
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INFORMATION SYSTEMS
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

REGULATED GRAMMARS:
CONCEPTS, PROPERTIES AND APPLICATIONS
REGULOVANÉ GRAMATIKY: KONCEPTY, VLASTNOSTI A VYUŽITÍ

MASTER’S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Bc. PETR BEDNÁŘ
AUTOR PRÁCE

SUPERVISOR Prof. RNDr. ALEXANDER MEDUNA, CSc.
VEDOUCÍ PRÁCE

BRNO 2016

Abstract
This thesis is investigating regulated grammars. Introduces new modifications of existing
regulated grammars. Introduces parsing methods of newlz introduces modifications. Dis-
cusses problems of determinism in definition of grammars. It studies the expressive strength
of these new modifications applied on regular-controlled grammars.

Abstrakt
Tato práce se zabývá regulovanými gramatikami. Zavádí nové modifikace existujících reg-
ulovaných gramatik. Pro tyto modifikace zavádí metody syntaktické analýzi. Diskutuje
problémy determinismu v definici gramatik. Studuje sílu nově uvedených modifikací ap-
likovaných na regulárně regulované gramatiky.

Keywords
regulated grammars, determinism, syntax analysis, regular-controlled grammars, LL gram-
mars

Klíčová slova
regulované gramatiky, determinismus, syntaktická analýza, regulárně regulované gramatiky,
LL gramatiky

Reference
BEDNÁŘ, Petr. Regulated Grammars:
Concepts, Properties and Applications. Brno, 2016. Master’s thesis. Brno University of
Technology, Faculty of Information Technology. Supervisor Meduna Alexander.

Regulated Grammars:
Concepts, Properties and Applications

Declaration
Hereby I declare that this master’s thesis was prepared as an original author’s work under
the supervision of prof. RNDr. Alexandra Meduny, CSc. All the relevant information
sources, which were used during preparation of this thesis, are properly cited and included
in the list of references.

. .
Petr Bednář

May 25, 2016

Acknowledgements
I would like to express my gratitude to my supervisor prof. RNDr. Alexander Meduna,
CSc. for his guidance and kind approach.

c○ Petr Bednář, 2016.
This thesis was created as a school work at the Brno University of Technology, Faculty
of Information Technology. The thesis is protected by copyright law and its use without
author’s explicit consent is illegal, except for cases defined by law.

Contents

1 Introduction 5
1.1 Focus . 6
1.2 Organization . 6

2 Basic Concepts 7
2.1 Basic Definitions . 7

2.1.1 Alphabets and Words . 7
2.1.2 Languages . 8

2.2 Grammars . 9
2.3 Language Families . 10

2.3.1 Recursively Enumerable Languages 10
2.3.2 Context-Sensitive Languages . 10
2.3.3 Context-Free Languages . 11
2.3.4 Metalinear Languages . 11
2.3.5 Linear Languages . 12
2.3.6 Regular Languages . 12
2.3.7 Finite Languages . 13
2.3.8 Chomsky Hierarchy . 13

2.4 Automata . 13
2.4.1 Finite Automata . 13
2.4.2 Grammar Automata . 14

2.5 Derivation Trees . 16
2.6 Syntax Analysis . 16

3 Regulated Grammars 18
3.1 Reasons to Study . 18

3.1.1 Context-Free Grammars . 19
3.1.2 Context-Sensitive Grammars . 19
3.1.3 Computational History . 20

3.2 Basic Concepts . 21
3.3 Context-Based Regulation . 21

3.3.1 Random Context Grammars . 21
3.3.2 Context-Conditional Grammars . 22
3.3.3 Scatered Context Grammars . 22
3.3.4 Restricted Derivation Tree Grammars 22

3.4 Rule-Based Regulation . 22
3.4.1 Regular-Controlled Grammars . 22
3.4.2 Matrix Grammars . 23

1

3.4.3 Programmed Grammars . 23
3.4.4 State Grammars . 23

3.5 On Adaptive Grammars . 24
3.6 Leftmost Modification . 24

4 Grammar Automata 26
4.1 Positioned Grammar Automata . 26
4.2 Basic transformations . 26
4.3 Operation . 28

5 Switch-Paused Regulated Grammars 29
5.1 Definition . 29
5.2 Other Regulations . 31

5.2.1 Rule-Based Regulations . 31
5.2.2 Context-Based Regulations . 32

5.3 Examples . 32
5.4 Generation . 34

5.4.1 Leftmost Modification . 35
5.5 Parsing . 35

5.5.1 Specific Transformations . 35
5.5.2 Analysis . 37

5.6 Properties . 37
5.6.1 Switch-Paused to Original . 37
5.6.2 Original to Switch-Paused . 38
5.6.3 Expressive Strength . 38

6 Determinism-Paused Regulated Grammars 40
6.1 On Determinism in Generation . 40

6.1.1 Undeterministic Generation . 41
6.1.2 Ways to Determinism . 41

6.2 Definition . 47
6.2.1 Leftmost Modification . 49

6.3 Other Regulations . 49
6.3.1 Random Context Grammars . 49
6.3.2 Tree-Regulated Grammars . 49

6.4 Examples . 49
6.5 Generation . 52
6.6 Parsing . 52

6.6.1 Application of Limitations . 53
6.6.2 Specific Transformations . 53

6.7 Properties . 53
6.7.1 Original to Determinism-paused . 53
6.7.2 Expressive Strength . 54

7 Conclusions 57

Bibliography 59

2

Appendices 60
List of Appendices . 61

A Content of CD 62

3

List of Figures

2.1 Chomsky hierarchy of languages . 13

4.1 Single rules automata . 27
4.2 Concatenation of 𝑀1 and 𝑀2 . 27
4.3 Union of 𝑀1 and 𝑀2 . 27
4.4 Iteration of 𝑀1 . 27

5.1 Original initial state . 36
5.2 Transformed initial state . 36
5.3 Original off-switching state . 36
5.4 Transformed off-switching state . 36

6.1 Original state . 53
6.2 Transformed state . 53

4

Chapter 1

Introduction

Languges are the single meaning of a communication. Humans use natural languages to
convey and store information. Natural languages are rich in their varieties and capabilities.
They have also few crucial disadvantages. Mutual understanding of two different parties
inherently depends on shared model of a world. Any differences can lead to information
loss or change. In time, the model can be changed. This may result in loss of stored
informations even with unharmed data, which represents it. The natural languages proven
itselves to be hard to machine analyse. This is largely due to wide range of variations and
minute differences, brought by any human user.

The disadvantages and hardship with using natural languages while interfacing comput-
ers, led to creation of formal languages. Now, formal languages are one of corner stones of
theoretical informatics. They allow us, to record both data and algoriths, used to manip-
ulate those data. Basic form of programming languages and communication protocols are
usually defined using formal languages. Their rigid and formaly specified notation allow us
to communicate safely, without the danger of misinterpretation.

The formal languages are classified into different language families. Families are created
by similarities in instances of related instances of languages. They also pose a restrictions
on languages. The formal language theory uses mainly two basic kinds of formal models:
grammars, which defines a language by capability to generate its every word, and automata,
which defines a by ability to accept its every word.

The grammar is a generative model of formal language. The start symbol is rewriten,
untill a sentence of language is acquired. The rewrites are controlled by a set of rules, which
are an only form of action a grammar can take.

One of the families of formal languages are context-free languages, specified by context-
free grammars. The field of context-free grammars was studied for a long time. The
goal was, to use them to specify both, a natural and programming lanugages. Context-
free languages, and grammars, are comparably simple in their form. But they often fail
in real applications, due to limits of their expressive strength. Not even commonly used
programming languages can be specified by them.

Regulated languages aims to increase expressive power of their unregulated counter-
parts. This should be achieved without changing of basic form of production rules. In
history, many models of regulated grammars has been introduced. They use regulations
both imperatively, when describing order of productions, or declaratively, when deciding
only by the combined effect, created by using number of production rules.

5

1.1 Focus
The goal of this thesis is creation of new models of regulated grammars. This new models are
based on already existing models, not creating entirely new branch of regulated grammars.
We introduce new modes of operation, for already existing regulated grammars.

For newly introduced models, a formal definition and an example of parsing technique,
is presented. The computational power is investigated.

1.2 Organization
The theis is organized into 6 chapters. We will look closer to the content of each of them.

∙ Chapter 1, this chapter, serves as a simple introduction into field of study, outlines
the focus of this work and describes its structure.

∙ Chapter 2 describes background definitions of basic terms, used later in this thesis.
This includes terms on formal languages, grammars and automata. This thesis require
the reader to be familiar with basic mathematical concepts and notation.

∙ Chapter 3 is a closer study of the current state of regulated grammars study. The reg-
ulated grammars are cathegorized acording to similarities of productions and means
of conduct.

∙ Chapter 4 describes a basic model used for parsing of a newly introduced grammars.

∙ Chapter 5 introduces the first of newly proposed modes of regulation, which is called
pause-paused mode. We define this mode for already existing language-controlled
regulation model. Chapter describes a way, to generate a valid sentence under this
mode and introduces a way for parsing a sentence using this modification.

∙ Chapter 6 introduces the second of newly proposed modes of regulation, this one
is called determinism-paused mode. As for the first mode, we define this mode for
already existing language-controlled regulation model. Chapter describes a way, to
generate a valid sentence under this mode and introduces a way for parsing a sentence
using this modification.

∙ Chapter 7 summarizes the results of this work, and discusses the several ways for
further research of recently presented modes of regulated grammars.

6

Chapter 2

Basic Concepts

This chapter gives the survey of the fundamental terms,used in formal languages theory
and later in this thesis. At first section 2.1, the formal languages and its parts are defined.
Next two sections, 2.2 and 2.4, serves as an introduction to the models, used to specify
formal languages. A section 2.3 is dedicated to establishing of hiearchical view of formal
languages. A section 2.5 is explaining the term of derivation tree. Lastly, a section 2.6
describes a term of syntax analysis.

The definitions and formalisms in this chapter are based on [10], [11], [7] and [14].

2.1 Basic Definitions
In order to underestand terms, introduced in this thesis, we need to establish a common
set of knowledge. Hence, we will introduce several terms, related to the formal languages.
This terms are used later in this thesis.

The set, tuple and sequence are standard mathematical devices. Rigorous definitions
can be studied in literature. It is expected from the reader, to be familiar with them. For
sequence, the term group may be used interchangeably.

2.1.1 Alphabets and Words

Definition 2.1 (Symbol)
The symbol is a basic atomic unit in formal languages.

Definition 2.2 (Alphabet)
The alphabet is a finite, nonempty set of symbols.

Definition 2.3 (Size of alphabet)
Let Σ be an alphabet. Then the |Σ| denotes the size of alphabet Σ. It is defined as a number
of symbols contained in set Σ. The empty alphabet is an alphabet, containing no symbols.

Definition 2.4 (Word and string)
Let Σ be an alphabet. The word is then ordered group of symbols of any length. For
a group (𝑥0, 𝑥1, . . . , 𝑥𝑛), where 𝑛 ≥ 1, we can use shorter notation 𝑥0𝑥1 . . . 𝑥𝑛. Alternative
name for a word is string.

∙ 𝜀 is an empty group, which contains no symbols. It is called an empty word.

∙ If 𝑥 is a word over an alphabet Σ and 𝑎 ∈ Σ, then 𝑥𝑎 is a string over an alphabet Σ.

7

Let Σ* denote the set of all words over Σ and set Σ+ = Σ* ∖ {𝜀}.

Definition 2.5 (Length of word)
Let 𝑥 be a word over an alphabet Σ. Then length of word 𝑥, denoted as |𝑥|, is defined as
a number of symbols in a word.

∙ If 𝑥 = 𝜀, then |𝑥| = 0.

∙ If 𝑥 = 𝑎1𝑎2 . . . 𝑎𝑛, where 𝑎𝑖 ∈ Σ, for all 0 ≤ 𝑖 ≤ 𝑛 and some 𝑛 ≥ 1, then |𝑥| = 𝑛.

Definition 2.6 (Concatenation of words)
Let 𝑥 and 𝑦 be two words over an alphabet Σ. Then, 𝑥𝑦 is the concatenation of 𝑥 and 𝑦.
For every word 𝑥, it holds 𝑥𝜀 = 𝜀𝑥 = 𝑥.

Definition 2.7 (Power of word)
Let 𝑥 be a word over an alphabet Σ. Then, 𝑥𝑛 denotes nth power of word, which is defined
such:

∙ 𝑥0 = 𝜀,

∙ 𝑥𝑛 = 𝑥𝑥𝑛−1, where 𝑛 ≥ 1 and 𝑛 is an integer.

Definition 2.8 (Subword and substring)
Let 𝑥 and 𝑦 be two words over an alphabet Σ. Then 𝑥 is a subword of 𝑦 if there exist two
words 𝑧 and 𝑧′, over Σ, such that 𝑧𝑥𝑧′ = 𝑦. If 𝑥 /∈ {𝜀, 𝑦} then 𝑥 is a proper subword of 𝑦.

Definition 2.9 (Prefix and suffix)
Let 𝑥, 𝑦 and 𝑧 be words over an alhabet Σ, such that 𝑥 = 𝑦𝑧. Then 𝑦 is a prefix of 𝑥 and 𝑧
is a suffix of 𝑥. If 𝑦 /∈ {𝜀, 𝑥}, then 𝑦 is a proper prefix of 𝑥. If 𝑧 /∈ {𝜀, 𝑥}, then 𝑧 is a proper
suffix of 𝑥.

2.1.2 Languages

Definition 2.10 (Language)
Let Σ be an alphabet. Then any set 𝐿 ⊆ Σ* is a language over Σ. The set Σ* is called
the universal language. It contains all strings over the alphabet Σ. If 𝐿 = ∅, then 𝐿 is an
empty language. If 𝐿 contains single string, then 𝐿 is a unary language.

Definition 2.11 (Concatenation of languages)
Let 𝐿1 and 𝐿2 be two languages. The concatenation of languages 𝐿1 and 𝐿2, denoted
by 𝐿1𝐿2, is defined as a language containing all possible concatenations of strings of both
languages. 𝐿1𝐿2 = {𝑥𝑦|𝑥 ∈ 𝐿1 ∧ 𝑦 ∈ 𝐿2}.

Definition 2.12 (Union of languages)
Let 𝐿1 and 𝐿2 be two languages. The union of languages 𝐿1 and 𝐿2, denoted by 𝐿1∪𝐿2, is
defined as a language containing sentences of both languages. 𝐿1∪𝐿2 = {𝑥|𝑥 ∈ 𝐿1∨𝑥 ∈ 𝐿2}.

Definition 2.13 (Intersection of languages)
Let 𝐿1 and 𝐿2 be two languages. The intersection of languages 𝐿1 and 𝐿2, denoted by
𝐿1 ∩ 𝐿2, is defined as a language containing sentences, which appears in both languages.
𝐿1 ∩ 𝐿2 = {𝑥|𝑥 ∈ 𝐿1 ∧ 𝑥 ∈ 𝐿2}.

8

Definition 2.14 (Difference of languages)
Let 𝐿1 and 𝐿2 be two languages. The difference of languages 𝐿1 and 𝐿2, denoted by 𝐿1∖𝐿2,
is defined as a language 𝐿1 without a sentences of language 𝐿2. 𝐿1 ∖𝐿2 = {𝑥|𝑥 ∈ 𝐿1 ∧ 𝑥 /∈
𝐿2}.

Definition 2.15 (Complement of language)
Let 𝐿 be a language over an alphabet Σ. The complement of language 𝐿, denoted by �̄�, is
defined as �̄� = Σ* ∖ 𝐿.

Definition 2.16 (Power of language)
Let 𝐿 be a language. The nth power of language 𝐿, denoted by 𝐿𝑛, for 𝑛 ≥ 0, is defined as
a number of language concatenations. The recursive definition is

∙ 𝐿0 = {𝜀},

∙ 𝐿𝑛 = 𝐿𝐿𝑛−1, where 𝑛 ≥ 1 and 𝑛 is an integer.

Definition 2.17 (Class of languages)
The class of languages is defined as a set of languages.

2.2 Grammars
In the formal language theory, a grammar is a fundamental model for generating languages.
When grammar defines a language, then all and no other string can be generated by this
grammar.

Definition 2.18 (Phrase structure grammar)
A phrase structure grammar 𝐺 is a quadruple

𝐺 = (𝑁,𝑇, 𝑃, 𝑆), (2.1)

where

∙ 𝑁 is an alphabet of nonterminals;

∙ 𝑇 is an aplhabet of terminals, 𝑁 ∩ 𝑇 = ∅;

∙ 𝑃 ⊂ (𝑁 ∪ 𝑇)*𝑁(𝑁 ∪ 𝑇)* × (𝑁 ∪ 𝑇)* is a finite set of rules;

∙ 𝑆 ∈ 𝑁 is the start symbol.

Pairs (𝛼, 𝛽) ∈ 𝑃 are also called rewriting rules or production rules.

Convention: Instead of (𝛼, 𝛽) ∈ 𝑃 , the form (𝛼→ 𝛽) ∈ 𝑃 can be used.

The set 𝑉 = 𝑁 ∪ 𝑇 is the total alphabet of 𝐺. A rewriting rule 𝛼→ 𝜀 ∈ 𝑃 is called an
erasing rule. If there is no erasing rule in 𝑃 , then we say that 𝐺 is a propagating, or 𝜀-free
grammar.

The word from 𝑉 * is called a sentential form and the word from 𝑇 * is called a sentence.
The 𝐺-based direct derivation is a relation over 𝑉 *. It is denoted by a symbol ⇒𝐺 and

defined as

𝑥⇒𝐺 𝑦 (2.2)

9

if and only if 𝑥 = 𝑥1𝛼𝑥2, 𝑦 = 𝑥1𝛽𝑥2, where 𝑥1, 𝑥2 ∈ 𝑉 * and 𝛼→ 𝛽 ∈ 𝑃 .
Since ⇒𝐺 is a relation, ⇒𝑘

𝐺 is the 𝑘th power of ⇒𝐺, for 𝑘 ≥ 0, ⇒+
𝐺 is the transitive

closure of ⇒𝐺, and ⇒*
𝐺 is the reflexive-transitive closure of ⇒𝐺. Let 𝐷 be a derivation

𝑆 ⇒*
𝐺 𝑥, if 𝑥 ∈ 𝑇 *, then 𝐷 is a successful (or terminal) derivation.

The language of 𝐺, denoted by 𝐿(𝐺), is the set of all sentences defined as

𝐿(𝐺) = {𝑤 ∈ 𝑇 *|𝑆 ⇒*
𝐺 𝑤}. (2.3)

For every phrase-structure grammar 𝐺, we define two sets, 𝐹 (𝐺) and ∆(𝐺). 𝐹 (𝐺)
contains all sentential forms of G. ∆(𝐺) contains all sentential forms from which there is
a derivation of a string in 𝐿(𝐺).

