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ABSTRACT 

This bachelor's thesis deals with various types of binders used in the negative 

electrode material of lithium-ion batteries. The materials used as binders were 

Polyvinylidene fluoride (PVDF), Styrene-butadiene rubber (SBR) and Polyimide P84. 

Each binder was used in three different weight percentages, PVDF and P84 at 3, 6 and 

10 wt.%, while SBR was used at 2, 4 and 6 wt.%. The thesis contains the process of 

making the negative electrodes as well as the results of each measurement. 
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ABSTRAKT 

Táto bakalárska práca sa zaoberá rôznymi typmi spojív, používaných v lítium-

iontových akumlátorov, a ich vpliv na vlastnosti záporných elektrodových hmôt. 

Použité pojivá boli: Polyvinylidenfluorid (PVDF), Styren-butadienového guma (SBR) a 

Polyimid P84. Každé spojivo bolo testované v troch rôznych hmotnostných percentách 

z PVDF a P84 3, 6 a 10 hm.%, zatiaľ čo SBR 2, 4 a 6 hm.%. Práca zahŕňa prípravu 

procesu elektródy a výsledky vykonaních meraní. 
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INTRODUCTION 

Batteries exist since the end of the 19th century. They provided the main source 

of electricity before the development of electric generators. Successful  improvements 

in battery technology lead us to the use of portable computers, mobile phones, electric 

cars, and many other electrical devices. 

The term "battery" was first used by Benjamin Franklin in the 18th century. He 

described a set of linked capacitors as a "battery". These capacitors were panels of glass 

coated with metal on each surface and were charged with an electrostatic generator and 

discharged by touching metal to their electrodes. The term originally meant "a group of 

two or more similar objects functioning together". Later on this term was used 

for voltaic piles and similar devices similar to Franklin's connected capacitors. Today 

even a single electrochemical cell is called a battery. [1] 

Experimentation with lithium batteries began in 1912 by G.N. Lewis, and in the 

1970s the first lithium batteries were sold. Important developments were made in the 

1980s. An American chemist John B. Good experimented with LiCoO2 as the positive 

electrode (cathode). Another research scientist Rachid Yazami at the same time 

discovered the graphite anode (negative electrode). The results of these experiments 

were put together by Akira Yoshino of Asahi Chemical in Japan. The first lithium-ion 

battery prototype was built in 1985. The commercialization of the lithium-ion battery 

was done by Sony in 1991. [1] 

The goal of this bachelor's thesis is to examine the effect of the electrode binders 

on the electrochemical properties of the negative electrode. These electrodes were 

prepared on copper foil with different weight percentages for each binder. 

Polyvinylidene fluoride (PVDF) and Polyimide P84 were used at 3 %,  6 % and 10 %, 

while the Styrene-butadiene rubber (SBR) was used at 2 %, 4 % and 6 %. 

https://en.wikipedia.org/wiki/Electricity
https://en.wikipedia.org/wiki/Mobile_phone
https://en.wikipedia.org/wiki/Electrode
https://en.wikipedia.org/wiki/Rachid_Yazami
https://en.wikipedia.org/wiki/Graphite
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1 BATTERIES 

Battery is a device used to store electric energy. It changes chemical energy to 

electricity by putting certain chemicals in contact with each other in a specific way. 

During this process electrons travel from one kind of chemical to another under the 

right circumstances. When electrons flow, this makes an electrical current that can 

power a lot of different devices, mobile phones, e-cigarettes, remote controls, etc. [2] 

Batteries come in several styles; the most common is the so called single-use 

alkaline batteries. NASA spacecraft usually use rechargeable nickel-cadmium or nickel-

hydride batteries like those found in laptop computers or cellular phones. [2] 

Batteries have three parts, a negative electrode (anode -), a positive electrode 

(cathode +), and the electrolyte. The positive electrode and negative electrode is used to 

connect the battery to an electrical circuit. The chemical reactions in the battery causes a 

buildup of electrons at the negative electrode. This results in an electrical difference 

between the two electrodes. The electrons want to rearrange themselves to get rid of this 

difference. They do this in a certain way, electrons repel each other and try to go to a 

place with fewer electrons. In a battery, the only place to go is to the positive electrode. 

But, the electrolyte keeps the electrons from going straight from the negative to the 

positive electrode within the battery. When the circuit is closed  the electrons will be 

able to get to the positive electrode through the electrical circuit. [2]  

The electrochemical processes in a battery change the chemicals in the negative 

and positive electrode resulting in a limited amount of power available in a battery. 

When the battery is recharged, the direction of the flow of electrons is changed using 

another power source. The electrochemical processes happens in reverse, and the 

negative and positive electrodes are restored to their original state and can again provide 

power. [2] 

The subject of this thesis will be introduced in the next chapter, while a comparison 

between the performance of different types of batteries in the third chapter.   

1.1 Lithium-ion batteries 

Work with the lithium battery began in 1912 but it was not until the early 1970s 

when the first non-rechargeable lithium batteries became commercially available. The 

use of lithium metal was not possible due to the instability of the material, especially 

during charging. Research shifted to a non-metallic lithium battery using lithium ions. 

In comparison lithium-ion is more stable than pure lithium, however it is lower in 

energy density. [3]  

The energy density of lithium-ion is twice as big as the standard nickel-cadmium. 

The load characteristics are good and when discharged it behaves similarly to nickel-

cadmium. The high cell voltage of 3,6 volts allows battery pack designs with only one 

cell. Most of today's mobile phones run on a single cell. A nickel-based pack would 

require three 1,2-volt cells connected in series. [4] 
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Figure 1.1 Lithium-ion batteries. [7] 

Figure 1.1 shows certain types of Li-ion batteries. The primary components of a 

lithium-ion battery are the positive and negative electrodes, the separator and the 

electrolyte. The negative electrode is generally made from carbon, while the positive 

electrode is metal oxide. Lithium salt in an organic solvent is used as the electrolyte. 

Depending on the direction of current flow the electrochemical roles of the electrodes 

reverse between anode and cathode. The most popular material used as the negative 

electrode is graphite. The positive electrode is either layered oxide (lithium cobalt 

oxide), a polyanion (lithium-iron phosphate) or spinel (lithium - manganese oxide). [5] 

As mentioned before the electrolyte is a mixture of organic carbonates (ethylene 

carbonate or diethyl carbonate) containing lithium ions. These non-aqueous electrolytes 

use anion salts such as lithium hexafluorophosphate (LiPF6), lithium hexafluoroarsenate 

monohydrate (LiAsF6), lithium perchlorate (LiClO4), lithium tetrafluoroborate (LiBF4) 

and lithium triflate (LiCF3SO3). The reason why non-aqueous  electrolytes are used lays 

in the highly reactive properties of lithium. The reaction with water produces lithium 

hydroxide and hydrogen gas, therefore the sealed container strictly excludes moisture 

from the battery pack. Material choices heavily affect the voltage, energy density, life 

and safety of a lithium-ion battery. Performance improvements have been employed by  

new architectures using nanotechnology. [5] 

Figure 1.1  also shows the various shapes of the Li-ion batteries. These can be 

divided into four groups. Small cylindrical, which has a solid body without terminals 

and can be used in laptop batteries. Large cylindrical with solid body and large threaded 

terminals. Batteries with soft, flat body called pouch. These are mainly used in cell 

phones. The fourth type is a semi-hard plastic case with large threaded terminals, called 

prismatic and they are used as vehicle traction packs. [5] 

When the battery is charging up, the lithium-cobalt oxide, positive electrode gives 

up some of its lithium ions. These ions move through the electrolyte to the negative, 

graphite electrode. The battery takes in and stores energy during this process. When the 

battery is discharging, the lithium ions move back to the positive electrode, producing 

the energy. In both cases, electrons flow in the opposite direction to the ions around the 

https://en.wikipedia.org/wiki/Carbon
https://en.wikipedia.org/wiki/Manganese
https://en.wikipedia.org/wiki/Oxide
https://en.wikipedia.org/wiki/Reactivity_(chemistry)
https://en.wikipedia.org/wiki/Lithium_hydroxide
https://en.wikipedia.org/wiki/Lithium_hydroxide
https://en.wikipedia.org/wiki/Hydrogen
https://en.wikipedia.org/wiki/Voltage
https://en.wikipedia.org/wiki/Nanoarchitectures_for_lithium-ion_batteries
https://en.wikipedia.org/wiki/Nanotechnology
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outer circuit. Electrons do not flow through the electrolyte, it is an insulating barrier. 

The movement of ions and electrons are connected, if either one of them stops so does 

the other. Ions can stop moving through the electrolyte if the battery completely 

discharges, if that happens then the electrons can't move through the circuit, the battery 

loses power. Similarly, if the device powered by the battery is switched off, the flow of 

electrons stops and so does the flow of ions. [5] 

Unlike simpler batteries, lithium-ion batteries have built in electronic controllers 

that regulate how they charge and discharge. They prevent the overcharging and 

overheating that can cause lithium-ion batteries to explode. [5] 

Lithium-ion batteries became popular because they have a number of important 

advantages. They are lighter than other types of rechargeable batteries of the same size. 

Lithium is a highly reactive element, a lot of energy can be stored in its atomic bonds. 

The above mentioned energy density translated in to numeral information means, that a 

typical lithium-ion battery can store 150 watt-hours of electricity in 1 kilogram of 

battery. A Ni-MH (nickel-metal hydride) battery pack can store typically 60 to 70 watt-

hours in 1 kilogram of battery, while a lead-acid battery can store only 25 watt-hours 

per kilogram. Using lead-acid technology means that, it would take 6 kilograms to store 

the same amount of energy that a 1 kilogram lithium-ion battery can handle. Other 

important advantages are related to charge. A lithium-ion battery pack loses only about 

5 % of its charge per month, compared to a 20 % loss per month for Ni-MH batteries. 

They have no memory effect, which means that it does not have to be completely 

discharged before recharging. They can handle hundreds of charge/discharge cycles. [5] 

Of course lithium-ion batteries have some flaws. They start degrading as soon as 

they leave the factory. They will only last a few years whether it is used or not. They are 

extremely sensitive to high temperatures. Heat causes lithium-ion battery packs to 

degrade much faster than they normally would. If it's completely discharged they are 

ruined. A lithium-ion battery pack must have an on-board computer to manage the 

battery. This makes them more expensive. There is a small chance that, if a lithium-ion 

battery pack fails, it will burst into flame. [5] 

1.2 Cathode material 

In the beginning of development LiCoO2 (LCO) was the dominant cathode 

material, with the spinel LiMn2O4 (LMO) occupying only a small part of the market. 

Over time the LCO remained the most common cathode material, however the market 

has been flooded by other materials. By 2010, the use of LiNi1/3Mn1/3Co1/3O2 (NMC), a 

ternary system with nickel, manganese, and cobalt, had increased. For certain 

applications the use of LiNi0,8Co0,15Al0,05O2 (NCA) and LMO are preferred. With only a 

limited use, phosphates with an olivine structure is a promising new class of cathode 

materials, LiFePO4 (LFP) being the most prominent. [6] 

The next few sub-chapters show the recent technological trends of cathode 

materials. Most importantly the structures and the description of materials.  

