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ABSTRACT
Method of loss coefficients calculation from mechanical quality factors of transversal vibration
modes is presented. Theoretical formulae are derived for the contour mode of thin square plate
and width extensional mode of a thin rectangular plate. Mechanical quality factors are
expressed as a function of loss coefficients for ceramic with known Poisson’s ratio. Measured
impedance spectra are compared with calculations and used for the characterization of losses
on lead-free BCZT and lead-based PZT piezoelectric ceramics. Full set of loss coefficients active
for planar vibration modes is characterized on a single sample. Mechanical quality factor at
resonance is the same for the contour extensional mode of a thin square plate and for the
width extensional mode of a thin rectangular plate. Loss coefficients reach the biggest values
for the piezoelectric losses, followed by the dielectric and elastic losses. Our results show that
the BCZT ceramics have losses of the same magnitude as soft PZT ceramic.
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1. Introduction

Heat generation occurring during the operation of piezo-
electric resonator at resonance is substantial for its high-
power properties. Heat originates from elastic, dielectric
and piezoelectric losses, which are described by general
formalism by the imaginary parts of tensor material con-
stants [1]. Usually, losses for all tensor coefficients active
for the vibration mode are not known. One of the meth-
ods for loss characterization is nonlinear least-square fit of
impedance/admittance frequency spectra in the vicinity
of resonance/antiresonance using imaginary parts of
material coefficients [2–6]. Such fit is however special
for each resonator type and vibration mode while impe-
dance/admittance analytical formula is available just for
simple resonators. Fit uses a full frequency spectrum not
just resonance/antiresonance frequency points. Simpler
method for losses characterization is by dielectric loss
tangent ( tan δ) measured directly by LCR meter and
mechanical quality factor Qm analyzed from impedance
spectrum by impedance analyzer. Losses are derived by
3dBmethod as a function of all active loss coefficients for
every specific vibration mode. The method uses just
resonance/antiresonance data from impedance/admit-
tance spectrum. Results of losses calculation from impe-
dance frequency spectra were published for standard
ceramic resonators [7–10]. The method is based on
mechanical quality factors at resonance Qr and antireso-
nance Qa measured at resonance/antiresonance impe-
dance peaks [11]. A complete set of loss coefficients is
obtained from the combination of results from several

samples of appropriate shape and vibration mode.
Poisson’s ratio σ for studied ceramic causes problems
while it is not known and it could not be easily measured.
For PZT ceramic, it is assumed to be known, or it must be
obtained by other methods than impedance spectrum
measurement. For newly developed lead-free types of
piezoelectric ceramic materials, it is however not an
applicable method while we typically have unstable
properties from sample to sample or we have a lack of
appropriate sample shapes. Losses measurement meth-
odology using IEC483 Standard for the Poisson’s ratio
measurement can combine radially vibrating disc and
square plate resonator data [12]. The present contribu-
tion is focused on the derivation of set of dielectric, elastic
and piezoelectric losses obtained on a single ceramic
sample by using contour mode of square plate and
width extensional mode of rectangular plate resonators.
Square plate (kp-mode, CE) could be shaped by polishing

down to the rectangular plate (k
0
31-mode,WE) and further

to slender bar shape (k31-mode, LE). Losses are calculated
from measured mechanical quality factors at these reso-
nancemodes from a single ceramic sample. Derivation of
losses helps also in designing material properties of
piezoelectric ceramic materials.

2. Theory

Losses active in contour vibrations of piezoelectric
resonator (e.g. disc, plate or bar vibrating in transversal
mode) are represented by the loss tangents
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��T33 ¼ �T33 1� j tan δ
0
33

� �
(1a)

s�E11 ¼ sE11 1� j tanϕ
0
11

� �
(1b)

s�E12 ¼ sE12 1� j tanϕ
0
12

� �
(1c)

d�31 ¼ d31 1� j tan θ
0
31

� �
(1d)

with its own loss factor for each tensor component of
dielectric, elastic and piezoelectric coefficients. We
adopt the same formalism as in Ref [8].