The grammar 𝐺 can be writen as a quintuple (𝑁,𝑇,Ψ, 𝑃, 𝑆). In this form, the additional
Ψ denotes a set of labels. For each rule there exists exactly one label, which is paired with
a bijection 𝜓 from Ψ to 𝑃 .

2.3 Language Families
Language family is other name used for language class. This name is usualy used for
systematically created class, not just arbitrary created one. With both language family
or class, we sometimes use another term, an expressive power, or computational power.
The model has an expressive power of a certain language class, when we are able to fully
describe this class by this model. With expressive power we manipulate in a similar maner
to sets. When a model has a power to express certain class ℒ1, we expect it to have power
to express any class ℒ2 ⊆ ℒ1 fully.

2.3.1 Recursively Enumerable Languages

Definition 2.19 (Recursively enumerable language)
A recursive enumerable language is a language, for which there exists a phrase-structured
grammar.

Commonly used abbreviation is RE or type 0. Any language models that characterize
RE are said to be computationaly complete. They have the same expressive strength as all
possible language-defining procedures according to Church-Turing’s thesis.

Convention: The family of recursively enumerable languages is denoted by ℒ(𝑅𝐸).

2.3.2 Context-Sensitive Languages

Definition 2.20 (Context-sensitive grammar)
A context-sensitive grammar is a phrase-structure grammar

𝐺 = (𝑁,𝑇, 𝑃, 𝑆) (2.4)

such that every 𝛼→ 𝛽 ∈ 𝑃 satisfies the form

𝛼 = 𝑥1𝐴𝑥2, 𝛽 = 𝑥1𝑦𝑥2, 𝐴 ∈ 𝑁, 𝛼, 𝛽 ∈ (𝑁 ∪ 𝑇)*, 𝑦 ∈ (𝑁 ∪ 𝑇)+. (2.5)

Definition 2.21 (Context-sensitive language)
A context-sensitive language is a language generated by a context-sensitive grammar.

Commonly used abbreviation is CS or type 1.

Convention: The family of context-sensitive languages is denoted by ℒ(𝐶𝑆).

10

2.3.3 Context-Free Languages

Definition 2.22 (Context-free grammar)
A context-free grammar is a phrase-structure grammar

𝐺 = (𝑁,𝑇, 𝑃, 𝑆) (2.6)

such that every 𝛼→ 𝛽 ∈ 𝑃 satisfies the form

𝛼 ∈ 𝑁, 𝛽 ∈ (𝑁 ∪ 𝑇)*. (2.7)

Definition 2.23 (Context-free language)
A context-free language is a language generated by a context-free grammar.

Commonly used abbreviation is CF or type 2.

Convention: The family of context-free languages is denoted by ℒ(𝐶𝐹).

Ambiguity

For context-free languages we define few additional properties. These are directly tied to
context-free grammars.

Definition 2.24 (Ambiguity)
Let 𝐺 = (𝑁,𝑇, 𝑃, 𝑆) be a context-free grammar. If there exists a word 𝑥 ∈ 𝐿(𝐺) such
that 𝑆 ⇒*

𝐺 𝑥[𝜋1] and 𝑆 ⇒*
𝐺 𝑥[𝜋2] with 𝜋1 ̸= 𝜋2, then 𝐺 is ambiguous; otherwise, 𝐺 is

unambiguous.

Definition 2.25 (Inherent ambiguity)
Let 𝐿 be language. If every context-free grammar 𝐺 satisfying 𝐿(𝐺) = 𝐿 is ambiguous,
then L is inherently ambiguous.

2.3.4 Metalinear Languages

Definition 2.26 (Metalinear grammar)
A metalinear grammar is a phrase-structure grammar

𝐺 = (𝑁,𝑇, 𝑃, 𝑆) (2.8)

such that every 𝛼→ 𝛽 ∈ 𝑃 satisfies the form

𝛼 ∈ 𝑁, 𝛽 = 𝑥1𝐵𝑥2, 𝑥1, 𝑥2 ∈ 𝑇 *, 𝐵 ∈ (𝑁 ∪ 𝜀) (2.9)

or

𝛼 = 𝑆, 𝛽 = 𝑥0𝐵1𝑥2𝐵2 . . . 𝑥𝑛−1𝐵𝑛𝑥𝑛, 𝑥𝑖 ∈ 𝑇 *, 𝐵 ∈ (𝑁 ∖ {𝑆}). (2.10)

Occurence of rule in second form implies, that no rule uses symbol 𝑆 on its right-hand side.

Definition 2.27 (Metalinear language)
A metalinear language is a language generated by a metalinear grammar.

Commonly used abbreviation is MLIN.

Convention: The family of context-free languages is denoted by ℒ(𝑀𝐿𝐼𝑁).

11

2.3.5 Linear Languages

Definition 2.28 (Linear grammar)
A linear grammar is a phrase-structure grammar

𝐺 = (𝑁,𝑇, 𝑃, 𝑆) (2.11)

such that every 𝛼→ 𝛽 ∈ 𝑃 satisfies the form

𝛼 ∈ 𝑁, 𝛽 = 𝑥1𝐵𝑥2, 𝑥1, 𝑥2 ∈ 𝑇 *, 𝐵 ∈ (𝑁 ∪ 𝜀). (2.12)

Definition 2.29 (Linear language)
A linear language is a language generated by a linear grammar.

Commonly used abbreviation is LIN.

Convention: The family of context-free languages is denoted by ℒ(𝐿𝐼𝑁).

2.3.6 Regular Languages

Definition 2.30 (Regular grammar)
A regular grammar is a phrase-structure grammar

𝐺 = (𝑁,𝑇, 𝑃, 𝑆) (2.13)

such that every 𝛼→ 𝛽 ∈ 𝑃 satisfies the form

𝛼 ∈ 𝑁, 𝛽 = 𝑎𝐵, 𝑎 ∈ 𝑇, 𝐵 ∈ (𝑁 ∪ 𝜀). (2.14)

Definition 2.31 (Regular language)
A regular language is a language generated by a regular grammar.

Commonly used abbreviation is REG or type 3.

Convention: The family of regular languages is denoted by ℒ(𝑅𝐸𝐺).

The regular language, is the weakest form of infinite languages we are using. If we want
to write down any infinite language, we cannot list every possible sentence. We usually use
grammar, automata or set of conditions, that specifies this language. For regular languages
we also specify regular expressions. These are based on specification of sets of allowed
substrings.

Used notation of regular expressions:

∙ ∅ is a regular expression denoting an empty set;

∙ 𝜀 is a regular expression denoting a set {𝜀};

∙ 𝑎 is a regular expression denoting a set {𝑎}, for 𝑎 ∈ Σ;

∙ if 𝑥 and 𝑦 are both regular expressions, denoting a sets 𝑋 and 𝑌 , we may construct
another expressions:

– 𝑥+ 𝑦 is a regular expression, denoting a set 𝑋 ∪ 𝑌 ,
– 𝑥𝑦 is a regular expression, denoting a set 𝑋 · 𝑌 ,
– 𝑥* is a regular expression, denoting a set 𝑋*,
– 𝑥+ is a regular expression, denoting a set 𝑋 ·𝑋*,
– 𝑥? is a regular expression, denoting a set 𝜀 ∪𝑋.

12

2.3.7 Finite Languages

Definition 2.32 (Finite languages)
A finite language is a lanugage 𝐿 with size |𝐿| = 𝑛, where 𝑛 is a finite integer. A finite
lanugage can be completly listed in a finite ammount of time.

Commonly used abbreviation is FIN.

Convention: The family of finite languages is denoted by ℒ(𝐹𝐼𝑁).

2.3.8 Chomsky Hierarchy

Language classes can be classified into hierarchical language system. This system is organ-
ised by properties of languages. One of the well-known hierarchies was created by Noam
Chomsky [3]. This hierarchy has proven itself to be usefull in qualification of concrete
models of languages. It is specified with theorem 2.1 [4].

Theorem 2.1 (Chomsky hierarchy)
ℒ(𝑅𝐸𝐺) ⊂ ℒ(𝐶𝐹) ⊂ ℒ(𝐶𝑆) ⊂ ℒ(𝑅𝐸)

Figure 2.1: Chomsky hierarchy of languages

This hierarchy can be expanded by adding another classes of languages, to get expanded
hierarchy 2.2 [7][Theorem 0.2.3].

Theorem 2.2 (Extended Chomsky hierarchy)
ℒ(𝐹𝐼𝑁) ⊂ ℒ(𝑅𝐸𝐺) ⊂ ℒ(𝐿𝐼𝑁) ⊂ ℒ(𝐶𝐹) ⊂ ℒ(𝐶𝑆) ⊂ ℒ(𝑅𝐸)

2.4 Automata
In the formal language theory, an antomata serves as a counterpart to grammars. Automata
are models for accepting languages. When language is defined by an antumata, then this
automata has to succesfully stop for all and no other string of this language. This section is
limited to finite automata, pushdown automata and grammar automata because they serve
as a models used later. Many other automata systems exists.

2.4.1 Finite Automata

Finite automata is one of basic automata models. It has advantage of constant space
complexity, which also limits its expressive power.

13

Definition 2.33 (Finite automaton)
A finite automaton M is a quintuple

𝑀 = (𝑄,Σ, 𝑅, 𝑠, 𝐹), (2.15)

where

∙ 𝑄 is a finite set of states;

∙ Σ is an input alphabet, 𝑄 ∩ Σ = ∅,

∙ 𝑅 ⊂ 𝑄(Σ ∪ {𝜀})×𝑄 is a finite set of rules;

∙ 𝑠 ∈ 𝑄 is the initial state;

∙ 𝐹 ⊆ 𝑄 is a set of final states.

Convention: Instead of (𝑝𝑎, 𝑞) ∈ 𝑅, the form 𝑝𝑎→ 𝑞 ∈ 𝑅 is preferred.

If R has the properties of a function and it holds, that

∀𝑝 ∈ 𝑄 ∀𝑎 ∈ Σ ∃𝑞, 𝑞‘ ∈ 𝑄 : 𝑝→ 𝑞 ∈ 𝑅⇒ 𝑝𝑎→ 𝑞‘ /∈ 𝑅 (2.16)

then finite automata is said to be deterministic.
A configuration Ξ of 𝑀 , is defined as Ξ ∈ 𝑄Σ*. Let 𝜉 = 𝑝𝑎𝑤 and 𝜉‘ = 𝑞𝑤 be two

configurations of 𝑀 , where 𝑤 ∈ Σ*, 𝑎 ∈ Σ ∪ {𝜀}, and 𝑝, 𝑞 ∈ 𝑄. If 𝑟 : 𝑝𝑎→ 𝑞 ∈ 𝑅 si a rule,
then 𝑀 makes a move from 𝜉 to 𝜉‘ according to 𝑟, writen as 𝜉 ⊢𝑀 𝜉‘[𝑟] or 𝜉 ⊢𝑀 𝜉‘.

The language 𝐿(𝑀) accepted by finite automaton 𝑀 is defined as

𝐿(𝑀) = {𝑤 ∈ Σ* | 𝑠𝑤 ⊢*𝑀 𝑓 [𝜋], 𝑓 ∈ 𝐹}. (2.17)

Convention: Finite automata is abbreviated with FA, the deterministic variant by
DFA. The family of languages accepted by FA is denoted by ℒ(𝐹𝐴)

Theorem 2.3 (Fininte automata strength)
ℒ(𝐹𝐴) = ℒ(𝑅𝐸𝐺) [13]

2.4.2 Grammar Automata

The grammar automaton is an automaton builded upon a finite automaton. To this au-
tomaton is added a work string and input string. The automaton generates a working
model of a sentential form in its work string. Using this template, it reduces the input
string till no original input symbols are left.

Definition 2.34 (Grammar automaton)
The grammar automaton 𝐺𝐴, see [2][Definition 4.1], is an 8-tuple

𝐺𝐴 = (𝑄,Σ,Γ, 𝑅, 𝑠, 𝑆, 𝐹, 𝛿), (2.18)

where

∙ 𝑄 = 𝑄𝑒 ∪𝑄𝑟, 𝑄𝑒 ∩𝑄𝑟 = ∅, where 𝑄𝑒 is a finite set of empty states, which does not
apply any rules and 𝑄𝑟 is a finite set of non-empty states. Every non-empty state 𝑡
applies exactly one production rule 𝜌𝑡 : Γ+ → Γ*, when the automaton moves into
this state;

14

∙ Σ is an input aplhabet;

∙ Γ is an alphabet of work symbols;

∙ 𝑅 ⊆ (𝑄×N× 𝑓 ×𝑄) is a finite set of rules, where 𝑓 : (Γ*×Σ*×{0, 1}) is a feasibility
function. The rule, writen as (𝑝, 𝑣, 𝑓, 𝑞) ∈ 𝑅, is feasible only when the feasibility
function has a value 1 as its last element. The symbol 𝑣 denotes the priority of the
rule;

∙ 𝑠 ∈ 𝑄 is an initial state;

∙ 𝑆 ∈ Γ+ is an initial work string;

∙ 𝐹 ⊆ 𝑄 is a finite set of final states;

∙ 𝛿 : (Γ* × Σ* × Γ* × Σ*) is a normalization function, which is applied after every
application of the rule, to acquire a normalized form of a work and input string.

Convention: Instead of (𝑝, 𝑣, 𝑓, 𝑞) ∈ 𝑅, the form 𝑝(𝑣, 𝑓)→ 𝑞 ∈ 𝑅 is preferred.

If feasibility function is constantly 1 and a priority is 0, the rule is called to be joining.
The rule is 𝑟1 is said to be executable only when

𝑟1 : 𝑝(𝑣1, 𝑓1)→ 𝑞1,

𝑟2 : 𝑝(𝑣2, 𝑓2)→ 𝑞2, (2.19)

where 𝑟1, 𝑟2 ∈ 𝑅, 𝑣1 ≤ 𝑣2, 𝑆1 ∈ Γ*, 𝑆2 ∈ Σ* and 𝑓1(𝑆1, 𝑆2) = 1 ∧ 𝑓2(𝑆1, 𝑆2) = 0
Let 𝑠0, 𝑠1, . . . , 𝑠𝑛, for 𝑛 ≥ 1, be a string of states of grammar automata, then therealways

exists at least one rule such that

𝑠𝑚(𝑣, 𝑓)→ 𝑠𝑚+1 ∈ 𝑅 ∧ 0 ≤ 𝑚 ≤ 𝑛− 1. (2.20)

The configuration of the grammar automata is a triplet (𝑞, 𝑃, 𝐼), where 𝑞 ∈ 𝑄, 𝑃 ∈ Γ*

is the work string and 𝐼 ∈ Σ* denotes the input string.
The grammar automaton is said to be finished, when in an actual configuration (𝑞, 𝑃, 𝐼),

the state 𝑞 ∈ 𝐹 and both 𝑃 and 𝐼 equals 𝜀.
The transition of a grammar automaton from a state 𝑝 into a state 𝑞 by a rule 𝑟 is

denoted by

𝑝 ⊢ 𝑞[𝑟]. (2.21)

For joining rule, we can use a notation

𝑝 ⊢𝜀 𝑞[𝑟]. (2.22)

The step 𝑐[𝑟] of a grammar automata from a state 𝑝0 into a state 𝑝2 by a rule 𝑟 is a string
of transistions, containing exactly one non-joining transition, such that

𝑐 : 𝑝0 ⊢*𝜀 𝑝1 ⊢ 𝑝2[𝑟]. (2.23)

For every state 𝑝 ∈ 𝑄 if a grammar automaton is defined a joining closure 𝐶(𝑝) such
that

𝐶(𝑝) = {𝑞 | 𝑞 ∈ 𝑄 ∧ 𝑝 ⊢*𝑒𝑝𝑠 𝑞}. (2.24)

15

Convention: Abbreviation of grammar automata is 𝐺𝐴.

The grammar automata starts at initial configuration, which consists of initial state,
initial work string and initial input. At every step, the automata applies a single rule,
represented by an arriving into an automata state. This transition is permitted only when
a feasibility function for current configuratio equals 1. There exists a hierarchy of rules,
created by its priorities. Lower priority is always preferred. After each change of a work or
input string, the normalization function is used, to acquire a mormalized state, ready for
next step.

2.5 Derivation Trees
A derivation tree represents the structure of a derivation using a graph. This representation
does preserve the structure of the derivation, but ommits an order in which individual rules
were applied.

It is expected from a reader to be familiar with the basic terms of the graph theory.
These includes graph, directed graph, edge, path and tree. For more information, see [8].

Definition 2.35 (Directed subtree)
Let 𝑇 = (𝑉, 𝜌) be a directed tree. A tree 𝑇 ‘ = (𝑉 ‘, 𝜌‘) is a directed subtree, when

∙ 𝑉 ′ ⊆ 𝑉 and 𝑉 ′ ̸= ∅;

∙ 𝜌′ = (𝑉 ′ × 𝑉 ′) ∩ 𝜌;

∙ there is no simple path from any node in 𝑉 ′ to any node in 𝑉 ∖ 𝑉 ′ in 𝑇

Definition 2.36 (Ordered directed tree)
Let 𝑇 = (𝑉, 𝜌) be a directed tree. It is an ordered directed tree, when upon nodes 𝑣1, 𝑣2 . . . 𝑣𝑛,
for 𝑛 ≥ 0, which are direct descendants of node 𝑢, there exists total order.

Definition 2.37 (Derivation tree)
Let 𝐺 = (𝑁,𝑇, 𝑃, 𝑆) be a context-free grammar. Then derivation tree is an ordered directed
graph, such that:

∙ Nodes of a derivation tree are labelled with a member of 𝑁 ∪ 𝑇 ∪ {𝜀};

∙ Root of a derivation tree is labelled with 𝑆;

∙ Let nodes 𝑣1, 𝑣2 . . . 𝑣𝑛, labeled with 𝑦1, 𝑦2 . . . 𝑦𝑛, be a direct descendants of a node 𝑢,
labeled with 𝑥. The ordering < is defined as 𝑣𝑖 < 𝑣𝑖+1. Then there exists a rule
𝑥 → 𝑦1𝑦2 . . . 𝑦𝑛. Descendant labeled with a symbol 𝜀 is allowed only for an erasing
rule.

2.6 Syntax Analysis
Grammars are used to generate strings of formal language. Syntax analysis [1], or parsing,
is a reverse process with a simple goal. Take a concrete string as an input and decide,
whethever this string is part of analysed language, or not.

