
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF MECHANICAL ENGINEERING
FAKULTA STROJNÍHO INŽENÝRSTVÍ

INSTITUTE OF MATHEMATICS
ÚSTAV MATEMATIKY

ADVANCED DECOMPOSITION METHODS IN
STOCHASTIC CONVEX OPTIMIZATION
POKROČILÉ DEKOMPOZIČNÍ METODY VE STOCHASTICKÉ KONVEXNÍ OPTIMALIZACI

SHORT VERSION OF DOCTORAL THESIS
TEZE DIZERTAČNÍ PRÁCE

AUTHOR
AUTOR PRÁCE

Ing. Jakub Kůdela

SUPERVISOR
ŠKOLITEL

RNDr. Pavel Popela, Ph.D.

BRNO 2019

ABSTRACT
When working with stochastic programming problems, we frequently encounter
optimization problems that are too large to be processed by routine methods of
mathematical programming. However, in some cases the problem structure allows for
a use of specialized decomposition methods that (when utilizing said structure) can
be employed to efficiently solve very large optimization problems. This work focuses
on two classes of stochastic programming problems that have an exploitable structure,
namely two-stage stochastic programming problems and chance constrained problems,
and the advanced decomposition methods that can be used to solve optimization
problems in these two classes. We describe a novel warm-start cuts for the Generalized
Benders Decomposition, which is used as a methods for the two-stage stochastic
programming problems. For the class of chance constraint problems, we introduce
an original decomposition method, that we named the Pool & Discard algorithm.
The usefulness of the described decomposition methods is demonstrated on several
examples and engineering applications.

KEYWORDS
stochastic optimization, stochastic programming, decomposition methods, two-stage
stochastic programming problems, chance constrained problems

ABSTRAKT
Při práci s úlohami stochastického programování se často setkáváme s optimalizačními
problémy, které jsou příliš rozsáhlé na to, aby byly zpracovány pomocí rutinních metod
matematického programování. Nicméně, v někteých případech mají tyto problémy
vhodnou strukturu, umožňující použití specializovaných dekompozičních metod, které
lze použít při řešení rozsáhlých optimalizačních problémů. Tato práce se zabývá
dvěma třídami úloh stochastického programování, které mají speciální strukturu, a to
dvoustupňovými stochastickými úlohami a úlohami s pravděpodobnostním omezením,
a pokročilými dekompozičními metodami, které lze použít k řešení problému v těchto
dvou třídách. V práci popisujeme novou metodu pro tvorbu “warm-start” řezů pro
metodu zvanou “Generalized Benders Decomposition”, která se používá při řešení
dvoustupňových stochastických problémů. Pro třídu úloh s pravděpodobnostním
omezením zde uvádíme originální dekompoziční metodu, kterou jsme nazvali “Pool
& Discard algoritmus”. Užitečnost popsaných dekompozičních metod je ukázána na
několika příkladech a inženýrských aplikacích.

KLÍČOVÁ SLOVA
stochastická optimalizace, stochastické programování, dekompoziční metody,
úlohy dvoustupňového stochastického programování, úlohy s pravděpodobnostním
omezením

KŮDELA, Jakub. Advanced Decomposition Methods in Stochastic Convex Opti-
mization: short version of doctoral thesis. Brno: Brno University of Technology,
Faculty of Mechanical Engineering, Institute of Mathematics, 2019. 27 p. Supervised
by RNDr. Pavel Popela, Ph.D.

CONTENTS

1 Introduction 1

2 Warm-Start Cuts for Generalized Benders Decomposition 2
2.1 Main Ideas . 2
2.2 GBD for Two-Stage Stochastic Programming Problems 3
2.3 Solution Procedure . 3
2.4 Reformulation with Bounding Cut . 4

3 Waste Transfer Station Planning by Stochastic Programming 7
3.1 Introduction . 7
3.2 Problem Description . 7
3.3 Implementation and Results . 10

4 Chance Constrained Problems 12
4.1 Introduction . 12
4.2 Sample Counterpart . 12
4.3 Pool & Discard Algorithm . 15

4.3.1 Pooling Part . 15
4.3.2 Discarding Part . 16
4.3.3 Implementation . 16

5 Chance Constrained Optimal Beam Design: Convex Reformulation
and Probabilistic Robust Design 18
5.1 Introduction . 18
5.2 Problem Formulation . 18

5.2.1 FEM Problem Approximation and Solution 19
5.2.2 Additional Variable, Constraints and Convex Reformulation . 21

5.3 Random Loads and Robust Solution 22
5.4 Chance Constraints and Probabilistic Robust Design 23
5.5 Numerical Results . 24

Bibliography 26

1 INTRODUCTION
There are numerous introductory texts for stochastic programming. Among the
ones we can recommend are the well-known books [17], [27], [4], and [28]. Since the
purpose of this text is not to present a new insight into stochastic programming as
such, the thesis uses for the introduction (Chapter 1) some parts and arguments
from (in our opinion) an exceptional text [26].

The main body of the thesis comprises of three published articles [18, 19, 21]
and a (for the time being) previously unpublished work comprising of description
and numerical examination of a new algorithm for chance constrained optimization
problems.

The article [18] (in Chapter 2) describes a decomposition algorithm suitable for
two-stage convex stochastic problems called the Generalized Benders Decomposition
and presents a new reformulation that incorporates a lower bound cut that serves as
a warm-start, decreasing the overall computation time. Chapter 3 comprizes of the
arcitle [21] – a real-world waste-management application of the two-stage stochastic
programming problem, where the warm-start cut developed in Chapter 2 is utilized.

In Chapter 3 is described a new algorithm, called Pool & Discard algorithm (P&D
algorithm), aimed at handling the chance constrained problems. It uses much of the
theory of probabilistic robust design developed by Calafiore, Campi and Garatti in
[6], [7], [8],[9], and [10] – this theory is summarized in the first, introductory, part of
the chapter. In the remaining sections, the algorithm is described, examined and
compared to other techniques for handling chance constrained problems (the ones
presented in [1], [25], and [30]). Chapter 4 contains the article [19] – it describes
a novel (convex) reformulation of otherwise rather involved engineering problem
(optimal beam design). It can be also seen as the first application of the P&D
algorithm with a trivial Pooling part (see the appropriate section in Chapter 3).

1

2 WARM-START CUTS FOR GENERALIZED
BENDERS DECOMPOSITION

2.1 Main Ideas
In this section, we give a brief insight into the GBD, as it is not our intention to
devote several pages to its thorough description. An interested reader can find an
in-depth analysis of the method in the original paper [13] and in the works of Floudas
in [11] and [12]. The problems GBD aims to solve are of the form:

minimize
𝑥,𝑦

𝑓(𝑥, 𝑦)
subject to 𝐺(𝑥, 𝑦) ≤ 0, 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌,

(2.1)

where 𝑥 ∈ 𝑋 ⊆ ℜ𝑛1 , 𝑦 ∈ 𝑌 ⊆ ℜ𝑛2 , 𝑓 : ℜ𝑛1 × ℜ𝑛2 −→ ℜ is a real-valued objective
function and 𝐺 : ℜ𝑛1 × ℜ𝑛2 −→ ℜ𝑚 is an 𝑚-vector of constraint functions. The
variable 𝑥 is called a complicating variable in the sense that (2.1) is a much easier
optimization problem in 𝑦 when 𝑥 is temporarily held fixed. The following conditions
are required:
C1: 𝑌 is a nonempty, convex set and the functions 𝑓 and 𝐺 are convex for each

fixed 𝑥 ∈ 𝑋.
C2: The set

𝑍𝑥 = {𝑧 ∈ ℜ𝑚 : 𝐺(𝑥, 𝑦) ≤ 𝑧 for some 𝑦 ∈ 𝑌 }, (2.2)

is closed for each fixed 𝑥 ∈ 𝑋.
C3: For each fixed 𝑥 ∈ 𝑋 ∩ 𝑉 , where

𝑉 = {𝑥 : 𝐺(𝑥, 𝑦) ≤ 0, for some 𝑦 ∈ 𝑌 }, (2.3)

one of the following conditions holds:
(i) the problem (2.1) has a finite solution and has an optimal multiplier vector

for the inequalities.
(ii) the problem (2.1) is unbounded, that is, its objective function value goes

to −∞.
The particular situation we are interested in is when 𝑓 and 𝐺 are linearly separable

in 𝑥 and 𝑦, i.e.
𝑓(𝑥, 𝑦) = 𝑓1(𝑥) + 𝑓2(𝑦),
𝐺(𝑥, 𝑦) = 𝐺1(𝑥) + 𝐺2(𝑦).

