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Abstract. With data mining techniques for the prepro-
cessing of training patterns, an artificial neural network 
(ANN) model is proposed for parametric modeling of elec-
tromagnetic behavior of ultrawide band (UWB) antennas 
in this paper. In this ANN method, two data mining tech-
niques, including correlation analysis and data classifica-
tion based on support vector machine (SVM), are employed 
to determine geometrical variable inputs and classify the 
inputs during the training and testing processes. Compared 
with the traditional ANN, the proposed model with data 
mining can achieve the trained model with small training 
datasets and accurate results. The validity and efficiency of 
this proposed method are confirmed with two band-
notched UWB antenna examples. 
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1. Introduction 
In recent studies, the artificial neural network (ANN) 

has been recognized as a powerful tool in electromagnetic 
(EM) modeling and passive component design [1–4]. ANN 
can obtain the relationship between geometrical variables 
and EM responses through a training process. Once the 
geometrical parameters are input, the trained ANN can fast 
output the accurate EM responses. Thus, the efficient and 
repeatable ANN model is a good alternative to empirical 
models or EM simulations [5]. An advanced study, which 
combines the neural network with the transfer function 
(TF), was developed to model the EM behavior of embed-
ded passive components [6]. In [6], the neural network is 
used for mapping the geometrical variables onto the coeffi-
cients of TF. This approach is an important advance of 
parametric modeling of passive components without hav-
ing to rely on the prior knowledge [7]. 

Due to their high speed data rate, extremely low spec-
tral power density, high precision ranging, low cost and 

low complexity, ultrawide band (UWB) communication 
systems have attracted great attention in the wireless world 
since the Federal Communication Commission (FCC) 
allowed 3.1–10.6 GHz unlicensed band for UWB 
communication [8]. Generally, a UWB antenna consists of 
a number of geometrical parameters which affect antenna 
performance. The description of the relationship between 
one geometrical variable and corresponding EM responses 
is non-quantitative and even relies on experience. With 
quite a few geometrical parameters, the computational 
complexity of ANN will be increased and the optimized 
design of the antenna will also be a time-consuming job. 
Therefore, reducing the number of the parameters is an 
effective solution. Moreover, the corresponding EM re-
sponses will lead to different orders of TFs when the num-
ber of the geometrical variations is large. Thus the ANN 
training is probably chaotic and its convergence becomes 
slow. To solve this problem, one common way is to set the 
TF orders to the maximum one among all geometrical 
samples [9]. However, the high order TF, which is used to 
deal with the low order problems, may result in non-unique 
or arbitrary solutions for vector fitting and then the discon-
tinuity of pole/residues. Recently, the pole/residue tracking 
technique has been proposed as another way for the order-
changing problem. 

In this paper, an ANN model based on data mining 
techniques is proposed to solve above two problems from 
a new angle for parametric modeling of UWB antennas. In 
our proposed model, two data mining techniques, including 
the correlation analysis and data classification, are em-
ployed to determine the geometrical variable inputs and 
then to classify the inputs during the training and testing 
processes. In order to reduce the dimensionality of the 
dataset of ANN inputs, the correlation analysis is used to 
reveal the relationship between the geometrical parameters 
of an antenna and the corresponding EM responses. To 
make ANN accurately learn the mapping from the geomet-
rical variables to the TF coefficients, the original training 
samples are classified into different categories according to 
the TF orders. Meanwhile a data-classification technique of 
support vector machine (SVM), which has been proved 
effective in modeling microwave devices and antennas [10], 
is trained with the collected geometrical variables and the 
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corresponding TF orders in the training process, and then it 
classifies the geometrical variables into the proper catego-
ries in the testing process. The TF coefficients correspond-
ing to the frequency EM responses are set as the outputs of 
the proposed ANN model. Finally, this proposed model is 
applied to the design of two band-notched UWB antennas. 

2. Proposed Model 

2.1 Correlation Analysis 

It is a time-consuming job for an antenna design and 
optimization with many geometrical variables. To effec-
tively decrease this consumption, it is important to reduce 
the number of geometrical variables. However, an accurate 
description of the relationship between each geometrical 
variable and corresponding EM responses cannot rely on 
experience.  

