custom C++ exceptions utilized mostly by Ebei,
– logging – Ebe’s logging utilities,
– rng – module for working with random number generation and randomization,
– utils – generally useful utility functions.

91

• CMakeLists.txt – CMake compilation script.

• ebe – Ebe’s entry point. Contains main function and executes Ebe’s processes.

• install.sh – Installation script.

• LICENCE – MIT license under which Ebe is distributed.

• readme.md – Informal project documentation for Ebe users containing installation
information, simple examples and some general Ebe information.

A.2 Ebe tools file structure
Ebe tools (ebe-tools) contain scripts for benchmarking, plotting benchmark results and
other analytical scripts. The file structure is as follows:

• analytics – contains script plot.py for plotting Ebe’s analytics output (-a command
line option) as well as bash script to calculate code analytics.

• benchmarks

– ebe_all/ – benchmarks usable for Ebec and also Ebei,
– ebec/ – Ebec benchmark tests,
– ebei/ – Ebei benchmark tests,
– limit_tests – additional benchmarks for Ebec (in ebec/) and Ebei (in ebei),

which Ebe cannot 100 % solve, but are here to limit test Ebe,
– benchmark.py – benchmarking script,
– measure.sh – Bash script used by benchmarks to measure Ebe’s run time,
– one_core.sh – Bash script used by benchmarks to run a process with maximum

priority on a single CPU core (this approach was inspired by an article from Eric
Urban1),

– plot_benchmarks.py – script to plot benchmark results,
– readme.md – informal information for ebe-tools users.

• readme.md – informal information for ebe-tools users.

1http://www.hydrogen18.com/blog/howto-give-a-single-process-its-own-cpu-core-in-
linux.html

92

http://www.hydrogen18.com/blog/howto-give-a-single-process-its-own-cpu-core-in-linux.html
http://www.hydrogen18.com/blog/howto-give-a-single-process-its-own-cpu-core-in-linux.html

Appendix B

Benchmark results

0 50 100 150 200 250 300
time [s]

csv_no_header
ws2811_colors
csv_del_begin

phone_numbers
user_expression1

human_genome_edit
csv_short

csv_del_end
log_unit_remove

253.00
0.51

6.87
300.02

0.00
0.00
0.02

38.25
300.01

Compilation

0 2 4 6 8 10 12 14
time [s]

ws2811_colors
human_genome_edit_big

filter_num_sym
human_genome_edit

filter_calc
log_unit_remove

0.01
13.75

1.06
0.01

1.27
3.82

Interpretation

Processor: Intel(R) Core(TM) i5-4690 CPU @ 3900.0 MHz
Ram: 8.2 GB

OS: Linux-5.13.0-27-generic-x86_64-with-glibc2.29

Ebe 0.2.5 benchmarks

Figure B.1: Benchmarks results plotted using plotting script.

93

0 2 4 6 8 10
time [s]

100000 lines

50000 lines

20000 lines

10000 lines

10.69

5.39

2.19

1.10

Interpretation

Processor: Intel(R) Core(TM) i5-4690 CPU @ 3900.0 MHz
Ram: 8.2 GB

OS: Linux-5.13.0-39-generic-x86_64-with-glibc2.29

Ebe 0.3.1 benchmarks

Figure B.2: Benchmarks results for Ebe’s interpretation speed using the Ebel program for
benchmark filter_num_sym (see Section 5.1). The input file is the same as for the original
benchmark, but the number of lines changes for each run. This graph showcases Ebe’s
scalability based on input file size.