The syntax analysis is performed by a syntax analyser. This syntax analyser is created
on the basis of a concrete grammar. Its input is a sentence, for which it decides membership
of a sentence to the language specified by the grammar.

16

We can classify syntax analysers by the properties of its analysis process. We can divide
them based on a direction of derivation and a number of tried derivations.

Top-Down Approach

The top-down analysis is starting from an initial string, defined by the grammar. This
strings is then derived using a derivation rules, also specified by the grammar. The deriva-
tions continue, until the derived string does not equal the input, in which case the output
is positive.

Bottom-Up Approach

The bottom-up approach starts with the input string itself. On this string, it applies the
derivation rules in a reverse, in an attempt to acquire the initial string of the grammar.
When the analysis acquires the initial string, it proves, there is a derivation for an input
sentence and ends.

Brute Force Approach

This method of syntax analysis is using some sort of blind search, to generate every possible
derivation tree for a given input. It can use any way, to generate the combinations. We
should note, that the grammars can contain a recursion, in which case, the depth-first
search [6] may not be the best choice, because of infinite loop may occure.

Knowledge Based Approach

This approach is using an input string and possible an analysis of the grammar itself, to
limit the number of generated possibilities. When the number is decreased down to 1, we
say it is deterministic.

17

Chapter 3

Regulated Grammars

Regulate grammars are one of many types of grammars introduced throughout the history.
Their main goal is to provide greater expressive power or easier reasoning about instances
of grammars. They should achieve this goals without significantly raising complexity of
their model.

Common practice for regulated grammars is to join two simpler models to achieve
expresive power of a single, more complicated, model. This combination of models is usually
implemented using a grammar, to generate a sentence by its rules, and an additional model
to restrict the derivations. Based on type of used model, we characterize regulated grammar.

This chapter defines several different types of regulated grammars. Defined grammars
are grouped according to type of model, used for regulation. Other types also exists, more
complete list can be found in [7]. In section 3.1 we will discuss a reasons, we might consider
in choosing a regulated grammar over an unregulated one. Section 3.2 defines a basic
concepts used in field of regulated grammars. The folowing sections serve as a short list of
definitions of concrete regulated grammars models. Section 3.6 introduces commonly used
modification used upon regulated grammars.

We should note, that number of regulated grammars, discussed in this chapter were
initialy introduced by in special forms. These was later studied and generalized.

The survey of various types of regulated grammars is mostly based on [14] and [7].

3.1 Reasons to Study
Ordinary grammars are using only their rules to transform start symbol into final sentence.
In every production step, you have to choose a single rule of production from the same full
set of rules. You always have a freedom in what rule you choose to use. Let us compare
the two most used unregulated models.

Regulated grammars are trying to join smaller complexity of using simpler grammars
with greater expresive power of their more complex relatives, by restricting grammars in
their operation.

18

3.1.1 Context-Free Grammars

Example 3.1 (Simple context-free grammar)
Look at simple example of context-free grammar 𝐺1.

𝐺1 = (𝑁1, 𝑇1, 𝑃1, 𝑆) (3.1)
𝑁1 = {𝑆,𝐴,𝐵} (3.2)
𝑇1 = {𝑎, 𝑏} (3.3)
𝑃1 = {𝑟1 : 𝑆 → 𝐴,

𝑟2 : 𝑆 → 𝐵,

𝑟3 : 𝐴 → 𝑎𝐴,

𝑟4 : 𝐴 → 𝑎𝐵,

𝑟5 : 𝐵 → 𝑏𝐴,

𝑟6 : 𝐵 → 𝑏𝐵,

𝑟7 : 𝐴 → 𝜀,

𝑟8 : 𝐵 → 𝜀} (3.4)

We can easily see that grammar 𝐺1 is generating language 𝐿1, which is composed of sen-
tences using only two symbols in any amount and in any order. In every derivation step, we
specify the symbol generated in next derivation step, by choosing appropriate nonterminal
symbol. And we can always choose any of them.

𝐿1 = {𝑥𝑛|𝑥 ∈ {𝑎, 𝑏}, 𝑛 ≥ 0} (3.5)

Example 3.1 is a demonstration of a grammar with great freedom of choice. Every
nonterminal symbol in sentence form can be anytime rewriten in more than one way. This
freedom of choice results in generating a simple language without structure, the universal
language.

Context-free grammars are using simple format of production rules. Each rule has
exactly one nonterminal symbol on the left-hand side. Hence, all of these rules may be
used to rewrite a single symbol to specified sequence of symbols without any limitations
imposed by symbols surrounding them. This greatly limits expressive power of context-free
grammars.

3.1.2 Context-Sensitive Grammars

Non-context-free grammars are taking into consideration surrounding symbols and thus
improving expressive power of non-context-free languages. Yet, context-sensitive rules are
relying on occurence of strict conditions, prescribed by their left-hand sides.

Standard context-sensitive grammars are using single finite string to define left-hand
side of its rules. This bears a certain complication, when we want to react on conditions,
that had occured in a different part of sentence. Source of this complication is the fact, that
while left-hand side of a rule is finite, the substring that stands between context-sensitive
parts of a string might be always greater.

19

Example 3.2 (Simple context-sensitive grammar)
Consider the contex-sensitive grammar 𝐺2.

𝐺2 = (𝑁2, 𝑇2, 𝑃2, 𝑆) (3.6)
𝑁2 = {𝑆,𝑄} (3.7)
𝑇2 = {𝑎, 𝑏, 𝑐} (3.8)
𝑃2 = {𝑟1 : 𝑆 → 𝑎𝑏𝑐,

𝑟2 : 𝑆 → 𝑎𝑆𝑄,

𝑟3 : 𝑏𝑄𝑐→ 𝑏𝑏𝑐𝑐,

𝑟4 : 𝑐𝑄→ 𝑄𝑐} (3.9)

𝐿2 = {𝑎𝑛𝑏𝑛𝑐𝑛|𝑛 ≥ 1} (3.10)

The grammar 𝐺2 is generating canonical language 𝐿2[9, Fig. 15.1]. It is using the rule 𝑟2
to prolong current string, by adding another terminal symbol 𝑎. Rule 𝑟4 serves only for
shuffling reminder symbol 𝑄 to its final place between group of symbols 𝑏 and 𝑐. Next
special rule 𝑟3 transforms this symbol to its terminal symbols.

The way of operation of grammar 𝐺2 from example 3.2 may be seen as obfuscation of
its real goal. The real goal is, in short, to generate strings with three parts of equal length.
In order to do just that, it needs to generate two sequences and later convert one of them
into two sequences of equal length. For that reason, it employs a remainder symbol and
a shuffling rule to move it along the sentence. The remainder symbols is used to mark
unfinished production or computation.

On this simple example, we may see, that computation of a final position of a single
symbol in a sentential form might need a great number of separate derivations.

3.1.3 Computational History

In the light of the possibility to shuffle symbols, we have to consider another disadvantage
of using context-sensitive grammars. We cannot easily form a derivation tree for every
sentence generated by any context-sensitive grammar. Let us look at a derivation tree as
a directional continuous non-cyclic graph, where every node of the graph has atmost one
inbound edge. Every rule, which has string of a left-hand side longer than 1, would result
in creating a node of a tree with more than one inbound edge, resulting from rewriting
more than one symbol. We cannot remove this disadvantage. This contradicts a definition
of a derivation tree. Result is unability to use a standard derivation tree to represent
a sentence of context-sensitive laguage.

For contex-free grammars, the derivation tree represents a record of history of compu-
tation. Every manipulation with sentence, from entering a start symbol to acquisition of
complete final sentence, is recorded inside a derivation tree. It can not only be viewed as
a record of history, but also as a record of a membership relation of a concrete terminal
symbol with a subtree of derivation tree. More different rules may have generated single
terminal symbol and in derivation tree, we may find complete path of used derivations from
start symbol to a terminal symbol. One thing missing in normal derivation tree is an order
of used derivations.

This records of history may prove useful, when we are not tasked with simple generation
or accepting of a strings from grammar-defined language, but with practical parsing of its

20

sentences, or using them for practical purposes. As an example for this could serve semantic
control used during parsing of programming languages in compilers. The information about
a membership of a sentence into a language is not enough. We also need to read the sentence
and extract informations, contained within.

For context-sensitive grammars we are unable to use simple syntax tree, but we may use
simple directional continuous non-cyclic graph to record whole computational history. But
this representation has one major disadvantage. Its size may quickly grow, when grammar
is moving a lot of information around. Look at example 3.2. For 𝑛, of already accepted
symbols 𝑐, we need to apply the rule 𝑟4 𝑛-times.

3.2 Basic Concepts
Regulated grammars are joining multiple, more or less separate models into a single one.
One of these models has to be grammar, so it can be called a regulated grammar. This
grammar is usually called core grammar. This grammar is usually modified by changing
the way of its usual operation. Either by modifying definition of single derivation or its use
in definition of language. This is usually accompanied by adding annotations to original
rules of core grammar.

Regulated grammars are usually using context-free grammars as underlaying grammars.
This has simple underlaying reason.

We are trying to keep complexity of both models as low as possible. Wildly used
regulating models have complexity of regular language. To serve as example, we can take
Regular-controlled grammars, which have by definition regulating language regular. As
next example may serve Programmed grammars or State grammars, both of which are
based around finite automata.

When we would use context-sensitive grammars as underlying grammars, we would
easily achieve greater expressive strength. But the price for it would be more complex
reasoning about generated language.

When we would join two models of regular language expressive power together into
single one, we would not be able to increase combined power to context-free, much less
context-sensitive. Hence regulated grammars, using only regular grammar compliant rules,
are of limited use.

3.3 Context-Based Regulation
Context-based grammatical regulation places context-related restrictions upon their sen-
tential forms. This contextual conditions must be met by whole current sentential form.
We will analyse a short list of grammars in this category.

3.3.1 Random Context Grammars

Random context grammars are adding two sets of symbols to every rule. One of them
specifies symbols that has to be present in current sentential form and the other specifies
symbols that must not be present. If this two conditions are met, then the production rule
may be used. Any rule with satisfied conditions is alowed to be used.

21

3.3.2 Context-Conditional Grammars

Context-conditional grammars are using the same mechanism as Random context gram-
mars. But insted of mere symbols, the sets contains whole strings, with the same meaning
as in random context grammars.

3.3.3 Scatered Context Grammars

Scatered context grammar is changing notion of a derivation as application of single pro-
duction rule. It uses n-tupples of simple production rules. Every n-tupple is handled as
single rule. Therefore all simple rules of selected n-tupple must be used simultaneously and
in the same relative position to each other.

3.3.4 Restricted Derivation Tree Grammars

Whole range of grammars with restricted derivation trees[12] was introduced. This type
of regulation is using regulating language to check context independently on rules used
to produce sentential form. This language is used to check the form of a constructed
derivation tree, rather then simply using current sentential form for restricting subsequent
rewrite rules.

3.4 Rule-Based Regulation
This type of regulation places restrictions on the use of rules during derivation. Restrictions
defines subsets of rules that are allowed for next derivation step. We will analyse a short
list of grammars that can be placed in this category.

3.4.1 Regular-Controlled Grammars

Regular-controled grammars are one of integral pieces of theory of regulated rewriting.
They use control language defined over a set of rules of a core grammar. The control
language specifies allowed sequences of rules in 𝐺 used to generate a sentence.

Definition 3.1 (Regular-controlled grammar)
A regular-controlled (context-free) grammar [14, Definition 5.1.1], is a pair

𝐻 = (𝐺,Ξ), (3.11)

where

∙ 𝐺 = (𝑁,𝑇,Ψ, 𝑃, 𝑆) is a context-free grammar, called core grammar ;

∙ Ξ ⊆ Ψ* is a regular language, called control language.

The language of 𝐻, denoted by 𝐿(𝐻), is defined as

𝐿(𝐻) = {𝑤 ∈ 𝑇 *|𝑆 ⇒*
𝐺 𝑤[𝛼] ∧ 𝛼 ∈ Ξ} (3.12)

Convention: The abbreviation for regular-controlled grammar is RC and the family
of languages generated by it is denoted by ℒ(𝑅𝐶).

22

3.4.2 Matrix Grammars

Matrix Grammar is a pair 𝐻 = (𝐺,𝑀), where core grammar G is extended by a finite set 𝑀
of sequences of rules. This grammar can be viewed as a special case of a regular-controlled
grammar, where the control language is specified to be an iteration over a finite language.

3.4.3 Programmed Grammars

Programmed grammar is a context-free grammar, in which two sets, 𝜎𝑟 and 𝜙𝑟 are attached
to each rule 𝑟. Both of these sets are subsets of all rules of underlying grammar. If a rule 𝑟
is used, then one of rules in 𝜎𝑟 must be used next. If a rule 𝑟 could not be used, then one
of rules in 𝜙𝑟 has to be used next.

Definition 3.2 (Programmed grammar)
A programmad grammar is a quintuple

𝐺 = (𝑁,𝑇, 𝑃𝑠𝑖, 𝑃, 𝑆) (3.13)

where

∙ 𝑁 , 𝑇 , Ψ and 𝑆 are defined as in a context-free grammar;

∙ 𝑃 ⊆ Ψ×𝑁 × (𝑁 ∪ 𝑇)* × 2Ψ × 2Ψ is a finite relation, called the set of rules.

Convention: Instead of (𝑟,𝐴, 𝑥, 𝜎𝑟, 𝜙𝑟) ∈ 𝑃 , we write (𝑟 : 𝐴 → 𝑥, 𝜎𝑟, 𝜙𝑟) ∈ 𝑃 . A is
refferd to as the left-hand side of r, and 𝑥 is reffered to as the right-hand side of 𝑟.

Let 𝑉 = 𝑁 ∪ 𝑇 be the total alphabet. The direct derivation relation, symbolically denoted
by ⇒𝐺, is defined over 𝑉 * ×Ψ as follows: for (𝑥1, 𝑟), (𝑥2, 𝑠) ∈ 𝑉 * ×Ψ,

(𝑥1, 𝑟)⇒𝐺 (𝑥2, 𝑠) (3.14)

if and only if either

𝑥1 = 𝑦𝐴𝑧, 𝑥2 = 𝑦𝑤𝑧, (𝑟 : 𝐴→ 𝑤, 𝜎𝑟, 𝜙𝑟) ∈ 𝑃, and 𝑠 ∈ 𝜎𝑟 (3.15)

or

𝑥1 = 𝑥2, (𝑟 : 𝐴→ 𝑤, 𝜎𝑟, 𝜙𝑟) ∈ 𝑃, 𝑥1 ̸= 𝑦𝐴𝑧 for any 𝑦 and 𝑧, and 𝑠 ∈ 𝜙𝑟 (3.16)

The (𝑤, 𝑠) ∈ 𝑉 * × Ψ is called a configuration. The language of 𝐺 is denoted by 𝐿(𝐺)
and defined as

𝐿(𝐺) = {𝑤 ∈ 𝑇 *|(𝑆, 𝑟)⇒*
𝐺 (𝑤, 𝑠), 𝑓𝑜𝑟𝑠𝑜𝑚𝑒𝑟, 𝑠 ∈ Ψ} (3.17)

Convention: The abbreviation for programmed grammar is P and the family of lan-
guages generated by it is denoted by ℒ(𝑃).

3.4.4 State Grammars

State grammar is a context-free grammar extended by finite-state mechanism. Each rule
is enhanced by source and destination state from a finite set of states. At each derivation
step, leftmost nonterminal symbol, for which there exists a rule with source state equal to
curent state, is rewriten, using this rule.

23

3.5 On Adaptive Grammars
Rule-based regulated grammars are using a controlling model to select subset of production
rules of core grammar that are allowed to be used in next production. But the original
set of rules, from which they pick, does not change. The grammar remains constant. This
behaviour may result in large set of rules in core grammar. This set is then greatly reduced
for every production step.

There also exists related model of Adaptive grammars[5]. For this concept was histor-
icaly used many names, which includes Extensible, Modifiable and Dynamic. This gram-
mmars are using additional mechanisms to add, remove or modify rules in core grammar.
They then use whole grammar at any given time.

The addition and modification of rules distinquishes the class of adaptive grammars
from the class of regulated grammars. Adaptive grammars can be used to specify dynamic
languages by single grammar without additional semantical checking.

3.6 Leftmost Modification
With unregulated grammars we sometimes use leftmost modification of original grammars.
This may be viewed as a regulation of some sort. The usage of this modification can greatly
affect the outcom lanugage of a grammar.

This modification can be defined as a regulation of both, used nonterminal and terminal.
Although the leftmost usage of terminals is usually defined only in terms of automata.

Let us define this modification of languages [7][54, type I].

Definition 3.3 (Unregulated leftmost modification)
Under unregulated leftmost modification, the leftmost occurence of a nonterminal has to be
rewritten.

Convention: When a class of grammars 𝐺 is using unregulated leftmost modification,
we add a symbols 𝑈𝐿 to its upper index, to form 𝐺𝑈𝐿.

This modification greatly diminishes the number of usable nonterminals to at most 1 in
every derivation step. This takes also a great toll on expressive power of modified grammar.
Even with control model in place, we do not surpass the original model.

Lemma 3.1 (Strength under unregulated leftmost modification)

ℒ(𝑃𝑈𝐿) = ℒ(𝐶𝐹) [7][Theorem 1.4.1] (3.18)
ℒ(𝑅𝐶𝑈𝐿) = ℒ(𝐶𝐹) [7][Theorem 1.4.1] (3.19)

When we are dealing with regulated grammars, the original definition of leftmost modi-
fication may prove itself too restrictive, because not every time, we are able to derive every
nonterminal of a sententian form, due to diminished set of rules we are able to use in the
next derivation step [7][54, type II].

Definition 3.4 (Regulated leftmost modification)
Under regulated leftmost modification, the leftmost occurence of nonterminal, which can be
currently rewritten, has to be rewritten.

Convention: When a class of grammars 𝐺 is using regulated leftmost modification, we
add a symbol 𝐿 to its upper index, to form 𝐺𝐿.

24

We can see the sutle difference in formulation. This definition is giving us a freedom
to follow the regulation, withou crushing due to missing nonterminals. This makes a big
difference, because we are free to obey the control model and we have acquired a way to
limit the nonterminal, on which it is used.

Lemma 3.2 (Strength under unregulated leftmost modification)

ℒ(𝑃𝐿) = ℒ(𝑅𝐸) [7][Theorem 1.4.3] (3.20)
ℒ(𝑅𝐶𝐿) = ℒ(𝑅𝐸) [7][Theorem 1.4.4] (3.21)

The left-most modification serves as an example of extreme-based nonterminal rewrite.
In similar maner a right-most modification may be introduced.

25

Chapter 4

Grammar Automata

In this chapter we will introduce a reworked version of a grammar automata. This version
is allowing us, to derive the nonterminal symbol at specified position.