The Pearson correlation coefficient is a measure of 
the linear dependence between two real-valued vectors. 
Thus, in this paper, this method is employed to study the 
linear dependence of two groups of variables. Let 
V = [vm,n]M  N be a matrix representing the geometrical 
variables, where M is the number of geometrical variables 
in each sample and N is the total sampling number. Let 
F_L = [f_lm,n]M  N and F_U = [f_um,n]M  N be matrices 
representing the lower and upper limits of the notched band, 
respectively. According to [11, 12], the Pearson correlation 
coefficients between vm and its lower and upper limits of 
the notched band can be respectively defined by: 
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Each coefficient ranges from –1 to 1. The positive and 
negative values of r represent the positive and negative 
correlations, respectively. If rvm f_lm > 0.8, it means that 
vm and f_lm are highly correlated. If rvm f_lm < 0.3, there is 
a low correlation between vm and f_lm. So does the other 
Pearson correlation coefficient of rvm f_um. 

After confirming the relationship between each geo-
metrical variable and frequency information in all samples, 
the geometrical input dataset for the training process could 

be built. If the absolute value of a Pearson correlation coef-
ficient is less than 0.3, the corresponding geometrical vari-
able will be transferred as a constant to decrease the num-
ber of the whole geometrical variables. Then the training 
and testing data of ANN are constructed with the design of 
experiments (DOE) method [13] based on the correlated 
geometrical variables of Vcorre = {vcorre}M‘ 1, where Mʹ is the 
dimension of Vcorre and Mʹ  M. 

HFSS 15.0 software performs the full-wave EM simu-
lation and generates the training data according to Vcorre. 
TF is used to represent the EM responses versus frequency 
and it is presented as  
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where pi and ri are the pole and residue coefficients of TF, 
respectively, and Q is the order of TF [9].  

The initial training data of neural networks are ob-
tained by the vector fitting technique [14]. With vector 
fitting, we obtain the poles and residue coefficients of TF 
corresponding to a given set of EM responses. However, 
the different responses may cause different orders of the 
TF. It is a trouble for ANN to learn the relationship be-
tween the geometrical variables and the TF coefficients 
with different orders. Thus a data-classification technique 
is introduced in the following. 

2.2 Data Classification 

To reduce the internal interference from the original 
samples for ANN training with high accuracy, the training 
samples are classified into different categories of Ck (k = 1, 
2, …, K) by the orders of TF, where K is the total number 
of categories. The samples with the same TF order are 
classified into one category, and the order of each category 
could be presented as Qk (k = 1, 2, …, K). Each category 
contains the input of Vcorre and the output of TF poles/resi-
dues with the same order. Since the relationship between 
Vcorre and the TF coefficients is nonlinear and unknown, 
ANNs are employed to learn this nonlinear relationship 
through the training process. Let O = {O1,…, OW} be 
a vector representing the frequency responses of the EM 
simulations, where W is the number of the sampling points 
of frequency, and Oʹ = {Oʹ1,…, OʹW} be a vector represent-
ing the outputs of the pole-residue-based TF. The objective 
here is to minimize the error between O and Oʹ for differ-
ent Vcorre by adjusting the internal weights and thresholds 
of ANN. It is worth noting that one category of Ck is only 
used to train one ANN model of ANNk.  

At the same time, the training samples are also used to 
train an SVM model, which determine the TF orders of 
Vcorre for classification during the testing process. The ma-
jor advantage of the SVM is the use of convex quadratic 
programing, which provides only global minima; thus, it 
avoids being trapped in local minima. Due to its advanta-
geous nature, SVM has been applied to a wide range of 
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classification tasks [15–18]. Let Qʹ = {Qʹ1,…, QʹK} be 
a vector representing the output of SVM and Q = 
{Q1,…, QK} be a vector representing the actual order of 
TF. The training objective is to minimize the error between 
Qʹ and Q for different Vcorre by adjusting the internal 
weights and thresholds of SVM. For more details of SVM, 
one can refer to [19]. 

2.3 The Whole Process of the Proposed Model 

The whole process of the proposed model can be de-
scripted as follows. Firstly, the relationship between each 
geometrical variable and the corresponding EM response is 
analyzed to determine Vcorre with Pearson correlation coef-
ficients. According to the Hecht-Nelson method [20], when 
the node number of the input layer is n, the node number of 
the hidden layer is 2n + 1. This operation could decrease 
the dimensionality of input and hidden layers of ANN, 
thereby reducing the computational complexity and im-
proving ANN stability. Then the obtained geometrical 
variables are employed for full-wave EM simulation to 
construct training samples. With vector fitting, we obtain 
the poles and residue coefficients of TF corresponding to 
a given set of full-wave EM simulation. According to TF 
orders, the training samples are classified into proper 
categories for ANN training. Meanwhile, SVM is trained 
for classification during the testing process. In the testing 
process, Vcorre is firstly classified into proper categories 
with the trained SVM and then Vcorre is input to ANNk to 
obtain TF coefficients. The whole process of the proposed 
model is shown in Fig. 1. 