94

Appendix C

Manual

C.1 Ebe installation
Ebe was tested and is known to work on Linux systems and FreeBSD systems. It was
successfully compiled with compilers GCC 9.4.0 and higher, Clang 10.0.0 and higher. The
compiler has to support C++17, for example GCC before version 8 will not succeed since
the library <filesystem> does not appear and is placed in <experimental/filesystem>.
It is also recommended to have CMake installed to make use of the already prepared
CMakeLists.txt and possibly even the installation script. It is also possible to gener-
ate Ebe’s internal documentation with Doxygen using CMake or provided Doxyfile, the
Doxyfile is configured to generate graphs using dot program and so it is also required.
If one was to change the parser of lexer, then Flex (tested was version 2.6.4) and Bison
(minimum required version is 3.7.0).

But to compile Ebe just for the use, only requirement is the C++ compiler (with full
support for C++17) and preferably CMake. To build Ebe do the following steps:

1. Copy Ebe’s folder to your PC, alternatively the newest version can be downloaded
from Github: git clone https://github.com/mark-sed/ebe.git

2. Change directory into ebe: cd ebe

3. Run the installation script, if sudo is used, then ebe is placed as a command into
/usr/bin/ to use from anywhere: sudo bash install.sh

1 git clone https://github.com/mark-sed/ebe.git # Optional step to get the
newest version

2 cd ebe
3 sudo bash install.sh

Listing C.1: Ebe installation.

After running these command Ebe will be built into build folder and if run with root
privileges also found under ebe command. To test correctness one can run ./build/ebe
--help or ebe --help.

1 git clone https://github.com/mark-sed/ebe.git # Optional step to get the
newest version

2 cd ebe
3 cmake -DCMAKE_BUILD_TYPE=Release -S . -B build

95

4 cmake --build build --target ebe

Listing C.2: Alternative Ebe installation using only CMake.

C.2 Simple edit example to test Ebe
In this example there are multiple files greeting and saying goodbye to different worlds and
the task is to extract only names of these worlds.

1. Setting up files to edit

1 Hello Earth world!
2 Hello Pluto world!
3 Hello Moon world!
4 Hello Kamino world!
5 Hello Calantha world!

Listing C.3: File hellos.txt.

1 Goodbye Arda world!
2 Goodbye Gliese world!
3 Goodbye Eternium world!

Listing C.4: File goodbyes.txt.

2. Creating examples for Ebe

1 Hello Earth world!

Listing C.5: File example.in containing input example – line before the edits (extracted
first line from hellos.txt).

1 Earth

Listing C.6: File example.out containing output example – line after the edits.

3. Editing using Ebe

Ebe can be now run passing it the examples. The example input file should be passed
using -in command line option, the example output file with -out and to do also the
interpretation in the same run -x can be used. Since there are multiple files to edit at
once the -o command line option should contain path to a folder, where to save the edited
files, which names will have the prefix edited-. The files to interpret (hellos.txt and
goodbyes.txt) do not require any command line option and can be passes just by path
(see listing C.7).

1 ebe -x -in example.in -out example.out hellos.txt goodbyes.txt -o .

Listing C.7: File example.out containing output example – line after the edits.

After running command from listing C.7 the Ebe should output something similar to
the output in listing C.8.

96

1 Perfectly fitting program found.
2
3 Best compiled program has 100% precision (0.0 s).

Listing C.8: File example.out containing output example – line after the edits.

4. Checking the output

Output from editing will be in current directory, since -o . was used, under the same file
names with prefix edited- (edited-hellos.txt and edited-goodbyes.txt).

1 Earth
2 Pluto
3 Moon
4 Kamino
5 Calantha

Listing C.9: Expected contents of file edited-hellos.txt.

1 Arda
2 Gliese
3 Eternium

Listing C.10: Expected contents of file edited-goodbyes.txt.

C.3 Generating Doxygen documentation
The Doxygen documentation can be easily generated from within the ebe directory by
running:

1 doxygen docs/Doxyfile

Listing C.11: Generating Doxygen documentation for Ebe.

The generated documentation will be placed into docs/html folder and can be viewed
by opening docs/html/index.html file.