(2.4)

The basic idea in GBD is the generation, at each iteration, of an upper bound
and a lower bound on the optimal objective function value of (2.1).

2

2.2 GBD for Two-Stage Stochastic Programming
Problems

In stochastic programming linear separability of the objective function and constraints
is a very common property. Let us consider the following problem:

minimize
𝑥,𝑦1,...,𝑦𝐾

𝑓1(𝑥) +
𝐾∑︀

𝑘=1
𝑝(𝜉𝑘)𝑓2(𝑦𝑘, 𝜉𝑘)

subject to 𝐺11(𝑥) ≤ 0,

𝐺21(𝜉𝑘)𝑥 + 𝐺22(𝑦𝑘, 𝜉𝑘) ≤ 0, 𝜉𝑘 ∈ Ξ,

(2.5)

where 𝑓1 : ℜ𝑛1 −→ ℜ is a convex function, all 𝑚1 constraint functions 𝐺11 : ℜ𝑛1 −→
ℜ𝑚1 are convex, and for all 𝜉𝑘 ∈ Ξ with |Ξ| = 𝐾 finite, 𝐺21(𝜉𝑘) is a 𝑚2 × 𝑛1 matrix,
𝑓2(·, 𝜉𝑘) : ℜ𝑛2 −→ ℜ is convex, all 𝑚2 constraint functions 𝐺22(·, 𝜉𝑘) : ℜ𝑛2 −→ ℜ𝑚2

are convex, 𝑃 (𝜉 = 𝜉𝑘) ≡ 𝑝(𝜉𝑘) > 0,
𝐾∑︀

𝑘=1
𝑝(𝜉𝑘) = 1.

The master problem corresponding to (2.5) has the following form:

minimize
𝑥,𝜃

𝑓1(𝑥) + 𝜃

subject to 𝐺11(𝑥) ≤ 0,

𝐷𝑖𝑥 ≤ 𝑑𝑖, 𝑖 = 1, . . . , 𝑝,

𝐸𝑗𝑥 − 𝜃 ≤ 𝑒𝑗, 𝑗 = 1, . . . , 𝑟,

(2.6)

where 𝜃 ∈ ℜ serves as the lower bound on the second stage objective value. Because
of the structure of the two-stage stochastic programming problems, the subproblem
separates into 𝐾 independent subproblems (one for each scenario) in the form:

minimize
𝑦𝑘

𝑓2(𝑦𝑘, 𝜉𝑘)
subject to 𝐺21(𝜉𝑘)𝑥 + 𝐺22(𝑦𝑘, 𝜉𝑘) ≤ 0.

(2.7)

2.3 Solution Procedure
Step 0. Set 𝑐 = 0, 𝑟 = 0, and 𝜖 > 0.

Step 1. Solve (2.6) and obtain (𝑥̄, 𝜃). The optimal objective value of (2.6) gives us
a lower bound on optimal objective value of (2.5).

Step 2. For fixed 𝑥 = 𝑥̄ solve all 𝐾 subproblems (2.7). One of two possibilities can
happen.

Step 2A. For some 𝑘 the subproblem (2.7) is infeasible. Solve the following problem:

minimize
𝑦𝑘,𝑣≥0

||𝑣||1
subject to 𝐺21(𝜉𝑘)𝑥̄ + 𝐺22(𝑦𝑘, 𝜉𝑘) ≤ 𝑣,

(2.8)

3

where 𝑣 ∈ ℜ𝑚2 is a decision vector representing “slacks” in the constraints.
Get (𝑦𝑘, 𝑣) and from its dual obtain the optimal Lagrange multipliers 𝜆. Set
𝑐 = 𝑐 + 1. Add a new row to the matrix 𝐷 and vector 𝑑 in (2.6):

𝐷𝑐 = 𝜆𝑇 𝐺21(𝜉𝑘), 𝑑𝑐 = 𝜆𝑇 (−𝐺22(𝑦𝑘, 𝜉𝑘)). (2.9)

Return to Step 1.
Step 2B. All the subproblems have finite optimal values, we obtained (𝑦𝑘, 𝑢𝑘),

where 𝑢𝑘 are optimal Lagrange multipliers. The evaluation of the objective of
(2.5) at (𝑥̄, 𝑦1, . . . , 𝑦𝐾) gives us an upper bound on its optimal value. Check
for optimality: if

𝜃 + 𝜖 ≥
𝐾∑︁

𝑘=1
𝑝(𝜉𝑘)𝑓2(𝑦𝑘, 𝜉𝑘), (2.10)

terminate, (𝑥̄, 𝑦1, . . . , 𝑦𝐾) are 𝜖-optimal [13]. Otherwise, set 𝑟 = 𝑟 + 1 and add
a new row to the matrix 𝐸 and vector 𝑒 in (2.6):

𝐸𝑟 =
𝐾∑︀

𝑘=1
𝑝(𝜉𝑘)(𝑢𝑇

𝑘 𝐺21(𝜉𝑘)),

𝑒𝑟 = −
𝐾∑︀

𝑘=1
𝑝(𝜉𝑘)(𝑓2(𝑦𝑘, 𝜉𝑘) + 𝑢𝑇

𝑘 (𝐺22(𝑦𝑘, 𝜉𝑘)).
(2.11)

Return to Step 1.

2.4 Reformulation with Bounding Cut
Let us define

minimize
𝑥𝑘,𝑦𝑘

𝑓1(𝑥𝑘) + 𝑓2(𝑦𝑘, 𝜉𝑘)
subject to 𝐺11(𝑥𝑘) ≤ 0,

𝐺21𝑥𝑘 + 𝐺22(𝑦𝑘, 𝜉𝑘) ≤ 0,

(2.12)

as the optimization problem for one particular realization 𝜉𝑘 ∈ Ξ and denote its
optimal objective function value as 𝑧(𝜉𝑘). The wait-and-see solution is the solution
without nonanticipativity constraints. We will denote the average of the optimal
objective values of (2.12) as:

WS =
𝐾∑︁

𝑘=1
𝑝(𝜉𝑘)𝑧(𝜉𝑘). (2.13)

Now we may compare this wait-and-see solution to the solution of (2.5). We will
denote the optimal objective value of (2.5) as RP (the recourse problem [4]). The
following inequality holds for any stochastic program:

WS ≤ RP. (2.14)

4

From this, we can see that WS creates a valid lower bound on the harder problem
we are aiming to solve. The idea behind the reformulation is to include such a valid
lower bound to the algorithmic procedure to “jumpstart” it and by doing so save
on iterations, and, as a result, save on the overall computational effort and time. A
natural temptation might be to solve a much simpler problem: the one obtained by
replacing all random variables by their expected values. This is called the expected
value problem, which is simply

EV = 𝑧(𝜉), (2.15)

where 𝜉 =
𝐾∑︀

𝑘=1
𝑝(𝜉𝑘)𝜉𝑘.

Although WS is a valid bound, the computational effort for its enumeration is
much higher compared to the effort to compute EV. However, EV does not necessarily
have to play the role of a lower bound on RP; there are instances, where RP ≤ EV.
For the purpose of deriving the reformulation, we will suppose that EV is a valid
lower bound on RP. Suppose

EV ≤ RP, (2.16)

holds, then

𝑓1(𝑥) +
𝐾∑︁

𝑘=1
𝑝(𝜉𝑘)𝑓2(𝑦𝑘, 𝜉𝑘) ≥ EV, (2.17)

holds for the optimum of (2.5). This inequality cannot be added directly to (2.5)
since it would cease to be a convex program. The reformulation we propose is aimed
at the master problem (2.6). A new variable 𝑧 is introduced to bound the first-stage
objective from above

𝑓1(𝑥) ≤ 𝑧, (2.18)

which is a convexity preserving inequality. Furthermore, this new variable 𝑧 added
to the variable representing the second stage 𝜃 form a lower bound on the overall
objective function. Finally, the bound

𝑧 + 𝜃 ≥ EV, (2.19)

since it is affine, can be added to (2.6), and the reformulation of the problem is

minimize
𝑧,𝑥,𝜃

𝑧 + 𝜃

subject to 𝑓1(𝑥) ≤ 𝑧,

𝐺11(𝑥) ≤ 0,

𝑧 + 𝜃 ≥ EV,

𝐷𝑖𝑥 ≤ 𝑑𝑖, 𝑖 = 1, . . . , 𝑝,

𝐸𝑗𝑥 − 𝜃 ≤ 𝑒𝑗, 𝑗 = 1, . . . , 𝑟.