3. Application Examples 
In this section, two application examples of band-

notched  UWB  antennas are  used to evaluate  the proposed 
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Fig. 1. The whole process of the proposed model. 

ANN model. The inputs are the geometrical variables and 
operation frequency of the antennas, and the outputs of the 
overall model are the voltage standing wave ratio (VSWR). 
HFSS 15.0 software performs the full-wave EM simulation 
and generates the training and testing data for modeling. 
All calculations in this paper are performed on an Intel  
i7-4870 2.50 GHz machine with 16 GB RAM.  

3.1 Parametric Modeling of a Single Band-
notch UWB Antenna 

A single band-notched UWB antenna in Fig. 2 is 
considered as the first example [21]. The parameters are as 
follows: L = 36 mm, L1 = 16 mm, L2 = 22.7 mm, L3 = 
1.3 mm, L4 = 1.5 mm, L5 = 0.5 mm, L6 = 11.5 mm, W = 
24 mm, W1 = 6.5 mm, W2 = 10.25 mm, and W3 = 3.5 mm. 
The parameters of strip length, width and position (LA, WA, 
LB and WB) are varied. 

To study the correlation between one geometrical 
variable and the corresponding lower and upper limits of 
the notched band, the other variables are set as constants. 
The notched band is in the frequency range of VSWR ≥ 3. 

The Pearson correlation coefficients of LA, WA, LB 
and WB for the corresponding lower limits of the notched 
band are rLAf_l = –0.9468, rWAf_l = –0.1947, rLBf_l = 0.9616 
and rWBf_l = –0.0252. The Pearson correlation coefficients 
of LA, WA, LB and WB for the corresponding higher limits 
are rLAf_u = –0.9376, rWAf_u = –0.1754, rLBf_u = 0.9242 and 
rWBf_u = –0.0364. It is obvious that the geometrical variables 
WA and WB could be transferred as the geometrical con-
stants with 4 mm and 0 mm due to their small values of the 
Pearson correlation coefficient. Thus the number of geo-
metrical variables is reduced to two, i.e., Vcorre = [LA, LB]T. 
Frequency is an additional input parameter with an original 
range of 2–12 GHz. The model has one output, i.e., 
O' = VSWR. 

The proposed model is applied to two different cases, 
i.e., Case 1 with a narrow parameter range and Case 2 with 
a wide one. In the both cases, the DOE method with seven 
levels defines a total of 49 training samples, while the DOE 
method with five levels employs a total of 25 testing 
samples as shown in Tab. 1. The total time for training-data 
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Fig. 2.  Structure of the single band-notch UWB antenna. 
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Fig. 3.  Range of each variable and the VSWR results:  
(a) LA  (WA = 4 mm, LB = 0 mm and WB =0 mm),  
(b) WA  (LA = 17 mm, LB = 0 mm and WB =0 mm),  
(c) LB  (LA = 17 mm, WA = 4 mm and WB =0 mm), and 
(d) WB (LA = 17 mm, WA = 4 mm and LB = 0 mm). 

generation from EM simulations is 1.63 hours, and the total 
time for testing-data generation is 0.83 hours. 

The geometrical variables and corresponding TF or-
ders from training samples are set as the input and output 

of SVM for training, respectively. Based on the K-fold 
Cross Validation method, the values of penalty parameter c 
and kernel function g are set as 2 and 1, respectively. 
Meanwhile, to select a proper kernel function, four kernel 
functions are examined based on the LIBSVM which is 
a toolbox proposed by Lin Chih-Jen [22], as shown in 
Tab. 2, and the radial basis function achieves the highest 
accuracy. To reduce the sensitivity of SVM from input 
data, all the input data are normalized. For 25 testing sam-
ples, the classifying results are shown in Fig. 4. 

Meanwhile, the training samples are divided into pro-
per categories according to their TF orders for ANN training. 
 