97

C
.4

E
be

co
m

m
an

d
lin

e
ar

gu
m

en
ts

-
--

A
rg

um
en

t
D

es
cr

ip
ti

on
D

ef
au

lt
va

lu
e

M
od

e
Fo

rb
id

de
n

w
it

h
M

ul
ti

pl
e

-x
--e

xe
cu

te
Se

ts
m

od
e

to
C

&
I(

co
m

pi
le

s
an

d
in

te
rp

re
ts

in
on

e
ru

n)
N

on
e

Ig
no

re
d

-in
--e

xa
m

pl
e-

in
pu

t
Fi

le
pa

th
Ex

am
pl

e
in

pu
t

fil
e

C
,C

&
I

N
ot

ye
t

-o
ut

--e
xa

m
pl

e-
ou

tp
ut

Fi
le

pa
th

Ex
am

pl
e

ou
tp

ut
fil

e
C

,C
&

I
N

ot
ye

t
-i

--i
nt

er
pr

et
Eb

el
fil

e
pa

th
In

te
rp

re
t

Eb
el

I
N

o
-e

o
--e

be
l-o

ut
pu

t
Eb

el
fil

e
pa

th
Pa

th
to

ou
tp

ut
Eb

el
co

de
<

-in
fil

e
ba

se
na

m
e>

.e
be

l
I,

C
&

I
N

o
-o

--i
nt

er
pr

et
-o

ut
pu

t
Fi

le
pa

th
or

fo
ld

er
pa

th
Pa

th
to

th
e

w
he

re
to

sa
ve

th
e

in
te

rp
re

te
d

ou
tp

ut
ed

ite
d-

<
-in

fil
e

na
m

e>
fo

r
m

ul
tip

le
I,

C
&

I
N

o
Fi

le
pa

th
In

pu
t

fil
e

fo
r

in
te

rp
re

ta
tio

n
st

an
da

rd
in

pu
t

I,
C

&
I

Ye
s

-e
xp

r
--e

xp
re

ss
io

ns
Pa

rs
e

us
er

ex
pr

es
sio

ns
C

,C
&

I
Ig

no
re

d
-it

--i
te

ra
tio

ns
In

te
ge

r
>

0
N

um
be

r
of

ite
ra

tio
ns

in
ea

ch
ev

ol
ut

io
n

D
yn

am
ic

al
ly

pi
ck

ed
by

an
en

gi
ne

C
,C

&
I

N
o

--p
op

ul
at

io
n-

siz
e

In
te

ge
r

>
0

Si
ze

of
po

pu
la

tio
n

fo
r

G
P

en
gi

ne
s

D
yn

am
ic

al
ly

pi
ck

ed
by

an
en

gi
ne

C
,C

&
I

N
o

-e
--e

vo
lu

tio
ns

In
te

ge
r

>
0

N
um

be
r

of
ev

ol
ut

io
ns

to
be

do
ne

D
yn

am
ic

al
ly

pi
ck

ed
by

an
en

gi
ne

C
,C

&
I

-p
N

o
-E

--e
ng

in
e

En
gi

ne
na

m
e

En
gi

ne
to

us
e

fo
r

co
m

pi
la

tio
n

Je
nn

C
,C

&
I

N
o

-f
--fi

tn
es

s
Fi

tn
es

s
fu

nc
tio

n
na

m
e

Fi
tn

es
s

fu
nc

tio
n

fo
r

co
m

pi
la

tio
n

ja
ro

C
,C

&
I

N
o

-p
--p

re
ci

sio
n

In
te

ge
r

<
1.

.1
00

>
or

no
ne

(=
10

0)
M

in
im

um
re

qu
ire

d
co

m
pi

la
tio

n
pr

ec
isi

on
(-

t
ha

s
pr

io
rit

y)
C

:I
gn

or
ed

;C
&

I:
10

0
C

,C
&

I
-e

N
o

-t
--t

im
eo

ut
In

te
ge

r
>

0
A

fte
r

ho
w

m
an

y
se

co
nd

s
at

m
os

t
sh

ou
ld

co
m

pi
la

tio
n

st
op

Ig
no

re
d

C
,C

&
I

N
o

--v
er

sio
n

Eb
e’

s
ve

rs
io

n
N

on
e

A
ll

N
o

-h
–h

el
p

U
sa

ge
in

fo
rm

at
io

n
N

on
e

A
ll

N
o

-v
<

v/
1.