(2.20)

5

After this reformulation, the algorithm continues as usual, arriving at an 𝜖-optimal
solution in, preferably, a shorter time than its original counterpart.

Now, let us address what happens if (2.16) does not hold. One of two possibilities
can occur, namely, that optimal objective function value (as determined by the
algorithm) will be equal to EV, or that the problem will be infeasible. The price
we pay for mistakenly using the cuts (2.16) is, in both cases, one iteration of the
algorithm – i.e. after one iteration we can assess, if our algorithm will arrive at the
desired solution, and, either restart it without (2.16) (possibly including WS instead),
or continue.

However, certain situations can happen when we restart the algorithm without
(2.16) and get the same result again. This occurs if the original problem is infeasible
(in which case we have some serious model or data issues) or if EV = RP, in that
case we would have to run the entire algorithm only to arrive at the same objective
function value (which is a bit unfortunate, but unavoidable).

The solution procedure can be summarized in the following steps:
Step 0. Solve the expected value problem to get EV (2.15). Set 𝑝 = 0, 𝑟 = 0, and

𝜖 > 0. Solve (2.20) and obtain (𝑧, 𝑥̄, 𝜃). If 𝑧 + 𝜃 = EV, terminate (and use the
original method without the EV cut, or use WS instead). Otherwise, go to
Step 2.

Step 1. Solve (2.20) and obtain (𝑧, 𝑥̄, 𝜃).
Step 2., Step 2A., Step 2B. The same as in section 2.3.

The rest of the chapter/article describes different implementation options (bunch-
ing and multicuts) as well as two numerical examples that demonstrate the usefulness
of the warm-start formulation (as well as the usefulness of the bunching).

6

3 WASTE TRANSFER STATION PLANNING
BY STOCHASTIC PROGRAMMING

3.1 Introduction
Since the situation in waste management is unknown due to the undecided support
to the particular technology system and treatment from the government or the EU,
the planning of future infrastructure is not secured from the investment point of view.
This paper proposes a novel approach in the planning of transport infrastructure for
efficient treatment of residual waste which is in line with all the possible cases of
future development of waste management system. The future uncertainty (legislative
development and support for different systems) in the treatment grid design is
projected through the processing cost for different facilities at various locations. The
computational approach was designed to handle real-life tasks in reasonable time.
The case study is presented with the use of data from the Czech Republic.

3.2 Problem Description
The problem consists of deciding where to construct the transfer stations, what
should be their respective capacities and from which producer of waste to which
waste-processing plant should the cargo be send, provided that some of the data
are uncertain. The road network is partly depicted in Fig 3.1 (and described by
an incidence matrix 𝐴1 in the mathematical model). This network had 24,770
arcs (roads) connecting the 6,258 nodes. The locations of the waste producers, the
waste-processing plants and the possible locations for transfer stations are partially
depicted in Fig 3.1. In the problem there were 6,258 places producing waste, 44
waste-processing plants (where 15 correspond to foreign facilities) and 116 possible
places for the transfer stations.

To be able to differentiate between the transportation of waste that does or
does not use the transfer stations, a separate road network was computed – for
each possible transfer station was found the shortest path to each waste-processing
plant. In this pre-processing step, 5,075 shortest path optimization problems were
solved, resulting in the additional network with 5,075 arcs. The transfer of waste
when using the transfer stations is assumed 3 times cheaper than the regular one.
Each of the possible transfer stations can be constructed with 6 different capacities.
Combining this with the 116 locations results in 696 binary first-stage decisions. The
second-stage decisions are the flows on the arcs of the two networks and the amounts
of waste processes at the plants, in total 29,889.

7

Type Symbol Description

Sets

𝑠 ∈ 𝑆 Set of scenarios
𝑗 ∈ 𝐽 Set of nodes (cities)

𝑖 ∈ 𝐼 ⊂ 𝐽 Set of possible transfer stations
𝑡 ∈ 𝑇 Set of possible options for transfer station capacities

Parameters

𝐴1 First incidence matrix (Fig. 3.1)
𝐴2 Second incidence matrix (from pre-processing)
𝑐1 Transfer costs, without the transfer stations (on 𝐴1)
𝑐2 Transfer costs, using transfer stations (on 𝐴2)
𝑝𝑠 Probability of a scenario 𝑠

𝑒𝑖,𝑡

Cost of a construction of a transfer station
at location 𝑖, with capacity option 𝑡

𝑘𝑖,𝑡

Capacity of a transfer station at location 𝑖

with capacity option 𝑡

𝑓𝑗,𝑠 Cost of processing waste at node 𝑗, scenario 𝑠

𝑟𝑗 Production of waste at node 𝑗

𝑞𝑗 Waste processing capacity of node 𝑗

Variables

𝑑𝑖,𝑡

Decision on building the transfer station at location 𝑖,
with capacity option 𝑡; binary, first-stage

𝑥1,𝑠 Flows on 𝐴1 in scenario 𝑠; continuous, second-stage
𝑥2,𝑠 Flows on 𝐴2 in scenario 𝑠; continuous, second-stage

𝑦𝑗,𝑠

Amount of processed waste in node 𝑗, scenario 𝑠;
continuous, second-stage

Table 3.1: The notation.

The uncertain parameters that are considered in the model are the costs for
processing the waste at the 44 different plants, which correspond with the legislation
development and local conditions (such as the demand for heat, etc.). The number of
scenarios for this model was set to 1,000 and so the model has almost 30M variables.
The notation that is used to develop the mathematical model is described in Table
3.1.

To simplify the notation, some subscripts were hidden, meaning that the appro-
priate parameters/variables were stacked to form a vector of a fitting size (and the
associated equalities/inequalities are meant for each element in the vector). The

8

Fig. 3.1: A map showing the producers of waste (blue dots), the places processing waste
(red dots). The road network (black lines) and the possible transfer stations (black rings)
are shown on two separate parts.

mathematical model has the following form:

minimize
∑︁

𝑖∈𝐼,𝑡∈𝑇

𝑒𝑖,𝑡𝑑𝑖,𝑡 +
∑︁
𝑠∈𝑆

𝑝𝑠(𝑐𝑇
1 𝑥1,𝑠 + 𝑐𝑇

2 𝑥2,𝑠 + 𝑓𝑇
𝑠 𝑦𝑠) (3.1)

subject to 𝐴1𝑥1,𝑠 + 𝐴2𝑥2,𝑠 + 𝑦𝑠 = 𝑟, ∀𝑠 ∈ 𝑆, (3.2)
𝑦𝑠 ≤ 𝑞, ∀𝑠 ∈ 𝑆, (3.3)∑︁
flows from 𝑖∈𝐼

𝑥2,𝑠 ≤
∑︁
𝑡∈𝑇

𝑘𝑖,𝑡𝑑𝑖,𝑡, ∀𝑠 ∈ 𝑆, ∀𝑖 ∈ 𝐼, (3.4)
∑︁
𝑡∈𝑇

𝑑𝑖,𝑡 ≤ 1, ∀𝑖 ∈ 𝐼, (3.5)

𝑥1,𝑠, 𝑥2,𝑠, 𝑦𝑠 ≥ 0, ∀𝑠 ∈ 𝑆, (3.6)
𝑑𝑖,𝑡 ∈ {0, 1}, ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇. (3.7)

The objective function given by (3.1) is the expected waste transportation and
processing costs and the building cost for building the transfer plants. The constraint
(3.2) is the conservation of waste – at each node and for each scenario, the amount
produced must be equal to the amount transported (by one of the two possibilities)
plus the amount processed. The constraint (3.3) is an upper bound on the amount

9

of waste that can be processed at a given node. The constraint (3.4) guarantees that
the amount transferred using the transfer station 𝑖 is less than the installed capacity
of that transfer station. The constraint (3.5) ensures that at most one of the possible
capacities is installed at location 𝑖. The last two constraints (3.6) and (3.7) are the
nonnegativity and integrality constraint, respectively. The only constraints that do
not depend on the scenarios are (3.5) and (3.7). The total number of constraints that
depend on scenarios is 36,307, meaning that the model has over 36M constraints.

3.3 Implementation and Results
The model was solved using the Benders decomposition scheme described in [20]
enhanced by the warm-start cuts developed in [18]. The results of the computation
are best summarized in Fig 3.2 and Fig 3.3. Of the 116 possible locations, 71 were
chosen as optimal places for the transfer stations. One scenario of optimal flows and
the optimal places for the transfer stations is depicted in Fig 3.2 (the optimal places
are the same for all scenarios, the flows are different).