Geometrical 
Variables 

Training Data  
(49 samples) 

Testing Data  
(25 samples) 

Min Max Step Min Max Step 

Case 1 
LA (mm) 15.5 18.5 0.5 15.75 17.75 0.5 
LB (mm) 0 1.5 0.25 0.125 1.125 0.25 

Case 2 
LA (mm) 13.5 19.5 1 14 18 1 
LB (mm) 0 3 0.5 0.25 2.25 0.5 

Tab. 1.  Definition of training and testing data based on the 
proposed model for the single band-notched UWB 
antenna. 

 

Kernel function Accuracy Parameter 

Linear 88% (22/25) c = 2, g = 1 

Polynomial 92% (23/25) c = 2, g = 1

Radial basis function 96% (24/25) c = 2, g = 1

Sigmoid 68% (17/25) c = 2, g = 1

Tab. 2.  Comparison of different kernel functions of SVM. 
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Fig. 4.  Classifying results of SVM for Case 1 and Case2. 

 

Geometrical 
Variables 

Training Data (49 samples) Testing Data (25 samples)
Min Max Step Min Max Step 

C
as

e 
1 

WB (mm) 0 1.5 0.25 0.125 1.125 0.25 

WA (mm) 3.5 5 0.25 3.625 4.625 0.25 

LB (mm) 0 1.5 0.25 0.125 1.125 0.25 

LA (mm) 15.5 18.5 0.5 15.75 17.75 0.5 

C
as

e 
2 

WB (mm) 0 3 0.5 0.25 2.25 0.5 

WA (mm) 2.75 5.75 0.5 3 5 0.5 

LB (mm) 0 3 0.5 0.25 2.25 0.5 

LA (mm) 13.5 19.5 1 14 18 1 

Tab. 3. Definition of training and testing data based on the 
comparison model for the single band-notched UWB 
antenna. 
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We use the Hecht-Nelson method [20] to determine the 
node number of the hidden layer: when the node number of 
the input layer is n, the one of the hidden layer is 2n + 1. 
After the modeling process, the average training errors are 
0.531% for Case 1 and 0.582% for Case 2, while the 
average testing errors are 0.684% and 0.714%. 

To evaluate the proposed model, an ANN model 
which doesn’t include data mining techniques is employed 
as a comparison model to calculate this single band-
notched UWB antenna. Similarly, the seven-level training 
data (49 samples) and five-level testing data (25 samples) 
defined by the DOE method are used for the comparison 
model. The information of training data and testing data are 
shown in Tab. 3. The node number of output is defined 
according to the maximum value of TF orders. After the 
modeling process, the average training errors are 8.461% 
for Case 1 and 9.703% for Case 2, while the average test-
ing errors are 10.461% and 11.134%. 
 

 
Average 

Training Error 
Average 

Testing Error 
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C
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e 
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Comparison 
Model 

8.461% 9.703% 

Proposed 
Model 

0.531% 0.684% 

C
as

e 
2 

Comparison 
Model 

10.461% 11.134% 

Proposed 
Model 

0.582% 0.714% 
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 tr
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49
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es
 

C
as

e 
1 

Comparison 
Model 

2.162% 2.372% 

Proposed 
Model 

0.495% 0.641% 

C
as

e 
2 

Comparison 
Model 

2.064% 2.254% 

Proposed 
Model 

0.487% 0.594% 

Tab. 4. Comparison between the comparison model and 
proposed model for the single band-notched UWB 
antenna. 

To further evaluate the effectiveness of the proposed 
model, 81 training samples and 49 testing samples, which 
are defined with nine levels and seven levels of DOE, are 
respectively used for training and testing in the two mod-
els. As illustrated in Tab. 4, when the number of training 
samples is 49, the comparison model doesn’t obtain the 
acceptable accuracy due to the insufficient training sam-
ples. When the number of training sample is 81, the 
accuracy of the comparison model is improved. It is 
observed that only 49 training samples are needed to obtain 
 

 CPU Time 

 Comparison Model Proposed Model 

Training Process 
2.7 hours  
(81 samples) 

1.63 hours 
 (49 samples) 

Testing Process 
1.63 hours  
(49 samples) 

0.83 hours  
(25 samples) 

Total 4.33 hours 2.46hours 

Tab. 5. Running time of the two models for the single band-
notched UWB antenna. 

the trained model with the data mining techniques. It also 
means that less time for sample collection of EM simula-
tions is required to train the proposed model, as illustrated 
in Tab. 5. 