1.2.1 Three morphologies of cathode materials 

The cathode materials are transition metal oxides containing lithium, and they can 

http://www.explainthatstuff.com/electronics.html
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be described as a type of functional ceramics. This means that the lithium ions must be 

able to diffuse freely through the crystal structure. The morphology of the crystal 

structure determines the number of dimensions in which lithium ions are able to move 

(one-, two-, or three- dimensional). Cathode materials currently in use or under 

development are described below. [6] 

1.2.2 Layered rock salt structure materials  

This first group of compounds have a two-dimensional crystal morphology. The 

most commonly used is the LCO. The LiNiO2 and LiMnO2 are also well known 

compounds, however they have proven to be unsuitable for use as LIB cathodes. This 

uselessness only appears in their simple form, combined with other elements 

performance improvements have been achieved. With this combination they form 

complex oxides such as NMC, LiNi0,8Co0,2O2, and LiNi0,5Mn0,5O2. Recently solid 

solution materials, described by the general formula Li2MnO3-LiMO2 (where M stands 

for transition metal, Ni or Fe) are being researched. [6] 

1.2.3 Spinel structure materials  

In this category the most significant compound is LMO, which enables lithuim-

ions to diffuse in all three dimensions. Spinels provide lower discharge capacity than 

layered rock salt materials, however they show advantages in other categories, like 

lower cost, high stability. Because of this they are gaining attention in medium- and 

large- scale lithium-ion battery applications. [6] 

1.2.4 Olivine structure materials  

The most well known of the olivines is LFP. This material restrict lithium-ion 

diffusion to a single linear dimension. The one-dimension movement of the ions means 

a performance disadvantage, which has been minimized through the development of 

nano-particles and other techniques. Discharge voltage for olivines is relatively low, 

around 3,5 V. Olivine cathode materials have been commercialized due to the 

outstanding stability they offer. [6] 

1.2.5 Layered LCO series (two dimensional) 

New improvements are constantly introduced to the LCO by employing new 

synthesis techniques. One example is the synthesis of nano-particles of overlithiated 

LCO, which provide significantly improved electrochemical properties. In this process 

the lithium acetate and cobalt acetate are mixed in solution, then dried, and as the last 

step calcined at 600 ⁰C for 6 hours. The mentioned procedure differs from the general 

method of obtaining bulk LCO particles. During the general process a combination of 

Co3O4 and Li2CO3 is calcined at around 900 ⁰C, which produces a material with a 

primary particle diameter of several micrometers, while the new method produces 

spherical nano-particles of LCO with a primary particle diameter of 5-25 nm. In the new 

material the lithium content is 9-21 times more than conventional bulk LCO particles. 

Spherical nano-particles with a primary particle diameter of 25 nm were obtained when 

the lithium content was increased by 8-12 times, while rod-shaped particles of 5 nm 
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diameter and 60 nm length were obtained when the lithium content was increased 21 

times. Cathodes made of these rod-shaped particles maintain discharge capacity under 

high rate conditions and is suitable for hybrid electric vehicle applications. [6] 

1.2.6 Layered LiNiO2 series (two dimensional) 

The LiNiO2 with low cost and high discharge capacity, 200 mAh/g, 40 % higher 

than that of LCO, has been a candidate cathode material for some time. However, it has 

a few shortcomings, namely outgassing when stored at high temperatures and decreased 

thermal stability while charged. As a solution to these problems developments were 

made and a LiNiO2-based material was created, which became practical for use as 

cathode materials. Presumably, the material was stabilized by the addition of cobalt or 

aluminum. Furthermore the cathode surface is coated with a heat-resistance layer to 

improve thermal stability. The improved LiNiO2-based cathode material, achieves 3,1 

Ah capacity, with an energy density of 660 Wh/l and 248 Wh/kg. These properties 

make such a material suitable for electric vehicle battery applications. [6] 

1.2.7 Layered Mn compound series (two dimensional) 

Layered LiMnO2 in itself is not practical as cathode material, however by adding 

other elements to form more complex compounds, such as LiNi0,5Mn0,5O2 performance 

can be improved. This material still has poor discharge performance due to low 

conductivity, so research has turned to the ternary NMC system. Research revealed that 

NMC provides a high enough discharge capacity of 150 mAh/g together with well-

balanced battery characteristics. The characteristics of this material are dependent on the 

method of synthesis. Conventional cathode materials with a single transition metal 

element are prepared by solid-phase method, where cobalt acetate and lithium carbonate 

are calcined at around 900 ⁰C. For materials with multiple transition metal elements the 

stoichiometrical precision is crucial to obtain the intended crystal structure. Even slight 

variations can result in unwanted characteristics. During research both the solid-phase 

method and the solution method were explored. Stable characteristics were shown by 

using the solution method, where Ni, Mn, Co, and Li salts are mixed and dried, and then 

the mixture is calcined. The solid-phase method was affected by cooling conditions 

after calcination. In other areas of research within the Mn group are solid-solution 

materials described by the general formula Li2MnO3-LiMO2. Several materials have 

been reported and researched, such as Li (Lix/3Mn2x/3Co1-x) O2 (0 < x < 1) and Li 

[CrxLi(1/3-x/3)Mn(2/3-2x/3)] O2 (0 < x < 1). These materials are still under research, where 

the first-charge electrochemical behavior, mechanisms of deterioration, mechanisms of 

high durability, mechanisms of high capacity, mechanisms of ion transport and the 

relationships between performance and the crystal structure is observed. [6] 

1.2.8 Spinel structure cathode materials (three dimensional) 

The spinel structure is generalized as AB2O4, with MgAl2O4 being a typical 

example. There are lithium ion tunnels in all three-dimensions through manganese 

oxide skeleton. LMO is not without shortcomings, low discharge capacity and the 

elution of manganese during charging and discharging as well as during storage at high 

temperature is an issue. However, the manganese elution can be suppressed by doping 
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at the Mn site with elements such as Al, Cr, Ti, and Ni, or by increasing the ratio of Li 

to Mn. Despite these shortcomings reasonable price and high safety characteristics 

make LMO an attractive cathode material for medium- and large- scale applications. [6] 

1.2.9 Olivine structure cathode materials (one dimensional) 

LFP is the most well-known olivine cathode material. Because of the one-

dimensional crystal morphology, mobility of lithium ions is limited, resulting in low ion 

diffusion rate and low ionic conductivity. These problems were successfully overcome 

by producing the material in nano-particle form, also coating the cathode surface with a 

carbon layer and doping the material with a different element such as niobium. Whit 

this improved version of the material, the application in lithium-ion batteries for power 

tools and electric vehicles became possible. The LFP has a low cell voltage, which 

prevents improvement in energy density, therefore limiting its appeal in medium- and 

large- scale applications. Recently olivines such as LiMnPO4 and LiCoPO4 have been 

gaining attention with a cell voltage of 4,1 V and 4,8 V. [6] 

1.3 Anode material 

In 1995, the most common anode materials were graphite and hard carbon. The 

reason graphite gained such overwhelming dominance is the superior discharge rate 

compared to hard carbon. The discharge profile for lithium-ion battery anode made of 

graphite, has a curve characterized by a very broad, flat range (shown on Figure 1.2). 

For hard carbon the discharge profile is characterized by a steadily declining curve 

across the charge range, shown on Figure 1.3. For the rapidly spread mobile phones a 

flat discharge profile is preferable, meaning graphite became the dominant anode 

material. Among the various types of graphite, modified natural graphite has become 

the most common. Mostly because natural graphite is inexpensive, available, however 

its high reactivity to electrolyte prevents its use without modification. The most widely 

used technology is to coat the graphite surface with thin carbon layer. A more recent 

development in the anode market is the resurgence of hard carbon. It is making a 

comeback, due to its suitable use for HEV applications. [6] 
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Figure 1.2 Discharge curve with a graphite anode. [6] 

 

Figure 1.3 Discharge curve with a hard carbon anode. [6] 

1.3.1 Recent research on anode materials 

The further increase of capacity in graphite anodes have become nearly impossible. 

Further developments were made by using other new materials including metal oxides 

such as Co3O4, CoO, CuO, and FeO, and lithium metal alloys such as Cu-Sn-Li, Cu-Sb-

Li, In-Sn-Li, Si-Li, and Si-C-Li. Figure 1.4 shows the discharge capacity of different 

lithium-metal alloys. These alloys provide much higher capacity than graphite, but a 

serious drawback is the large expansion and contraction of volume which occurs during 

the charge-discharge cycles. The volume expansion and contraction is shown on Figure 

1.5. The formation of the material in nano-particles diminishes this problem. Another 

solution to this is using the material as a composite with carbon, such materials have 

begun to be adopted in practice. [6] 
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Figure 1.4 Theoretical discharge capacity of metal alloy anodes. [6] 

 

Figure 1.5 Volume expansion - contraction of metal alloy anodes at charge and discharge. [6] 

1.4 Electrolyte solutions 

The electrolyte for LIBs is a mixture of organic solvents and an electrolyte salt 

compound, most commonly mixtures of cyclic carbonate esters (ethylene carbonate, 

propylene carbonate), and linear carbonate esters (dimethyl carbonate, diethyl 

carbonate). The added salt compound is commonly LiPF6 or LiBF4. The free transport 

of lithium ions requires high dielectric constant and low viscosity. The required 

dielectric constant and viscosity can be achieved by mixing cyclic carbonate esters and 

linear carbonate esters. [6] 

1.4.1 Recent research on electrolyte solutions 

The most important areas during research are: functional electrolyte additives, 

flame-resistant or nonflammable electrolyte solutions, and new electrolyte salts.  

The first group, functional electrolyte additives, are responsible for battery 
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performance improvements. The basic technology for the improvements is well 

established. Early example is the addition of propane sultone to the nonaqueous 

electrolyte solution of a rechargeable battery using a metallic lithium anode. Since then 

many different compounds have been used as additives, most notably vinylene 

carbonate, phenylcyclohexane, and fluoroethylene carbonate. The key aspect in search 

for new materials is the selection of additives and determination of their appropriate 

formulations. [6] 

In order to create flame-resistant or nonflammable electrolyte solutions phosphate 

compounds are employed. This is done by using cyclic phosphoric acid ester as solvent 

or by adding a phosphazene compound as flame retardant. The other commonly used 

approach is to use halogen compounds, fluorine compounds (fluorocarbon ester, 

fluorinated ether) as solvent. The latest safety mechanism uses a flame retardant 

encased in microcapsules. The content of the capsules is released in case of battery 

malfunction. [6] 

The latest improvements in the third area of research is the replacement of LiPF6, 

however this introduces challenges in terms of performance and cost. Newly developed 

salts as candidates for use are shown on Figure 1.6. These compounds are currently 

under evaluation for commercialization. A very promising candidate is the lithium bis 

(oxalate) borate, due to its low costs and containment of no fluorine, alongside with 

availability and easy production from boric acid and oxalic acid. [6] 

 

Figure 1.6 New electrolyte salt materials under development. [6] 

1.5 Separators 

The separator in lithium-ion batteries is a thin microporous membrane made of 

polyolefin. It is used to prevent contact between the anode and cathode, while enabling 

lithium ions to pass through. The three basic categories of separator are classified based 

on their production methods, with different morphologies and characteristics, each for 

different battery applications. The typical separators produced by each of the three 

methods are shown on Figure 1.7. [6] 
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Figure 1.7 Pore characteristics (a) Dry-process one-component system (b) wet-process two-

component system and (c) wet-process three-component system. [6] 

1.5.1 Dry-process one-component system 

The expression “dry process” means that no solvent is used, and it is a “one-

component” system because only the polymer material of the membrane itself is used.  