The optimal expected cost was 260.14M EUR and the expected total distance
traveled by all vehicles was 8.23M km, assuming that the regular flows are serviced
by vehicles with capacity 10 t and the flows from transfer stations are serviced by
vehicles with capacity 24 t (all fully loaded).

The histograms in Fig 3.3 represent the results for the 1,000 generated scenarios
and show in detail the impact of building the transfer stations. The expected costs are
8% lower on average when building the transfer stations, the costs for transportation
alone are 21% lower. The expected total distance traveled by all vehicles is reduced
by 9% on average when building the transfer stations. However, this quantity has
a much higher variance and, in some scenarios, is worse than the situation with
no transfer stations. This inconvenience stems from the objective focusing only on
costs – if some form of trade-off between costs and total distance was added to the
objective function, the results would be more favourable towards lower total distance
(at the price of increased costs). This might represent the situation when taking into
account the environmental aspects is more important than the overall cost.

10

Fig. 3.2: A map showing the results for one of the scenarios – thick black rings correspond
to the selected places for transfer stations, red lines are flows from these transfer stations,
black lines are regular flows.

Fig. 3.3: Histograms of optimal cost and total distance travelled – the red one is using the
transfer stations, the blue one is not.

11

4 CHANCE CONSTRAINED PROBLEMS

4.1 Introduction
The introduction into the topic is derived (more or less directly) from [9] – with
most of the used notation adapted from [9] as well. Let 𝒳 ⊆ ℜ𝑛𝑥 be a convex
and closed domain of optimization and consider a family of constraints 𝑥 ∈ 𝒳𝜉

parameterized in 𝜉 ∈ Ξ. The uncertain parameter 𝜉 describes different instances
of an uncertain optimization scenario. We adopt a probabilistic description of
uncertainty and suppose that the support Ξ for 𝜉 is endowed with a 𝜎-algebra 𝒟
and that a probability measure 𝒫 is defined over 𝒟. The probability measure 𝒫
describes the probability with which the uncertain parameter 𝜉 takes value in Ξ.
Then, a chance constrained optimization program is written as:

CCP𝜖 : minimize
𝑥∈𝒳

𝑐𝑇 𝑥

subject to 𝒫{𝜉 : 𝑥 ∈ 𝒳𝜉} ≥ 1 − 𝜖.
(4.1)

Here, we assume that the 𝜎-algebra 𝒟 is large enough, so that {𝜉 : 𝑥 ∈ 𝒳𝜉} ∈ 𝒟, i.e.
{𝜉 : 𝑥 ∈ 𝒳𝜉} is a measurable set. Also, linearity of the objective function can be
assumed without loss of generality, since any objective of the form

minimize
𝑥∈𝒳

𝑐(𝑥),

where 𝑐(𝑥) : 𝒳 → ℜ is a convex function, can be re-written as

minimize
𝑥∈𝒳 ,𝑦≥𝑐(𝑥)

𝑦,

where 𝑦 is a scalar variable.
In the CCP𝜖 (4.1), constraint violation is tolerated, but the violated constraint

set must be no larger than 𝜖.

4.2 Sample Counterpart
We can view the variable 𝑥 ∈ 𝒳 ⊆ ℜ𝑛𝑥 as the “design variable”. The family of
possible instances is parameterized by an “uncertainty vector” 𝜉 ∈ Ξ ⊆ ℜ𝑛𝜉 .

Assumption 4.2.1 (Convexity)
For each 𝜉 ∈ Ξ the sets 𝒳𝜉 are convex and closed. ⋆

Assumption 4.2.1 requires convexity only with respect to the design variable 𝑥.
We have the following definition:

12

Definition 4.2.2 (Probability of Violation)
Let 𝑥 ∈ 𝒳 be given. The probability of violation of 𝑥 is defined as

𝒱(𝑥) = 𝒫{𝜉 ∈ Ξ : 𝑔(𝑥, 𝜉) > 0}.

A solution 𝑥 with small associated 𝒱(𝑥) is feasible for most of the problem
instances, i.e., it is approximately feasible for the worst-case problem. Any such
solution is here named an “𝜖-level” solution:

Definition 4.2.3 (𝜖-Level Solution)
Let 𝜖 ∈ (0, 1). We say that 𝑥 ∈ 𝒳 is an 𝜖-level robustly feasible (or, more simply, an
𝜖-level) solution, if 𝒱(𝑥) ≤ 𝜖.

Our ultimate goal is to devise an algorithm that returns a 𝜖-level solution. To this
purpose, we now introduce the “scenario” version of the worst-case design problem.
In the “scenario design” we optimize the objective subject to a finite number of these
randomly selected scenarios.

Definition 4.2.4 (Scenario Design Problem)
Assume that 𝑆 independent identically distributed samples 𝜉1, . . . , 𝜉𝑆 are drawn
according to probability 𝒫. A scenario design problem is given by the convex program

SDP𝑆 : minimize
𝑥∈𝒳

𝑐𝑇 𝑥

subject to 𝑔(𝑥, 𝜉𝑖) ≤ 0, 𝑖 = 1, . . . , 𝑆.
(4.2)

Assumption 4.2.5 (Feasibility)
For all possible extractions 𝜉1, . . . , 𝜉𝑆, the optimization problem (4.2) is either infea-
sible, or, if feasible, it attains a unique optimal solution.

The scenario problem SDP𝑆 is a standard convex optimization problem with
a finite number of constraints 𝑆. Since the constraints 𝑔(𝑥, 𝜉𝑖) ≤ 0 are randomly
selected, the resulting optimal solution 𝑥̂𝑆 is a random variable that depends on
the multi-sample extraction (𝜉1, . . . , 𝜉𝑆). Therefore, 𝑥̂𝑆 can be a 𝜖-level solution for
a given random extraction and not for another. In the theorem, the parameter 𝛽

bounds the probability that is not a 𝜖-level solution. In other words, we are looking
for 𝑆 big enough, such that the following inequality holds:

𝑛𝑥−1∑︁
𝑖=0

⎛⎝ 𝑆

𝑖

⎞⎠ 𝜖𝑖(1 − 𝜖)𝑆−𝑖 ≤ 𝛽. (4.3)

The best explicit bound for this quantity to date can be found in [2]:

13

Theorem 4.2.6 (Feasibility I)
Let Assumption 4.2.5 be satisfied. Fix two real numbers 𝜖 ∈ (0, 1) (level parameter)
and 𝛽 ∈ (0, 1) (confidence parameter). If

𝑆 ≥
⌈︂1

𝜖

(︃
ln 1

𝛽
+ 𝑛𝑥 +

√︃
2𝑛𝑥 ln 1

𝛽

)︃⌉︂
(4.4)

then, with probability no smaller than 1 − 𝛽, either the scenario problem SDP𝑆 is
infeasible and, hence, also the initial robust convex program is infeasible; or, SDP𝑆

is feasible, and then its optimal solution 𝑥̂𝑆 is 𝜖-level robustly feasible.

Of the 𝑆 generated scenarios, only some of these 𝑆 will be “bounding” in the
sense that they prevent the solution from “falling” to a lower objective value.

Definition 4.2.7 (Support Scenario)
Scenario 𝜉𝑖, 𝑖 ∈ {1, . . . , 𝑆}, is a support scenario for the scenario problem SDP𝑆 if
its removal changes the optimal solution of SDP𝑆.

The following theorem, whose proof can be found in [8] or in a different form in
[23], gives us the bound on the number of support scenarios:

Theorem 4.2.8 (Number of Support Scenarios)
The number of support scenarios for SDP𝑆 is at most 𝑛𝑥, the size of 𝑥.

The number of support scenarios does not depend on the number of generated
scenarios 𝑆. If all the 𝑆 constraints are enforced, however, one cannot expect that
good approximations of chance constrained solutions are obtained (cf. the numerical
examinations in the thesis). Thus, we want to allow the solution to violate part of
the sampled constraints to improve its objective value. A general removal procedure
is formalized in the following definition:

Definition 4.2.9 (Constraint Removal Algorithm)
Let 𝑘 < 𝑆. An algorithm 𝒜 for constraints removal is any rule by which 𝑘 constraints
out of a set of 𝑆 constraints are selected and removed. The output of 𝒜 is the set
𝒜{𝜉1, . . . , 𝜉𝑆} = {𝑖1, . . . , 𝑖𝑘} of the indexes of the 𝑘 removed constraints.