3.2 Parametric Modeling of a Dual Band-
notched UWB Antenna 

A dual band-notched UWB antenna in Fig. 5 is con-
sidered as the second example [21]. The parameters are as 
follows: L = 36 mm, L1 = 16 mm, L2 = 22.7 mm, L3 = 
1.3 mm, L4 = 1.5 mm, L5 = 0.5 mm, L6 = 11.5 mm, W = 
24 mm, W1 = 6.5 mm, W2 = 10.25 mm, and W3 = 3.5 mm. 
The lengths, widths and positions of the two strips (LA1, 
LA2, WA1, WA2, LB1, LB2, WB1 and WB2) are varied.  

Table 6 shows the range and the constant value of 
each variable in the correlation analysis. The notched 
bands  are  in the  frequency range of VSWR ≥ 3. The Pear- 
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Fig. 5.  Structure of the dual band-notched UWB antenna. 
 

 Min Max Step Constant 
LA1 (mm) 14 16 0.5 15 
LA2 (mm) 14 16 0.5 15 
WA1 (mm) 1.5 3.5  0.5  2.5
WA2 (mm) 1.5 3.5  0.5  2.5
LB1 (mm) 0 2  0.5  0
LB2 (mm) 0 2  0.5  0
WB1 (mm) 0 2  0.5  0
WB2 (mm) 0 2  0.5  0

Tab. 6.  Correlation analysis information of each variable for 
the dual band-notched UWB antenna. 

 

A1 1_L f lr = 0.9116 
A1 1_L f ur = 0.9067

A1 2_L f lr = 0.8976 
A1 2_L f ur = 0.8896

A2 1_L f lr = 0.8791
A2 1_L f ur = 0.9614

A2 2_L f lr = 0.9348 
A2 2_L f ur = 0.9447

A1 1_W f lr = 0.0165
A1 1_W f ur =0.0103 

A1 2_W f lr = 0.0145 
A1 2_W f ur = 0.0287

A2 1_W f lr = 0.0346 
A2 1_W f ur = 0.0341

A2 2_W f lr = 0.0361 
A2 2_W f ur = 0.1216

B1 1_L f lr = 0.9124 
B1 1_L f ur = 0.9004

B1 2_L f lr = 0.9207 
B1 2_L f ur = 0.8968

B2 1_L f lr = 0.8923 
B2 1_L f ur = 0.9218

B2 2_L f lr = 0.8768 
B2 2_L f ur = 0.8927

B1 1_W f lr = 0.6784
B1 1_W f ur = 0.6016

B1 2_W f lr = 0.5671 
B1 2_W f ur = 0.5897

B2 1_W f lr = 0.5117 
B2 1_W f ur = 0.5316

B2 2_W f lr = 0.5704 
B2 2_W f ur = 0.5641

Tab. 7.  Pearson correlation coefficients of each variable. 
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son correlation coefficients between each geometrical 
variable and its lower and upper limits of the two notched 
bands (f_l1, f_u1, f_l2 and f_u2) are listed in Tab. 7. 

It is obvious that the geometrical variables WA1 and 
WA2 could be transferred as geometrical constants with 
2.5 mm and 2.5 mm due to their small values of Pearson 
correlation coefficient. Thus the number of geometrical 
variables is reduced to six, i.e., Vcorre = [LA1 LA2 LB1 LB2 WB1 
WB2]

T. Frequency is an additional input parameter with 
an original range of 2–12 GHz. The model has one output, 
i.e., O'  = VSWR. 

The proposed model is also evaluated with 49 training 
samples and 25 testing samples (as shown in Tabs. 8 and 9) 
in two different cases. Similarly, the comparison model is 
also evaluated with 49 training samples and 25 testing 
samples, and WA1 and WA2 are added as the geometrical 
variables. The total time for training-data generation from 
EM simulations is 2.45 hours, and the total time for testing-
data generation is 1.25 hours. 

The trained SVM is also used in the testing process 
for data classification. Similarly, the node number of the 
hidden layer is determined with the Hecht-Nelson method. 
 