The separator is produced extruding molten polymer as a thin film and its followed by 

the forming of pores around spherulites by stretching the film during its cooling 

process. This is a low cost procedure, requiring no additional processing. With this 

process the control of pore size and pore structure is limited, therefore control of 

physical characteristics is limited. Another important drawback is the difficult 

endowment of the safety shutdown function. [6] 

1.5.2 Wet-process two-component system 

The term “wet” indicates the use of a solvent to remove the plasticizer, and the 

term “two-component” describes the polymer and plasticizer present in the extruded 

mass. First the plasticizer is mixed into the polymer before extrusion. This process 

comes about in the microscopic regions within the molten bulk during cooling after 

extrusion, and it creates phase separation between the plasticizer and the polymer. The 

pores are formed by removing the plasticizer. The pore size and pore structure is 

controlled by selecting different polymer and plasticizer materials, which enables the 

production of separators with a wide range of physical characteristics. [6] 

1.5.3 Wet-process three-component system 

This is similar to the system with two-components, however particles of inorganic 

filler are also mixed into the polymer before extrusion. The removal of the plasticizer is 

also similar with the added particles of filler. The biggest difference in the end product 

and a significant advantage compared to the other systems is the size of the created 

pores. Larger pores provide greater ion mobility. [6] 

1.5.4 Shutdown function 

Most of the separators are designed to have a shutdown function. This function is 

achieved through different physical characteristics, which enable the polymer to melt, 

closing the micropores and thus preventing ion transport between the electrodes. This 
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function also prevents battery overheating, improving battery safety. The temperature at 

which the shutdown function engages is determined by the melting point of the 

polymer. Figure 1.8 shows the degree of impedance to ion transport at different 

temperatures for polyethylene and polypropylene separators. [6] 

 

Figure 1.8 Shutdown temperature for polyethylene separators. Impedance (1 kHz AC) change of 

electrolyte-penetrated separators at elevated temperature (a, b) Polyethylene 

and (c) polypropylene. [6] 

The rise in impedance at high temperature illustrates the closing of the pores. For 

polyethylene separators, the impedance rises (the pores close up) between 130 ⁰C and 

140 ⁰C, while the melting point is 170 ⁰C. The shutdown function does not engage until 

the battery reaches the above mentioned temperatures. The characteristics shown on 

Figure 1.8 are dependent on a complex combination of factors such as pore size, pore 

structure, and molecular weight of the polymer. [6] 

1.5.5 New materials 

Because of the limited heat resistance of polyolefins research shifted to separators 

made of different materials, such as heat-resistant rubber (silicone rubber, fluororubber), 

aromatic polyamide resin, liquid crystalline polyester resin, heat-resistant resin 

containing polyoxyalkylene, and resin with crosslinked groups. The expected properties 

from these materials are high temperature stability and superior ion transportation. [6] 

1.5.6 Inorganic coating 

The problem presented by polyolefin separators is the possibility of membrane 

rupture when battery temperature continues to rise after the shutdown function is 

engaged. To prevent this the membrane surface is coated with a heat-resistant inorganic 

layer (alumina, silica, titania, magnesia). For further improvements vitreous materials, 

antioxidant ceramic particles, clay minerals, metal salt compounds and tabular fillers 

can be included. As a binder to hold the layer onto the surface of the separator a heat-

resistant resin is used, more specifically aromatic polyamide resin, polyimide resin, 

liquid crystalline polyester, and aromatic polyether. The addition of an inorganic layer 

with antioxidant properties improves stability on the side that contacts the cathode, 

preventing rupture of the separator at high temperature and during overcharging. These 
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coated separators have been used in limited commercial use, mainly applied in high-

power lithium-ion batteries. [6] 

1.5.7 Separators containing inorganic material 

Reaching greater heat resistance can be done by mixing inorganic materials into the 

bulk of the separator, additionally increasing ion permeability. The used inorganic 

materials need to have antioxidant characteristics and resistance to the electrolyte 

solution. Alumina, silica, and titania are materials that meet these requirements. Another 

candidates are inorganic materials that absorb heat through dehydration reaction. This 

technology is applicable not only for polyolefin separators but also for those made from 

heat-resistant resin as described above. [6] 

1.5.8 Nonwoven separators 

As an alternative type of separator nonwoven fabrics have been considered, thanks  

to their low cost, high ion permeability and heat-resistance characteristics. Materials, 

like liquid crystalline polyester, aromatic polyamide and cellulose are great candidates. 

The biggest disadvantages in these materials, such as the thickness and too large pore 

sizes, prevent them to be used on their own. In order to reduce pore size a porous 

inorganic layer is added, which closes the larger gaps in the fabric. Materials studied for 

this purpose include alumina, silica, and titania. The forming of the nonwoven material 

with ultrafine fibers and special spinning technologies (flash spinning, electro-spinning) 

also reduce the pore size and thickness. [6] 

1.5.9 Laminated separators 

Another possible way to obtain the desired shutdown function and toughness is by 

lamination. For this conventional polyethylene and polypropylene microporous 

membranes can be used. The latest materials used for research are microporous 

membrane of liquid crystalline polyester, polyphenylene ether, aromatic polyamide, 

polyimide, polyamide imide resin, acrylic resin, and cross-linked polymer. With these 

material, theoretically, even greater heat resistance can be achieved. [6] 
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2 ELECTROCHEMICAL REACTIONS   

This chapter contains the description of chemical reactions occurring in one battery 

cell. A schematic diagram of the cell is shown providing visual information about the 

chemical reactions, which are also described by chemical equations. The forming of the 

solid electrolyte interphase (SEI) is also described in this chapter. 

2.1 Reactions in a lithium-ion cell 

Figure 2.1 shows a schematic diagram of a lithium-ion cell. The positive electrode 

is made of lithium metal oxide (LiMO2), where M stands for a metal such as Co, while 

the negative electrode is lithiated carbon (LixC). The active materials are connected to 

current collectors at both ends of the cell. The electrolyte between the active materials 

are electrically isolating and they are usually made of a microporous polymer or gel-

polymer. Liquid or gel-polymer electrolytes enable lithium ions (Li+) to diffuse between 

the positive and negative electrodes. The lithium ions are inserted into or de-inserted 

from the active materials through an intercalation process. [8] 

 

Figure 2.1 Schematic diagram of lithium-ion cell. [8] 

During charge in the positive electrode the active material is oxidized and lithium 

ions are de-intercalated: 

2

argarg

21 LiCoOxexLiCoOLi edischech

x    

 . [8]   (2.1) 

In the negative electrode during charge, the active material is reduced and the 

lithium ions that migrate from the positive electrode are intercalated in the reaction: 

    xexLiCCLi edischech

x

argarg
. [8]   (2.2) 

These reactions produce a theoretical cell voltage of 4,1 V, which is a higher value 

than the Ni-MH (Nickel-metal hydride) or lead-acid cells. The capacity of a lithium-ion 
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battery fades with cycling. This is due to the increase of internal resistance or 

impedance. Thanks to these ohmic losses, energy is wasted, heat is produced and the 

aging is accelerated. Losses in capacity can also be caused by the degradation of the 

positive and negative electrodes and the electrolyte. The degradation mechanisms are 

dependent on cell chemistry, design and manufacturing. In the negative electrode, the 

dominant aging mechanisms are: SEI growth, lithium corrosion, contact loss and 

lithium plating. [8] 

The growth of the SEI leads to an impedance rise and the entraining of lithium 

atoms. The SEI layer forms at the beginning of cycling and grows during cycling and 

storage, especially at higher temperatures. Lithium corrosion causes capacity fade due 

to the irreversible loss of lithium. The corroding lithium is found in the active carbon 

material of the negative electrode. Contact loss means that the impedance of the cell 

increases by the disconnection of the SEI layer from the negative electrode. If the cell is 

at low temperatures with high charge rates, the lithium metal can plate on the negative 

electrode. This leads to irreversible loss of lithium. [8] 

Recent studies show that impedance rise and capacity fade can be caused by the 

positive electrode. The rise in impedance and the capacity fade primarily happens 

during cycling. The discharge capacity may be limited by a decrease in active lithium 

intercalation sites in the oxide particles. A passivation layer also forms on the positive 

electrode which can change properties during cycling, resulting in cell impedance rise 

and power fade. [8] 

2.2 Forming of the SEI layer 

SEI is a ionically conductive, electronically not conductive polymer layer. A 

schematic representation is shown on Figure 2.2. This layer is created at the first 

formation by a strong reaction between the carbon anode and the electrolyte, which 

requires about 15-45 % of the total battery capacity. Maintaining stability, reduction of 

fluctuations during charging or temperature fluctuations is among the main 

characteristics of this layer, together with an effect on overall battery life. The thickness 

of the SEI layer varies over time. The increase in thickness contributes to a reduction in 

capacity. In materials that have a higher charge/discharge potential than lithium, the SEI 

layer thickness is much smaller. On the surface of materials like the LTO (where the 

charge/discharge potential is 1,55 times bigger than lithiums) the SEI layer is very thin, 

it can almost be completely ignored. [9] 

 

Figure 2.2 SEI layer. [2] 



 22 

The major components of SEI layer are degraded products of electrolyte solvents 

and salts, which were identified by using spectroscopic analysis. The mentioned 

degraded products include Li2CO3, lithium alkyl carbonate, lithium alkyoxid and other 

groups of salts, such as LiF. Based on the layer composition two mechanisms were 

identified in the formation process while using an electrolyte with carbon solvents. An 

example of the SEI layer formation in an ethyl carbonate (EC) solvent is shown on 

Figure 2.3. [9] 

 

Figure 2.3 Formation of the SEI layer in EC solvent. [9] 

Acronym RA on the figure means radical anion, it's the reactive compound in the 

solution. The formation of the SEI layer happens with both reactions present, as seen on 

the figure. With the domination of mechanism (I) the decomposition of the compound 

generates gaseous products, resulting in less stable Li2CO3 as the final layer. 

Mechanism (II), on the other hand, generates less gaseous products, forms a layer 

insoluble in the electrolyte. Another advantage of mechanism (II) is greater stability in 

the battery. These two mechanisms involved in the formation of SEI layer also depend 

on the graphite surface morphology. The layer formed on the edges of the surface is 

oriented towards pyrolytic graphite and is rich in inorganic compounds. In contrast, the 

middle layer is formed predominantly by organic compounds. [9] 

The creation of the SEI layer can also be categorized into two stages. The first 

stage takes place before the intercalation of lithium ions into the graphite. This results in 

a structurally porous, highly resistive and dimensionally unstable layer. At the end of 

the second stage the layer is formed by the intercalation of lithium, producing a more 

compact and highly conductive layer. The capacity created in the second stage is 

connected not only to the reduction of the solvent molecules, but to the electrochemical 

reduction of functional surface groups on the side of the graphite as well. [9] 

2.3 Additives for improving the SEI layer 

The SEI layer formed before the intercalation of lithium is unstable and full of 

inorganic compounds. Furthermore, the formation is accompanied by the generation of 

gas. A possible method for suppressing this layer is done with a chemical coating on the 

graphites surface by a layer of organic film. These types of additives have a higher 

reduction potential than electrolytic solvents, and are selected because they are 

insoluble and protect the surface of the graphite against reaction within the electrolyte. 

Reduced generation of gas and an increased overall stability can be achieved with the 

use of these additives. Figure 2.4 shows possible additives, containing one or more 

double carbon-carbon bonds. [9] 



 23 

 

Figure 2.4 The chemical structures of the additives: a.) vinyl carbonate, b.) vinyl ethylene 

carbonate, c.) allyl ethyl carbonate, d.) vinyl acetate. [9] 

During the creation of the SEI layer the products of reducing agents are absorbed into 

the graphite. The effectiveness of facilitating the formation of the layer depends on the 

molecular groups. These groups can help create the layer, they belong to the group of 

sulfuric compounds, including SO2, CS2 and others. Sulfuric compounds are not soluble in 

organic electrolytes and are unstable at higher potentials, resulting in self-discharge. This 

means that the amount of sulfuric additive has to be limited. Other usable types of reducing 

agents contain nitrogen, such as N2O. [9] 

The next type of additive is capable of devouring radical anions, which are undesirable 

solvents, or can combine products such as lithium alkyl dicarbonate, thereby creating a 

more stable SEI layer. The above mentioned improvements can be done with CO2. Instead 

of CO2 dialkyl pyrocarbonate is a possible additive, with a weaker solubility and higher 

pressure, capable of reaching higher conductivity within the SEI layer under lower 

temperatures. Other types of reagents, certain boron compounds increase the life of the 

battery, while LiBOB increases high-temperature parameters. [9] 

Salts of alkali metals reduce the irreversible capacity, improving the holding of the  

capacity during cycling. SEI layer formed in the presence of Na2CO3 has a higher 

conductivity. The results of pretreated graphite in a solution containing Na2CO3 is shown on 

Figure 2.5. This figure shows reduced irreversible capacity and reduced possibility for Li+ 

intercalation and de-intercalation in the graphite structure. [9] 

 

Figure 2.5 Characteristics of the graphite, (a) without pretreatment, (b) pretreatment with 

Na2CO3. [9] 
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3 PERFORMANCE COMPARISON 

 This chapter contains the comparison between the most popular types of batteries. 