The section 4.1 contains definition of automata itself. In section 4.2, we will describe
basic techniques to transfer regular-language regulation into an automata. Basic version of
evaluation of automata is presented in senction 4.3.

4.1 Positioned Grammar Automata
Definition 4.1 (Positioned grammar automaton)
The positioned grammar automaton 𝑃𝐺𝐴, is an 8-tuple

𝐺𝐴 = (𝑄,Σ,Γ,∆, 𝑅, 𝑠, 𝑆, 𝐹, 𝛿), (4.1)

where

∙ 𝑄,Σ,Γ, 𝑠, 𝑆, 𝐹 and 𝛿 is defined as in grammar automata;

∙ 𝜌𝑡 : N* × Γ+ → Γ* is a function applying a production rule at state 𝑡;

∙ 𝑅 ⊆ (𝑄× N× 𝑓 ×𝑄) is a finite set of rules, which differ from the original version in
a feasibility function 𝑓 : (Γ*×Σ*×N*). The rule, is feasible only when the feasibility
function has outputted one or more numbers, symbolising possible positions. The
joining rule can have any priority and after transition with this rule, the production
rule is not applied.

4.2 Basic transformations
We will introduce basic transformations of regular control language into a grammar au-
tomaton. We will base this transformations on the fact, that every regular language can
be writen with the help of regular expressions and regular expressions can be represented
with a single symbols, and its concatenations, unions and iterations. We have to keep in
mind, that the symbol of the control language is a label of a rule, which has to be applied.

As opposed to the ordinary finite automata, the grammar automata accepts its string
not by an edges it had to travel, but the states, it had to visit. Every automata resulting
from basic transformation will have single start state and single final state, this will help
us to systematically build an automata from separate pieces.

26

Let 𝑀1 be a automata, with a start state 𝑞11 and a final state 𝑞12, for a regular expression
𝑟1, and 𝑀2 be a automata, with a start state 𝑞21 and a final state 𝑞22, for a regular expression
𝑟2. We will use 2 as a standard priority.

Symbol

Application of a single rule is represented
with two states 𝑞0 (start state) and 𝑞1 (fi-
nal state). The final state applies the pro-
duction rule 𝑝 : 𝑙 → 𝑟, with a function
𝜌(𝑛, 𝑠𝑙𝑙𝑠𝑟) = 𝑠𝑙𝑟𝑠𝑟 ∧ |𝑠𝑙| ∈ 𝑛. Between this
two states exists a single rule 𝑞0(𝑛, 𝑓) → 𝑞1,
where 𝑛 is a standard priority and 𝑓 is appli-
cability function, defined by the grammar.

𝑞11start
𝑞12
𝜌12(2,𝑝1)

𝑞21start
𝑞22
𝜌22(2,𝑝2)

Figure 4.1: Single rules automata

Concatenation

The concatenation 𝑟1𝑟2 is created by joining
two smaller automata, 𝑟1 and 𝑟2, by merging
the states 𝑞12 and 𝑞21 into a single state, while
preserving the properties of the state 𝑞12 and
edges of both states. The resulting automaton
will use 𝑞11 as its start state and 𝑔22 as its final
state.

𝑞11start

𝑞12
𝜌12

(. . .)

𝑞22
𝜌22(. . .)

Figure 4.2: Concatenation of 𝑀1 and 𝑀2

Union

The union 𝑟1 + 𝑟2 is created by joining two
smaller automata for 𝑟1 and 𝑟2. Both start
states are merged, while preserving all their
edges. New final state is created and new join-
ing edges from original final states into a new
final state is created.

𝑞11start
𝑞12
𝜌12(. . .)

𝑞22
𝜌22

(. . .) (0,𝜀)

(0,𝜀)

Figure 4.3: Union of 𝑀1 and 𝑀2

Iteration

The 𝑟1* is created by looping original au-
tomata for 𝑟1 into a start state. A new joining
edge is created from a final state into a start
state. A new final state is introduced, con-
nected with a start state with a joining edge
of a normal priority.

𝑞11start
𝑞12
𝜌12(. . .)

(2,𝜀)

(0,𝜀)

Figure 4.4: Iteration of 𝑀1

27

4.3 Operation
We can create a generic algorithm for running a positioned grammar automaton 4.1. This
algorithm outputs a string of visited non-empty states. The algorithm can end either
successfully, with 𝐹𝐼𝑁𝐼𝑆𝐻, or unsuccessfully, with 𝐹𝐴𝐼𝐿.

Later, we will use few common definitions, unless said otherwise. The work alphabet
contains two border symbols ⟨ and ⟩, which are not defined by the grammar. The application
of production rule 𝛿, for production rule (𝑝 : 𝑙 → 𝑟) chooses one of offered positions and
symbol of a work string on that location rewrites with ⟨𝑟⟩. The normalizing function
𝛿(𝑤𝑜𝑟𝑘, 𝑖𝑛𝑝𝑢𝑡) is working as accepting function. If work string, after filtering out border
symbols, equals the input string, both are completly emptied. Otherwise is nothing changed.

Algorithm 4.1 Positioned grammar automaton run
Input: A positioned grammar automaton 𝐴 = (𝑄,Σ,Γ, 𝑅, 𝑠, 𝑆, 𝐹, 𝑑)
Input: Input string 𝐼𝑛𝑝𝑢𝑡
Output: String of used non-empty states and 𝐹𝐼𝑁𝐼𝑆𝐻 or 𝐹𝐴𝐼𝐿

1: 𝑐𝑜𝑛𝑓𝑖𝑔 ← (𝑠, 𝑆, 𝐼𝑛𝑝𝑢𝑡)
2: while 𝑐𝑜𝑛𝑓𝑖𝑔 ̸= (𝑓, 𝜀, 𝜀) ∧ 𝑓 ∈ 𝐹 do
3: (𝑠𝑡𝑎𝑡𝑒, 𝑤𝑜𝑟𝑘, 𝑖𝑛𝑝𝑢𝑡)← 𝑐𝑜𝑛𝑓𝑖𝑔
4: 𝑡𝑟𝑎𝑛𝑠← {(𝑣, 𝑛, 𝑝) | 𝑠𝑡𝑎𝑡𝑒(𝑣, 𝑓)← 𝑛 ∧ 𝑝 = 𝑓(𝑤𝑜𝑟𝑘, 𝑖𝑛𝑝𝑢𝑡) ̸= ∅}
5: 𝑡𝑟𝑎𝑛𝑠← {(𝑣, 𝑛, 𝑝) | (𝑣, 𝑛, 𝑝) ∈ 𝑡𝑟𝑎𝑛𝑠 ∧ 𝑣 is minimal}
6: if 𝑡𝑟𝑎𝑛𝑠 = ∅ then
7: 𝐹𝐴𝐼𝐿, no possible transition
8: end if
9: Choose (𝑣, 𝑛𝑒𝑥𝑡, 𝑝𝑜𝑠) as one of 𝑡𝑟𝑎𝑛𝑠

10: 𝑠𝑡𝑎𝑡𝑒← 𝑛𝑒𝑥𝑡
11: if 𝑠𝑡𝑎𝑡𝑒 ∈ 𝑄𝑟 then
12: Emit 𝑠𝑡𝑎𝑡𝑒
13: 𝑤𝑜𝑟𝑘 ← 𝜌𝑠𝑡𝑎𝑡𝑒(𝑤𝑜𝑟𝑘, 𝑝𝑜𝑠)
14: (𝑤𝑜𝑟𝑘, 𝑖𝑛𝑝𝑢𝑡)← 𝛿(𝑤𝑜𝑟𝑘, 𝑖𝑛𝑝𝑢𝑡)
15: end if
16: 𝑐𝑜𝑛𝑓𝑖𝑔 ← (𝑠𝑡𝑎𝑡𝑒, 𝑤𝑜𝑟𝑘, 𝑖𝑛𝑝𝑢𝑡)
17: end while
18: 𝐹𝐼𝑁𝐼𝑆𝐻

28

Chapter 5

Switch-Paused Regulated
Grammars

Standard regulated grammars are using their regulating mechanism in every production
step. This mode of operation may result in excessive control over each step of production.
We can use regulated grammars, when we want to have a structure of our grammar and
subsequently languages, more obvious.

If we are forced to write every used production rule into regulating language, the true
purpose of this language may be obscured by its other parts.

The first version of paused modes is using predefined two sets of rules to serve as on-
switches and off-switches for operation of regulating model. Every time, an on-switching
rule is being used, the regulating mechanism is used. Regulation continues till next off-
switching rule is used.

This mode of operation is usefull in cases, where we want to regulate only certain portion
of sentence. This allows us to keep regulating model simpler and more focused.

This chapter introduces a new modification of regulated models. In sections 5.1 and 5.2,
it is defined for various regulated grammars. Few examples of grammars are in section 5.3
Sections 5.4 and 5.5 are dealing with generation and parsing of sentences. Lastly, the
section 5.6 is investigating properties of this modifcation.

5.1 Definition
We can define switch-paused regulation for regular-controlled grammars. This definition
is directly adding two sets of switching rule labels to the definition of the original non-
switching version of the grammar. The definition of generated language is then modified
to accomodate the switching nature of newly defined grammar.

Definition 5.1 (Switch-paused regular-controlled grammar)
A switch-paused regular-controlled (context-free) grammar, is a 4-tuple

𝐻 = (𝐺,Ξ,Ψ𝑂𝑁 ,Ψ𝑂𝐹𝐹), (5.1)

where

∙ 𝐺 = (𝑁,𝑇,Ψ, 𝑃, 𝑆) is a context-free grammar, called core grammar ;

∙ Ξ ⊆ (Ψ𝐹𝑅𝐸𝐸 + (Ψ𝐽𝑂𝑁Ψ𝑂𝐹𝐹
Ψ𝑂𝐹𝐹))(Ψ𝐽𝑂𝑁Ψ𝑂𝐹𝐹)? is a regular language, called

control language;

29

∙ Ψ𝐽𝑂𝑁 = Ψ𝑂𝑁 ∖Ψ𝑂𝐹𝐹 is set of rules, which are only on-switching;

∙ Ψ𝐹𝑅𝐸𝐸 = Ψ𝑂𝑁 ∩Ψ𝑂𝐹𝐹 is a set of rules, which serve both switching functions;

∙ 𝑁 is a finite set of nonterminal symbols;

∙ 𝑇 is a finite set of terminal symbols;

∙ 𝑃 ⊆ (𝑁 × (𝑁 ∪ 𝑇)*) is a set of rules;

∙ 𝑆 ∈ 𝑁 ;

∙ Ψ is a set of symbols called rule labels such that |Ψ| = |𝑃 | and there exists a bijection
𝜓 from Ψ to 𝑃 ;

∙ Ψ𝑂𝑁 ⊆ Ψ is a set of on-switching rules;

∙ Ψ𝑂𝐹𝐹 ⊆ Ψ is a set of off-switching rules;

The sentential form can be in two of the possible states 𝑆𝑡𝑎𝑡𝑒𝑠 = {𝑂𝑁,𝑂𝐹𝐹}.
The language of 𝐻, denoted by 𝐿(𝐻), is defined as

𝐿(𝐻) = {𝑤 ∈ 𝑇 * | ∃𝑖 ≥ 1 : ∀0 ≤ 𝑗 < 𝑖 :𝑆 ⇒*
𝐺 𝑤[𝛼]

∧ 𝛼 ∈ 𝑛0𝑔1𝑛1𝑔2𝑛2 . . . 𝑔𝑖−1𝑛𝑖−1𝑔𝑖

∧ 𝑛𝑗 ∈ Ψ𝑂𝑁
* ∧ 𝑔1𝑔2 . . . 𝑔𝑖 ∈ Ξ

∧ 𝑔𝑗 ∈ (Ψ𝐹𝑅𝐸𝐸 + (Ψ𝐽𝑂𝑁Ψ𝑂𝐹𝐹
*Ψ𝑂𝐹𝐹))

∧ 𝑔𝑖 ∈ (Ψ𝐽𝑂𝑁Ψ𝑂𝐹𝐹)?} (5.2)

Convention: The switch-paused regular-controlled grammar is abbreviated as 𝑅𝐶𝑆𝑃

and the family of languages generated by it is denoted by ℒ(𝑅𝐶𝑆𝑃)

From definition, we can see that rule can be both on-switching and off-switching. In that
case, it serves both functions. On-switching semantics is applied before its off-switching
counterpart. This rule is then allowed to stand freely by itself in control language.

There are two main differences from standard definition of regular-controlled grammars.
First is stricter form of the control language. It can be empty, which is not allowed in
ordinary regulated grammars. Empty control language would result in generating only
a single sentence containing only starting symbol. Empty control language, or empty string
of control language, in switch-stopped regular-controlled grammars have a simple meaning.
Non of on-switching rules may be used.

When string of control language is not empty, its first rule has to be on-switching rule.
It is a consequence of two properties of switch-paused modification. The controll language
does contain switching rules and the language-driven controll is switched off at the start of
generating of a sentence.

Second difference is in generated language. Not every production need to be writen in
the controll language. Conclusion is, that during production, more rules can be used, than
specified by controll language.

For usage during derivation run, the control language sentences are sliced into separate
groups. Every group starts with on-switching rule and ends with off-switching. Inside
group, there could be any number of rules which are not off-switching. Therefore even

30

more on-switching rules. The group can also be formed by single rule. This rule has to be
in both switching set. This rule is therefore called free standing.

The definition 5.1 is concerned only with regular language as controling language. We
do not need to be limited to a single class of langages. We can use the original definition
as a base for more general definition. This one allows the controll language to be of more
expressive class, than regular language.

Definition 5.2 (General switch-paused modification)
A switch-paused L-controlled grammar, is a 4-tuple

𝐻 = (𝐺,Ξ,Ψ𝑂𝑁 ,Ψ𝑂𝐹𝐹),

where 𝐻 is a switch-paused regular-controlled grammar, and Ξ is a language of class 𝐿.

This definition further limits format of language Ξ. It still has to maintain a format,
where any non-empty string of controll language has to be on-switching rule and after any
off-switching rule, which is not lats rule of controll sequence, has to be an on-switching
rule. And additionaly, the controll language has to adhere to limitations of certain class,
we want to achieve.

5.2 Other Regulations
This is not an exhaustive list of formal definitions of switch-paused mode of operation for
any regulated grammars model. This list contains merely a descriptions of propositions,
that supports the idea of more universal usage of switch-paused mode to opearation of
regulated grammars. There exists more regulated grammars, which are not mentioned in
this section.

5.2.1 Rule-Based Regulations

The rule-based regulations are generaly described using languages or automata. We defined
switch-paused mode for regular-controlled grammar and expanded it to controll by any class
of languages.

Matrix Grammars

Matrix grammars can be viewed as a close relative to regular controlled grammars. The
matrix regulation can be directly translated to regular language regulation. Every matrix
can be viewed as rigid string of rule labels and control language is then iteration over this
strings. The switch-paused regulation of matrix grammar then has a similar definition. The
matrices can serve as a self contained groups, where every matrix starts with a on-switching
rule and ends with an off-switching one.

State Grammars

State grammars are using rules to travel between different states. When we would applied
a switch-paused mode, we would ignore those transitions and conditions, while in off state.
We would hold the last state acquired by the last off-switching rule that transitioned from
the on-state to the off-state. The use of on-switching rule, with start state equal to the
remembered one, would command a new state to be remembered, together with transition
into an on-state.

31

5.2.2 Context-Based Regulations

So far, we limited this mode of operation only for rule-based regulations. Context-based
regulations does not directly specifies orders of rules. Context-based regulations are based
on decisions, tied to state of current derivation, or history of its states. The limitations on
rules used to generate the final sentence are direct consequence of that.

The case of scattered-context grammars is straight forward. In this case, the definition
of singular rules is completly ommited, together with core grammar, from the definition.
We cannot use them as a single rules anymore.

Even when we would recreate the original core grammar, to obtain original rules, we
would hit another obstacle. The scattered context grammars are using multiple rules at
the same time, in parallel to each other. The switching sets would have to be defined using
this newly created rules, because when the controll mechanism is turned off, we cannot
use compound rules to switch it on. The compound rule would then combine all semantic
functions, in terms of off-swithing, of all rules it uses.

5.3 Examples
In this section, we will investigate a few examples of switch-paused regulated grammars.
We will show examples from both ends of a spectra of ammount of regulation.

Example 5.1 ({𝑎𝑛𝑏𝑛𝑐𝑛|𝑛 ≥ 1})
Consider the switch-paused regular-controlled grammar 𝐻1 = (𝐺,Ξ,Ψ𝑂𝑁 ,Ψ𝑂𝐹𝐹).

𝐺 = (𝑁,𝑇,Ψ, 𝑃, 𝑆) (5.3)
𝑁 = {𝑆,𝐴,𝐵,𝐶} (5.4)
𝑇 = {𝑎, 𝑏, 𝑐} (5.5)
𝑃 = {𝑟1 : 𝑆 → 𝐴𝐵𝐶,

𝑟2 : 𝐴→ 𝑎𝐴, 𝑟5 : 𝐴 → 𝑎,

𝑟3 : 𝐵 → 𝑏𝐵, 𝑟6 : 𝐵 → 𝑏,

𝑟4 : 𝐶 → 𝑐𝐶, 𝑟7 : 𝐶 → 𝑐} (5.6)
Ξ = {(𝑟2𝑟3𝑟4)*(𝑟5𝑟6𝑟7)} (5.7)

Ψ𝑂𝑁 = {𝑟2, 𝑟5} (5.8)
Ψ𝑂𝐹𝐹 = {} (5.9)

𝐿 = {𝑎𝑛𝑏𝑛𝑐𝑛|𝑛 ≥ 1} (5.10)

The grammar 𝐻 is generating canonical language 𝐿. The control lanugeage is created by
iterations of phrases of three rules. Every phrase injects three eparate terminals, ensuring
equal numbers. Only derivation, which happens outside of regulation is the initial usage of

32

rule 𝑟1. Let us explore an example of a derivation for a concrete example.

𝑆 ⇒𝐴𝐵𝐶[𝑟1]

⇒𝑎𝐴𝐵𝐶[𝑟2]

⇒𝑎𝐴𝑏𝐵𝐶[𝑟3]

⇒𝑎𝐴𝑏𝐵𝑐𝐶[𝑟4]

⇒𝑎𝑎𝑏𝐵𝑐𝐶[𝑟5]

⇒𝑎𝑎𝑏𝑏𝑐𝐶[𝑟6]

⇒𝑎𝑎𝑏𝑏𝑐𝑐[𝑟7] (5.11)

Example 5.2 (Random interleaving)
Consider the switch-paused regular-controlled grammar 𝐻2 = (𝐺,Ξ,Ψ𝑂𝑁 ,Ψ𝑂𝐹𝐹).