2.1. Contour mode of square plate resonator

Let us assume resonator in shape of square plate with
electrodes deposited on major faces and poled in
thickness direction. Dimensions and coordinate system
are defined in Figure 1. Such a resonator vibrates in the
transversal mode under AC voltage driving. Its vibra-
tion mode is contour (breathing) mode with equal
transversal displacements due to the equal size of
planar dimensions and isotropy. It reduces the pro-
blem to one-dimensional calculation. For the calcula-
tion of losses, we can start with the admittance of
square plate resonator [13]:

Y ¼ jω εT33
a2

b

� �
1� k2p
� �

1þ k2p
1� k2p

tan η
η

 !
(2)

where the meaning of the individual variables is as
follows:

wave number η ¼ 2πf a2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
%sE11 1� σ2ð Þ

p
; Poisson’s

ratio σ ¼ � sE12
sE11
, planar electromechanical coupling

factor k2p ¼ 2d231
�T33 sE11þsE12ð Þ , elastic compliances sE11, sE12,

piezoelectric charge coefficient d31, dielectric con-
stant �T33, density %, frequency f , angular frequency
ω ¼ 2πf and plate dimension a.

Losses are supposed to be small and they combine
in loss factor for electromechanical coupling factor,
wave number and Poisson’s ratio

k�p ¼ kp 1� jΓð Þ; η� ¼ η 1� jΩð Þ; σ�
¼ σ 1� j tanϕ

0
12 þ j tanϕ

0
11

� �
(3)

where factors Ω and Γ could be expressed through loss
factors of material coefficients

Ω ¼ 1
2 1� σ2ð Þ 1þ σ2

� �
tanϕ

0
11 � 2σ2 tanϕ

0
12

h i
(4a)

Γ ¼ tan θ
0
31 �

1
2
tan δ

0
33

� 1
2 1� σð Þ tanϕ

0
11 � σ tanϕ

0
12

� �
(4b)

Using losses up to first-order approximation, we can
separate real and imaginary part of complex admittance
Y�

ImY� ffi ω εT33
a2

b

� �
1� k2p þ k2p

tan η
η

� �
(5a)

ReY� ffi ω εT33
a2

b

� �
tan δ

0
33 1� k2p þ k2p

tan η
η

� �	

�2Γk2p � k2p
tan η
η

Ω� 2Γ� ηΩ

tan ηcos2η

� �

(5b)

with tan η� ffi tan η� j ηΩ
cos2η . Motional part of admit-

tance (2)

Ym ¼ jω εT33
a2

b

� �
k2p

tan η
η

(6a)

is expressed in complex formby substitution of complex
losses

Y�
m ηð Þ ffi jω εT33

a2

b

� �
k2p

tan η
η

1� j tan δ
0
33 � 2jΓþ jΩ� j

ηΩ

tan ηcos2η

� �
(6b)

Resonance condition for square resonator (fundamen-
tal resonance) is given by resonance wave number

ηr ¼
π

2
(7)

Wave number in the vicinity of resonance could be
calculated as η ¼ ηr þ Δη, where resonance means
Δη ! 0. Approximation of tan η in the vicinity of
resonance

1
tan η

� �Δηþ j
π

2
Ω (8)

allows for the calculation of admittance maximum at
resonance as

Ymax ¼ Y�
m ηrð Þ�� �� ffi jω εT33

a2

b

� �
k2p

4
π2Ω

(9)

Mechanical quality factor at resonance Qr calculated by
3dB method (i.e. by the width of admittance curve at
Y�
m ηr þ Δηð Þ�� �� ¼ 1ffiffi

2
p Ymax) is

Qr ¼ ηr
2Δη

¼ 1
2Ω

; (10)

where Δη ¼ � π
2Ω and ηr ¼ π

2 . Minimum of admittance
at antiresonance Ymin is calculated from Equations (5a)

x1

x2x3 b

a
a

polarization electrodeceramics

Figure 1. Square plate resonator.
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and (5b) by similar substitution of wave vector
η ¼ ηa þ Δη, where antiresonance means Δη ! 0.
Real and imaginary parts of admittance are

ImY�
min ffi ω εT33

a2

b

� �
1� k2p þ k2p

tan ηa
ηa

� �
¼ 0 (11a)

Ymin ¼ ReY�
min

ffi ω εT33
a2

b

� �
�2Γþ Ω 1� k2p þ

k2p
cos ηa

 !( )
:

(11b)

Mechanical quality factor at antiresonance Qa calcu-
lated by 3dB method (i.e. by the width of admittance

curve at Y� ηa þ Δηð Þj j ¼ ffiffiffi
2

p
Ymin) needs to be solved

from the condition

2Y2
min ¼ ReY� ηa þ Δηð Þj j2 þ ImY� ηa þ Δηð Þj j2 (12)

where approximation up to the first power of Δη is
used

tan η � tan ηa 1þ Δη
1

tan ηa cos2ηa

� �
(13)