For each type of battery (lead-acid, nickel-metal hydride and lithium-ion batteries) a 

description about the energy density, charge and discharge characteristics, cycle life and 

information about the temperature operating range is included.  

3.1 Energy density and specific energy 

The key categories of the comparison are shown in Table 3.1. The electrode 

materials determine the theoretical voltage, while the practical voltage is what can be 

achieved in a real battery. For lead-acid and lithium-ion batteries the practical values 

and the theoretical values are essentially the same, however the nickel-metal hydrnide 

(Ni-MH) batteries show a 10% difference. Following the previous values the specific 

energy is listed, which is the energy storage capacity in watt-hours (Wh) divided by the 

mass of the battery in kilograms (kg). Equivalent weight of the active materials 

participating in the electrochemical reaction determines the theoretical capacity in 

ampere-hours/gram (Ah/g). Multiplying the theoretical capacity and voltage gives the 

theoretical specific energy in Wh/kg. [8] 

Table 3.1 lists a number of properties, and in most of them the lithium-ion battery 

excels over the lead-acid and nickel-metal hydride batteries.  

Table 3.1 Comparison of lithium-ion, lead-acid and nickel-metal hydride performance. [8]  

 lithium-ion nickel-metal hydride lead-acid 

Theoretical 

Voltage [V] 4,1 1,35 1,93 

Specific energy [Wh/kg] 410 240 166 

Practical 

Specific energy [Wh/kg] 150 75 35 

Energy density [Wh/L] 400 240 70 

Coulometric efficiency >0,85 0,65 - 0,70 0,80 

Energy efficiency ~0,80 0,55 - 0,65 0,65 - 0,70 

Specific power, 80% DOD [W/kg] 350 150 220 

Power density [W/L] >800 >300 450 

 

An important metric for batteries, listed in Table 3.1, is the energy storage 

efficiency. This can be determined by two metrics: coulometric efficiency and energy 

efficiency. Coulometric efficiency:  






Idt

Idt
f

ech

edisch

arg

arg
,   (3.1) 



 25 

where I (t) is the battery current and t is time. Energy efficiency: 


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edisch

arg

arg
 ,   (3.2) 

where V(t) is the battery voltage. Lithium-ion has the most efficient chemistry 

followed by lead-acid and nickel-metal hydride. [8] 

3.2 Charge and discharge 

Charge and discharge operation regulates the speed of current put into and taken 

from storage, this is called dynamic performance. The terminal voltage rises and falls 

during steady charging and discharging. At the end of charging or discharging the 

transient voltage response settles out, for sufficient long charges, the battery voltage 

saturates at a maximum value. These are overcharged situations, where most of the 

input energy goes to heat losses or harmful side reactions. [8] 

Similarly, undercharge occurs when the battery voltage falls below the end or cut-

off voltage causing damage to the battery. The state of charge (SOC), defined as the 

percentage of maximum possible charge that is present inside a rechargeable battery, 

determines the working range of a battery. A fully charged battery is at 100 % SOC, 

however a more practical example would be 30 to 70 % SOC with a Ni-MH battery in 

hybrid electric vehicle (HEV) applications having a very high coulometric efficiency. 

The depth of discharge (DOD = 100 % - SOC) is another way to quantify stored charge. 

[8] 

Measurements of voltage under constant charge and discharge current inputs 

characterizes the charge and discharge dynamics of batteries. The rate of charge or 

discharge is measured relative to the battery capacity C, meaning that a 0,1 C discharge 

rate for a 5 Ah battery is 0,5 A or a 2 C discharge rate for a 10 Ah battery is 20 A. 

Figure 3.1 shows discharge plots at low, medium, and high rates. [8] 

 

Figure 3.1 Example voltage curves for different discharge rates. [8]   

The low rate curve approximates the equilibrium cell (or open-circuit) potential. 



 26 

For the voltage to remain constant during discharge the optimal open-circuit potential 

curve is flat over a broad range of DOD. This simplifies the design and reduces the cost 

of the added voltage-regulation circuits. Due to ohmic losses over the entire DOD range 

the medium rate discharge curve shifts downward. Charge transfer kinetic losses and 

mass transport limitations at low and high DOD are also responsible for the discharge 

curve to shift downward. [8] 

The high rate discharge case demonstrates that only a fraction of the capacity can 

be utilized at high discharge rates due to quick voltage drops. A good way to summarize 

the statistics for battery discharge performance is with specific power (W/kg) and power 

density (W/L). These values are shown in Table 3.1, where lithium-ion has the highest 

specific power and power density. [8] 

 

Figure 3.2 Constant-current and constant-voltage charge curves. [8]  

Charging batteries replaces the energy expended during discharge, either by 

controlling current or voltage, not both. Typically charging is made up of periodicly 

changing constant current (CC) or constant voltage (CV). Figure 3.2 shows an example 

CC-CV charging profile for a lead-acid battery. A battery with low SOC is charged by 

applying a CC charge to bring the voltage up to the CV level. When the desired voltage 

level is achieved the charger switches to CV mode ending in a decreased current 

reaching 100 % SOC. In order to minimize potential damage to the battery and 

maximize life, safety, and efficiency, chargers use multiple CC and CV steps of 

different current and voltage levels. Lead-acid, nickel-metal hydride, and lithium-ion 

batteries can all be CC charged. The slight overcharge of lead-acid and nickel-metal 

hydride batteries can be tolerated, however lithium-ion batteries are irreversibly 

degraded and may vent during overcharge. The CC-CV method shown in Figure 4.3 is 

recommended for lead-acid and lithium-ion batteries, however the nickel-metal hydride 

batteries require CC approach with stepped or tapered current. [8] 

The charge acceptance dictates how fast the battery can be charged. The three types 

of batteries mentioned are recommended to be charged at C/3. [8] 
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3.3 Cycle life 

The most reliable way to determine cycle life is to test several batteries from the 

same batch. Test results depend on battery chemistry, discharge-charge cycle, 

temperature, prior history of storage and manufacturer, and are conducted on a cycling 

machine that repeats a prescribed current trajectory representing a typical cycle. During 

the testing process one of the batteries is randomly selected from cycling to be tested for 

capacity. This way, a plot of capacity versus number of cycles can be obtained. 

Generally all batteries have longer life for lower depths of discharge (DOD) cycles. At 

100 % DOD Li-ion batteries typically last 3000 cycles at low charge/discharge rates and 

room temperature. A 20-40 % DOD, however can last 20 000 cycles. Other types of 

batteries, like the nickel-metal hydride and lead-acid batteries only last a few hundred 

cycles at 80-100 % DODs. The end of life is characterized by a drop in capacity by 50-

80% from the initial capacity, depending on the chemistry and application. [8] 

3.4 Temperature operating range 

The use of batteries at extremely low or high temperatures is not optimal. Problems 

occurring at low temperature are tied to ionic diffusion and migration with possible 

lithium plating. The battery used in higher temperatures is exposed to corrosion and gas 

generation. For lithium-ion and lead-acid batteries, charge and discharge temperatures 

should be between -40 and 60 ⁰C. The operating range for nickel-metal hydride 

batteries is a bit narrow, it's between -20 and 45 ⁰C. [8] 
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4 MATERIALS USED FOR ELECTRODES 

The most commonly used material for the negative electrode is graphite, usually on 

a copper collector. Other forms of carbon have not been used due to their worse 

properties, such as capacity, irreversible capacity and number of cycles. Graphite allows 

an intercalation of one ion for six carbon atoms, which gives a theoretical capacity of 

372 mAh/g. The diffusion rate of lithium into the graphite is between 10-9 and 10-7 

cm2s-1, which means that the graphite has a low energy density. [11] 

Due to the extremely small expansion and contraction during charge and discharge 

cycles of the battery the attention shifted towards LTO (lithium titane oxid).  

4.1 Lithium titanate oxid (LTO)  

LTO has a relatively high density, good adhesion to the electrode and has better 

overall properties than the graphite electrode. It operates at a potential of 1,55 V vs. 

Li/Li+. This material can be used in combination with high-voltage positive electrodes 

and super capacitors up to a couple hundred Farads. In use with low voltage 

applications LTOs potential (1,55 V vs. Li/Li+) poses a major disadvantage. For these 

applications electrodes made of graphite are more suitable. [11], [12], [13] 

The electrochemical properties of LTO are highly dependent on the purity, 

composition, morphology, crystallization and surface area of the material. With the 

appropriate synthesis these properties can be highly influenced. LTO can be synthesized 

by a variety of methods, including solid, gel, hydrothermal and microwave methods. 

The solid synthesis takes place at temperatures between 800-1000 ⁰C for 10 to 24 

hours. The optimal calcination atmosphere is made of hydrogen and nitrogen. Hydrogen 

atmosphere is used to increase the diffusion of oxygen ions during heat treating, while 

under nitrogen the initial burning is carried out. During the initial burning as a reducing 

agent TiO2 alongside with carbon is used. There are two important  disadvantages with 

this method: it does not provide a sufficiently small particle size and the homogeneity of 

the material is inadequate.  

With gel synthesis high homogeneity and submicron particle sizes can be achieved. 

The heat treating process takes place in a temperature range from 700-800 ⁰C. With the 

use of acetic acid and citric acid cyclability and the current load capacity of the LTO is 

changed.  

Hydrothermal synthesis is more economical method for providing a nano-

structured material. This process is easier to control and provides various structures. 

The most appropriate for lithium-ion batteries is the "nanoflower-like" structure, with a 

basic material of TiO2 (with a thickness of 400 nm) and LiOH. By using various 

additives different thicknesses and electrochemical properties can be achieved.  

Compared to the already mentioned methods, microwave synthesis can be 

conducted at low temperatures, it has a rapid volumetric heating process and a shorter 

reaction time. For the radiation 2,45 GHz is used. [12] 
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4.1.1 Properties of LTO 

When the lithium intercalates and deintercalates into the structure of LTO only a 

minimal change occurs in the dimensions of the structure, up to 0,2 %. Lithium ions 

only occupy as much space as is their size, so LTO does not change its structure when 

ions enter or leave. This feature helps to maintain the structural stability with minimal 

difference during cycling, resulting in a long life cycle. With electrolyte LiPF6, LTO 

forms a relatively clean interface. However the SEI layer is not formed, because the 

potential 1,55 V vs. Li/Li+ is much higher than the reduction potential of the solvent. 

The high potential of LTO has a positive effect on the safety of batteries. [12], [15], [16] 

 

Figure 4.1 The structure of Li4Ti5O12 (on the left) and Li7Ti5O12 (on the right). [17] 

LTO has a cubic spinel structure, more specifically Li4Ti5O12. After lithium 

intercalation, it structurally changes into Li7Ti5O12, which is a structured rock salt. By 

the insertion of lithium ions into the structure below 1 V vs. Li/Li+ there is a large 

volume expansion. The band gap is 2-3 eV, which means that the LTO has an insulating 

character. One mol of LTO can accept 3 mols of Li+ ions. The theoretical capacity is 

175 mAh/g. The chemical reaction for this is:  

12571254 33 OTiLieLiOTiLi  
. [12]   (4.1) 
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Figure 4.2 Typical charge/discharge characteristics. [18] 

Figure 4.2 shows, that with an increasing speed (higher charging current), the 

capacity of the negative electrode decreases. With the increasing number of 

charge/discharge cycles the capacity of the negative electrode decreases from about 118 

mAh/g to 115 mAh/g after 100 cycles.  