The sample-based optimization program where 𝑘 constraints are removed as
indicated by 𝒜 is expressed as

SDP𝒜
𝑆,𝑘 : minimize

𝑥∈𝒳
𝑐𝑇 𝑥

subject to 𝑔(𝑥, 𝜉𝑖) ≤ 0, 𝑖 ∈ {1, . . . , 𝑆} ∖ 𝒜{𝜉1, . . . , 𝜉𝑆},
(4.5)

and its solution will be hereafter indicated as 𝑥*
𝑆,𝑘. We introduce the following

assumptions:

14

Assumption 4.2.10 (Constraint Violation)
Almost surely with respect to the multi-sample (𝜉1, . . . , 𝜉𝑆), the solution 𝑥*

𝑆,𝑘 of the
sample-based optimization program SDP𝒜

𝑆,𝑘 violates all the 𝑘 constraints that 𝒜 has
removed.

The next Theorem (proved in [9]) provides theoretical guarantees that 𝒱(𝑥*
𝑆,𝑘) ≤ 𝜖,

i.e. that the optimal solution 𝑥*
𝑆,𝑘 of the optimization program SDP𝒜

𝑆,𝑘 is feasible for
the CCP𝜖.

Theorem 4.2.11 (Feasibility)
Let 𝛽 ∈ (0, 1) be any small confidence parameter value. If 𝑆 and 𝑘 are such that⎛⎝ 𝑘 + 𝑛𝑥 − 1

𝑘

⎞⎠ 𝑘+𝑛𝑥−1∑︁
𝑖=0

⎛⎝ 𝑆

𝑖

⎞⎠ 𝜖𝑖(1 − 𝜖)𝑆−𝑖 ≤ 𝛽, (4.6)

then 𝒫𝑆{𝒱(𝑥*
𝑆,𝑘) ≤ 𝜖} ≥ 1 − 𝛽.

4.3 Pool & Discard Algorithm

4.3.1 Pooling Part

The idea behind the Pooling part of the algorithm is the following: if one were
to verbally describe the problem (4.2), the one word that came to our mind was
“long”, as there are much more constraints than decision variables. Moreover, the
number of support constraints (or support scenarios), that the optimal solution of
(4.2) depends upon is very small, when compared to the overall number of constraints
(or scenarios).

The method consists of solving (4.2) by the following procedure. First, we start
by completely neglecting the constraints in (4.2) that correspond to the different
scenarios and solve this relaxed optimization problem. Then we find the most violated
constraints, add them to the relaxed problem and find a new optimal solution – this
step heavily exploits warm-starting. The Pooling part can be summarized as follows:
Step 0. Set 𝛿 > 0, ℐ = ∅.
Step 1. Solve the following problem:

minimize
𝑥∈𝒳

𝑐𝑇 𝑥

subject to 𝑔(𝑥, 𝜉𝑖) ≤ 0, 𝑖 ∈ ℐ,
(4.7)

and obtain a solution 𝑥̂.
Step 2. Check feasibility of the solution by computing the slacks 𝑠𝑖:

𝑠𝑖 = 𝑔(𝑥̂, 𝜉𝑖), 𝑖 ∈ {1, . . . , 𝑆}. (4.8)

15

Step 3. If max
𝑖∈{1,...,𝑆}

𝑠𝑖 > 𝛿, find the associated index of the maximum value 𝑖̂ =

argmax
𝑖∈{1,...,𝑆}

𝑠𝑖, add it to the set ℐ and return to Step 1. Otherwise, set 𝑥* = 𝑥̂, ℐ* =

ℐ and terminate.
The parameter 𝛿, can (theoretically) be set to zero, but there are implementation
issues that would lead to unfavourable results, cf. Section 4.3.3. By the end of this
procedure, we not only get the optimal solution of (4.2), but also an index set ℐ that
contains the support scenarios.

4.3.2 Discarding Part

The Discarding part of the algorithm consists of utilizing the index set ℐ, finding
the support scenarios among this set and finding the one scenario, whose removal
decreases the optimal objective value the most – this is repeated 𝑘 times, where 𝑘 is
either set a priori, or is terminated once an estimate of the probability of violation
of obtained solution 𝒱(𝑥) reaches certain threshold. The Discarding part can be
summarized as follows:
Step 0. Solve the pooling part described above to obtain ℐ* and 𝑥*. Set 𝛾 > 0, 𝑘 >

0, ℐ𝑝 = ∅.
Repeat 𝑘 times, or terminate once

an estimate of 𝒱(𝑥*) reaches a threshold:
Step 1. Find the set of support scenarios ℐ𝑟 ⊂ ℐ* – either by examining the slacks

(𝑠𝑖 > −𝛾) or the associated dual variables (𝜇𝑖 > 𝛾).
Step 2. For each of the support scenarios 𝑖𝑟 ∈ ℐ𝑟, solve the following problem:

minimize
𝑥∈𝒳

𝑐𝑇 𝑥

subject to 𝑔(𝑥, 𝜉𝑖) ≤ 0, 𝑖 ∈ {1, . . . , 𝑆} ∖ {𝑖𝑟 ∪ ℐ𝑝},
(4.9)

using the Pooling part, warm-started by using ℐ = ℐ* ∖ 𝑖𝑟 and 𝑥 = 𝑥*. Denote
the solution to (4.9) as 𝑥*

𝑖𝑟
, its optimal objective function value 𝑣*

𝑟 and its final
set of scenarios ℐ*

𝑟 .
Step 3. Find the index with the best optimal objective value: 𝑖* = argmin

𝑖𝑟

𝑣*
𝑟 . Set

𝑥* = 𝑥*
𝑖* , ℐ* = ℐ*

𝑖* and add the corresponding scenario to the set of permanently
discarded ones ℐ𝑝.

The parameter 𝛾 can be, in theory, set to 0. What discourages us from doing so are
the implementation issues discussed in Section 4.3.3.

4.3.3 Implementation

For our implementation we chose a relatively new programming language Julia [3],
that is designed for high-performance numerical computing, and a modeling system

16

JuMP, which is domain-specific modeling language for mathematical optimization
embedded in Julia. JuMP supports a wide variety of solvers, model modifications,
warm-stars, and even different solver callbacks (lazy constraints, etc.) that, even
they are not useful for the P&D algorithm, make it a very powerful modeling tool.
The solver suitable fot the implementation of the P&D algorithm was CPLEX 12.7
[16].

The parameter 𝛿 is the required feasibility of the solution. In theory, this could
be set to zero, to guarantee that the solution of the Pooling part “really” solves the
SDP𝑆 formulation (4.2). The problem is that in some solvers the “optimal” solution
they provide is not always strictly feasible. Among these solvers are CPLEX and
GUROBI [14]. In CPLEX, the parameter that sets the tolerance for the feasibility of
the optimal solution is CPX_PARAM_EPRHS, has a default value of 10−6 and can be set
anywhere between 10−9 and 10−1, but not to 0. In GUROBI, this parameter is called
FeasibilityTol. This is the reason we need a nonzero 𝛿, because when set to zero,
the Pooling part can end up in an infinite loop, because it cannot produce a feasible
point.

The second parameter, 𝛾 in the Discarding part, controls which scenarios will be
treated as possible support scenarios. From complementary slackness [5] we know
that any primal optimal 𝑥* and dual optimal 𝜇 the following holds:

𝜇𝑖𝑔(𝑥*, 𝜉𝑖) = 0, 𝑖 ∈ {1, . . . , 𝑆}.

We can express this, equivalently as

𝜇𝑖 > 0 =⇒ 𝑔(𝑥*, 𝜉𝑖) = 0,

or
𝑔(𝑥*, 𝜉𝑖) < 0 =⇒ 𝜇𝑖 = 0.

Depending on whether or not we have access to the dual optimal 𝜇, we inspect either
the slacks or the dual variables 𝜇, to find set of possible support scenarios. The
issue of setting 𝛾 to 0 is one of numerical computing (and the feasibility tolerance
mentioned earlier) – when reporting the optimal dual variables 𝜇 the solvers rarely
return exactly 0, more often, we get values ranging from 10−8 to 10−16. If we did
set 𝛾 to 0 we would (likely) have to consider all the scenarios as possible support
scenarios and the execution of the algorithm would be significantly prolonged.