Geometrical 
Variables 

Training Data  
(49 samples) 

Testing Data  
(25 samples) 

Min Max Step Min Max Step 

C
as

e 
1 

LA1 (mm) 14 17 0.5 14.25 16.25 0.5 

LA2 (mm) 14 17 0.5 14.25 16.25 0.5 

LB1 (mm) 0 1.2 0.2 0.1 0.9 0.2 

LB2 (mm) 0 1.2 0.2 0.1 0.9 0.2 

WB1 (mm) –0.6 0.6 0.2 –0.5 0.3 0.2 

WB2 (mm) 0.6 1.8 0.2 0.7 1.5 0.2 

C
as

e 
2 

LA1 (mm) 13 17.5 0.75 13.375 16.375 0.75 

LA2 (mm) 13 17.5 0.75 13.375 16.375 0.75 

LB1 (mm) 0 1.8 0.3 0.15 1.35 0.3 

LB2 (mm) 0 1.8 0.3 0.15 1.35 0.3 

WB1 (mm) –0.9 0.9 0.3 –0.75 0.45 0.3 

WB2 (mm) 0.9 2.7 0.3 1.05 2.25 0.3 

Tab. 8.  Seven-level training data and five-level testing data for 
the proposed model. 

 

Geometrical 
Variables 

Training Data  
(81 samples) 

Testing Data  
(49 samples) 

Min Max Step Min Max Step 

C
as

e 
1 

LA1 (mm) 14.5 16.5 0.25 14.625 16.125 0.25 

LA2 (mm) 14.5 16.5 0.25 14.625 16.125 0.25 

LB1 (mm) 0 1.2 0.15 0.075 0.975 0.15 

LB2 (mm) 0 1.2 0.15 0.075 0.975 0.15 

WB1 (mm) –0.6 0.6 0.15 –0.525 0.375 0.15 

WB2 (mm) 0.6 1.8 0.15 0.675 1.575 0.15 

C
as

e 
2 

LA1 (mm) 13.5 17.5 0.5 14 17 0.5 

LA2 (mm) 13.5 17.5 0.5 14 17 0.5 

LB1 (mm) 0 1.6 0.2 0.1 1.3 0.2 

LB2 (mm) 0 1.6 0.2 0.1 1.3 0.2 

WB1 (mm) –0.8 0.8 0.2 –0.7 0.5 0.2 

WB2 (mm) 0.8 2.4 0.2 0.9 2.1 0.2 

Tab. 9.  Nine-level training data and seven-level testing data 
for the proposed model. 
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Model 
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e 
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Comparison 
Model 

1.684% 1.847% 

Proposed 
Model 

0.482% 0.511% 

C
as

e 
2 

Comparison 
Model 

1.947% 2.034% 

Proposed 
Model 

0.514% 0.537% 

Tab. 10.  Comparison between the comparison model and pro-
posed model for the dual band-notched UWB antenna. 

After the modeling process, the average training errors of 
the proposed model and the comparison model are 0.504% 
and 7.346% for Case 1 and 0.575% and 7.904% for Case 2, 
while the average testing errors are 0.538% and 8.071% for 
Case 1 and 0.621% and 8.253% for Case 2. 

To further evaluate the effectiveness of the proposed 
model, 81 samples defined with the nine-level DOE and 49 
samples with the seven-level DOE are respectively used for 
training and testing in the proposed model, as shown in 
Tab. 9. The comparison model is also evaluated with the 
added geometrical variables. The total time for training-
data generation from EM simulations is 4.05 hours, and the 
total time for testing-data generation is 2.45 hours. 

As illustrated in Tab. 10, when the number of training 
samples is 49, the accuracy of the proposed model is good 
but that of the comparison model is unsatisfying. When the 
number of training samples is added up to 81, the accuracy 
of the comparison model is obviously improved. Thus, it 
can be seen that fewer number of training samples is re-
quired to train the proposed model than the comparison 
one. 

Figure 6 shows the outputs of two different tests of 
the dual band-notched UWB antenna with the proposed 
model and HFSS simulation. The geometrical variables for 
the two tests in the range of the training data are Vcorre1 = 
[15.25 16.6 0.5 1.1 0.45 0.3]T and  Vcorre2 = [16.2 15.6 0.3 
0.9 –0.45 0.3]T. It is observed that the proposed model 
based on data mining can achieve good accuracy for differ-
ent geometrical variables which were never used in the 
training process. 