4.2 Natural graphite  

Naturally occurring graphite is formed in a hexagonal shape. These shapes contain 

six atoms of carbon, each at the point of the hexagon closing a 120° with each other. 

The crystal structure of the graphite is made of stacked up graphene layers, which are 

held together by van der Waals forces with an energy of 0,2 eV/atom. The distance 

between each atom is 142 pm, while the distance between layers is 335 pm. Graphite 

can be easily identified with a physical appearance of a soft, dark grey material. Other 

important properties are the excellent conductivity of heat and electricity, furthermore it 

is resistant to a lot of chemicals. Graphite retains these properties up to 3500 °C. Figure 

4.3 shows the above mentioned crystal structure. [19] 

 

Figure 4.3 Hexagonal structure of graphite. [21] 
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The two types of naturally occurring graphite can a have macro, or micro 

crystalline structure. The two forms of graphite, having a macro crystalline structure, 

are called flake form and vain form. [25] 

Graphite in the form of vain is the rarest and most valuable type. This type can be 

found in high-altitudes, because of its purity it's very desired. Despite the purity of the 

vein form, the most known and used is the flake type. It occupies almost 40 % of total 

market and it's mined in China, Brazil, Canada and Africa. The pure graphite in the 

flake type is between 5 % and 40 %. As the name suggests the material is made of 

flakes, which are approximately 2,5 mm wide. After mechanical, thermal or chemical 

treatment the flakes can achieve a few micrometers in width. The most important 

properties are good thermal and electrical conductivity, chemical inertness, small 

thermal expansion, compressibility and it's also non-toxic. By using mechanical 

separation and flotation a 99,5 % of purity can be achieved. To achieve greater purity 

chemical or high temperature treatments are necessary. [25] 

 

Figure 4.4 Natural graphite in the form of vein (on the left) and flake (on the right). [22], [23] 

Microcrystalline graphite is the most frequent form and it occupies approximately 

60% of the market. The carbon content in some cases reaches 75%. This type of 

graphite is created by converting anthracite coal seams and is often called amorphous 

graphite, because the typical graphite morphology, like the vein and flake forms, are not 

visible. During the purifying process it's very difficult to separate it from coal, resulting 

in a lower grades and prices. Other components are separated by flotation and chemical 

methods. The level of purity can reach 75 to 85 %, with good conductive properties and 

chemical stability. It is mostly used in lubricants and greases. [25] 

Expanded graphite is a special form of flake graphite created by the intercalation of 

strong acid anions. This process separates the graphene plates in the atomic structures. 

Afterwards, with immediate heating, the anions are evaporated and the crystalline 

structure is cut into 100 nm thick plates. [25] 

With this process the graphite expands up to 300 % of its original volume. For use 

in batteries the expanded graphite is grinded into fine powder. Thanks to its 

characteristics such as compressibility, chemical resistance, excellent thermal 

conductivity it can be used in many different branches of industry. Expanded graphite is 

characterized by large capacities and high electrical conductivity. [25] 
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Figure 4.5 Expanded graphite. [20] 

The methods used for creating expanded graphite differ mainly in the synthesis 

part, where the acid intercalates into the graphite. These methods can be divided into 

chemical, gas, liquid and electrochemical intercalation, where the presence of an 

oxidizing agent with low redox-potential is essential. The following oxidants may be 

used: CrO3,K2Cr2O7, HNO3, KMnO4. At the beginning of the process the oxidants (Ox) 

modify the composition of the acid on the surface carbon layers of the graphite. During 

the process Cp+ cation is produced between the carbon layers, and the created 

conditions allow for the solicitation of acid anions. At the end of the process specific 

locations are filled with sulfuric acid and nitric acid, described by the chemical 

equation:  

)1(

4242442 )1.(.24 
 z

n

z HOxSOHmHSOCSOmHOxnC . [26] (4.2) 

4.3 Synthetic graphite  

Synthetic graphite can be produced from materials containing carbon or from pure 

carbon, however not all types of carbon can be used. The process of graphitization 

includes the restrictions on movements and new arrangements of carbon atoms, which 

undergoes the transformation during a thermal process. Formation of graphite from the 

amorphous carbon requires movements in three planes in the graphite matrix. The 

degree of movement is very important during the heat treatment, when the carbon 

changes into liquid. In this phase, the molecules are capable of moving and creating the 

graphite structure. During the above mentioned process a lot of the materials properties 

change. The resistivity, density, weight and elasticity decreases, while the thermal and 

electrical conductivity increases. [27] 

Carbon materials that can temporarily change into a liquid form are referred to as 

soft carbon, while hard carbon cannot be graphitized. Suitable forms of carbon for the 

heat treatment are found in coal tar, oil and other substances. The mentioned materials 

are good to form graphite, because they contain relatively small amount of hetero-atoms 

(another type of the atom in the substance, such as oxygen, nitrogen), they have low 

molecular weight and they melt in an acceptable range of temperature. Industrially 

employed processes are Acheson graphitization, Castner process, Desulco® process and 

others. [27] 
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Typical expansions during graphitization: 

• Room temperature, until the start of  the heat treatment, no changes. 

• 900 - 1200 °C: after passing the calcining temperature the filler components are 

slowly starting to form the graphite structure. 

• 1500 - 2000 °C: at this point hydrogen and sulfur is released from the binder, this 

leads to irreversible volume expansion. 

• Above 1800 ° C: The creation of graphite structure is accelerated. 

• Above 2600 ° C: Volume expansion is slowly stops and the forming of the 

crystalline structure starts. 

• 3000 ° C: Thermal and electrical conductivity achieves optimal values. 

 

Figure 4.6 Changes in the structure. [28] 

The Acheson graphitization process produces graphite powder of high purity. The 

storage is set into blocks placed horizontally to the bed of the furnace. The space 

between these segments is filled with resistive material, consisting of cox and graphite 

in a granulated mixture. Current is supplied through two water-cooled electrodes on the 

sides of the furnace which is also thermally insulated by cox and sand, while protecting 

the material against oxidation. With increasing graphitization, the electrical resistance 

of the furnace decreases, so the main electrode must be constantly monitored. The 

furnace temperature can reach 2800 °C in several days, and depending on the size of the 

furnace, one operating cycle lasts two to three weeks. The furnace is shown on Figure 

4.7. [28] 



 34 

 

Figure 4.7 Acheson furnace. [28] 

The Castner (lengthwise, longitudinal array graphitization) furnace is characterized 

by the direct connection of the stock in a row, without a resistor material in between. 

This type of furnace is shown on Figure 4.8. The current directly passes through the 

artifacts, which are clamped between the head electrodes of the furnace to heat it up. 

The graphitized materials contact area has to fit well, it requires plane-parallel 

machining and an adjustable clamping device. With this construction a secure and 

constant, tight electrical contact is made with a low-contact resistance. The insulation 

against oxidation and high heat losses is identical to the Acheson furnace. This 

graphitizing method has the advantage of shorter heating periods, less power 

consumption and smaller furnace dimensions. [28] 

 

Figure 4.8 Castner furnace. [28] 
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5 BINDERS 

In the production of lithium ion battery electrodes, the binder plays an important 

role. It not only binds the active materials and the conductive additive to the current 

collectors, but also strongly affects the electrode processing and the electrochemical 

performance of the laminate. Polyvinylidene fluoride (PVDF) is the generally used 

binder, which requires the use of the volatile, organic compound N-methyl pyrrolidone 

in its application. Recently, sodium salt of carboxymethyl cellulose (CMC) and styrene-

butadiene rubber (SBR) have been introduced as a suitable replacement in the 

manufacture of lithium ion anodes. The use of the water soluble binder system leads to 

a cheaper and greener electrode processing. [29] 

5.1 Polyvinylidene fluoride (PVDF) 

Polyvinylidene fluoride (PVDF) is a highly non-reactive and pure thermoplastic 

fluoripolymer. It is produced by the polymerization of vinylidene difluoride and is used 

in applications requiring the highest purity, strength, and resistance to solvents, acids, 

bases and heat. Compared to other fluoropolymers, it has a lower melting point, around 

177 °C, also a lower density (1,78 g/cm3). It is available as piping products, sheet, 

tubing, films, plate and an insulator for premium wire. It can be injected, molded or 

welded and is commonly used in the chemical, semiconductor, medical and defense 

industries, as well as in lithium ion batteries. The Structural schematic is shown on 

Figure 5.1. [30] 

 

Figure 5.1 Polyvinylidene fluoride (PVDF). [31] 

Strong piezoelectricity was observed in PVDF, ten times larger than in any other 

polymer. During the observation PVDF was placed under a strong electric field to 

induce a net dipole moment. The poled thin films had a piezoelectric coefficient of  6-

7 pC/N. [30] 

PVDF has a 50-60 % crystalline structure with a glass transition temperature (Tg) 

of - 35 °C. The material is mechanically stretched to orient the molecular chains and 

then poled under tension to achieve piezoelectric properties. When poled, PVDF also 

has ferroelectric polymer and pyroelectric properties, making it useful in sensor and 

battery applications. [30] 

PVDF can be used as binder material in the production of composite electrodes for 

lithium ion batteries. A weight solution of 1-2 % PVDF dissolved in N-methyl-2-

pyrrolidone (NMP) is mixed with an active lithium storage material (graphite, silicon, 

tin, LiCoO2, LiMn2O4, LiFePO4) and a conductive additive (carbon black, carbon 

https://en.wikipedia.org/wiki/1,1-Difluoroethylene
https://en.wikipedia.org/wiki/Piezoelectricity
https://en.wikipedia.org/wiki/Picocoulomb
https://en.wikipedia.org/wiki/Newton_(units)
https://en.wikipedia.org/wiki/Glass_transition_temperature
https://en.wikipedia.org/wiki/Celsius
https://en.wikipedia.org/wiki/Ferroelectric
https://en.wikipedia.org/wiki/Pyroelectric
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nanofibers). This slurry is cast onto a metallic current collector and the NMP is 

evaporated to form a composite or paste electrode. The advantage of using PVDF is that 

it is chemically inert over the potential range used and does not react with the 

electrolyte or lithium. [30] 

PVDF can be used in a variety of situations, such as insulation on electrical wires, 

tactile sensor arrays, inexpensive strain gauges, lightweight audio transducers. In the 

biomedical sciences PVDF is used in immunoblotting as an artificial membrane. [30] 

5.2 Styrene-butadiene rubber (SBR) 

Styrene-butadiene or styrene-butadiene rubber (SBR) is derived from styrene and 

butadiene, a type of synthetic rubber. These materials have good abrasion resistance and 

good aging stability when protected by additives. SBR is not to be confused with 

athermoplastic elastomer made from the same monomers, styrene-butadiene block 

copolymer. [32] 

Latex (emulsion) SBR is extensively used in coated papers, being one of the 

cheapest resins to bind pigmented coatings. It is also used in building applications, as a 

sealing and binding agent behind renders, an alternative to PVA. SBR can be used to 

'tank' damp rooms or surfaces, a process in which the rubber is painted onto the entire 

surface (sometimes both the walls, floor and ceiling) forming a continuous, seamless 

damp-proof liner; a typical example would be a basement. It is also used by speaker 

driver manufacturers as the material for Low Damping Rubber Surrounds. Additionally, 

it is used in some rubber cutting boards. [32] 

     

Figure 5.2 Structure of Styrene-butadiene. [33] 

The structure is shown on Figure 5.2. A possible way of using SBR as a binder is to 

use it together with carboxymethyl cellulose (CMC). The active material would be  

mixed with approximately 2 % CMC aqueous solution, additionally with a 4 % of SBR. 