17

5 CHANCE CONSTRAINED OPTIMAL BEAM
DESIGN: CONVEX REFORMULATION AND
PROBABILISTIC ROBUST DESIGN

5.1 Introduction
Optimal design problems in engineering frequently lead to optimization problems
involving differential equations. One of the classes of these problems is shape
optimization [15]. The particular shape optimization problem considered in this
paper is the optimal design of a beam (be it a fixed beam, a cantilever beam, etc.)
subjected to some kind of loading. This problem was previously also examined in
[29] and [32], where the authors used the finite element method (FEM) and the finite
difference method to approximate the ordinary differential equations (ODE) and solve
the problem. Our paper shows that this beam design problem can be formulated as
a geometric programming problem, which can be further transformed into a convex
one, and thus can be efficiently solved. An important issue regarding the design is its
reliability (see [22]). In the context of this paper the reliability of the design will mean
that the constraints in the resulting optimization program should hold with high
probability. In this paper we investigate the chance constrained beam design problem
under more complicated random loads. We utilize the sampling approach (called
Probabilistic Robust Design) developed in [7], [9] and [10] to obtain a manageable
approximation of the chance constrained problem and use a scenario-deletion method
to compute a trade-off between the reliability of the design and the objective value.

5.2 Problem Formulation
The problem is best described by Fig. 5.1. We consider a fixed beam of length 𝑙

with rectangular cross-section that is subjected to a load ℎ(𝑥) (with the opposite
direction than the axis 𝑦), which is depicted in Fig. 5.1a. The task is to find the
optimal design, in terms of the cross-section dimensions 𝑎 and 𝑏 (Fig. 5.1b), that
minimizes the weight of the beam.

Naturally, given a load ℎ(𝑥) the beam will deflect and will be subjected to a
bending stress. The requirement for the design is that the maximum stress in the
beam is less then a material-specific constant, that ensures that the design is safe.
The problem can be formulated as the following ODE-constrained optimization

18

program:

minimize
𝑎,𝑏,𝑣(𝑥)

𝜌𝑎𝑏𝑙 (5.1)

subject to 𝐸
𝑎𝑏3

12
𝑑4𝑣

𝑑𝑥4 (𝑥) = ℎ(𝑥), 𝑥 ∈ [0, 𝑙], (5.2)

|𝐸 𝑏

2
𝑑2𝑣

𝑑𝑥2 (𝑥)| ≤ 𝜎𝑀 , 𝑥 ∈ [0, 𝑙], (5.3)

𝑣(0) = 0,
𝑑𝑣

𝑑𝑥
(0) = 0, 𝑣(𝑙) = 0,

𝑑𝑣

𝑑𝑥
(𝑙) = 0, (5.4)

𝑎𝐿 ≤ 𝑎 ≤ 𝑎𝑈 , 𝑏𝐿 ≤ 𝑏 ≤ 𝑏𝑈 , (5.5)

where 𝜌 is the density of the material, 𝑣(𝑥) is the deflection of the beam (with the
opposite direction than the axis 𝑦) in a point 𝑥 ∈ [0, 𝑙], 𝐸 is the Young modulus, 𝜎𝑀

is the maximum stress allowed, and 𝑎𝐿, 𝑎𝑈 , 𝑏𝐿, 𝑏𝑈 are the bounds on the cross-section
dimensions. The constraint (5.2) is the ODE that governs the deflection of the beam
𝑣(𝑥) given a specific load ℎ(𝑥). The constraint (5.3) is the maximum allowed stress
in the beam. The constraint (5.4) defines the boundary conditions for the ODE (i.e.
that we have a fixed beam).

(a) The scheme of loaded beam. (b) Beam cross-section.

Fig. 5.1: The problem geometry.

5.2.1 FEM Problem Approximation and Solution

To tackle the problem (5.1)-(5.5) we use the FEM to approximate the ODE in (5.2)
and (5.3). Following [31] (p. 25 – 27), the FEM approximation of the problem

19

(5.1)-(5.5) is then the following:

minimize
𝑎,𝑏,𝒱

𝜌𝑎𝑏𝑙 (5.6)

subject to 𝐸
𝑎𝑏3

12 K𝒱 = ℎ, (5.7)

|𝐸 𝑏

2C𝒱| ≤ 𝜎𝑀 , (5.8)

𝑎𝐿 ≤ 𝑎 ≤ 𝑎𝑈 , 𝑏𝐿 ≤ 𝑏 ≤ 𝑏𝑈 . (5.9)

This problem has 2𝑁 variables (2𝑁 + 2 in 𝒱 of which 4 are fixed by boundary
conditions, and 2 design variables), 2𝑁 + 2 constraints and a box constraints on 𝑎

and 𝑏, and is non-convex. The crucial realization is that the stiffness matrix K is, by
design, always invertible. Using this fact, we can rewrite (5.7) as:

𝒱 = 12
𝐸𝑎𝑏3K

−1ℎ, (5.10)

and (5.8) becomes:

| 6
𝑎𝑏2CK

−1ℎ| = 1
𝑎𝑏2 |6CK−1ℎ| ≤ 𝜎𝑀 . (5.11)

Let us denote as 𝑣𝑀 the maximum of |6CK−1ℎ| over all the nodes of the FEM
discretization. Since 𝜎𝑀 is the same for all 𝑁 + 1 nodes, the 𝑁 + 1 inequalities (5.8)
are equivalent to a single inequality:

𝑣𝑀

𝑎𝑏2 ≤ 𝜎𝑀 . (5.12)

Utilizing these results and neglecting the constants 𝜌 and 𝑙 in the objective (5.6), we
can reformulate the problem (5.6)-(5.9) as the following equivalent problem:

minimize
𝑎,𝑏

𝑎𝑏 (5.13)

subject to 𝑣𝑀

𝑎𝑏2 ≤ 𝜎𝑀 , 𝑎𝐿 ≤ 𝑎 ≤ 𝑎𝑈 , 𝑏𝐿 ≤ 𝑏 ≤ 𝑏𝑈 , (5.14)

which is a geometric program, that can be transformed into a convex program. This
problem has the following analytic solution (that is derived in the Appendix A in
the thesis):

• if 𝑣𝑀

𝑎𝑈 𝑏2
𝑈

> 𝜎𝑀 , the problem is infeasible,
• if 𝑣𝑀

𝑎𝐿𝑏2
𝐿

≤ 𝜎𝑀 , the solution is 𝑎* = 𝑎𝐿, 𝑏* = 𝑏𝐿,
• if 𝑏 =

√︁
𝑣𝑀

𝑎𝐿𝜎𝑀
is within the bounds, 𝑏* = 𝑏, 𝑎* = 𝑎𝐿,

• else 𝑎 = 𝑣𝑀

𝑏2
𝑈 𝜎𝑀

and 𝑎* = 𝑎, 𝑏* = 𝑏𝑈 .

20

5.2.2 Additional Variable, Constraints and Convex Refor-
mulation

The structure of the problem allows us to consider the material constant 𝐸 as
a variable, without destroying the convexity of the upcoming reformulation. An
additional restriction on the solution involves the maximum absolute deflection of
the beam, which we denote as 𝛿𝑀 . In our FEM formulation, the vector 𝒱 includes
both the deflection of the beam and its first derivative in each node of the division.

|𝒱𝑖| ≤ 𝛿𝑀 , 𝑖 = 1, 3, 5, . . . , 2𝑁 + 1, (5.15)

which is equivalent to a single inequality

max
𝑖=1,3,5,...,2𝑁+1

|𝒱𝑖| ≤ 𝛿𝑀 , (5.16)

using (5.10) and denoting the maximum of the odd components of |12K−1ℎ| as 𝑤𝑀

we get
𝑤𝑀

𝐸𝑎𝑏3 ≤ 𝛿𝑀 . (5.17)

The final constraint restricts the ratio between 𝑏 and 𝑎 to be less then the maximum
allowed 𝑟𝑀 .

Adding these constraints to (5.13)-(5.14), treating 𝐸 as a design variable and
changing the objective yields the following geometric program:

minimize
𝑎,𝑏,𝐸

𝐸𝑝𝑎𝑏 (5.18)

subject to 𝑣𝑀

𝜎𝑀

𝑎−1𝑏−2 ≤ 1, (5.19)
𝑤𝑀

𝛿𝑀

𝐸−1𝑎−1𝑏−3 ≤ 1, (5.20)

1
𝑟𝑀

𝑏𝑎−1 ≤ 1, (5.21)

𝑎𝐿𝑎−1 ≤ 1,
1

𝑎𝑈

𝑎 ≤ 1, 𝑏𝐿𝑏−1 ≤ 1,
1
𝑏𝑈

𝑏 ≤ 1, 𝐸𝐿𝐸−1 ≤ 1,
1

𝐸𝑈

𝐸 ≤ 1,

(5.22)

where all the coefficients of the monomials in (5.18)-(5.22) are clearly positive,
meaning we can use the following transformation to derive an equivalent linear

21

program:

minimize
𝑦𝑎,𝑦𝑏,𝑦𝐸

𝑦𝑎 + 𝑦𝑏 + 𝑝 · 𝑦𝐸 (5.23)

subject to − 𝑦𝑎 − 2𝑦𝑏 + log 𝑣𝑀 − log 𝜎𝑀 ≤ 0, (5.24)
− 𝑦𝑎 − 3𝑦𝑏 − 𝑦𝐸 + log 𝑤𝑀 − log 𝛿𝑀 ≤ 0, (5.25)
− 𝑦𝑎 + 𝑦𝑏 − log 𝑟𝑀 ≤ 0, (5.26)
log 𝑎𝐿 ≤ 𝑦𝑎 ≤ log 𝑎𝑈 , log 𝑏𝐿 ≤ 𝑦𝑏 ≤ log 𝑏𝑈 , log 𝐸𝐿 ≤ 𝑦𝐸 ≤ log 𝐸𝑈 .