Real and imaginary parts of admittance in the vicinity
of antiresonance are

ImY� ffi ω εT33
a2

b

� �
Δη

ηa

� �
1� k2p þ

k2p
cos2ηa

 !
(14a)

ReY� ffi ω εT33
a2

b

� �
Δη

ηa

� �
1� k2p þ

k2p
cos2ηa

 !(

ðtan δ033 � Ωþ2ΓÞ þ 1� k2p þ
k2p

cos2ηa

 !
Ω�2Γ

�2
1� k2p
� �

η2aΩ

cos2ηa

Δη

ηa

� �9=
;

(14b)

Combination of Equations (12)–(14) results in equation

A2 ηa
Δη

� �2

þ 2AB
ηa
Δη

� �
� B2 þ C2
� � ¼ 0; (15a)

where

A ¼ �2Γþ Ω 1� k2p þ
k2p

cos2ηa

 !
; (15b)

B ¼ �2Γþ Ω� tan δ
0
33

� �
1� k2p þ

k2p
cos2ηa

 !

þ 2
1� k2p
� �

η2a

cos2ηa
Ω; (15c)

C ¼ 1� k2p þ
k2p

cos2ηa
: (15d)

While it is B � C, Equation (15a) could be solved
analytically

Δη � �C
A
ηa (16)

and mechanical quality factor at antiresonance is
therefore

Qa ¼ ηa
2Δη

¼ C
2A

: (17)

Relation between both mechanical quality factors at
resonance Qr and antiresonance Qa could be written as

1
Qa

¼ 1
Qr

� 4Γ

1� k2p þ k2p
cos2ηa

; (18)

what may result or in Qa >Qr for Γ> 0, or in Qa <Qr

for Γ< 0.

2.2. Width extensional mode of rectangular plate
resonator

Let us assume resonator in shape of rectangular plate
with electrodes deposited on major faces and poled in
thickness direction. Dimensions and coordinate system
are defined in Figure 2, where l >w � b.
Such a resonator vibrates in transversal mode under
AC voltage driving. Its vibration mode is width exten-
sional mode with major transversal displacements
along its width.

For the calculation of losses, we can start with the
admittance of width extensional mode for the rectan-
gular plate resonator [13]

Y ¼ jω εT33
lw
b

� �
1� k2p
� �

1þ k
02
31

1� k02
31

tan η
η

� �
; (19)

where all quantities are defined equally as for the
square plate resonator, and only the electromechanical
coupling factor differs

k
02
31 ¼

k231
1� k231

1þ σ

1� σ
; k231 ¼

d231
�T33s

E
11

(20)

Losses are supposed to be small and they combine in
loss factors for electromechanical coupling factors,
wave number and Poisson’s ratio

k�p ¼ kp 1� jΓð Þ; k0�
31 ¼ k

0
31 1� jΘð Þ (21a)

x1
x2

x3b

w
l

polarization electrodeceramics

Figure 2. Rectangular plate resonator.

JOURNAL OF ASIAN CERAMIC SOCIETIES 293



η� ¼ η 1� jΩð Þ; σ� ¼ σ 1� j tanϕ
0
12 þ j tanϕ

0
11

� �
(21b)

where factors Ω and Γ;Θ could be expressed through
loss factors of material coefficients

Ω ¼ 1
2 1� σ2ð Þ 1þ σ2

� �
tanϕ

0
11 � 2σ2 tanϕ

0
12

h i
;

(22a)

Γ ¼ tan θ
0
31 �

1
2
tan δ

0
33

� 1
2 1� σð Þ tanϕ

0
11 � σ tanϕ

0
12

� �
: (22b)

Θ ¼ 1
1� k231

tan θ
0
31 �

1
2
tan δ

0
33 �

1
2
tanϕ

0
11

� �
þ σ

1� σ2
tanϕ

0
12 � tanϕ

0
11

� �
(22c)

Using losses up to first-order approximation, we can
separate real and imaginary part of complex admit-
tance Y�

ImY� ffi ω εT33
lw
b

� �
1� k2p
� �

1þ k
02
31

1� k02
31

tan η
η

� �
;

(23a)