[34]  

https://en.wikipedia.org/wiki/Tactile_sensor#Tactile_sensor_arrays
https://en.wikipedia.org/wiki/Wear#Abrasive_wear
https://en.wikipedia.org/wiki/Block_copolymer
https://en.wikipedia.org/wiki/Block_copolymer
https://en.wikipedia.org/wiki/Coated_paper
https://en.wikipedia.org/wiki/Polyvinyl_acetate
https://en.wikipedia.org/wiki/Cutting_boards
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5.3 Polyimide P84 

The P84 polyimide can be produced in different forms. The base material for P84 

fibres is composed of aromatic backbone units. Despite the non melting aromatic, 

halogen free structure it is classified as non flammable. P84 fibers are used as filter 

media for high temperature filtration, protective clothing, sealing materials for space 

craft and high temperature applications such as thermal insulation. [35] 

Another form is a solution of P84, a fully imidized polyimide. It is used for 

coatings in the electric and electronics industry, due to its low dielectric constant or high 

dielectric strength. Available solvents are dimethylformamide (DMF) or N-methyl 

pyrrolidon (NMP) or N-ethyl pyrrolidon (NEP). [35] 

The third form of P84 is polyimide powder. This powder shows typical properties 

of polyimide, high temperature stability up to 350 °C, chemical resistance, high 

mechanical strength, a low friction coefficient and minimal abrasion. It can be used in 

industrial applications, such as automotive industry, aerospace applications and office 

machines. [35] 
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6 METHODS FOR MEASUREMENT 

One of the basic electronic hardware required for the measurements is called 

a potentiostat. The system maintains the potential of the working electrode at a constant 

level. This equipment is used in electrochemical studies, measuring redox chemistry and 

other chemical properties. Early versions functioned on their own, providing data output 

through a physical data trace, while the modernized versions are used together with 

a personal computer operating with the help of a software. The potentiostat varies the 

current supplied to the system, with higher resistance the current decreases, with a lower 

resistance the current increases, in order to keep the voltage constant. [36] 

 

 

Figure 6.1 Schematic of a potentiostat. [36] 

Another device used for these measurements is a galvanostat. This device is 

capable of keeping the current even through an electrolytic cell, disregarding changes in 

the load itself. It has an extremely high internal resistance and can supply and measure 

pico-amperes to amperes of both polarity. [36] 

6.1 Cyclic Voltammetry 

Cyclic voltammetry is characterized by continuously growing potential from one 

limit to the other and back. This means that the parameters in the experiment are the 

adjustable limits and the speed of the potential growth. The result of this method is the 

polarization curve (the dependence of current flowing through the electrode on its 

potential). This method gives us information about each current producing reaction in 

the analyzed material. [37] 

6.2 Galvanostatic Cycling with Potential Limitation 

This method simulates the cyclic charging and discharging of a battery. Through 

the measured sample a defined current passes, which is potentially limited. This 

happens both for charging and discharging cycles. During cycling (alternating each 

charge and discharge cycle) a potential (open circuit voltage) is recorded, or after some 

time a constant potential can be applied, until it reaches the limit potential. The output 

data represents the stability (cyclability) and the battery capacity. [37] 

https://en.wikipedia.org/wiki/Voltage
https://en.wikipedia.org/wiki/Working_electrode
https://en.wikipedia.org/wiki/Electrochemical
https://en.wikipedia.org/wiki/Redox
https://en.wikipedia.org/wiki/Chemistry
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7 PREPARING THE NEGATIVE ELECTRODE 

The process of preparing the electrode can be divided into several phases. The first 

phase is the preparation of the electrode mixture, the second is the deposition of the 

mixture on a copper foil, the third is the pressing of the electrodes and the last phase is 

the drying. Following the production of the electrode comes the assembly of a battery 

cell.  

7.1 Preparation of the electrode mixture 

Based on the information gathered from the literature and previous experiments the 

ratio of the individual components was determined, see Table 2. The weight of the 

electrode material was 0,4 g. The instruments used to prepare the material had to be 

properly washed in demineralized water and isopropyl alcohol to prevent the 

contamination of the prepared mass. 

Table 7.1 The ratio of ingredients in the electrode materials 

 Active material [wt.%] Binder [wt.%] Conductive additive [wt.%] Total [wt.%] 

Polyvinylidene fluoride (PVDF), with Super C65 as conductive additive 

 

80 10 10 100 

84 6 10 100 

87 3 10 100 

Polyimide P84, with Super C65 as conductive additive 

 

80 10 10 100 

84 6 10 100 

87 3 10 100 

Styrene-butadiene rubber (SBR), with carboxymethyl cellulose (CMC) as conductive additive 

 

92 6 2 100 

94 4 2 100 

96 2 2 100 

 

The main component is the active electrode material, in this case natural graphite 

CR5995. The second component of the electrode material is the binder. In this thesis 

three different types were tested, polyvinylidene fluoride (PVDF), Polyimide P84 and 

Styrene-butadiene rubber (SBR). For the binders PVDF and P84 the use of a solvent, 

which allows homogenization is necessary. This solvent was the N-methyl 2-

pyrrolidone (NMP), which is a nitrogenous heterocyclic compound. The solvent for 

SBR was demineralized water. 

The third component of the electrode material is the conductive additive. For the 

binders PVDF and P84 amorphous carbon (also called "Carbon black") was used. The 

small crystals in this material are able to accept a certain amount of lithium ions in the 
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first charging cycle, after that they start to decay in the subsequent cycles. In our case, 

the material from TIMCAL labeled Super C65 was used. The conductive additive with 

SBR is carboxymethyl cellulose (CMC). 

The following description is for the binders PVDF and P84. In the mixing process 

the first step was to add the solvent and the binder. This was mixed for approximately 

24 hours, at this point 1000 µl of solvent was enough. The second step was to add the 

conductive additive, in the case of P84 further addition of the solvent was not necessary, 

however the PVDF required another 1000 µl of solvent. This was further mixed for 

another 24 hours. The last step was to add the active material and solvent if necessary. 

The P84 only required 200 µl of solvent, while the PVDF another 1000 µl. This was 

followed by another 24 hours of mixing. 

With the SBR binder the mixing process was similar. In this case the solvent was 

demineralized water, and as the first component the conductive additive (CMC) was 

used. Other than that, the process was the same. After each component a 24 hour mixing 

ensued. 

The Figure 7.1 shows the first phase in the preparation of the electrode. The 

numbers on the figure are: 1. the active material (natural graphite CR5995), 2. the 

solvent (NMP), 3. a phial, which contains the mixture (on the figure the mixing was 

already in progress, the binder and the conductive additive were mixed in the solvent), 

4. micropipette (which was used to add the NMP to the mixture) and 5. a scale to 

measure the components. 

 

Figure 7.1 Preparation of the electrode mixture 

7.2 Deposition of the mixture on copper foil  

Deposition of the material was done by a conventional technology, consisting of 

the application of a viscous mixture on the copper foil. A polished copper foil with a 
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thickness of 50 µm was used. For the deposition itself a special rod was used (see 

Figure 7.2 below), which guaranteed that the layer will be homogeneous with a precise 

thickness of 100 µm. The figure below shows: 1. The rod used to apply the mixture, 2. 

A phial containing the mixture and 3. The copper foil.  

 

Figure 7.2 Deposition of the mixture on a copper foil 

7.3 Pressing of the electrodes  

After the deposition of the material on a copper collector, a drying process follows 

in the presence of air and atmospheric pressure at an elevated temperature of 50 °C. 

During this process the NMP solvent evaporates. After drying, individual electrodes are 

cut out in the shape of a disc ready for measurement. Figure 7.3 shows the tools for 

cutting these discs out. Each electrode has the shape of a disc with a diameter of ⌀ 18 

mm and a surface area of 2,55 cm2. A pure copper disc with a diameter ⌀18 mm weights 

27,7 mg. The prepared electrodes were then pressure pressed with 2 tons per cm2.  

 

Figure 7.3 Tools for cutting out the electrodes 

Figure 7.3 shows: 1. the dried copper foil with the electrode material on it, 2. a hole 

puncher, a pair of tweezers and a hammer and 3. a plexi plate. The copper foil was 

placed on the plexi plate, then with the hole puncher and the hammer the discs were cut 

out, approximately six to eight samples were made. 
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Figure 7.4 Pressure press 

7.4 Drying 

The last phase in the preparation of the electrodes is their dehydration. Drying was 

carried out at reduced pressure, approximately around 100 Pa. In these conditions, the 

electrodes were at least for 24 hours, after this, the electrodes were moved into the glove 

box. The assembly of measuring cells were carried out in a protective argon (Ar) 

atmosphere glove box. 

 

Figure 7.5 Reduced pressure compartment and the glove box 

7.5 Measuring cells and their assembly 

Before the assembly, the cell was thoroughly washed and dried. Together with the 

electrode material the cell was placed in the glove box. A disc of lithium (with a 
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diameter of ⌀ 16 mm) cleaned with a scalpel was placed at the bottom of the cell. After 

this, a separator was placed on top of it, which was drenched in 130 ml of LiPF6 

electrolyte by a micropipette. As the last step the separator was covered by the negative 

electrode. Before completing the last step, the electrodes weight was measured. At the 

beginning of the assembly the box had to be properly closed to prevent any oxygen to 

enter. The two types of measuring cells and the glove box are shown on Figure 7.6 and 

7.7. 

 

Figure 7.6 Ell-cell 0 

 

Figure 7.7 T-cell  
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8 RESULTS OF THE MEASUREMENTS 

The measurements were conducted with the VMP-300 device, galvanostatic 

measurement (GPLC) and cyclic voltammetry (CV) as the methods. With the help of 

the EC-lab software every detail of the measurement was set up and with Microsoft 

Excel the data was processed and graphs were generated.  

After the initial measurements (with ±100 µA) the weight of the negative electrode 

mass, the charge and discharge current and the irreversible capacity (in percents) were 

calculated alongside with the Coulomb efficiency, which is the relation between the 

discharging and charging capacity. The weight of the electrode material mass is simply 

calculated by the subtraction of the copper foil discs weight (27,7 mg):  

copperdiscelectrodemass mmm 
.
   (8.1) 

The current was calculated with the equation: 

CmQI mass..
,
   (8.2) 

where Q is the measured capacity in the last cycle of the initial measurement, it's in 

mAh/g, mmass is the weight of the electrode material mass calculated with (8.1), and last 

C, the charging constant, in our case 0,2. 

Next up is the irreversible capacity in percents (Cirr). This is calculated by the 

subtraction of the discharge capacity (Cdis) from the charge capacity (Cchar) in a given 

cycle. The received number is then divided by the charge capacity and to get it in 

percents it's multiplied by hundred. The equation is:    

100.
char

dischar
irr

C

CC
C




.
   (8.3) 

The last equation is to determine the Coulomb efficiency: 

100.
char

dis

C

C
CE 

.
   (8.3) 

With the methods mentioned in chapter seven, the electrodes were prepared. At the 

beginning of the measurements the mmass and the current was calculated with the help of 

(8.1) and (8.2). For each type of binder and for each wt.% the figures in the next 

chapters show the voltage spikes in every cycle, the first two charging and discharging 

cycles, the charge and discharge capacity spikes across cycles, the Coulomb efficiency 

and the irreversible capacity in percentage for each cycle. Also tables presenting the 

results of the GCPL method are included. The content of these tables was received from 

the EC-lab software. With the help of the cursor option every charge and discharge 

capacity was read, the rest was calculated with the equations (8.3) and (8.4). 
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8.1 Results with the PVDF binder 

Individual samples of the electrode (with 10, 6 and 3 wt.% of binder) were 

examined from the perspective of reversible and irreversible capacity during cycling. 