𝐺 = (𝑁,𝑇,Ψ, 𝑃, 𝑆) (5.12)
𝑁 = {𝑆,𝑋, 𝑌 } (5.13)
𝑇 = {𝑎, 𝑏, 𝑐} (5.14)
𝑃 = {𝑟1 : 𝑆 → 𝑋𝑌,

𝑟2 : 𝑋 → 𝑎𝑋, 𝑟6 : 𝑌 → 𝑎𝑌,

𝑟3 : 𝑋 → 𝑏𝑋, 𝑟7 : 𝑌 → 𝑏𝑌,

𝑟4 : 𝑋 → 𝑐𝑋, 𝑟8 : 𝑌 → 𝑐𝑌,

𝑟5 : 𝑋 → 𝜀, 𝑟9 : 𝑌 → 𝜀} (5.15)
Ξ = {((𝑟3𝑟7) + (𝑟4𝑟8))

*} (5.16)
Ψ𝑂𝑁 = {𝑟3, 𝑟4, 𝑟7, 𝑟8} (5.17)

Ψ𝑂𝐹𝐹 = {𝑟4, 𝑟8} (5.18)

𝐿 = {𝑤1𝑤2|𝑤 = {𝑏, 𝑐}* ∧ 𝑤1, 𝑤2 are versions of 𝑤 interleaved with𝑎} (5.19)

The grammar 𝐻2 is using regulating model only for positioning of tuples of symbols. The
interleaving is uncontrolled. Let us explore an example of a derivation for a concrete
example.

𝑆 ⇒𝑋𝑌 [𝑟1]

⇒𝑎𝑋𝑌 [𝑟2]

⇒𝑎𝑏𝑋𝑌 [𝑟3]

⇒𝑎𝑏𝑋𝑏𝑌 [𝑟7]

⇒𝑎𝑏𝑋𝑏𝑎𝑌 [𝑟6]

⇒𝑎𝑏𝑋𝑏𝑎𝑎𝑌 [𝑟6]

⇒𝑎𝑏𝑐𝑋𝑏𝑎𝑎𝑌 [𝑟4]

⇒𝑎𝑏𝑐𝑋𝑏𝑎𝑎𝑐𝑌 [𝑟8]

⇒𝑎𝑏𝑐𝑏𝑎𝑎𝑐𝑌 [𝑟5]

⇒𝑎𝑏𝑐𝑏𝑎𝑎𝑐[𝑟9]
(5.20)

33

5.4 Generation
The grammar is a generative model for language it specifies. In case of ordinary grammars,
we can simple pick a nonterminal in current sentential form and any matching rule, derive
the selected symbol using selected rule and repeat this steps, until final sentence is acquired.
This simple algoritm is not sufficient, when we need to implement more complicated model.

Algorithm 5.1 Generation of a string with 𝑅𝐶𝑆𝑃 grammar
Input: 𝑅𝐶𝑆𝑃 grammar 𝐻 = (𝐺,Ξ,Ψ𝑂𝑁 ,Ψ𝑂𝐹𝐹), where 𝐺 = (𝑁,𝑇,Ψ, 𝑃, 𝑆)
Output: Sentence 𝑤 ∈ 𝐿(𝐻) or Error

1: 𝑆𝑡𝑎𝑡𝑒← 𝑂𝐹𝐹
2: 𝑤 ← 𝑆
3: 𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒← {(𝑝, |𝑠𝑙|) | 𝑠𝑙𝑙𝑠𝑟 = 𝑤 ∧ 𝑙 ∈ 𝑁 ∧ (𝑝 : 𝑙→ 𝑟) ∈ 𝑃}
4: 𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒← {(𝑝, 𝑖) | (𝑝, 𝑖) ∈ 𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒 ∧ (𝑝 /∈ Ψ𝑂𝑁 ∨ (𝑝𝑑 ∈ Ξ ∧ 𝑑 ∈ Ψ*))}
5: 𝑇𝑟𝑎𝑐𝑘 ← [(𝑆𝑡𝑎𝑡𝑒, 𝑤, 𝜀, 𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒)]
6: while 𝑤 /∈ 𝑇 * do
7: if empty(𝑇𝑟𝑎𝑐𝑘) then
8: Error, no derivation possible
9: end if

10: (𝑆𝑡𝑎𝑡𝑒, 𝑤, 𝑐, 𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒)← ℎ𝑒𝑎𝑑(𝑇𝑟𝑎𝑐𝑘)
11: if 𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒 = ∅ then
12: 𝑇𝑟𝑎𝑐𝑘 = 𝑡𝑎𝑖𝑙(𝑇𝑟𝑎𝑐𝑘)
13: else
14: Choose (𝑝, 𝑖) ∈ 𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒
15: 𝑇𝑟𝑎𝑐𝑘 ← (𝑆𝑡𝑎𝑡𝑒, 𝑤, 𝑐, 𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒 ∖ {(𝑝, 𝑖)}) + 𝑡𝑎𝑖𝑙(𝑇𝑟𝑎𝑐𝑘)
16: if 𝑝 ∈ Ψ𝑂𝑁 then
17: 𝑆𝑡𝑎𝑡𝑒← 𝑂𝑁
18: end if
19: if 𝑆𝑡𝑎𝑡𝑒 = 𝑂𝑁 then
20: 𝑐← 𝑐𝑝
21: end if
22: if 𝑝 ∈ Ψ𝑂𝐹𝐹 then
23: 𝑆𝑡𝑎𝑡𝑒← 𝑂𝐹𝐹
24: end if
25: 𝑤 ← 𝑠𝑙𝑟𝑠𝑟, for 𝑤 = 𝑠𝑙𝑙𝑠𝑟, 𝑙 ∈ 𝑁, |𝑠𝑙| = 𝑖, (𝑝 : 𝑙→ 𝑟) ∈ 𝑃
26: 𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒← {(𝑝, |𝑠𝑙|) | 𝑠𝑙𝑙𝑠𝑟 = 𝑤 ∧ 𝑙 ∈ 𝑁 ∧ (𝑝 : 𝑙→ 𝑟) ∈ 𝑃}
27: if 𝑆𝑡𝑎𝑡𝑒 = 𝑂𝑁 then
28: 𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒← {(𝑝, 𝑖) | (𝑝, 𝑖) ∈ 𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒 ∧ 𝑐𝑝𝑑 ∈ Ξ ∧ 𝑑 ∈ Ψ*}
29: else
30: 𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒← {(𝑝, 𝑖) | (𝑝, 𝑖) ∈ 𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒 ∧ (𝑝 /∈ Ψ𝑂𝑁 ∨ (𝑐𝑝𝑑 ∈ Ξ ∧ 𝑑 ∈ Ψ*))}
31: end if
32: 𝑇𝑟𝑎𝑐𝑘 ← (𝑆𝑡𝑎𝑡𝑒, 𝑤, 𝑐, 𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒) + 𝑇𝑟𝑎𝑐𝑘
33: end if
34: end while

In algorithm 5.1, we use few variables to help with tracking of current state of simulated
model. The 𝑆𝑡𝑎𝑡𝑒 variable represents one of two possible states, the algorithm can be in.
The 𝑇𝑟𝑎𝑐𝑘 variable serves as a history of states. It is a list. On this variable we use a few

34

methods that are helping us to work with this list. The ℎ𝑒𝑎𝑑 method is accesing the first
item in the list, the 𝑡𝑎𝑖𝑙 method is providing a sublist of its input list, without its head,
and the 𝑒𝑚𝑝𝑡𝑦 method is checking, whethever the list contains no items.

The algorithm is nondeterministic in selecting next rule used in production. This non-
determinism is the heart of generation of more than a single sentence. Error is raised,
when language, defined by input grammar is empty. This algorithm uses a depth-first type
exhaustive search in possible state-space of sentential forms. If there is no more states to
search and no solution was found, the error is risen.

The algorithm uses a pushdown stack to remember unfinished paths. Every cell of this
virtual stack is formed of state, sentential form of a generated language, already accepted
prefix of controll language and set of unfinished paths, represented with a set of rules and
plaes to apply them.

This algorithm is implementing a depth-first search, without checking of possible loops.
The order of applied rules is dependant on a choice, which is handled outside of this algo-
rithm. Therefore, for a recursive grammars, there could exist aa infinite sequence of choices,
which leads to an infinite loop.

The algorithm is using always exactly on top-most cell of its stack. The cell of its stack
can grow based on the length of a sentential form and a prefix of the control language. Due
to this, we are unable to fully implement this algorithm in a space limited linearly by the
length of final sentence.

We might decrease a real memory footprint, by working on a single instance of a sen-
tential form. In this case we would memorise a used rule, instead of whole string. We can
also interchange a prefix of control language with a state of automata, equivalent to the
control language. Both of these limits a complexity to constant values. But we still remain
with an unboulded length of stack.

5.4.1 Leftmost Modification

We treat the switch-paused regulation as a modification mode of original regulation. Sim-
ilarly we can treat the leftmost modification, which can serve us as an eample of another
modification appliable to most, if not all, of regulation models.

The left-most modification simply limits the applicability of rules to left most nontermi-
nal only. This does not impeed with pausing of regulation in any way. This modifications
can be combined on the same grammar to further limit its derivations.

In the case of combining left-most modification and switch-paused modification, we need
to modify the way of selecting nontermial symbol of algorithm 5.1 to select only left most
nonterminal symbol.

5.5 Parsing
Parsing of a sentence using particular grammar can answer the question of membership to
the language, for a concrete sentence. This is usual operation, performed when working
with a sentence in a compiler.

5.5.1 Specific Transformations

Using the basic transformations, we can express every regular-controlled grammar as a gram-
mar automata. We need to add another transformations specific to the switch-paused nature

35

of 𝑅𝐶𝑆𝑃 grammars.
For following graphical examples, we will use rules and language

𝑃 = {𝑝1 : 𝑆 → 𝑎𝑆𝑏, 𝑝2 : 𝑆 → 𝑏𝑎, 𝑝3 : 𝑆 → 𝑎𝑆𝑐};
Ψ𝑂𝑁 = {𝑝1};

Ψ𝑂𝐹𝐹 = {𝑝1};
Ξ = 𝑝1𝑝1. (5.21)

The feasibility function 𝑐(𝑝) for a production rule 𝑝 returns every applicable position of
a rule 𝑝.

Start State

Every automata, generated by basic transformations 4.2 has an empty state as a start state.
The 𝑅𝐶𝑆𝑃 grammars starts at an off-state. We have to allow usage of off-switching rules.
A single state loops for all non on-switching production rules are created.

start

(2,𝑐(𝑝1))

Figure 5.1: Original initial state

start

𝑝2 𝑝3

(2,𝑐(𝑝1))

(2,𝑐(𝑝2)) (2,𝑐(𝑝3))

(0,𝜀)(0,𝜀)

Figure 5.2: Transformed initial state

Middle Group

For each occurence of a state, created from an off-switching rule, is inserted a new empty
state 𝑞𝑒. Only input edge to 𝑞𝑒 is from its off-switching state. Every edge transitioning
from the off-switching state is rewriten, to originate from 𝑞𝑒. A simple one-state loops are
created upon the state 𝑞𝑒 for every rule which is not on-switching.

𝑝1
(2,𝑐(𝑝1)) (2,𝑐(𝑝1))

Figure 5.3: Original off-switching state

𝑝1
(0,𝜀)(2,𝑐(𝑝1)) (2,𝑐(𝑝1))

𝑝2 𝑝3

(2,𝑐(𝑝2)) (2,𝑐(𝑝3))

(0,𝜀)(0,𝜀)

Figure 5.4: Transformed off-switching state

36

5.5.2 Analysis

After we created the grammar automaton, using transformations from previous section, for
our desired switch-paused regular-controlled grammar, we have to simply run the generic
algorithm 4.1 for the grammar automaton, to commence a syntax-analysis of our input
sentence.

The algorithm 4.1 is not said to work deterministically. The same applies to the gram-
mar itself.

5.6 Properties
We will investigate the properties of switch-paused regulated grammars. We will compare
them with theirs non-paused versions.

In language controlled regulated grammars, we usually deal with two variables, that
define final power of regulated model. First is the type of core grammar. If not noted
otherwise, we will use context-free grammar as a core grammar. The second variable is type
of controll language. This language does not have to be only regular. We will investigate
several types of languages used to controll the core grammar.

5.6.1 Switch-Paused to Original

We will construct a transformation of 𝑅𝐶𝑆𝑃 grammar into original 𝑅𝐶 grammar. This
transformation 5.2 should preserve the generated language of an input language. It is based
on interleaving of self-contained on-switched groups with iterations over not on-switching
rules.

Algorithm 5.2 Transformation of 𝑅𝐶𝑆𝑃 into 𝑅𝐶
Input: 𝑅𝐶𝑆𝑃 grammar 𝐻𝐼 = (𝐺,Ξ𝐼 ,Ψ𝑂𝑁 ,Ψ𝑂𝐹𝐹)
Output: 𝑅𝐶 grammar 𝐻𝑂 = (𝐺,Ξ𝑂), where 𝐺 = (𝑁,𝑇,Ψ, 𝑃, 𝑆)

1:

Ξ𝑂 ← {𝑠0𝑔1𝑠1𝑔2 . . . 𝑠𝑛−1𝑔𝑛 | 𝑔1𝑔2 . . . 𝑔𝑛 ∈ Ξ𝐼 ∧ 𝑠𝑗 ∈ Ψ𝑂𝑁
* ∧ 𝑛 ≥ 1 ∧ 0 ≤ 𝑗 < 𝑛

∧ 𝑔𝑗 ∈ (Ψ𝐹𝑅𝐸𝐸 + (Ψ𝐽𝑂𝑁Ψ𝑂𝐹𝐹
*Ψ𝑂𝐹𝐹))

∧ 𝑔𝑛 ∈ (Ψ𝐽𝑂𝑁Ψ𝑂𝐹𝐹)?}

Lemma 5.1 (Correct transformation) Transformation algorithm 5.2 is correct.

Proof 5.1
Let us investigate properties of the transformation.

∙ Core grammars are equal.

∙ Every time, the regulation mechanism is switched off, a free iteration group is inserted
into the control lanugage.

∙ All inserted groups contains all rules allowed in off-switched state withous on-switching
the regulation.

∙ Every inserted group is a regular language. Regular languages are closed under con-
catenation. Final control language is also regular.

37

5.6.2 Original to Switch-Paused

The transformation of a 𝑅𝐶 grammar into 𝑅𝐶𝑆𝑃 , which preserves the generated language,
is straight forward. We can preserve the control language in the expense of never using the
advantages of 𝑅𝐶𝑆𝑃 grammars. Since we want to track every rule and never turn of the
control, we wil not use the off-switching set and fill on-switching set with all rules. This
transformation is described by the algorithm 5.3.

Algorithm 5.3 Transformation of 𝑅𝐶 into 𝑅𝐶𝑆𝑃

Input: 𝑅𝐶 grammar 𝐻𝐼 = (𝐺,Ξ), where 𝐺 = (𝑁,𝑇,Ψ, 𝑃, 𝑆)
Output: 𝑅𝐶𝑆𝑃 grammar 𝐻𝑂 = (𝐺,Ξ,Ψ𝑂𝑁 ,Ψ𝑂𝐹𝐹)

1: Ψ𝑂𝑁 ← Ψ
2: Ψ𝑂𝐹𝐹 ← ∅

Lemma 5.2 (Correct transformation) Transformation algorithm 5.3 is correct.

Proof 5.2
Let us investigate properties of the transformation.

∙ Control languages are equal.

∙ With first application of any rule, the switching mechanism is turned on.

∙ The on-switching rule is always part of the control language.

∙ Regulation is never turned off, because no off-switching rule exists.

∙ Because every derivation happens under regulation, core grammars are equal and
control languages are equal, produced languages are equal.

5.6.3 Expressive Strength

Theorem 5.1
ℒ(𝑅𝐶𝑆𝑃

𝐿) = ℒ(𝑅𝐶𝐿), controll language 𝐿 ∈ {𝑅𝐸𝐺,𝐶𝐹,𝐶𝑆,𝑅𝐸}

Proof 5.3
We will prove equality with original model by transformations.

∙ ℒ(𝑅𝐶𝑆𝑃
𝐿) ⊆ ℒ(𝑅𝐶𝐿)

– There exists a transformation 5.2 of any 𝑅𝐶𝑆𝑃
𝐿 grammar into 𝑅𝐶𝐿 grammar,

defining the same language.

∙ ℒ(𝑅𝐶𝐿) ⊆ ℒ(𝑅𝐶𝑆𝑃
𝐿)

– There exists a transformation 5.3 of any 𝑅𝐶𝐿 grammar into 𝑅𝐶𝑆𝑃
𝐿 grammar,

defining the same language.

∙ 𝑅𝐶𝑆𝑃
𝐿 = 𝑅𝐶𝐿

– Equality of expressive strength of both models is direct conclusion of 𝑅𝐶𝑆𝑃
𝐿 ⊆

𝑅𝐶𝐿 and 𝑅𝐶𝐿 ⊆ 𝑅𝐶𝑆𝑃
𝐿 .

38

Theorem 5.2
ℒ(𝐶𝐹) ⊂ ℒ(𝑅𝐶𝑆𝑃) ⊂ ℒ(𝑅𝐸). See [14][Theorem 5.1.6]

Theorem 5.3
ℒ(𝑅𝐶𝐿) ⊂ ℒ(𝑅𝐶𝑆𝑃

𝐿), control language 𝐿 ∈ {𝐹𝐼𝑁}

Proof 5.4
We will prove superiority of a switch-paused model for finite control languages.

∙ Length of a right-side of any rule is finite.

∙ Number of sentences of control languages in 𝐹𝐼𝑁 is finite.

∙ Hence 𝑅𝐶𝐿 = 𝐹𝐼𝑁 .

∙ Consider a switch-paused finite-controlled grammar 𝐻𝑆𝑃 = (𝐺,Ξ𝑆𝑃 ,Ψ𝑂𝑁 ,Ψ𝑂𝐹𝐹),
where 𝐺 = (𝑁,𝑇,Ψ, 𝑃, 𝑆) and its non-paused version 𝐻 = (𝐺,Ξ).

∙ If Ψ𝑂𝑁 = ∅ and Ψ𝑂𝐹𝐹 = Ψ, the regulation is never used.

∙ If regulation is never used, the expressive power is determined by the grammar.

∙ The grammar is context-free. ℒ(𝐹𝐼𝑁) ⊂ ℒ(𝐶𝐹).