ReY� ffi ω εT33
lw
b

� �
1� k2p
� �

tan δ
0
33 � 2

k2p
1� k2p

Γ

 !(

1þ k
02
31

1� k02
31

tan η
η

� �
þ k

02
31

1� k02
31

tan η
η

2Θ
1

1� k02
31

� Ωþ ηΩ

tan ηcos2 η

� �

(23b)

with tan η� ffi tan η� j ηΩ
cos2η . Motional part of admit-

tance (19)

Ym ¼ jω εT33
lw
b

� �
1� k2p
� � k

02
31

1� k02
31

tan η
η

(24a)

is expressed in complex form by substitution of com-
plex losses

Y�
m ηð Þ ffi jω εT33

lw
b

� �
1� k2p
� � k

02
31

1� k02
31

tan η
η

1þ 2j
k2p

1� k2p
Γ� 2jΘ

1
1� k02

31
þ jΩ� j

ηΩ

tan ηcos2η

 !
:

(24b)

Resonance condition for width extensional mode of
rectangular resonator (fundamental resonance) is
given by resonance wave number

ηr ¼
π

2
(25)

Wave number in the vicinity of resonance could be
calculated as η ¼ ηr þ Δη, where resonance means
Δη ! 0. Approximation of tan η in the vicinity of
resonance

1
tan η

� �Δηþ j
π

2
Ω (26)

allows for the calculation of admittance maximum at
resonance as

Ymax ¼ Y�
m ηrð Þ�� �� ffi jω εT33

lw
b

� �
1� k2p
� � k

02
31

1� k02
31

4
π2Ω

(27)

Mechanical quality factor at resonance Qr calculated
by 3dB method (i.e. by the width of admittance
curve at Ymax ¼ Y�m ηr þ Δηð Þ�� �� ¼ 1ffiffi

2
p YmaxÞ

is

Qr ¼ ηr
2Δη

¼ 1
2Ω

(28)

where Δη ¼ � π
2Ω and ηr ¼ π

2 . Minimum of admittance
at antiresonance Ymin is calculated from
Equations (23a) and (23b) by similar substitution of
wave vector η ¼ ηa þ Δη, where antiresonance
means Δη ! 0. Real and imaginary parts of admittance
at antiresonance are

ImY�
min ffi ω εT33

lw
b

� �
1� k2p
� �

1þ k
02
31

1� k02
31

tan ηa
ηa

� �
¼ 0

(29a)

Ymin ¼ ReY�
min ffi εT33

lw
b

� �
1� k2p
� � k

02
31

1� k02
31

tan ηa
ηa

2Θ
1

1� k02
31

� Ωþ ηaΩ

tan ηacos2ηa

� �
: (29b)

Mechanical quality factor at antiresonance Qa calcu-
lated by 3dB method (i.e. by the width of admittance

curve at Y� ηa þ Δηð Þj j ¼ ffiffiffi
2

p
Ymin) needs to be solved

from the condition

2Y2
min ¼ ReY� ηa þ Δηð Þj j2 þ ImY� ηa þ Δηð Þj j2 (30)

where approximation up to the first power of Δη is
used

tan η � tan ηa 1þ Δη
1

tan ηacos2ηa

� �
(31)

Real and imaginary parts of admittance in the vicinity
of antiresonance are

ImY� ffi ω εT33
lw
b

� �
1� k2p
1� k02

31

Δη

ηa

� �
1� k

02
31 þ

k
02
31

cos2ηa

� �
;

(32a)
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Combination of Equations (30)–(32) results in equation

A2 ηa
Δη

� �2

þ 2AB
ηa
Δη

� �
� B2 þ C2
� � ¼ 0; (33a)

where

A ¼ �2Θþ Ω 1� k
02
31 þ

k
02
31

cos2ηa

� �
; (33b)

B ¼ 2Γ
k2p

1� k2p
� 2Θ

1
1� k02

31
þ Ω� tan δ

0
33

 !