The characteristics for the 10 wt.% of PVDF are on figures 8.1, 8.2, 8.3, 8.4 and 8.5. 

Capacity values are also included in the Table 8.1. The characteristics for the 6 and 3 

wt.% of PVDF are shown similarly, figures 8.6 to 8.10 and 8.11 to 8.15 respectively. 

Tables are also included (Table 8.2 and 8.3).  

For the 10 wt.% of PVDF the mass of the electrode material was 4,1 mg and the 

current was ± 230 µA. Figure 8.1 shows the voltage in every cycle, reaching around 2,5 

Volts. Measuring the ten cycles took around 80 hours. 

 

Figure 8.1 Voltage spikes in every cycle (10 wt.% of PVDF) 

 

Figure 8.2 The first two charging and discharging cycles (10 wt.% of PVDF) 
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The next three characteristics show the charge and discharge capacity spikes across 

the cycles (Figure 8.3), the Coulomb efficiency (Figure 8.4) and the irreversible 

capacity (Figure 8.5).  

Table 8.1 Charge and discharge values, Coulomb efficiency and irreversible capacity (10 wt.% 

of PVDF) 

Cycle Charge [mAh/g] Discharge [mAh/g] C. Efficiency [%] Irr. Capacity [%] 

1 169 155 91,7 8,3 

2 164 156 95,1 4,9 

3 159 152 95,6 4,4 

4 154 148 96,1 3,9 

5 152 147 96,7 3,3 

6 147 142 96,6 3,4 

7 143 139 97,2 2,8 

8 139 135 97,1 2,9 

9 135 132 97,8 2,2 

10 133 130 97,7 2,3 

 

 

Figure 8.3 The charge and discharge capacity spikes across the cycles (10 wt.% of PVDF) 
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Figure 8.4 The Coulomb efficiency (10 wt.% of PVDF) 

 

Figure 8.5 The irreversible capacity in percentage (10 wt.% of PVDF) 
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With 6 wt.% of PVDF the mass was 3,8 mg and the current was ± 239 µA. During 

the galvanostatic charging around 2,5 Volts were measured in every cycle. Measuring 

the ten cycles took around 95 hours. 

 

 

Figure 8.6 Voltage spikes in every cycle (6 wt.% of PVDF) 

 

Figure 8.7 The first two charging and discharging cycles (6 wt.% of PVDF) 
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Like before the next three characteristics show the charge and discharge capacity 

spikes across the cycles, the Coulomb efficiency and the irreversible capacity. However 

with 6 wt.% of PVDF the measurements provided better results, in the first cycle 

charging capacity reached 334 mAh/g. The Coulomb efficiency reached over 95 % in 

cycles 2 through 10.   

Table 8.2 Charge and discharge values, Coulomb efficiency and irreversible capacity (6 wt.% of 

PVDF) 

Cycle Charge [mAh/g] Discharge [mAh/g] C. Efficiency [%] Irr. Capacity [%] 

1 334 296 88,6 11,4 

2 306 293 95,8 4,2 

3 292 283 96,9 3,1 

4 289 281 97,2 2,8 

5 281 273 97,2 2,8 

6 268 262 97,8 2,2 

7 276 268 97,1 2,9 

8 264 257 97,3 2,7 

9 254 247 97,2 2,8 

10 242 238 98,3 1,7 

 

 

Figure 8.8 The charge and discharge capacity spikes across the cycles (6 wt.% of PVDF) 
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Figure 8.9 The Coulomb efficiency (6 wt.% of PVDF) 

 

Figure 8.10 The irreversible capacity in percentage (6 wt.% of PVDF) 
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The negative electrode mass with 3 wt.% of PVDF was 4,3 mg. A current of  ± 266 

µA was calculated. As before, around 2,5 Volts were measured in every cycle during 

the galvanostatic charging. Measuring the ten cycles took a little less than 104 hours. 

 

Figure 8.11 Voltage spikes in every cycle (3 wt.% of PVDF) 

 

Figure 8.12 The first two charging and discharging cycles (3 wt.% of PVDF) 
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In the case of irreversible capacity an interesting phenomenon occurred. In cycles 

3, 6, 8, 9 and 10 a negative irreversible capacity was measured. The negative sign 

means, that in a given cycle a larger amount of charge was received than was delivered 

into it. This is probably caused by the lithium atoms, which during the previous cycle 

were unable deintercalate and remained trapped. This is probably due to the fast volume 

change of the electrode. These numbers affect the Coulomb efficiency numbers and 

characteristics. In these cycles the efficiency reaches over a 100 %.   

Table 8.3 Charge and discharge values, Coulomb efficiency and irreversible capacity (3 wt.% of 

PVDF) 

Cycle Charge [mAh/g] Discharge [mAh/g] C. Efficiency [%] Irr. Capacity [%] 

1 270 262 97,1 2,9 

2 263 261 99,2 0,8 

3 260 283 108,8 -8,8 

4 260 259 99,6 0,4 

5 253 252 99,6 0,4 

6 252 262 103,9 -3,9 

7 253 249 98,4 1,6 

8 241 253 104,9 -4,9 

9 241 245 101,7 -1,7 

10 238 262 110,1 -10,1 

 

 

Figure 8.13 The charge and discharge capacity spikes across the cycles (3 wt.% of PVDF) 
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Figure 8.14 The Coulomb efficiency (3 wt.% of PVDF) 

 

Figure 8.15 The irreversible capacity in percentage (3 wt.% of PVDF) 

At the end of these measurements the conclusion is that the 10 and 6 wt.% of 

PVDF binder can be used in battery applications. The 3 wt.% of PVDF electrode 

material didn't show optimal characteristics, however the voltage produced by the cell 

and even the charge and discharge capacities were satisfactory. The previously 

described trapping of the lithium ions (resulting in negative irreversible capacity values) 

most likely happened because 3 wt.% of the binder was not enough (the mixture of the 

mass contained 87 wt.% of natural graphite). This binder is used in conventional 

lithium-ion batteries with a 8 to 12 wt.%.   
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8.2 Results with the P84 binder 

As mentioned before the samples of the electrode (with 10, 6 and 3 wt.% of binder) 

were examined from the perspective of reversible and irreversible capacity during 

cycling. The results are shown on characteristics 8.16 to 8.20 (10 wt.% of P84), 8.21 to 

8.25 (6 wt.% of P84) and 8.26 to 8.30 (3 wt.% of P84). Capacity values are also 

included in Tables 8.4, 8.5 and 8.6.  

With 10 wt.% of P84 the mass of the electrode material was 5,7 mg and the current 

was ± 163 µA. The measurements took only 30 hours. The voltage spikes didn't show 

an optimal form, however it's still adequate. 

 

Figure 8.16 Voltage spikes in every cycle (10 wt.% of P84) 

This experiment didn't produce the expected results. This can be seen on Figure 

8.17, during the first two charge and discharge cycles the capacity was only 39 and 10 

mAh/g, and 7 and 5 mAh/g (also shown on the next characteristics and Table 8.4). 

 

Figure 8.17 The first two charging and discharging cycles (10 wt.% of P84) 
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The next few characteristics show unwanted results. The charge and discharge 

capacity spikes across the cycles (Figure 8.18) were too low to be considered 

successful. The Coulomb efficiency (Figure 8.19) and the irreversible capacity (Figure 

8.20) characteristics also show the results of this experiment.  

Table 8.4 Charge and discharge values, Coulomb efficiency and irreversible capacity (10 wt.% 

of P84) 

Cycle Charge [mAh/g] Discharge [mAh/g] C. Efficiency [%] Irr. Capacity [%] 

1 39 7 17,9 82,1 

2 10 5 50,0 50,0 

3 8 5 62,5 37,5 

4 7 5 71,5 28,5 

5 6 4 66,7 33,3 

6 6 4 66, 7 33,3 

7 6 4 66, 7 33,3 

8 6 4 66, 7 33,3 

9 5 4 80,0 20,0 

10 5 4 80,0 20,0 

 

 

Figure 8.18 The charge and discharge capacity spikes across the cycles (10 wt.% of P84) 
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Figure 8.19 The Coulomb efficiency (10 wt.% of P84) 

 

Figure 8.20 The irreversible capacity in percentage (10 wt.% of P84) 

These results may be caused by the amount of binder in the electrode material. 

However a more viable answer might be the inadequate assembly of the cell or the 

contamination of the negative electrode. A third possible answer is that this binder is not 

suitable for battery applications. The answer depends on how the other samples perform 

with this binder.  
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The sample with 6 wt.% of P84 had a mass was of 2,4 mg. The current calculated 

was ± 124 µA. During the galvanostatic charging around 2,5 Volts were measured in 

every cycle. Measuring all ten cycles took around 59 hours. The measurements with this 

sample had to be repeated due to the unsatisfactory results. 

 

Figure 8.21 Voltage spikes in every cycle (6 wt.% of P84) 

 

Figure 8.22 The first two charging and discharging cycles (6 wt.% of P84) 
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Like before the next three characteristics show the charge and discharge capacity 

spikes across the cycles, the Coulomb efficiency and the irreversible capacity. With this 

binder the 6 wt.% sample performed better than the previous 10 wt.%. In the first cycle 

charging capacity reached a very good 250 mAh/g, however in latter cycles this 

dropped significantly. The Coulomb efficiency reached over 80 % in cycles 3 through 

10.   

Table 8.5 Charge and discharge values, Coulomb efficiency and irreversible capacity (6 wt.% of 

P84) 

Cycle Charge [mAh/g] Discharge [mAh/g] C. Efficiency [%] Irr. Capacity [%] 

1 250 102 40,8 59,2 

2 120 89 74,2 25,8 

3 92 74 80,4 19,6 

4 85 69 81,2 18,8 

5 80 66 82,5 17,5 

6 82 68 82,9 17,1 

7 86 70 81,4 18,6 

8 73 60 82,2 17,8 

9 65 54 83,1 16,9 

10 58 49 84,5 15,5 

 

 

Figure 8.23 The charge and discharge capacity spikes across the cycles (6 wt.% of P84) 
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Figure 8.24 The Coulomb efficiency (6 wt.% of P84) 

 

Figure 8.25 The irreversible capacity in percentage (6 wt.% of P84) 
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For the smallest, 3 wt.%, amount of P84 the mass of the electrode material was 5,7 

mg and a ± 371 µA current was calculated. Measuring the ten cycles took a little less 

than 88 hours. 

 

Figure 8.26 Voltage spikes in every cycle (3 wt.% of P84) 

 

Figure 8.27 The first two charging and discharging cycles (3 wt.% of P84) 
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Like before the next three characteristics show the charge and discharge capacity 

spikes across the cycles, the Coulomb efficiency and the irreversible capacity. With this 

binder the 3 wt.% sample performed flawlessly. In all of the cycles the charging 

capacity was around 260 mAh/g, the lowest being 258 mAh/g. The Coulomb efficiency 

reached over a 100 % in cycles 6, 8 and 10, which means that all of the received charge 

was discharged.   