.5
>

C
SV

lis
t

of
fu

nc
tio

ns
(fi

le
.c

pp
::f

un
tio

n)
Se

ts
lo

gg
in

g
le

ve
l(

-v
vv

is
th

e
sa

m
e

as
-v

3)
Ig

no
re

d
A

ll
N

o
-a

--a
na

ly
tic

s
C

SV
lis

t
of

an
al

yt
ic

un
it

na
m

es
En

ab
le

s
an

al
yt

ic
s

lo
gs

fo
r

se
t

un
its

Ig
no

re
d

A
ll

N
o

-a
ou

t
--a

na
ly

tic
s-

ou
tp

ut
Fo

ld
er

pa
th

A
na

ly
tic

s
ou

tp
ut

di
re

ct
or

y
./

A
ll

N
o

--s
ee

d
In

te
ge

r
<

1.
.2

^3
2-

1>
Se

ed
fo

r
R

N
G

Ig
no

re
d

C
,C

&
I

N
o

--s
ym

-t
ab

le
-s

iz
e

Po
sit

iv
e

in
te

ge
r

Se
ts

th
e

siz
e

of
sy

m
bo

lt
ab

le
64

I,
C

&
I

N
o

--n
o-

wa
rn

-p
rin

t
Tu

rn
s

off
wa

rn
in

g
m

es
sa

ge
s

pr
in

ts
A

ll
Ig

no
re

d
--n

o-
er

ro
r-

pr
in

t
Tu

rn
s

off
er

ro
r

m
es

sa
ge

pr
in

ts
A

ll
Ig

no
re

d
--n

o-
in

fo
-p

rin
t

Tu
rn

s
off

in
fo

m
es

sa
ge

s
A

ll
Ig

no
re

d

T
he

re
ar

e
3

m
od

es
:

•
C

om
pi

le
(C

)
–

O
nl

y
co

m
pi

le
Eb

el
pr

og
ra

m
.

•
In

te
rp

re
t

(I
)

–
O

nl
y

in
te

rp
re

t
gi

ve
n

Eb
el

pr
og

ra
m

ov
er

in
pu

t
fil

es
.

•
C

om
pi

le
an

d
in

te
rp

re
t

(C
&

I)
–

C
om

pi
le

Eb
el

pr
og

ra
m

an
d

in
te

rp
re

t
it

ov
er

in
pu

t
fil

es
.

98

C.5 Running Ebe benchmarks
Ebe benchmarks reside in ebe-tools/benchmarks folder. To run provided default bench-
marks, the benchmark.py script has to be run from within the ebe-tools/benchmarks
folder. To run benchmarks with default parameters the following can be used:

1 python3 benchmark.py

Listing C.12: Running Ebe benchmarks with default parameters.

Once this command is ran, the script requests sudo privileges, unless run by an admin-
istrator user. This is because the nice command used to run benchmarks with maximum
priority on a single core requires higher user privileges.

Benchmark parameters can be set using command line options. To display message
containing all command line options and their short descriptions python3 benchmark.py
-h can be used. The command line options are following:

• -ebe path – sets custom path to Ebe. By default benchmarks expect Ebe to be
accessible under ebe command.

• -o path – file or directory to which save the benchmark results. By default the
output will be placed in current working directory. If this option is not set or it is a
directory, then the file with results will be named using current date and time as a
prefix, followed by Ebe’s version and _benchmarks.json suffix.

• -i – only Ebei benchmarks will be run.

• -c – only Ebec benchmarks will be run.