1� k
02
31 þ

k
02
31

cos2ηa

� �
þ 2

1� k
02
31

� �
η2a

cos2ηa
Ω (33c)

C ¼ 1� k
02
31 þ

k
02
31

cos2ηa
: (33d)

While it is B � C, Equation (33a) could be solved
analytically

Δη � �C
A
ηa (34)

and mechanical quality factor at antiresonance is
therefore

Qa ¼ ηa
2Δη

¼ C
2A

: (35)

Relation between both mechanical quality factors at
resonance Qr and antiresonance Qa could be written as

1
Qa

¼ 1
Qr

� 4Θ

1� k02
31 þ k0231

cos2ηa

; (36)

what may result or in Qa >Qr for Θ> 0, or in Qa <Qr

for Θ< 0:

2.3. Length extensional mode of rectangular
plate resonator

This type of resonator is a standard shape used for the
measurement of material properties. Major displace-
ment of vibrations is along the length l of resonator,
where length is much bigger than other two dimen-
sions, i.e. l � w � b. Solution of losses for this type of
resonator was published previously in Ref [8].
Summary of results in used formalism is given by
wave number

η ¼ 2πf
l
2

ffiffiffiffiffiffiffiffi
%sE11

q
; (37)

mechanical quality at resonance

Qr ¼ 1
2Ω

; (38a)

Ω ¼ 1
2
tanϕ

0
11; (38b)

and at antiresonance

1
Qa

¼ 1
Qr

� 4Γ

1� k231 þ k231
cos2ηa

; (39a)

Γ ¼ tan θ
0
31 �

1
2
tan δ

0
33 �

1
2
tanϕ

0
11: (39b)

We may use combination of length extensional vibra-
tion mode (LE) of slender bar and either width exten-
sional mode (WE) of rectangular plate or contour
extensional mode (CE) of square plate to solve losses.
Mechanical losses are calculated from Equations (38b),
(4a) and (10), (39a, b)

tanϕ
0
11 ¼

1
QrL

; (40a)

tan θ
0
31 ¼ Γþ 1

2
tan δ

0
33 þ

1
2
tanϕ

0
11; (40b)

Γ ¼ 1
4

1
QrL

� 1
QaL

� �
1� k231 þ

k231
cos2ηaL

� �
; (40c)

tanϕ
0
12 ¼

1þ σ2

2σ2
tanϕ

0
11 �

1� σ2

2σ2
1
QrS

; (40d)

where subscript L means LE mode of bar and S means
CE mode of square plate.

3. Experiment

Measurement of losses was performed on square plate
resonators subsequently polished on one side to smal-
ler width to the rectangular plate and finally to slender
bar. One sample therefore covers all studied resonator
geometries for the same material properties. Company
poled and aged samples of soft PZT ceramics (types
NCE51, NCE55) were supplied by CTS Ceramics Czech
Republic s.r.o., Hradec Králové, Czech Republic.
Original dimensions of samples were: NCE51 – 15 mm
× 15mm/thickness 1 mm, NCE55 – 20 mm × 20mm/
thickness 1 mm. Sample of lead-free ceramic BCZT
(0.50Ba(Ti0.8Zr0.2)O3-0.50(Ba0.7Ca0.3)TiO3) has been re-

ReY� ffi ω εT33
lw
b

� �
1� k2p
� � �2Θþ Ω 1� k

02
31 þ k

02
31

cos2ηa

� �h i
1

1�k0231
þ Δη

ηa

� �
1

1�k0231
1� k

02
31 þ k

02
31

cos2ηa

� �
tan δ

0
33 � 2Γ

k2p
1�k2p

þ 2Θ 1
1�k0231

� Ω

� �
� 2Ω η2a

cos2ηa
Δη
ηa

� �
8><
>:

9>=
>; (32b)
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polished from disc shape into square plate with dimen-
sions 9.40 mm × 9.40 mm/thickness 1.06 mm. One side
of each sample was gradually polished by SiC400 in
steps of 1 mm in sample width.

Measurement of impedance spectrum (i.e.
fr; fa;Qr;QaÞ and identification of vibration modes in it
were performed by Precision Impedance Analyzer (Agilent
4294A) after each polishing step. The impedance spectra
were measured at a low power signal (0.5 V oscillation
level). No distortions of resonance/antiresonance peaks

were observed. Dielectric loss ( tan δ
0
33) was measured

directly by LCR meter (type LCR-821, GW Instek).
Results are summarized in Tables 1–3. Losses are calcu-

lated from Equations (40a-d), electromechanical coupling
factors from resonance/antiresonance conditions for each
specific resonator mode. Poisson’s ratio for PZT ceramics
was measured previously by the manufacturer. Poisson’s
ratio for BCZT ceramic was measured by the method of
composite vibration mode according to Standard IEC483
[14]. Width of rectangular plate for WE mode was chosen
according to the impedance spectrum, which was free of
mode coupling at measured resonance/antiresonance fre-
quencies. WE mode may be coupled with other modes
and their overtones. Any resonance/antiresonance fre-
quency for WE mode uncoupled to other modes in the
impedance spectrum could be used for calculations of
losses. As it is seen from Equations (4a) and (22a), the
resonance mechanical quality Qr is the same for WE and
CE modes due to the same wave vector dependence on
material coefficients. Frequencies for CE mode could be
easily found in the impedance spectrum, because it is the
lowest frequency mode, similarly to LE mode of slender
bar. Square plate impedance spectrum was free of
unwanted spurious modes for all studied materials.