Meanwhile, two other tests, which are selected out of 
the range of the training data, are chosen to evaluate the 
proposed model. The geometrical variables for two tests 
are Vʹcorre1 = [17.6 17.6 1.85 1.85 0.95 0.85]T and Vʹcorre2 = 
[17.6 12.8 1.9 1.9 0.95 0.85]T. From Fig. 7, it is observed 
that our model can achieve good accuracy for different 
geometrical variables even though these samples are out of 
the range of the training data. 
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Fig. 6.  Comparison of VSWRs (a) Sample 1 and (b) Sample 2, 
where the samples are in the range of training data. 

2 4 6 8 10 12

0

2

4

6

8

10

12

14

16

 

V
S

W
R

Frequency (GHz)

 HFSS simulation
 Proposed model

 
(a) 

2 4 6 8 10 12
0

2

4

6

8

10

 

V
S

W
R

Frequency (GHz)

 HFSS Simulation
 Proposed model

 
(b) 

Fig. 7.  Comparison of VSWRs (a) Sample 1 and (b) Sample 2, 
where the samples are out of the range of training data. 

Once the proposed model training is completed, the 
trained model which is a substitute for the time-consuming 
EM simulation can be applied to the design optimization.  
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Fig. 8.  Optimization results of VSWR from the proposed 
model: (a) Antenna 1, and (b) Antenna 2. 

As an example of using the trained model for antenna de-
sign, two separate antennas are optimized to reach two 
different design specifications, shown in Fig. 8. The objec-
tive of Specification 1 is that the dual band-notches cover 
5.05–5.4 GHz and 5.65–5.85 GHz for the rejection of 
interference with existing wireless local area networks 
(WLANs) such as IEEE 802.11a in the USA (5.15 to 
5.35 GHz and 5.725–5.825 GHz) [23]. For Specification 2, 
the dual band-notches are required to cover 5.1–5.5 GHz 
and 5.7–5.85 GHz for the rejection of interference with the 
existing WLANs. 

With the flower pollination algorithm (FPA) [24], the 
design optimization of the dual band-notched UWB an-
tenna is performed by calling the proposed model repeat-
edly. The initial parameters are chosen as Vcorre = [15 15 0 
0 0 0]T. The optimization spends only about 45 seconds to 
achieve the optimal solution for each antenna. The opti-
mized geometrical values for the two separate antennas are 
[15.9617 16.0412 0.0057 2.4697 2.2123 0.4768]T and 
[17.0315 15.8679 2.1758 1.8964 0.1367 1.1635]T. For the 
two antennas, the radiation patterns of H-plane and E-plane 
at 3.1 GHz, 5.6 GHz, 9 GHz and 11 GHz are shown in 
Fig. 9. The radiation efficiency, gain in the broadside di-
rection, and group delay for the two antennas are shown in 
Figs. 10 and 11. 

Compared with the directive EM optimization in 
which the EM simulations are repeatedly called by FPA, 
the design using the proposed model could save considera-
ble time as shown in Tab. 11. 
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Fig. 9.  Radiation patterns of H- and E-planes: (a) @3.1 GHz 
for Antenna 1, (b) @3.1 GHz for Antenna 2,  
(c) @5.6 GHz for Antenna 1, (d) @5.6 GHz for 
Antenna 2, (e) @9 GHz for Antenna 1, (f) @9 GHz for 
Antenna 2, (g) @11 GHz for Antenna 1, and  
(h) @11 GHz for Antenna 2. 
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Fig. 10.  Radiation efficiency and gain for Antenna 1 and 

Antenna 2. 
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Fig. 11.  Group delay for Antenna 1 and Antenna 2. 

 

 
CPU Time of Model Development 

Direct EM optimization Proposed Model 
Antenna 1 10 hours 45 s 
Antenna 2 11 hours 45 s 

Total 21 hours 3.7 hours (training) + 90 s

Tab. 11.  Running time of direct EM optimization and the 
proposed model. 

4. Conclusion 
In this paper, a new ANN model based on the data 

mining techniques is proposed for parametric modeling of 
EM behavior of UWB antennas. In this method, the corre-
lation analysis and data classification are employed to 
decrease the number of geometrical variables and to clas-
sify the inputs during the training and testing processes. 
Compared with the comparison model, the proposed model 
with data mining can achieve the trained model with small 
training datasets and accurate results. Two parametric mod-
eling examples, including a single band-notched UWB 
antenna and a dual band-notched UWB antenna, are em-
ployed to confirm the validity of this proposed model. The 
proposed model provides its powerful computing ability 
especially in the field of EM optimization design. 
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