From discovered properties, we can see, that we do not suffer from diminished expres-
sive strength, while using switch-paused regulated grammars. In case of finite controll
language, we can increase the expressive power of a grammar by using switch-paused regu-
lated grammar model. The expressive power is directly comparable to non-switching version
of regular-controlled grammars.

Every non-paused regulated grammar can be directly translated into switch-paused
version. This translation is executed by creating on-switching set equal to whole set of rule
labels and an empty off-switching set. The grammar, constructed by this simple translation,
is valid switch-paused regulated grammar, but does not use any of its different properties
to its advantage.

39

Chapter 6

Determinism-Paused Regulated
Grammars

When designing regulated grammars, we may face a problem of complicated control lan-
guage. Standard regulated grammars are using their regulating mechanism in every produc-
tion step. The construction of a correct controll language is not always a trivial task. We
may want to use controll language to define only the parts, that needs explicit regulation.

As the switch-paused mode of regulation, the determinism-paused mode tries to use
control language with shorter sentences, by ommiting production steps, which are already
fully defined by the core grammar. The switch-paused mode used explicit sets, to define
entrance points between realm of regulation and non-regulation.

The determinism-paused version of paused mode of rule-based regulation is using deter-
minism of usage of production rules, to pause regulating model. When the core grammar
can make deterministic step, it makes it, without checking of control model. This mode of
operation may be useful, when we are dealing with nondeterminism only in few well defined
places in every sentence of generated lanugage.

This chapter introduces a new modification of regulated models. The section 6.1 serves
as an introduction into a determinism in grammars. In sections 6.2 and 6.3, it is defined
for various regulated grammars. Few examples of grammars are in section 6.4 Sections 6.5
and 6.6 are dealing with generation and parsing of sentences. Lastly, the section 6.7 is
investigating properties of this modifcation.

6.1 On Determinism in Generation
Grammars are, in oposition to its coresponding automata, intended to be primarily genera-
tive tools for specified languages. And as a generative tool, they should be able to generate
every string, that belongs to the specified language, and not any other string.

With deterministic-paused regulation, we are introducing concept of determinism into
generation of the target language itself. In parsing, the determinism is well understood
term. Any action is deterministic, when the algoritm has a single path to follow. It does
not have to choose a single one of more possible paths, to continue.

But in generating of strings by grammars, we are facing undeterministic decisions at
almost every step. Yet we are using concept of deterministic applications of rules in paused
modification of regulated grammars. This makes generation of strings using this modifica-
tion even harder.

40

6.1.1 Undeterministic Generation

Process of generating single string of target language, of ordinary uncontrolled grammars
is simple. We can describe it with this short algorithm 6.1. This algorithm is a result
of a definition of the generated language, by chaining derivations, until final sentence is
acquired.

Algorithm 6.1 Generation of string by unrestricted grammar
Input: Grammar 𝐺 = (𝑁,𝑇, 𝑃, 𝑆)
Output: 𝑤 ∈ 𝑇 * is a generated string

1: 𝑤 ← 𝑆
2: while 𝑤 /∈ 𝑁* do
3: 𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒← {(𝑙, 𝑟, |𝑠𝑙|)|𝑠𝑙𝑙𝑠𝑟 = 𝑤, (𝑙→ 𝑟) ∈ 𝑃}
4: if |𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒| = 0 then goto 1
5: end if
6: Choose (𝑙, 𝑟, 𝑛) ∈ 𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒
7: 𝑠𝑙𝑙𝑠𝑟 ← 𝑤, such that |𝑠𝑙| = 𝑛
8: 𝑤 ← 𝑠𝑙𝑟𝑠𝑟
9: end while

We write down start symbol of our grammar. Then we apply any applicable rule of
specified set of rules. We repeat this step until all symbols in our string are terminal
symbols.

This algorithm 6.1 alone is able to generate all strings of language, that is defined by
our uncontrolled grammar. In this simple algorithm, we may find ourselves in dead-end,
when no rule is applicable. This algoritm will then reset to its initial state and lets us
choose different path. For just now, we can ignore infinite loops, that may occure during
run of this algorithm.

We can also write down an algorithm that outputs whole language, not just single
string. But when lanugage is not finite, that algorithm would newer stop. This makes it
impractical.

With rule-based regulation applied to a grammar, our job of generating a valid sentence
for a given language, becomes a little bit harder. We need to adhere to the specified order of
rule applications. This will limit the set of rules, we are able to use at any given time. This
limitations can change between every derivation step. But when we adhere to this limits,
we can use similar algorithm 6.2, to the one, we have used for the uncontrolled grammars.

As with uncontrolled grammars, we write down a start symbol. We have added a string
of used rules, this string we initialize on emptystring. We filter applicable rules with controll
language, so that application of a selected rule would not fall outside of controll language.
When we apply the selected rule, we also add its name into controll string.

In preseted algorithm, we allow to use any applicable rule, for current sentence form.
We never allow using a production rule, which is not usable with specified control language.
We are allowed to take any path, that is allowed by the controlled grammar, therefore, we
can generate any string from language, genrated by a given grammar.

6.1.2 Ways to Determinism

Only truly deterministic step in generation of a string, can be seen in a situation, where
current sentential form contains a single occurence of a left-hand side of a single usable

41

Algorithm 6.2 Generation of string by regulated grammar
Input: Grammar 𝐻 = (𝐺,Ξ), where 𝐺 = (𝑁,𝑇,Ψ, 𝑃, 𝑆)
Output: 𝑤 ∈ 𝑇 * is a generated string

1: 𝑤 ← 𝑆
2: 𝑐← 𝜀
3: while 𝑤 /∈ 𝑁* do
4: 𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒← {(𝑝, 𝑙, 𝑟, |𝑠𝑙|)|𝑠𝑙𝑙𝑠𝑟 = 𝑤, (𝑝 : 𝑙→ 𝑟) ∈ 𝑃, 𝑞 ∈ Ψ*, 𝑐𝑝𝑞 ∈ Ξ}
5: if |𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒| = 0 then goto 1
6: end if
7: Choose (𝑝, 𝑙, 𝑟, 𝑛) ∈ 𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒
8: 𝑠𝑙𝑙𝑠𝑟 ← 𝑤, such that |𝑠𝑙| = 𝑛
9: 𝑤 ← 𝑠𝑙𝑟𝑠𝑟

10: 𝑐← 𝑐𝑝
11: end while

production rule. In this situation we are unable to make any other choice, then use this
single rule, to acquire next sentential form. In all other cases, we are forced to make a choice.

We should note, that determinism is not equal to disambiguity. With both, we are
allowed to use only a single path, to generate a concrete sentence. When using determinism,
we add another condition. When we have to choose a path, we can have only a single one.
We are not allowed to try, fail and try again.

We can choose multiple paths, to acquire generation with determinism. We will discuss
two of them. The blind path and the controlled path. Both paths are using different
mechanisms, but both paths are working on a principle of restricting original model.

Blind Path

The blind path can be, for example, used to define deterministic context-free language 6.1.

Definition 6.1 (Deterministic context-free language)
A lanugage 𝐿 is a deterministic context-free lanugage, when there exists context-free gram-
mar 𝐺, which describes it, and there exists a deterministic pushdown automata, which
accepts language 𝐿.

We may see, that this definition combines two very different models for the language, it
describes. It uses both grammars and automata. Since we know, that pushdown automata
are equivalent to context-free grammar, we can ommit the notion of a grammar from this
definition, without compromising the result. After this, we only need to define deteminism
for a puhdown automata. That is not our goal, since the determinism for parsing is already
defined.

When we stick with using grammars in definition of deterministic lanugage, we still are
not telling anything about grammar itself, only that its language is deterministic. To that
conclusion, we arrive by using some automata, to check afterwards. The grammar itself can
behave undeterministically. We use grammar blindly, without any notion of determinism,
during the production of a sentence.

Based on the definition of a deterministic context-free language 6.1, we may attempt to
create a definition of deterministic context-free grammar, that constructs the deterministic
language by itself. To handle this, we may use a transformation algorithm, to transform

42

grammar into automata. Then we may define a deterministic context-free grammar as
a context-free grammar, which by using particular transformation algorithm, yields deter-
ministic pushdown automata.

Construction of such algorithm may not be trivial matter. Especialy for a more compli-
cated models, then context-free grammars. Even then, we still do not specify deterministic
steps of production directly, but indirectly, by transformation.

Controlled Path

The controlled path to acquire determinism of generation, is build on top of a different
concept from the blind path. We define a grammar itself, and a derivation used to produce
strings, as a determistic. We will use additional control over them, to meet our target. This
additional control will work side by side with the production rules.

Main problem, we face, is the limited definition, of the atomic step of acquiring sentence
of lanugage. It is single derivation. If we want to construct deterministic grammar, we need
to limit the number of possible derivations to exactly one. But when we raise this extreme
kind of limit, we will limit ourselves to at most single valid sentence in language. This is
implied by choosing a single path in every step. We cannot deviate.

We also do not want to take any path we want, and then check the result, if we realy
was deterministic in our choices, that is the blind path.

We want to restrict the derivation in such a way, that we will leter be able to say,
that we acted deterministically, without actually acting deterministically. We can easily
achieve that, by stating, that we are acting deterministically. This statement alone is very
powerfull. With this statement, we are saying, we had exactly single option to act, at
a certain step of production.

If, we would just created a statement, without retention of any supporting information,
we would not be correct about defending it.

Example 6.1
Consider a context-free grammar 𝐺 = (𝑁,𝑇, 𝑃, 𝑆), where

𝑁 = {𝑆,𝑅}, (6.1)
𝑇 = {𝑎, 𝑏}, (6.2)
𝑃 = {𝑝1 : 𝑆 → 𝑅𝑏𝑆,

𝑝2 : 𝑅 → 𝑎𝑆,

𝑝3 : 𝑆 → 𝜀}. (6.3)

Lets look at two separate derivations, that may occure. Every derivation is marked using
a tuple. First part of this tuple is a rule, used in this step, and the second part is a statement,
whethever it was applied deterministically (𝐷), or not (𝑁).

𝑆 ⇒𝑅𝑏𝑆[(𝑝1, 𝐷)]

⇒𝑎𝑆𝑏𝑆[(𝑝2, 𝐷)]

⇒𝑎𝑎𝑆𝑏𝑆[(𝑝2, 𝐷)]

⇒𝑎𝑎𝑏𝑆[(𝑝3, 𝑁)]

⇒𝑎𝑎𝑏[(𝑝3, 𝐷)]

𝑆 ⇒𝑎𝑆[(𝑝2, 𝐷)]

⇒𝑎𝑅𝑏𝑆[(𝑝1, 𝐷)]

⇒𝑎𝑎𝑆𝑏𝑆[(𝑝2, 𝐷)]

⇒𝑎𝑎𝑆𝑏[(𝑝3, 𝑁)]

⇒𝑎𝑎𝑏[(𝑝3, 𝐷)]

43

In example 6.1, we can see a problem, with a simple statement, about limiting number of
available productions, when we do not take into an account all already executed derivations.
The grammar outputted the same string, using two different sequences of derivations, while
both of them started deterministically. This is a direct contradiction with the semantics of
determinism during parsing. When we are conducting deterministic parsing, we can never
take two different paths daterministcally, from the same initial conditions.

In order, to generate a language, we have to choose to behave deterministically. We
cannot create statements, and later ignore them. When we are stating, that we made
a deterministic step, we are creating adhoc artificial limitation. This limitation states, that
we choosed, to have no other choice.

All of those limitations has to apply not only for current sentential form, but also for
all consequent ones. Hence with every production, we are increasing a set of limitations.
And when we are choosing next rule, we have to respect all already created limitations.

We have to create limitations. Those limitations has to be recorded. We can use
a natural lanugage to express them, but that would not be easy to transform into any
practically usable form. We can use a formal lanugages, to express them. For every rule,
we then create a limitation in form of a language. This language will then help us to specify
the cases of deterministic usage.

By using a production rule, we say, that final sentence will have to obey a form, pre-
scribed by limiting language of the selected rule. When we use rule deterministically, no
other limiting lanugage may be applicable to the final sentence. Also when we specificaly
state, that rule was used nondeterministically, then all next sentential forms has to obey
more than one of limiting languages, specified by rules of a grammar.

Take a closer look at a form of each context-free rule. Its left-hand side contains sin-
gle nonterminal symbol. Its right-hand side is formed by a single string of nonterminals
and terminals. This should be the basic for our limiting language. We will use a simple
transformation from a production rule to a limiting lanuguage. This transformation should
characterise the right-hand side of a rule. Every string, that could be generated starting
this rule, should be in the limiting lanugage. In other case, we would allow us to fall into
a trap, by raising limitations, which could never be met.

Our limitations will be created by analysing every rule in context of a whole grammar
and finding a language, generated by this rule. This lanugage consists of a strings of terminal
symbols, that are results of rewriting right-hand side of a rule, by any rule in the analysed
grammar. Due to the context-free nature of every rule, the limiting language cannot specify
conditions outside of a substring, generated directly of nonterminal, rewriten by this rule.

This easy transformation of a rule into a produced language, can be performed with
context-free rules, because they do not allow symbols to change relative position to each
other. When two instancess 𝑥 and 𝑦 of symbols in a sentence 𝑘𝑥𝑙𝑦𝑚, are in this particular
order, then it will never change, even when strings 𝑘, 𝑙 and 𝑚 are changed. The only
exception of this rule is a case, when one of the symbols is rewriten. In this case, the
relation of a position holds with whole string, that came to be from the rewriten symbol.
This holds, because the subtree of a derivation tree, rooted with a rewriten symbol, stays
at the original position of a rewriten symbol.

Extreme Examples

We will analyze two extreme cases of limiting languages. We will demonstrate this limita-
tions on a grammar from previous example 6.1.

44

The first example uses very liberal definition of a limiting lanugage. It is trying to be
the least specific, it can be.

Example 6.2 (Nonspecific limitation)
Consider a context-free grammar 𝐺 from example 6.1. Consider a limiting language 𝐿(𝑝) =
{𝑤|𝑤 ∈ 𝑇 *}, for every rule 𝑝 ∈ 𝑃 . For brevity, we write a rule 𝑝 in format 𝑝𝑛 : 𝑙→ 𝑟[𝐿(𝑝𝑛)].

𝑃 = {𝑝1 : 𝑆 → 𝑅𝑏𝑆[(𝑎+ 𝑏)*],

𝑝2 : 𝑅 → 𝑎𝑆[(𝑎+ 𝑏)*],

𝑝3 : 𝑆 → 𝜀[(𝑎+ 𝑏)*]}. (6.4)

All limiting lanugages are the same. They are all supersets of lanugages, that are actualy
producable, from any of the rules. The limiting languages are universal languages.

This transformation can be used to produce a limiting lanugage, but we are not able to
define a deterministic limitation, using it. When we say, that one of the rules is not usable,
non of them are. This limiting language can achieve only nondeterministic derivations,
when sentential form contains more than a single occurence of nonterminal symbol. Even
then, for deterministic operation, we would require exactly one rule for a nonterminal.

Transformation of this model, to parser is straight forward. You may apply any rule,
any time. Due to the fact, that every possible substring, that could appear in a concrete
sentence, is valid for any of the rules.

The second example goes to the farthes end of a spectra from the first example. The
limiting lanugage is the most specific possible.

Example 6.3 (Maximal limitation)
Consider a context-free grammar 𝐺 from example 6.1. Consider a limiting language 𝐿(𝑙→
𝑟) = {𝑤|𝑤 ∈ 𝑇 *, 𝑟 ⇒*

𝐺 𝑤}, for every rule 𝑝 = (𝑙→ 𝑟) ∈ 𝑃 . For brevity, we write a rule 𝑝 in
format 𝑝𝑛 : 𝑙→ 𝑟[𝐿(𝑝𝑛)].

𝑃 = {𝑝1 : 𝑆 → 𝑅𝑏𝑆[𝑎+(𝑏𝑎*)+],

𝑝2 : 𝑅 → 𝑎𝑆[𝑎+(𝑏𝑎*)*],

𝑝3 : 𝑆 → 𝜀[𝜀]}. (6.5)

All limiting lanugages are constructed as an exact languages producable from a right-
hand side of a rule. This transformation may yield a limiting language of the same class as
the grammar itself.

This type of transformation is the worst case. We need to perform the deepest possible
analysys on a whole string of right-hand side of a rule and finds all possible subsentences,
which start by using of a rule. Therefore this is an ultimate tool to check for deterministic
decision on picking up a rule, because we can be certain, it is both applicable and only
possible.

Transformation of this model, to a parser is also straight forward. But its runtime
complexity is much greater. In the first example, we had to check nothing. In this case, we
have to check everything to the last symbol of a string we want to generate from a current
symbol. We may see, that in the first derivation, we are trying to match the initial symbol
with complete input string, therefore in order to pick the rule, to be used, we need to
complete the syntax analysis itself.

45

Other Examples

First two examples was exploring the farthes borders of a spectra of limiting languages. We
can also make a compromise between the precision and an ammount of analysis needed.

Example 6.4 (Leftmost 1)
Consider a context-free grammar 𝐺2 = (𝑁,𝑇, 𝑃, 𝑆), where

𝑁 = {𝑆,𝑅}, (6.6)
𝑇 = {𝑎, 𝑏, 𝑐}, (6.7)
𝑃 = {𝑝1 : 𝑆 → 𝑅𝑆𝑏,

𝑝2 : 𝑆 → 𝑅𝑆𝑐,

𝑝3 : 𝑆 → 𝑎𝑅,

𝑝4 : 𝑆 → 𝑏𝑅,

𝑝5 : 𝑅 → 𝜀}. (6.8)

Consider a limiting language 𝐿(𝑙 → 𝑟) = {𝑎𝑐|𝑟 ⇒*
𝐺 𝑎𝑤 ∧ ((𝑎𝑤 = 𝜀 ∧ 𝑐 = 𝜀) ∨ (𝑎 ∈ 𝑇 ∧ 𝑐 ∈

𝑇 *))}. This limitation takes all first symbols, that may appear in a generated language and
concatenates them with universal language, if that symbol exists.

𝑃 = {𝑝1 : 𝑆 → 𝑅𝑆𝑏[(𝑎+ 𝑏)(𝑎+ 𝑏+ 𝑐)*],

𝑝2 : 𝑆 → 𝑅𝑆𝑐[(𝑎+ 𝑏)(𝑎+ 𝑏+ 𝑐)*],

𝑝3 : 𝑆 → 𝑎𝑅[𝑎(𝑎+ 𝑏+ 𝑐)*],

𝑝4 : 𝑆 → 𝑏𝑅[𝑏(𝑎+ 𝑏+ 𝑐)*],

𝑝5 : 𝑅 → 𝜀[𝜀]}. (6.9)

This is a metric used in 𝐿𝐿(1) parsers, checking only a single symbol at the start of a subtree-
generated substring.