4. Discussion and conclusions

Loss coefficients for all studied materials (soft PZT ceramic
types, lead-free BaTiO3-based ceramic) are of the order 10−2

and it satisfies the assumptions used in calculations.
Mechanical quality factors at antiresonance are higher than
at resonance for all vibrationmodes and all samples as seen
in Equations (18), (36) and (39a), differences might be sub-
stantial. Measurement of mechanical quality factor by 3dB
methods fromimpedancespectra ishowever sensitive to the
mechanical clamping of the sample during measurement.
Poisson’s ratio σ must be available for the calculations, i.e.
evaluated from other sample resonance (e.g. radial mode of
thin disc resonator and composite mode of the same disc
with divided electrode [14]). Neither CE nor WE mode reso-
nances are able to provide such information.

The mechanical quality factor at resonance Qr is exactly
the same for CE and WE modes as demonstrated
in Equations (4a) and (22a) and Tables 2 and 3. Loss factors

tanϕ
0
12 calculated fromWE andCEmode are similar for PZT

ceramics but differ significantly for BCZT ceramic because of
mode coupling observed in CE mode spectrum of square
plate. BothCEandWEmodes arehowever applicable for the
loss coefficients determination in case the impedance spec-
trum is free of spurious or coupled modes. WE mode reso-
nance is hidden between various modes in an impedance
spectrum and it cannot be easily identified in it. It might be
coupled also to other vibrationmodes or their overtones. LE
and CE modes are the resonances with the smallest fre-
quency observable in the spectrum and therefore easily
identifiable. The mechanical quality factors satisfy the same
relationship Qa >Qr for all studied materials (soft PZT, type
NCE51, NCE55 and BCZT ceramics), which does not hold
generally as it was found for k31 mode [15].

Measured losses for PZT ceramics agree well in order
of magnitude with previously published data [11] for
soft PZT; type APC850 is similar in properties to NCE51
ceramic type. It is worth to mention that the smallest
losses are for the mechanical properties, followed by
the dielectric losses and the biggest one is observed for
the piezoelectric losses, which are usually not taken into
account at all. Losses for BCZT lead-free ceramic were
not previously published. Our results show that BCZT
has losses of the same magnitude as soft PZT ceramics.

Presented methods for the loss and material property
measurement are applicable in the case of only single sam-
ple, but it requires sample re-polishing from square to rec-
tangular plate and further to slender bar resonator. Only
electrical measurement based on the impedance spectra is
needed without any advanced technology for the strain

Table 1. Length extensional mode.
w fr fa Qr Qa k31 tanφ’11 tanθ’31 tanδ’33

Material [mm] [kHz] [kHz] [-] [-] [-] [10−4] [10−4] [10−4]

NCE51 3 93.163 99.350 72 105 0.386 139 301 145
NCE55 3 68.755 72.525 64 81 0.354 156 318 188
BCZT 3.50 195.910 199.810 85 93 0.218 118 313 257

Table 2. Contour extensional mode.
w fr fa Qr Qa kp tanφ’12

Material [mm] [kHz] [kHz] [-] [-] [-] [10−4]

NCE51 15 108.844 130.213 77 143 0.612 178
NCE55 20 81.375 94.313 70 108 0.563 235
BCZT 9.40 235.200 251.500 105 192 0.394 188

Table 3. Width extensional mode.
w fr fa Qr Qa k’31 σ tanφ’12

Material [mm] [kHz] [kHz] [-] [-] [-] [-] [10−4]

NCE51 10 149.275 169.750 76 115 0.530 0.32 171
NCE55 15 99.938 113.100 66 93 0.521 0.28 184
BCZT 7.70 270.600 288.250 77 161 0.383 0.37 79
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characterization like it is presented in Ref [7]. Care must be
taken to the proper identification of WE mode and its cou-
pling to other modes. Appropriate aspect ratios for thin
square plate and slender bar must be satisfied.
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