(5.27)

5.3 Random Loads and Robust Solution
In this paper, we assume that the randomness is in the load ℎ. Instead of specifying
the distribution of ℎ by its cumulative distribution function or moment generating
function (that would allow us to use the Bernstein approximation [24]), we devised a
mechanism that produces random samples/scenarios. The sampling procedure is the
following (𝒰(𝑎, 𝑏) denotes a uniform distribution):

0. Pick a random integer 𝑖 between 1 and 4. Set ℎ(𝑥) = 0.
1. Repeat 𝑖 times: Generate a Bernoulli trial.

a) If 0, randomly pick 4 points 0 ≤ 𝑥𝑎 ≤ 𝑥𝑏 ≤ 𝑥𝑐 ≤ 𝑥𝑑 ≤ 𝑙 and add to ℎ(𝑥)
a trapezoidal load ℎ𝑎(𝑥) between 𝑥𝑎 and 𝑥𝑑. Height of the trapezoid is
ℎ𝑀 ∼ 𝒰(0, 1).

b) If 1, sample ℎ𝜇 ∼ 𝒰(0, 𝑙), ℎ𝜎 ∼ 𝒰(0, 𝑙) and add to ℎ(𝑥) the bell curve load:

ℎ𝑏(𝑥) = 1
ℎ𝜎

√
2𝜋

𝑒
−(𝑥−ℎ𝜇)2

2ℎ2
𝜎 .

2. Normalize the load ℎ(𝑥): Pick 𝐻 ∼ 𝒰(8000 N, 15000 N). Compute ℎ𝑖 =∫︀ 𝑙
0 ℎ(𝑥)𝑑𝑥, and set ℎ(𝑥) = 𝐻

ℎ𝑖
ℎ(𝑥).

22

5.4 Chance Constraints and Probabilistic Robust
Design

The chance constrained formulation of the problem has the following form:

minimize
𝑦𝑎,𝑦𝑏,𝑦𝐸

𝑦𝑎 + 𝑦𝑏 + 𝑝 · 𝑦𝐸 (5.28)

subject to 𝑃

⎛⎝ −𝑦𝑎 − 2𝑦𝑏 + log 𝑣𝑀(𝜉) − log 𝜎𝑀 ≤ 0,

−𝑦𝑎 − 3𝑦𝑏 − 𝑦𝐸 + log 𝑤𝑀(𝜉) − log 𝛿𝑀 ≤ 0

⎞⎠ ≥ 1 − 𝜖, (5.29)

− 𝑦𝑎 + 𝑦𝑏 − log 𝑟𝑀 ≤ 0, (5.30)
log 𝑎𝐿 ≤ 𝑦𝑎 ≤ log 𝑎𝑈 , log 𝑏𝐿 ≤ 𝑦𝑏 ≤ log 𝑏𝑈 , log 𝐸𝐿 ≤ 𝑦𝐸 ≤ log 𝐸𝑈 ,

(5.31)

where 1 − 𝜖 is the reliability level. The first part of the method is, again, to draw a
large number 𝑆 of scenarios and solve the following problem:

minimize
𝑦𝑎,𝑦𝑏,𝑦𝐸

𝑦𝑎 + 𝑦𝑏 + 𝑝 · 𝑦𝐸 (5.32)

subject to − 𝑦𝑎 − 2𝑦𝑏 + log 𝑣𝑀(𝑠) − log 𝜎𝑀 ≤ 0, 𝑠 = 1, . . . , 𝑆, (5.33)
− 𝑦𝑎 − 3𝑦𝑏 − 𝑦𝐸 + log 𝑤𝑀(𝑠) − log 𝛿𝑀 ≤ 0, 𝑠 = 1, . . . , 𝑆, (5.34)
− 𝑦𝑎 + 𝑦𝑏 − log 𝑟𝑀 ≤ 0, (5.35)
log 𝑎𝐿 ≤ 𝑦𝑎 ≤ log 𝑎𝑈 , log 𝑏𝐿 ≤ 𝑦𝑏 ≤ log 𝑏𝑈 , log 𝐸𝐿 ≤ 𝑦𝐸 ≤ log 𝐸𝑈 ,

(5.36)

where the 2𝑆 constraints (5.33) and (5.34) can be reduced to the following 2 con-
straints:

− 𝑦𝑎 − 2𝑦𝑏 + max
𝑠

(log 𝑣𝑀(𝑠)) − log 𝜎𝑀 ≤ 0, (5.37)

− 𝑦𝑎 − 3𝑦𝑏 − 𝑦𝐸 + max
𝑠

(log 𝑤𝑀(𝑠)) − log 𝛿𝑀 ≤ 0. (5.38)

For a high enough choice of 𝑆, the optimal solution to (5.32)-(5.38) yields a feasible
solution for the chance constrained problem with high probability (see [7]). As
discussed in [9], we can remove the 𝑘 scenarios at once or we can use a greedy
approach that removes just one scenario at a time. In our case, the greedy approach
makes perfect sense – there are only two scenarios (called support scenarios in [10])
whose removal can decrease the optimal objective value of (5.32)-(5.38):

𝑠1 = argmax
𝑠

(log 𝑣𝑀(𝑠)) and 𝑠2 = argmax
𝑠

(log 𝑤𝑀(𝑠)).

To determine, which one of the two scenarios should be removed, we must solve two
additional linear problems (with 𝑠1 or 𝑠2 temporarily removed) and compare their

23

optimal objective values – this is repeated 𝑘 times. There is one different approach
we will discuss, and that is the approximation of the joint chance constraint (5.29)
by individual chance constraints:

𝑃 (−𝑦𝑎 − 2𝑦𝑏 + log 𝑣𝑀(𝜉) − log 𝜎𝑀 ≤ 0) ≥ 1 − 𝜖1, (5.39)
𝑃 (−𝑦𝑎 − 3𝑦𝑏 − 𝑦𝐸 + log 𝑤𝑀(𝜉) − log 𝛿𝑀 ≤ 0) ≥ 1 − 𝜖2, (5.40)

which become

− 𝑦𝑎 − 2𝑦𝑏 + Φ−1
𝑣 (1 − 𝜖1) − log 𝜎𝑀 ≤ 0, (5.41)

− 𝑦𝑎 − 3𝑦𝑏 − 𝑦𝐸 + Φ−1
𝑤 (1 − 𝜖2) − log 𝛿𝑀 ≤ 0, (5.42)

where Φ−1
𝑣 and Φ−1

𝑤 are the (empirical) quantile functions of log 𝑣𝑀(𝜉) and log 𝑤𝑀(𝜉),
and 𝜖1, 𝜖2 > 0 are appropriately chosen. The problem then becomes:

minimize
𝑦𝑎,𝑦𝑏,𝑦𝐸

𝑦𝑎 + 𝑦𝑏 + 𝑝 · 𝑦𝐸 (5.43)

subject to − 𝑦𝑎 − 2𝑦𝑏 + Φ−1
𝑣 (1 − 𝜖1) − log 𝜎𝑀 ≤ 0, (5.44)

− 𝑦𝑎 − 3𝑦𝑏 − 𝑦𝐸 + Φ−1
𝑤 (1 − 𝜖2) − log 𝛿𝑀 ≤ 0, (5.45)

− 𝑦𝑎 + 𝑦𝑏 − log 𝑟𝑀 ≤ 0, (5.46)
log 𝑎𝐿 ≤ 𝑦𝑎 ≤ log 𝑎𝑈 , log 𝑏𝐿 ≤ 𝑦𝑏 ≤ log 𝑏𝑈 , log 𝐸𝐿 ≤ 𝑦𝐸 ≤ log 𝐸𝑈 .