Example 6.5 (Natural limitation)
Consider a context-free grammar 𝐺2 from the example 6.4 and a limitation, which con-
structs regular limiting lanugage from a rule. Every always erased symbol is replaced with
𝜀. Every other erasable nonterminal symbol is replaced with universal lanugage. Every
non-erasable one with universal lanugage without empty string. We call this the natural
limitation.

𝑃 = {𝑝1 : 𝑆 → 𝑅𝑆𝑏[(𝑎+ 𝑏+ 𝑐)+𝑏],

𝑝2 : 𝑆 → 𝑅𝑆𝑐[(𝑎+ 𝑏+ 𝑐)+𝑐],

𝑝3 : 𝑆 → 𝑎𝑅[𝑎],

𝑝4 : 𝑆 → 𝑏𝑅[𝑏],

𝑝5 : 𝑅 → [𝜀]}. (6.10)

In the dfference from the previous example, we can see, that for rules 𝑝1 and 𝑝2, the most
specific parts of a limiting language moved from the first symbol to the last symbol. Other
rules becomes the most specific langages possible.

46

6.2 Definition
We will define a determinism-paused regulation mode for regular-controlled grammars.
With this mode of paused regulated grammar, we need to closely monitor, which produc-
tions was made deterministically and which not. Those, made deterministically, are not
included in a string of controll language. This is a mechanism chosen for shortening of
strings of control language.

Definition 6.2
A determinism-paused language-controlled (context-free) grammar, is a pair

𝐻 = (𝐺,Ξ),

where

∙ 𝐺 = (𝑁,𝑇,Ψ, 𝑃, 𝑆) is a context-free grammar, called core grammar ;

∙ Ξ ⊆ Ψ* is a language over rules, called control language;

∙ 𝑁 is a finite set of nonterminal symbols;

∙ 𝑇 is a finite set of terminal symbols;

∙ 𝑃 ⊆ (𝑁 × (𝑁 ∪ 𝑇)*) is a set of rules;

∙ 𝑆 ∈ 𝑁 ;

∙ Ψ is a set of symbols called rule labels such that |Ψ| = |𝑃 | and 𝜓 is a bijection from
Ψ to 𝑃 ;

The mapping function 𝛼 : (Ψ, {0, 1})→ Ψ* is defined as

𝛼(𝑟, 𝑘) =

{︂
𝑟 iff 𝑘 = 1
𝜀 otherwise. (6.11)

The filtering function 𝛽 : (𝐷, (𝑁 ∪ 𝑇 ∪𝐷)*)→ (𝑁 ∪ 𝑇)* is defined as

𝛽(𝑑, 𝑡𝑣) =

⎧⎨⎩
𝜀 iff 𝑡𝑣 = 𝜀
𝛽(𝑑, 𝑣) iff |𝑡| = 1 ∧ 𝑡 ∈ 𝑑
𝑡𝛽(𝑑, 𝑣) iff |𝑡| = 1 ∧ 𝑡 /∈ 𝑑

(6.12)

The formating function 𝛾 : 𝑃 → 𝑓 ⊆ 𝑇 * is the natural limitation (see example 6.5).The
rule 𝑝1 : 𝑙1 → 𝑟1 ∈ 𝑃 is inherently nondeterministic iff there exists rule 𝑝2 : 𝑙2 → 𝑟2 ∈ 𝑃 ,
such that 𝑙1 = 𝑙2, 𝑟1 ̸= 𝑟2 and 𝛾(𝑙1 → 𝑟1) = 𝛾(𝑙2 → 𝑟2).

The configuration is a tuple (𝑤, 𝑠), where 𝑤 is a sentential form and 𝑙 is a set of limita-
tions, which are defined as a tuple (†, 𝑙), † is a border symbol and 𝑙 is a limiting lanugage.
Each nonterminal symbol 𝑘 is upon insertion into a sentential form inserted into envelope of
two new identical border symbols, which together form tightly packed group †𝑘†, without
any interleaving symbols. Between border symbols is then contained a subtree, gained from
the original symbol. The limiting language then forms a superset of language, allowed to
apear between the belonging border symbols after application of the filtering function 𝛽, to
remove all inside border symbols. Default limiting language for a single symbol is universal
language.

47

The configuration (𝑤, 𝑠) is valid, when none of the limiting lanugage in 𝑠 is empty lan-
guage and for every substring 𝑥 = 𝑥1†0𝑣†0𝑥2 of 𝑤, where 𝑣 = 𝑣0†1𝑢1†1𝑣1 . . . 𝑣𝑛−1†𝑛𝑢𝑛†𝑛𝑣𝑛,
𝑣𝑖 ∈ 𝑇 *, 𝐵 = {†|(†, 𝑙) ∈ 𝑠} and (†𝑖, 𝐿𝑖) ∈ 𝑠 for 𝑖 ≥ 0, the limiting language 𝐿0 ∩
{𝛽(𝐵, 𝑣0𝐿1𝑣1 . . . 𝑣𝑛−1𝐿𝑛𝑣𝑛)} ≠ ∅.

For the rule (𝑝 : 𝑙→ 𝑟) ∈ 𝑃 to be applicable on a configuration (𝑥𝑙†𝑙𝑙†𝑙𝑥𝑟, 𝑠), consequent
configuration (𝑥𝑙†𝑟†𝑥𝑟, {(†,𝐾)|(†, 𝐿) ∈ 𝑠 ∧𝐾 = 𝐿 ∩ 𝛾(𝑝) if † = †𝑙, 𝐿 otherwise}) has to be
a valid configuration. The application of the rule does not create impossible configuration
of limitations.

A single derivation ⇒𝐻 [(𝑝, 𝑑)], using applicable production rule 𝑝 : 𝑙 → 𝑟 is a relation
between two valid configurations, defined as

𝑐𝑖 = (𝑤𝑖 = 𝑥𝑙†𝑝𝑙†𝑝𝑥𝑟, 𝑠𝑖)⇒𝐻 [(𝑝, 𝑑)](𝑤𝑖+1 = 𝑥𝑙†𝑝𝑟†𝑝𝑥𝑟, 𝑠𝑖+1) = 𝑐𝑖+1 :

if 𝑑 = 0 :

𝑠′𝑖+1 = {(†,𝐾)|(†, 𝐿) ∈ 𝑠𝑖 ∧𝐾 = 𝐿 ∩ 𝛾(𝑝) if 𝑏 = †𝑝, otherwise𝐿},
𝑠𝑖+1 = 𝑠′𝑖+1 where all limiting languages𝐿 for any reachable single nonterminal 𝑛

are chaged into 𝐿 ∩
⋂︁
{𝛾(𝑞)|(𝑞 : 𝑛→ 𝑜) ∈ (𝑃 ∖ 𝑝)}

if 𝑑 = 1 ∧ exists any other configuration 𝑐𝑖 ⇒𝐻 𝑐𝑗 using any rule :,

𝑠𝑖+1 = 𝑠𝑖{(†,𝐾)|(†, 𝐿) ∈ 𝑠𝑖 ∧𝐾 = 𝐿 ∩ 𝛾(𝑝) if 𝑏 = †𝑝, otherwise𝐿} (6.13)

The language of 𝐻, denoted by 𝐿(𝐻), consists of all strings 𝑤, for which there is a derivation
in 𝐻, such that 𝛼(𝑟1, 𝑑1)𝛼(𝑟2, 𝑑2) . . . 𝛼(𝑟𝑛, 𝑑𝑛) ∈ Ξ for some 𝑛 ≥ 1 where

(𝑆,∅) = 𝑐0 ⇒𝐻 𝑐1[(𝑟1, 𝑑1)]⇒𝐻 𝑐2[(𝑟2, 𝑑2)]⇒𝐻 · · · ⇒𝐻 𝑐𝑛[(𝑟𝑛, 𝑑𝑛)] = (𝑤𝑛, 𝑠𝑛),

𝑤 = 𝛽({𝑠|(𝑠, 𝑙) ∈ 𝑠𝑛}, 𝑤𝑛) ∈ 𝑇 *,

𝑑𝑖 ∈ {0, 1} (6.14)

In definition 6.2, we can see a couple of differences, from previusly introduced switch-
paused mode of regulation. The determinism-paused mode does not add another sets do
definition of grammar. Neither does it add another restrictions to the controll language. The
definition of the grammar itself is unchanged from he original regular-controlled grammar.
The change are mustly in the definition of derivation and generated language.

The configuration contains serialized leafs of a derivation tree and applied limitations
for subtrees. Derivations between this configurations can be either deterministic or nonde-
terministic.

A simple mapping function 𝛼 was added. This function is used in a definition of gen-
erated language. Every production has to be either deterministic or non-deterministic.
We need to track all of them, to create a full chain leading up to final string. When we
compare string of productions with controll language, we use only non-deterministic ones.
This function efectively drops the productions, which are not supposed to be in control
lanaguage.

Next, a filtering function 𝛽 is used to remove marker symbols, which are not part of
limiting or output lanugages.

The formating function 𝛾 is used in order to pick a production rule. Deterministic
application of a rule blocks any other rules by intersecting limiting language of possible
locations with complements of limiting lanugages of all non used rules. If inherently non-
deterministic production rule would be applied deterministically, then the other rule with
the same limiting language would block it, because intersection of limiting lanugage with
its complement is empty.

48

6.2.1 Leftmost Modification

From definition of determinism-paused mode, we may see, that in many cases, we are
standing between non-deterministic choice. Take a simple example of a sentential form,
which contains two or more nonterminal symbols. When the already acquired conditions are
not specific enough, we may successfully derive both of them. This results in undeterministic
decision, which has to be writen into the control languge. This is unwanted, when we want
to shorten a string of control language.

The situation changes rapidly, when we apply the regulated leftmost modification 3.4, on
top of the determinism-paused modification. We can always limit the derived nonterminal
down to a single one. We only need to choose appropriate rule.

We can also modify the formating function, to force a different definition of an inherently
nondeterministic rule. As an example, we can choose the Leftmost 1 limitation 6.4.

The effect of this compound 𝐿𝐿(1) modification can be seen in example 6.4.

6.3 Other Regulations
This modification is intendet to be more general, than modify only regular=controlled
grammars. We can outline few propositions for these modifications. There exists manz
tzpes of regulated grammars. This list is not neither complete, nor does it contain complete
rigorous definitions.

6.3.1 Random Context Grammars

This model can use similar modification to the one used for the regular-controlled grammars.
It can attempt to find a production rule by first ignoring its permitting and forbidding sets.
If a single rule is found this way, it can be applied. In other cases, the original model is
used.

6.3.2 Tree-Regulated Grammars

Ordinary tree-regulated grammars are checking whole derivation tree or some subset of
paths or cuts [12]. Determinism-paused modification of these grammars then must also
take into account the whole derivation tree. Possible path can be seen, using two additional
mechanisms.

The first mechanism can be used to annotate nodes in drivation tree with one of two
possible marks, carrying information, whetever it was rewriten deterministically or not.
When a derivation tree is to be checked, the second mechanism can be imployed to create
filtered image of an original tree. this image could contain only nondetermistically created
symbols, while retaining path relations between them, only cumulating multiple edges into
single one. Then the original model can perform checks on this filtered image.

6.4 Examples
We will investigate a few simple examples of languages, generated by determinism-paused
modification of regulated grammars.

49

Example 6.6 (𝑎𝑛𝑏𝑛𝑐𝑛)
Consider the regular-lanugage regulated grammar 𝐻1 and its determinism-paused variant
𝐻𝐷𝑃

1 .

𝐻1 = (𝐺1,Ξ1) (6.15)
𝐺1 = (𝑁,𝑇,Ψ, 𝑃, 𝑆) (6.16)
𝑁 = {𝑆,𝐴,𝐵,𝐶} (6.17)
𝑇 = {𝑎, 𝑏, 𝑐} (6.18)
𝑃 = {𝑝0 : 𝑆 → 𝐴𝐵𝐶,

𝑝1 : 𝐴 → 𝑎𝐴, 𝑝2 : 𝐵 → 𝑏𝐵, 𝑝3 : 𝐶 → 𝑐𝐶,

𝑝4 : 𝐴 → 𝑎, 𝑝5 : 𝐵 → 𝑏, 𝑝6 : 𝐶 → 𝑐} (6.19)
Ξ1 =𝑝0(𝑝1𝑝2𝑝3)

*𝑝4𝑝5𝑝6 (6.20)
𝐿1 = {𝑎𝑛𝑏𝑛𝑐𝑛|𝑛 ≥ 1} (6.21)

The grammar 𝐻1 is generating canonical language 𝐿1. The control language can be
divided into phrases of three rules, where every phrase injects exactly one terminal of each
kind.

𝑆 ⇒𝐴𝐵𝐶[𝑝0]

⇒𝑎𝐴𝐵𝐶[𝑝1]

⇒𝑎𝐴𝑏𝐵𝐶[𝑝2]

⇒𝑎𝐴𝑏𝐵𝑐𝐶[𝑝3]

⇒𝑎𝑎𝑏𝐵𝑐𝐶[𝑝4]

⇒𝑎𝑎𝑏𝑏𝑐𝐶[𝑝5]

⇒𝑎𝑎𝑏𝑏𝑐𝑐[𝑝6] (6.22)

The determinism-paused version does differ in the control lanugage. This difference

𝐻𝐷𝑃
1 = (𝐺1𝐷,Ξ

𝐷𝑃
1) (6.23)

𝐺1𝐷 = (𝑁,𝑇,Ψ, 𝑃, 𝑆) (6.24)
𝑁 = {𝑆,𝐴,𝐵,𝐶,𝑋1, 𝑋2} (6.25)
𝑇 = {𝑎, 𝑏, 𝑐} (6.26)
𝑃 = {𝑝0 : 𝑆 → 𝐴𝐵𝐶,

𝑝1 : 𝐴 → 𝑎𝐴, 𝑝2 : 𝐵 → 𝑏𝐵, 𝑝3 : 𝐶 → 𝑐𝐶,

𝑝4 : 𝐴 → 𝑎, 𝑝5 : 𝐵 → 𝑏, 𝑝6 : 𝐶 → 𝑐𝑋1,

𝑝7 : 𝐶 → 𝑐𝑋2, 𝑝8 : 𝑋1 → 𝜀, 𝑝9 : 𝑋2 → 𝜀} (6.27)
Ξ𝐷𝑃
1 = (𝑝1𝑝2𝑝3)

*𝑝4𝑝5𝑝6 (6.28)

Most of the derivations are done in nondeterministic manner. This is a simple result
of multiple nonterminals available, even when there exists only a single applicable rule for
each of the nonterminals. It is an intrinsic property of grammars without limitation of used
nonterminals.

50

𝑆 ⇒𝐴𝐵𝐶[(𝑝0, 0)]

⇒𝑎𝐴𝐵𝐶[(𝑝1, 1)]

⇒𝑎𝐴𝑏𝐵𝐶[(𝑝2, 1)]

⇒𝑎𝐴𝑏𝐵𝑐𝐶[(𝑝3, 1)]

⇒𝑎𝑎𝑏𝐵𝑐𝐶[(𝑝4, 1)]

⇒𝑎𝑎𝑏𝑏𝑐𝐶[(𝑝5, 1)]

⇒𝑎𝑎𝑏𝑏𝑐𝑐𝑋1[(𝑝6, 1)]

⇒𝑎𝑎𝑏𝑏𝑐𝑐[(𝑝8, 0)] (6.29)

In this example, we can see, that reasoning about 𝑅𝐶𝐷𝑃 grammars can be hard in situ-
ations, when the grammar transitiones from using mutliple possible nonterminals to single
one. We have to be avare of this possibility and create rules acordingly. In the first case,
we are not forced to use nondeterministic rules, while still using them nondeterministically.
In the second case, when we are limited to a single nonterminal, we have to create artifi-
cial nondeterminism, when it is not already there, in order to control the production with
control language.

When we would used set of rules from original grammar 𝐻1, we would be able to produce
symbol 𝑠 in any number ≥ 𝑛.

Example 6.7 (𝐿𝐿(1))
Lets look at another example. Consider the regular-lanugage regulated grammar 𝐻2 and
its 𝐿𝐿(1) determinism-paused variant 𝐻𝐷𝑃,𝐿𝐿1

2 .

𝐻2 = (𝐺2,Ξ2) (6.30)
𝐺2 = (𝑁,𝑇,Ψ, 𝑃, 𝑆) (6.31)
𝑁 = {𝑆,𝐴,𝐵,𝐶} (6.32)
𝑇 = {𝑎, 𝑏, 𝑐} (6.33)
𝑃 = {𝑝0 : 𝑆 → 𝑋𝑡𝑌 𝑡,

𝑝1 : 𝑋 → 𝑎𝑋, 𝑝2 : 𝑋 → 𝑐𝑑𝑋, 𝑝3 : 𝑋 → 𝑐𝑒𝑋, 𝑝4 : 𝑋 → 𝜀,

𝑝5 : 𝑌 → 𝑐𝑑𝑌, 𝑝6 : 𝑌 → 𝑐𝑒𝑌, 𝑝7 : 𝑌 → 𝜀} (6.34)
Ξ2 =𝑝0(𝑝

*
1(𝑝2𝑝5|𝑝3𝑝6))*𝑝4𝑝7 (6.35)

𝐿2 = {𝑢𝑣|𝑢 = (𝑎*(𝑐𝑑|𝑐𝑒))𝑛𝑡 ∧ 𝑣 = 𝑢 bez 𝑎 ∧ 𝑛 ≥ 0} (6.36)

The deterministic version differs only in used control lanugage.

𝐻𝐷𝑃,𝐿𝐿1
2 = (𝐺2,Ξ2𝐷) (6.37)

Ξ2𝐷 =(𝑝2𝑝5|𝑝3𝑝6)* (6.38)

Only the leftmost derivable nonterminal are taken into consideration. We are able to
simplify control language to the bare minimum, needed for contex-sensitive parts of the
language. Most of the derivations are deterministical.