Table 8.6 Charge and discharge values, Coulomb efficiency and irreversible capacity (3 wt.% of 

P84) 

Cycle Charge [mAh/g] Discharge [mAh/g] C. Efficiency [%] Irr. Capacity [%] 

1 269 263 97,8 2,2 

2 260 259 99,6 0,4 

3 266 265 99,6 0,04 

4 265 264 99,6 0,4 

5 260 259 99,6 0,4 

6 265 265 100,0 0,0 

7 261 260 99,6 0,4 

8 258 258 100,0 0,0 

9 262 261 99,6 0,4 

10 258 258 100,0 0,0 

 

 

Figure 8.28 The charge and discharge capacity spikes across the cycles (3 wt.% of P84) 
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Figure 8.29 The Coulomb efficiency (3 wt.% of P84) 

 

Figure 8.30 The irreversible capacity in percentage (3 wt.% of P84) 

The results with this type of binder were mixed. The 10 wt.% performed poorly, 

while the results with the least amount of binder, 3 wt.%, were outstanding. Using 6 

wt.% also proved to be not optimal, while it performed better than the first one, it still 

had rather low values of capacity. The drastic difference between the samples may be 

caused by the amount of binder, the right amount being somewhere between 3 and 6 

wt.%.   
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8.3 Results with the SBR binder 

The results with the last type of binder are on figures 8.31 to 8.35 (6 wt.% of SBR), 

8.36 to 8.40 (4 wt.% of SBR) and 8.41 to 8.45 (2 wt.% of SBR). Capacity values are 

also included in Tables 8.7, 8.8 and 8.9.  

For the 6 wt.% of SBR the mass of the electrode material was 5,6 mg and the 

calculated current was ± 215 µA. Measuring the ten cycles took around 68 hours. 

 

Figure 8.31 Voltage spikes in every cycle (6 wt.% of SBR) 

 

Figure 8.32 The first two charging and discharging cycles (6 wt.% of SBR) 
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The next characteristics, and table, show the charge and discharge capacity spikes, 

the Coulomb efficiency and the irreversible capacity. These results show a more or less 

optimal decline in the charge values, however the first charge and discharge capacities 

were not as high as the values with the PVDF binder.   

Table 8.7 Charge and discharge values, Coulomb efficiency and irreversible capacity (6 wt.% of 

SBR) 

Cycle Charge [mAh/g] Discharge [mAh/g] C. Efficiency [%] Irr. Capacity [%] 

1 141 111 78,7 21,3 

2 105 98 93,3 6, 7 

3 91 90 98,9 1,1 

4 85 91 107,1 -7,1 

5 83 86 103,6 -3,6 

6 78 78 100,0 0,0 

7 71 70 98,6 1,4 

8 65 45 69,2 30,8 

9 60 20 33,3 66,7 

10 58 63 108,6 -8,6 

 

In cycles 4, 5 and 10 a negative irreversible capacity was measured. Like before 

this is probably caused by the trapped lithium atoms. In this case, as well, the numbers 

affect the Coulomb efficiency numbers and characteristics. In these cycles the efficiency 

is over a 100 %, the highest being 108,6 % in cycle 10.   

 

 

Figure 8.33 The charge and discharge capacity spikes across the cycles (6 wt.% of SBR) 
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Figure 8.34 The Coulomb efficiency (6 wt.% of SBR) 

The last characteristic shows the negative value of the irreversible capacity. A 

possible explanation for this lays in the growth of the surface film layer, and also in the 

irreversible intercalation of lithium-ions. 

 

Figure 8.35 The irreversible capacity in percentage (6 wt.% of SBR) 
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With 4 wt.% of SBR the mass was 2,9 mg and the current was ± 135 µA. 

Measuring the ten cycles took around 35 hours. 

 

Figure 8.36 Voltage spikes in every cycle (4 wt.% of SBR) 

 

Figure 8.37 The first two charging and discharging cycles (4 wt.% of SBR) 
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The charge and discharge capacity spikes across the cycles show a decline from 

122 to 20 mAh/g. These numbers are not showing the best results, they're not even close 

to the results with PVDF binder.  

Table 8.8 Charge and discharge values, Coulomb efficiency and irreversible capacity (4 wt.% of 

SBR) 

Cycle Charge [mAh/g] Discharge [mAh/g] C. Efficiency [%] Irr. Capacity [%] 

1 122 14 11,5 88,5 

2 23 12 52,2 47,8 

3 22 12 54,5 45,5 

4 20 12 60,0 40,0 

5 23 13 56,5 43,5 

6 22 13 59,1 40,9 

7 21 13 61,9 38,1 

8 21 13 61,9 38,1 

9 19 12 63,2 36,8 

10 20 13 65,0 35,0 

 

The Coulomb efficiency and the irreversible capacity are shown on the next three 

characteristics. These results show a 50 to 65 % of efficiency in most of the cycles.   

 

Figure 8.38 The charge and discharge capacity spikes across the cycles (4 wt.% of SBR) 



 68 

 

Figure 8.39 The Coulomb efficiency (4 wt.% of SBR) 

 

Figure 8.40 The irreversible capacity in percentage (4 wt.% of SBR) 
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The negative electrode mass with 2 wt.% of SBR was 4,2 mg. A current of  ± 112 

µA was calculated. Measuring the ten cycles took a little less than 65 hours. 

 

Figure 8.41 Voltage spikes in every cycle (2 wt.% of SBR) 

 

Figure 8.42 The first two charging and discharging cycles (2 wt.% of SBR) 
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In every cycle the irreversible capacity was negative, meaning that a larger amount 

of charge was received than delivered. With only 2 wt.% the volume change of the 

electrode was too fast. These numbers affect the Coulomb efficiency numbers, which 

were over a 100 % in every cycle, reaching eve 172 % in cycle nine.   

Table 8.9 Charge and discharge values, Coulomb efficiency and irreversible capacity (2 wt.% of 

SBR) 

Cycle Charge [mAh/g] Discharge [mAh/g] C. Efficiency [%] Irr. Capacity [%] 

1 70 126 180,0 -80,0 

2 58 69 118,9 -18,9 

3 51 58 113,7 -13,7 

4 50 56 112,0 -12,0 

5 52 60 115,4 -15,4 

6 50 57 114,0 -14,0 

7 44 50 113,6 -13,6 

8 39 43 110,3 -10,3 

9 22 38 172,7 -72,7 

10 35 38 108,6 -8,6 

 

 

Figure 8.43 The charge and discharge capacity spikes across the cycles (2 wt.% of SBR) 
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Figure 8.44 The Coulomb efficiency (2 wt.% of SBR) 

 

Figure 8.45 The irreversible capacity in percentage (2 wt.% of SBR) 

These measurements conclude that the 6 and 4 wt.% of SBR binder might be 

usable in battery applications. However the use of only 2 wt.% is not recommended, due 

to its insufficient behavior. This binder after the assembly showed promise, every 

assembled cell produced more than 3 Volts.  
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8.4 Summary 

To summarize the results a table containing the last value of the discharge, the 

irreversible capacity and the Coulomb efficiency was created. The best results were 

achieved with all three samples of the binder PVDF and with the sample containing 3 

wt.% of the P84 binder. These results are shown in chapters 8.1 and 8.2, more precisely 

the characteristics 8.1 to 8.15, 8.26 to 8.30 and tables 8.1, 8.2, 8.3 and 8.6. This 

summarizing table contains information about the irreversible capacity and coulomb 

efficiency, which shows that the best samples have only a small amount of irreversible 

capacity and an efficiency over 88 %. Out of the applicable results the 3 wt.% of P84 

performed the best, the efficiency was 97,8 %, the capacity values only decreased 4 % 

over the cycles.  

Table 8.10 Summarization 

Samples 

Discharge in the 

last (10th) cycle 

[mAh/g] 

Irr. Capacity in the 

first charge-discharge 

cycle [%] 

C. Efficiency in 

the first cycle [%] 

10 wt.% of PVDF  130 8,3 91,7 

6 wt.% of PVDF 238 11,4 88,6 

3 wt.% of PVDF 262 2,9 97,1 

10 wt.% of P84 4 82,1 17,9 

6 wt.% of P84 49 59,2 40,8 

3 wt.% of P84 258 2,2 97,8 

6 wt.% of SBR 63 21,3 78,7 

4 wt.% of SBR 13 88,5 11,5 

2 wt.% of SBR 38 -80,0 180,0 

 

With the SBR binder the best results were reached with the 6 wt.% sample. These 

results are shown on 8.31 to 8.35 and in Table 8.7. However these results are not even 

close to the other results mentioned above. The sample with 4 wt.% performed very 

similarly, showing the results are characteristics 8.36 to 8.40 and the Table 8.8. This 

binder performed poorly with every sample. The use of these amounts of SBR was 

inspired by a publication from the Lawrence Berkeley National Laboratory, in Berkeley, 

California. [34] In this publication they tried out 4 wt.% of binder, however based on 

the results, a larger amount of binder and conductive additive might perform better.   

The worst results were produced by the 10 wt.% sample with the P84 binder and 

the 2 wt.% sample with the SBR binder. With the SBR binder the capacity values were 

low and in every cycle a negative irreversible capacity was measured, figeres 8.40 to 

8.45 and table 8.9 show these results. Unfotunately the result with the P84 binder were 

even worse, the capacities were extremely low, the irreversible capacity values were 

high, reaching even 82 %. Even the voltage spikes were distorted, showin these results 

are the characteristics 8.16 to 8.20 and the Table 8.4.  
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9 CONCLUSION 

This bachelor's thesis focuses on the effects of the binder material on the overall 

performance of the negative electrode material in a lithium-ion battery. The process 

described in chapter seven was followed to create the electrodes. The preparation of the 

electrodes with the P84 binder took a few attempts, in the end the conclusion was that 

this binder required only 1200 µl compared to the 3000 µl needed for the PVDF binder.  

Assembling the measuring cells required the skill to work with lithium. Taking too 

much time and too many brushes with the scalpel results in the ''melting'' of the lithium, 

in that case it is nearly impossible to cut it out and place it in the cell. The assembled 

cells were producing at least 2,5 Volts, with the samples containing the SBR binder all 

cells produced above 3 Volts. 

The PVDF binder was already an established material, all three samples (with 3,6 

and 10 wt.%) were adequate. Out of these samples the 3 and 6 wt.% ones had a 

discharge capacity of 262 and 238 mAh/g at the end of the last measuring cycle. 

Another very promising result was achieved with the binder P84 in its 3 wt.% sample, 

which had a discharge capacity of 258 mAh/g at its last measuring cycle. This sample 

performed the best out of all the samples, showing the best numerical results and 

characteristics. The remaining samples were inadequate, the 10 wt.% of P84 performed 

very poorly, even though after the initial cycles it didn't show any defect. The capacity 

values with this were very low, only a 4 mAh/g was discharged in the last cycle. The 6 

wt.% of both the P84 and SBR binder performed similarly, they had 49 and 63 mAh/g 

discharging capacity in the last cycle. The 4 wt.% SBR sample performed in a similar 

way, however it had even lower capacities, only 13 mAh/g in the last cycle. Another 

poor performance was received from the sample containing the least amount of SBR 

binder, 2 wt.%, which had negative irreversible capacity values throughout all the cycle. 

The preparation of the electrode material with the SBR binder differs from the 

other two binders, as a solvent demineralized water was used. If during the drying 

process the water did not fully evaporate, than an unwanted reaction with the lithium 

might have happened, which would explain the poor results. The P84 binder on the 

other hand proved to be a suitable replacement for the PVDF binder, due to its greener 

production and outstanding results with the 3 wt.% sample. The usable range of  wt.% is 

between 3 and 6. A possible way to improve the samples, would be the use of a process 

called lithiation. During this process the electrodes are doped with lithium before the 

assembly, which can result in a 18 to 45 % capacity rise. 

The results received during these experiments showed that every binder works to a 

certain extent. A possible way to continue this thesis would be to determine the exact 

amount of P84 and SBR binders needed. A series of rate capability measurements 

would also indicate the effect of the binders. Also the use of the above mentioned 

lithiation process, or the use of treated natural graphite (smaller particle-grains, 

enhanced specific surface etc.) should provide better results, it is worth exploring. 
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