• -t test_name – runs only tests names as the argument provided. This option can be
specified multiple times to run a set of tests.

• -ebec path – overrides default Ebec benchmarks path to the one provided.

• -ebei path – overrides default Ebei benchmarks path to the one provided.

• -iter number – option’s arguments specifies how many times should be each bench-
mark repeated. This number is 10 by default.

• -args “arguments” – option’s argument will be passed to Ebe for each executed tests.
This can be used to set Ebe specific options.

• -Werror – all benchmark warnings should be treated as errors – warnings will inter-
rupt benchmarks.

99

Appendix D

Contents of the included storage
media

included storage media contains Ebe’s source code, Ebe tools, scripts and input for all
experiments from Section 6, LATEX source code for this thesis and scripts or data sets for
all the comparisons and tests mentioned in this thesis.

Folder structure on the included storage media is as follows:

• ebe – Ebe project (its structure is described in Section A.1).

• ebe-tools – Ebe tools (its structure is described in Section A.2.

• experiments

– ex1 – experiment 1 source code and input files,
– ex2 – experiment 2 source code and input files,
– ex3 – experiment 3 source code and input files,
– ex4 – experiment 4 source code and input files,

• latex-source-code – this thesis LATEX source code.

• tests – comparisons and tests mentioned in this thesis.

Each experiment folder contains original file that was to be edited and additional folders
named after the tool that were used. Inside of each folder is then script, which was used or
the command used, but saved as .sh file. The ebe folders contain only the input example
file and output example file.

100

	Introduction
	Compilation methods for file editing
	Current methods for file editing
	Manual file editing
	Automated file editing
	File editing from examples

	File parsing
	Text file parsing
	Text comparison methods
	Levenshtein distance
	Jaro distance and Jaro-Winkler distance

	Compilation of source code
	Interpretation of source code
	Bytecode-like language compilation and interpretation

	Code synthesis using genetic programming
	Evolutionary algorithms
	Genetic programming
	Genotype and phenotype
	Population
	Fitness and fitness functions
	Crossover
	Mutation
	Selection

	Symbolic regression

	Ebe – Edit by Example
	Ebel – Ebe Language
	Ebel syntax
	Ebel passes
	Expression passes and user defined expressions
	Ebel instructions
	Ebel pragmas

	Eben – Ebe engine
	Ebec – Ebe compiler
	Lexical, syntactical and semantic analysis of input files
	Ebel code optimizations
	Fitness functions

	Ebei – Ebe interpreter
	Lexical, syntactical and semantic analysis of Ebel code

	Ebe's text file parsing
	Examples of Ebe workflow

	Implementation
	Ebe testing and benchmarks
	Internal representation
	Implemented engines
	Genetic engine Jenn
	Mutation engine Taylor
	Random engine MiRANDa

	Implemented optimizations
	Dead code elimination
	Redundant code elimination
	Constant folding

	Ebe's modularity and extendability

	Experiments and evaluation
	Experiment 1 – Markdown table value extraction
	Ebe solution
	Ebel solution
	AWK solution
	Python 3 solution
	Linux tools solution
	Results and conclusions

	Experiment 2 – GTF file value adjustments
	Ebe solution
	Ebel solution
	AWK solution
	Python 3 solution
	Results and conclusions

	Experiment 3 – CSV file transformation
	Ebe solution
	Ebel solution
	AWK solution
	Python 3 solution
	Linux tools solution
	Results and conclusions

	Experiment 4 – JSON file formatting
	Ebe solution
	Ebel solution
	AWK solution
	Python 3 solution
	Linux tools solution
	Results and conclusions

	Conclusion
	Bibliography
	Project file structure
	Ebe file structure
	Ebe tools file structure

	Benchmark results
	Manual
	Ebe installation
	Simple edit example to test Ebe
	Generating Doxygen documentation
	Ebe command line arguments
	Running Ebe benchmarks

	Contents of the included storage media