51

𝑆 ⇒𝑋𝑡𝑌 𝑡[(𝑝0, 0)]

⇒𝑎𝑋𝑡𝑌 𝑡[(𝑝1, 0)]

⇒𝑎𝑐𝑑𝑋𝑡𝑌 𝑡[(𝑝2, 1)]

⇒𝑎𝑐𝑑𝑎𝑋𝑡𝑌 𝑡[(𝑝1, 0)]

⇒𝑎𝑐𝑑𝑎𝑋𝑡𝑐𝑑𝑌 𝑡[(𝑝5, 1)]

⇒𝑎𝑐𝑑𝑎𝑐𝑒𝑋𝑡𝑐𝑑𝑌 𝑡[(𝑝3, 1)]

⇒𝑎𝑐𝑑𝑎𝑐𝑒𝑎𝑋𝑡𝑐𝑑𝑌 𝑡[(𝑝1, 0)]

⇒𝑎𝑐𝑑𝑎𝑐𝑒𝑎𝑡𝑐𝑑𝑌 𝑡[(𝑝4, 0)]

⇒𝑎𝑐𝑑𝑎𝑐𝑒𝑎𝑡𝑐𝑑𝑐𝑒𝑌 𝑡[(𝑝6, 1)]

⇒𝑎𝑐𝑑𝑎𝑐𝑒𝑎𝑡𝑐𝑑𝑐𝑒𝑡[(𝑝7, 0)] (6.39)

In the example , we can see an interesting phenomena. We have statically restricted
ourselves in selection of both nonterminal and terminal symbols. As a response, we have
acquired a simpler control model, then we would have without these limitations. The
control has effectively shifted between these two restrictions. Or rather it is not copied in
both of them, since both can complement each other.

6.5 Generation
Grammars are, in oposition to its coresponding automata, intended to be primarily gener-
ative tools for specified languages. From this reason alone, we should

With rule-based regulation applied to grammar, our job of generating a valid sentence
for a given language, becomes harder. We need to adhere to the specified order of rule
applications. This will limit the set of rules, we are able to use at any given time. Thi
limitations can change between every derivation. But when we adhere to this limits, we
can still use the same algorithm, we have used for the uncontrolled grammars.

Even the switch-paused mode of operation does not change this basic concept. It only
adds another level of regulation to the way, we use to acquire a limitation for every derivation
step.

This simple concept changes, when we use a determinism-paused modification of con-
trolled grammars. We need to introduce another concept to the process of generation of
strings of the target language. It is a concept of determinism, which is usually used in terms
of parsing.

We start the genetion in the same manner as with unregulated grammars, by initializing
working sentence to starting symbol. Then we employ regulating model to filter set of rules
to a subset of all rules. We are then able to use only those rules.

With determinism-paused modification, we need to predict deterministic choices that
would ocur in parsing of any given string. this will be

6.6 Parsing
For a newly introduced model, a parsing technique was crated. This is based upon a trans-
formations of the basic model for regular-language regulation.

52

6.6.1 Application of Limitations

We have defined a grammar, which is using sets of limitations on subsentences generated
from a particular subtree. We have to reflect this design in a parsing routine.

Every application of a rule adds its limitation to a certain substring of a generated
sentence. In generation of a string, we start with universal lanuguage and limit it by using
a rules. The generated sentence is then an intersection of all already applied limitations.
We are applying another rules, until the intersection does not contain exactly one sentence
and no more limitations can be added.

In parsing, we already have a single sentence, and trying to find an order of rules appli-
cations, which satisfies this single input sentence. Every intersection of a unary language
with another lanugage can yield only the unary language itself, or empty language. When
the intersection of applied limitations and input string is empty language, we were not
successful in finding apropriate limitations.

Because the possible intersection can have only single sentence, we do not need to store
all applied limitations in any other way, than a current sentential form, because all of them
is already writen into an input sentence.

6.6.2 Specific Transformations

Every rule in automata, created by basic transformations, is using feasibility function 𝑐(𝑝),
which is implemented as a search for every possible location of derivation by a rule 𝑝. At
every state, small single rule loop for every production rule 𝑞 is added. This loop starts with
a single rule on a smaller priority and applies a single production rule. This rule is using
feasibility function 𝑜(𝑞), which is possitive only when the rule 𝑞 and no other is applicable.

𝑝1
(2,𝑐(𝑝1)) (2,𝑐(𝑝1))

Figure 6.1: Original state

𝑝1 𝑝1
(0,𝜀)

(2,𝑐(𝑝1))
(2,𝑐(𝑝1))

𝑝2 𝑝3

(1,𝑜(𝑝1))

(1,𝑜(𝑝2)) (1,𝑜(𝑝3))

(0,𝜀)(0,𝜀)

Figure 6.2: Transformed state

6.7 Properties
We will discuss a properties of the newly introduced determinism-paused grammars. We
will compare them with its original version.

6.7.1 Original to Determinism-paused

Every regular-controlled grammar can be converted to determinism-paused version, that
generates the same language. The algorithm 6.3 is using inherently nondeterministic rules,
to achieve this transformation. For every rule of original grammar, we create at least one
other rule, which is in the same format. These two rules becomes inherently nondetermin-
istic.

53

We cannot create second identical rule, because the rules are not organised in multiset.
But we can introduce new nonterminal symbols, to create semanticaly identical rule. Every
nonterminal symbol is doubled, to obtain two symbols with identical semantic function.
For every rule, there is created a set of inherently nondeterministic rules, created by dif-
ferentiation in used nonterminal symbols. By this system, we cannot duplicate the rules
containing no nonterminal symbols. These rules can be multiplied by adding a nonterminal
symbols, which are immediately deleted.

At last, new controll language, which uses new rules, has to be created. In place of
every original rule, any of new rules, created from it, could be used.

Algorithm 6.3 Transformation of 𝑅𝐶 grammar to 𝑅𝐶𝐷𝑃 grammar
Input: 𝑅𝐶 grammar 𝐻𝐼 = (𝐺𝐼 ,Ξ𝐼), where 𝐺𝐼 = (𝑁𝐼 , 𝑇,Ψ𝐼 , 𝑃𝐼 , 𝑆)
Output: 𝑅𝐶𝐷𝑃 grammar 𝐻𝑂 = (𝐺𝑂,Ξ𝑂), where 𝐺𝑂 = (𝑁𝑂, 𝑇,Ψ𝑂, 𝑃𝑂, 𝑆)

1: 𝑁𝑂 ← {𝑆} ∪ (
⋃︀

𝑛∈𝑁 𝑚𝑛 = {𝑛1, 𝑛2})
2: 𝑁𝑂 ← 𝑁0 ∪ (

⋃︀
{{𝑋𝑝,1, 𝑋𝑝,2}|(𝑝 : 𝑙→ 𝑟) ∈ 𝑃𝐼 ∧ 𝑟 ∈ 𝑇 *})

3: 𝑃𝑂 ← {𝑝𝑆1 : 𝑆 → 𝑆1, 𝑝𝑆2 : 𝑆 → 𝑆2}

4: 𝑃𝑂 ← 𝑃𝑂 ∪
⋃︀

𝑝∈Ψ𝐼
𝑧𝑝 =

⎧⎪⎨⎪⎩
{(𝑙𝑚 → 𝑟0𝑟1 . . . 𝑟𝑘𝑥), (𝑥→ 𝜀)} | 𝑙𝑚 ∈ 𝑚𝑙 ∧ 𝑟𝑖 ∈ 𝑇

∧𝑥 ∈ {𝑋𝑝,1, 𝑋𝑝,2} ∧ 𝑟𝑜𝑟1 . . . 𝑟𝑘 ∈ 𝑇 *∧
0 ≤ 𝑖 ≤ 𝑘 ∧ (𝑝 : 𝑙→ 𝑟𝑜𝑟1 . . . 𝑟𝑘) ∧ 𝑘 ≥ 0}

⎫⎪⎬⎪⎭
5: 𝑃𝑂 ← 𝑃𝑂∪

⋃︀
𝑝∈Ψ𝐼

𝑧𝑝 =

⎧⎪⎨⎪⎩
(𝑙𝑚 → 𝑠0𝑠1 . . . 𝑠𝑘) | 𝑙𝑚 ∈ 𝑚𝑙 ∧ 𝑠𝑖 = 𝑟𝑖 if 𝑟𝑖 ∈ 𝑇 else 𝑠𝑖 ∈ 𝑚𝑟𝑖∧

0 ≤ 𝑖 ≤ 𝑘 ∧ (𝑝 : 𝑙→ 𝑟𝑜𝑟1 . . . 𝑟𝑘) ∧ 𝑘 ≥ 1∧
𝑟𝑜𝑟1 . . . 𝑟𝑘 /∈ 𝑇 *

⎫⎪⎬⎪⎭
6: Ξ𝑂 ← {(𝑝𝑆1|𝑝𝑆2)𝑦0𝑦1 . . . 𝑦𝑛|𝑥0𝑥1 . . . 𝑥𝑛 ∈ Ξ𝐼 , 𝑥𝑖 ∈ Ψ0, 𝑦𝑖 ∈ 𝑧𝑥𝑖 , 0 ≤ 𝑖 ≤ 𝑛, 𝑛 ≥ 0}

Lemma 6.1 (Correct transformation) Transformation algorithm 6.3 is correct.

Proof 6.1
Let us investigate properties of the transformation.

∙ Every rule is inherently nondeteministic.

∙ Every production has to take a part in a control lanugage.

∙ For every rule, there exists a group of one or two rules, which are a direct translation
of it.

∙ All translations are regular.

∙ Regular languages are closed under transduction.

This translation has also disadvantages. It introduces an erasing rules into a grammar,
hence the output grammar is not propagating. The nonterminal can be rewriten to terminals
or erased. For a rule rewriting into terminals, the erasing rule is introduced.

6.7.2 Expressive Strength

Theorem 6.1
ℒ(𝑅𝐶𝐿) ⊆ ℒ(𝑅𝐶𝐷𝑃

𝐿), control language 𝐿 ∈ {𝑅𝐸𝐺,𝐶𝐹,𝐶𝑆,𝑅𝐸}

54

Proof 6.2
We will construct a proof by providing a transformation.

∙ There exists a transformation 6.3 of any 𝑅𝐶𝐿 grammar into 𝑅𝐶𝐷𝑃
𝐿 grammar, defining

the same language.

Open problem 6.1 (Equality)
ℒ(𝑅𝐶𝐿) = ℒ(𝑅𝐶𝐷𝑃

𝐿)
This problem is caused by forced deterministic steps. If they would be only allowed,

not forced, we could simply insert group of any not inherently nondeterministic rules be-
tween any two recorded productions. Next part is our unability to record the deterministic
derivation in control language.

Theorem 6.2
ℒ(𝐶𝐹) ⊂ ℒ(𝑅𝐶𝐿) ⊆ ℒ(𝑅𝐶𝐷𝑃) ⊂ ℒ(𝑅𝐸). See [14][Theorem 5.1.6] and theorem 6.1

Theorem 6.3 (Empty sentence control language)
ℒ(𝑅𝐶𝐷𝑃

𝐿) = ℒ(𝐷𝐶𝐹𝐿), control language 𝐿 = {𝜀}

Proof 6.3
The grammar with empty string as a control lanugage can work only deterministically.

∙ Control language of every grammar in 𝑅𝐶𝐷𝑃
𝐿 is equal to {𝜀}.

∙ The grammar can use production rules only in deterministic mode. Every nondeter-
ministic usage of rule would result in a non-empty string of control language.

∙ Every deterministic usage of rules is allowed.

∙ 𝐷𝐶𝐹𝐿 denotes the class of deterministic context-free languages, which are created
by deterministic context-free grammars, which use rules only deterministcally.

∙ Both models are using context-free rules in deterministic manner.

Theorem 6.4
ℒ(𝑅𝐶𝐿) ⊂ ℒ(𝑅𝐶𝐷𝑃

𝐿), control language 𝐿 ∈ {𝐹𝐼𝑁}

Proof 6.4
We will prove superiority of a determinism-paused model for finite control languages.

∙ Length of a right-side of any rule is finite.

∙ Number of sentences of control languages in 𝐹𝐼𝑁 is finite.

∙ Hence 𝑅𝐶𝐿 = 𝐹𝐼𝑁 .

∙ Consider a determinism-paused finite-controlled grammar 𝐻𝐷𝑃 = (𝐺,Ξ), where 𝐺 =
(𝑁,𝑇,Ψ, 𝑃, 𝑆).

∙ An unlimited number of deterministic derivations can be performed.

∙ With an empty control sentence, the lanugage is in ℒ(𝐷𝐶𝐹𝐿), see theorem 6.3.

55

By employing the determinism-paused regulation, we can preserve the expressive strength
of a regular-lanugage regulated grammars. With limitations to finite control language, we
are able to increase expressive power of a new introduced model.

Every regular-lanugage regulated grammar can be directly translated into a detrminism-
paused version. The grammar, constructed by this translation, is valid determinism-paused
regulated grammar. A grammar constructed in this way does not take advatage of the free
deterministic steps.

56

Chapter 7

Conclusions

Formal languages are ireplaceable tool in modern theoretical informatics. Context-free lan-
guages, represented with context-free grammars, are one class of those languages. Context-
free grammars have wanted properties in terms of complexity of production rules and conse-
quently of implementation and reasoning. But they do not posses enough expressive power
to solve all imaginable problems.

This work deals with the regulated grammars, which intends to increase expressive
strength by combining context-free grammar with regulations into a single model. Many of
these models was already introduced in the past.

In this work, a modification of grammar automata, the positioned grammar automata
was introduced. This modification is adding a transfer of available positions between
a checking function in rule of automata and the function applying the production rule
of represented grammar.

Two new modifications of already existing regulated grammars models was introduced in
this work. Both modifications are targeted on reduction of regulation of its original models,
by ommiting some of productions from a control language. Both are using differrent ways
to achieve this removal. Modifications are presented on regular-controlled context-free
grammars. Examples of grammars using this modifications was created.

The switch-paused modification introduced additional switching sets of rules, to allow
grammar to use free unregulated derivations. This could be used to ommit this parts from
the control language, when the regulation is not needed.

The determinism-paused modification is using determinism, to reduce length of control
sentences. Every time, a grammar is making deterministical step, it is not regulated with
control lanugage. In order to specify the cases of deterministical derivation, a sets of
limitations upon sentential form, applied with usage of rules, were introduced. A spectrum
of these limitations was created.

A parsing methods was presented for both new modifications. This methods are working
in a top-down manner, trying to simulate the derivation of an initial symbol into an input
sentence. These methods was theoretically described using positioned grammar automata.
An actual implementation using a programming language was not created, together with
subsequent testing of this implementation.

It was proven, that none of the new modifications dimminish the expressive power of
the original regular-controlled grammars model. The switch-paused modification has the
exact same power of the unmodified model and the detrminism-paused modification has at
least the same expressive power as the unmodified version. There exists an open problem
of exact upper bound for a determinism-paused modification.

57

Next investigation could be directed towards solving suggested open problem. The
modifications could also be defined for other regulated models of grammars. Properties
would then have to be reevaluated for each of these models separately, based on details of
definitions, but they should be similar for each regulation with power of regular languages.

58

Bibliography

[1] Aho, A. V.; aj.: Compilers: Principles, Techniques, and Tools (2nd Edition). Pearson
Education, druhé vydání, 2006, ISBN 0-321-48681-1.

[2] Bednář, P.: Syntaktická analýza založená na maticových gramatikách. Bakalářská
práce, FIT VUT v Brně, Brno, CZ, 2014.

[3] Chomsky, N.: Three models for the description of language. Information Theory,
IRE Transactions on, ročník 2, č. 3, September 1956: s. 113–124, ISSN 0096-1000,
doi:10.1109/TIT.1956.1056813.

[4] Chomsky, N.: On Certain Formal Properties of Grammars. Information and Control,
ročník 2, č. 2, 1959: s. 137–167.

[5] Christiansen, H.: A survey of adaptable grammars. ACM SIGPLAN Notices,
ročník 25, č. 11: s. 35–44, ISSN 0362-1340.

[6] Cormen, T. H.; aj.: Introduction to Algorithms, Third Edition. The MIT Press, třetí
vydání, 2009, ISBN 978-0-262-03384-8.

[7] Dassow, J.; Păun, G.: Regulated rewriting in formal language theory. EATCS
monographs on theoretical computer science, Springer-Verlag, 1989, ISBN
9783540514145.

[8] Diestel, R.: Graph Theory (Graduate Texts in Mathematics). Springer, 2000, ISBN
0387950141.

[9] Grune; Jacobs: Parsing Techniques: A Practical Guide. Springer Publishing
Company, Incorporated, druhé vydání, 2008, ISBN 978-0-387-20248-8.

[10] Harrison, M. A.: Introduction to Formal Language Theory. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., první vydání, 1978, ISBN
0201029553.

[11] Hopcroft, J. E.; Motwani, R.; Ullman, J. D.: Introduction to Automata Theory,
Languages, and Computation (2nd Edition). Addison Wesley, 2000, ISBN 0201441241.

[12] Koutný, J.: Grammars with Restricted Derivation Trees. Dizertační práce, 2012.

[13] Meduna, A.: Automata and Languages: Theory and Applications. Springer, 2005,
ISBN 81-8128-333-3.

[14] Meduna, A.; Zemek, P.: Regulated Grammars and Automata. Springer, New York,
2014, ISBN 978-1-4939-0368-9.

59

Appendices

60

List of Appendices

A Content of CD 62

61

Appendix A

Content of CD

Included CD contains:

∙ text of the technical report in PDF format;

∙ source code of the technical report in LATEXformat.

62

	Introduction
	Focus
	Organization

	Basic Concepts
	Basic Definitions
	Alphabets and Words
	Languages

	Grammars
	Language Families
	Recursively Enumerable Languages
	Context-Sensitive Languages
	Context-Free Languages
	Metalinear Languages
	Linear Languages
	Regular Languages
	Finite Languages
	Chomsky Hierarchy

	Automata
	Finite Automata
	Grammar Automata

	Derivation Trees
	Syntax Analysis

	Regulated Grammars
	Reasons to Study
	Context-Free Grammars
	Context-Sensitive Grammars
	Computational History

	Basic Concepts
	Context-Based Regulation
	Random Context Grammars
	Context-Conditional Grammars
	Scatered Context Grammars
	Restricted Derivation Tree Grammars

	Rule-Based Regulation
	Regular-Controlled Grammars
	Matrix Grammars
	Programmed Grammars
	State Grammars

	On Adaptive Grammars
	Leftmost Modification

	Grammar Automata
	Positioned Grammar Automata
	Basic transformations
	Operation

	Switch-Paused Regulated Grammars
	Definition
	Other Regulations
	Rule-Based Regulations
	Context-Based Regulations

	Examples
	Generation
	Leftmost Modification

	Parsing
	Specific Transformations
	Analysis

	Properties
	Switch-Paused to Original
	Original to Switch-Paused
	Expressive Strength

	Determinism-Paused Regulated Grammars
	On Determinism in Generation
	Undeterministic Generation
	Ways to Determinism

	Definition
	Leftmost Modification

	Other Regulations
	Random Context Grammars
	Tree-Regulated Grammars

	Examples
	Generation
	Parsing
	Application of Limitations
	Specific Transformations

	Properties
	Original to Determinism-paused
	Expressive Strength

	Conclusions
	Bibliography
	Appendices
	List of Appendices

	Content of CD