(5.47)

5.5 Numerical Results
Our goal is to obtain a trade-off curve between the optimal objective value and the
reliability of the design. To achieve this we used our scenarios generation technique
to draw two large sets of scenarios, where the first one contained 𝑆1 and the second 𝑆2

scenarios. The first one was used for the optimization part (i.e. solving (5.32)-(5.38)),
the second one was used for the estimate of the reliability level 𝜖. The method
proceeded as follows:

0. Generate the two sets of scenarios.
Repeat 𝑘 times:

1. Solve (5.32)-(5.38) using the first set of scenarios. Obtain an optimal design.
2. Estimate the reliability of the design using the second set of scenarios: given

a design in the form of 𝑎, 𝑏 and 𝐸, the constraints (5.33)-(5.34) either both
hold, or at least one of them does not hold. This outcome describes a binomial
random variable – compute its point estimate (a fraction of scenarios for which
at least one of the constraints did not hold) and its 99.9% confidence interval
(using the Clopper-Pearson interval).

24

Fig. 5.2: The trade-off between reliability and optimal objective value.

3. Determine, which one of the two support scenarios to remove, and delete it
from the first set of scenarios. Return to 1.

In Fig. 5.2 is depicted the trade-off between the reliability level 𝜖 and the optimal
objective value using the two approaches (5.32)-(5.38) and (5.43)-(5.47). In the first
approach we gradually remove the scenarios (upto 𝑘 = 2,500) – the computational
time for each iteration (two optimization problems, scenario removal) was around
0.4 s. In the second approach (5.43)-(5.47) we vary the values of 𝜖1 = 𝜖2 between 0
and 0.05 – the computational time for each value was around 0.2 s. Furthermore,
used a grid of 1,001 steps for 𝜖1 and 𝜖2 between 0 and 0.05 and computed the results
for all of these grid values (they fill the grey area in Fig. 5.2), this took 45 hours.
The robust solution was computed using the results in the Appendix B (maximum
point loads in 1

2 𝑙 and 1
3 𝑙).

The comparison between the two methods favours the scenario-removal one (5.32)-
(5.38) over solving (5.43)-(5.47) with 𝜖1 = 𝜖2, as it produces designs with better
objective value. For example, given the target (point estimate of) 𝜖 = 0.01, the closest
design produced by (5.43)-(5.47) is for 𝜖1 = 𝜖2 = 0.008, with the objective value
1.776·104, whereas the method using (5.32)-(5.38) with 𝑘 = 568 deleted scenarios
achieved the objective value 1.769·104. Moreover, the scenario-removal method
(5.32)-(5.38) produced as good solutions as the best ones using the grid values for 𝜖1

and 𝜖2 and solving (5.43)-(5.47).

25

BIBLIOGRAPHY
[1] L. Adam and M. Branda. Nonlinear chance constrained problems: Optimality

conditions, regularization and solvers. Journal of Optimization Theory and
Applications, 170(2):419–436, 2016.

[2] T. Alamo, R. Tempo, A. Luque, and D. R. Ramirez. Randomized methods
for design of uncertain systems: Sample complexity and sequential algorithms.
Automatica, 52(1):160–172, 2015.

[3] J. Bezanson, A. Edelman, S. Karpinski, and Shah V. B. Julia: A fresh approach
to numerical computing. SIAM Review, 59:65–98, 2017.

[4] J. R. Birge and F. Louveaux. Introduction to Stochastic Programming. Springer,
1st edition, 1997.

[5] S. P. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University
Press, 1st edition, 2004.

[6] G. C. Calafiore and M. C. Campi. Uncertain convex programs: randomized
solutions and confidence levels. Mathematical Programming, Ser. A, 102(1):25–
46, 2005.

[7] G. C. Calafiore and M. C. Campi. The scenario approach to robust control
design. IEEE Transactions on Automatic Control, 51(5):742–753, 2006.

[8] M. C. Campi and S. Garatti. The exact feasibility of randomized solutions of
uncertain convex programs. SIAM Journal of Optimization, 19(3):1211–1230,
2008.

[9] M. C. Campi and S. Garatti. A sampling-and-discarding approach to chance-
constrained optimization: Feasibility and optimality. Journal of Optimization
Theory and Applications, 148:257–280, 2011.

[10] A. Care, S. Garatti, and M. C. Campi. Scenario min-max optimization and the
risk of empirical costs. SIAM Journal on Optimization, 25(4):2061–2080, 2015.

[11] C. A. Floudas. Nonlinear and Mixed-Integer Optimization: Fundamentals and
Applications. Oxford University Press, 1st edition, 1995.

[12] C. A. Floudas and P. M. Pardalos. Encyclopedia of Optimization. Springer, 2nd
edition, 2009.

[13] A. M. Geoffrion. Generalized Benders decomposition. Journal of Optimization
Theory and Applications, 10(4):237–260, 1972.

26

[14] Gurobi Optimization. Gurobi optimizer reference manual, 2018.

[15] J. Haslinger and R. A. E. Mäkinen. Introduction to Shape Optimization: Theory,
Approximation, and Computation (Advances in Design and Control). SIAM, 1st
edition, 2003.

[16] IBM Corp. IBM ILOG CPLEX Optimization Studio: CPLEX User’s Manual.
Version 12, Release 7., 2016.

[17] P. Kall and S. W. Wallace. Stochastic Programming. John Wiley & Sons, 1st
edition, 1994.

[18] J. Kudela and P. Popela. Warm-start cuts for generalized Benders decomposition.
Kybernetika, 53(6):1012–1025, 2017.

[19] J. Kudela and P. Popela. Chance constrained optimal beam design: Convex
reformulation and probabilistic robust design. Kybernetika, 54(6):1201–1217,
2018.

[20] J. Kudela, P. Popela, R. Somplak, M. Malek, A. Rychtar, and D. Hrabec.
The L-shaped method for large-scale mixed-integer waste management decision
making problems. Chemical Engineering Transactions, 61:1087–1092, 2017.

[21] J. Kudela, R. Somplak, V. Nevrly, and T. Lipovsky. Robust waste transfer
station planning by stochastic programming. Chemical Engineering Transactions,
70(1):889–894, 2018.

[22] I. Lanikova, P. Stepanek, and P. Simunek. Optimized design of concrete struc-
tures considering environmental aspects. Advances in Structural Engineering,
17(4):495–511, 2014.

[23] V. L. Levin. Application of E. Helly’s theorem to convex programming, problems
of best approximation and related questions. Mathematics of the USSR-Sbornik,
8:235–247, 1969.

[24] A. Nemirovski. On safe tractable approximations of chance constraints. European
Journal of Operational Research, 219(3):707–718, 2012.

[25] A. Nemirovski and Shapiro A. Convex approximations of chance constrained
programs. SIAM Journal on Optimization, 17(4):959–996, 2006.

[26] A. Nemirovski and A. Shapiro. Continuous Optimization, chapter On Complexity
of Stochastic Programming Problems. Springer US, 2005.

[27] A. Prekopa. Stochastic Programming. Kluwer, 1st edition, 1995.

27

[28] A. Ruszczynski and A. Shapiro, editors. Stochastic Programming, volume 10
of Handbooks in Operations Research and Management Science. Elsevier, 1st
edition, 2003.

[29] Z. Sabartova and P. Popela. Beam design optimization model with FEM based
constraints. Mendel, 1:422–427, 2012.

[30] F. Shan, L. Zhang, and X. Xiao. A smoothing function approach to joint
chance-constrained programs. Journal of Optimization Theory and Applications,
163(1):181–199, 2014.

[31] I. M. Smith and D. V. Griffiths. Programming the finite element method. John
Wiley & Sons„ 4nd edition, 2004.

[32] E. Zampachova, P. Popela, and M. Mrazek. Optimum beam design via stochastic
programming. Kybernetika, 46(3):571–582, 2010.

27

	Introduction
	Warm-Start Cuts for Generalized Benders Decomposition
	Main Ideas
	GBD for Two-Stage Stochastic Programming Problems
	Solution Procedure
	Reformulation with Bounding Cut

	Waste Transfer Station Planning by Stochastic Programming
	Introduction
	Problem Description
	Implementation and Results

	Chance Constrained Problems
	Introduction
	Sample Counterpart
	Pool & Discard Algorithm
	Pooling Part
	Discarding Part
	Implementation

	Chance Constrained Optimal Beam Design: Convex Reformulation and Probabilistic Robust Design
	Introduction
	Problem Formulation
	FEM Problem Approximation and Solution
	Additional Variable, Constraints and Convex Reformulation

	Random Loads and Robust Solution
	Chance Constraints and Probabilistic Robust Design
	Numerical Results

	Bibliography

