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Abstract. In practice, it is often necessary to design an 
array that will yield desired radiation pattern. For this 
purpose, several time-consuming algorithms are intro-
duced in the literature. In this paper, an analytical method 
is presented to synthesize the radiation pattern of planar 
and ring arrays. In this method, two new parameters are 
defined to reconstruct the array factor and simplify the 
calculation complexity. To accomplish this, we use the 
double integral to generate two distinct Sinc functions from 
a bivariate function utilizing the sampling theory notion. 
This stage generates a set of linear equations that, when 
solved, yields the complex excitation coefficients. The pro-
posed method is verified by presenting several practical 
examples. Also, the performance of the method is com-
pared with that of other approaches. The results show that 
the proposed method is a good candidate for synthesizing 
a prescribed pattern of planar arrays. 
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1. Introduction 
The array of antennas has many advantages, including 

high gain and capability of the spatial scan. These features 
make them suitable for a variety of applications such as 
radar tracking and 5G communications [1–6]. Planar arrays 
are capable of searching the space in spherical coordinates 
in both the elevation and azimuth directions. The radiation 
pattern of a planar array is more symmetrical and has the 
lower side lobes than linear arrays [7], [8]. 

Until now, several methods have been introduced for 
the synthesis of radiation pattern of a linear and planar 
array. These methods are classified into two groups. The 
first category consists of analytical techniques such as the 
Fast Fourier transform (FFT) [9], Deterministic Approach 
[10], Deterministic Space Tapering Technique [11], statis-
tical techniques and least square method [12]. The second 

type is based on classical or evolutionary techniques like 
Genetic Algorithm (GA), Particle Swarm Optimization 
(PSO), and Differential Evolution Algorithm (DEA) [13]. 
The type of antennas used in the array must be known in 
order to consider the mutual coupling effect. By knowing 
the elements of an array, the mutual coupling effect can be 
considered by approaches such as numerical methods and 
full-wave simulations [14]. 

Due to the complexity of the designing process of 
a planar array, the synthesizing methods introduced in the 
literature are primarily based on numerical and algorithm-
based techniques, and the analytical methods are scarce in 
the literature. The existing analytical techniques are only 
applicable to particular types of planar arrays. For example, 
closed-form formulas are available only for ring arrays 
with Taylor and Bayliss distribution [15], [16]. 

An analytical approach is described in this paper that 
may be used to synthesize the radiation pattern of planar 
and circular arrays in general. Other works, on the other 
hand, are algorithm-based or use iterative techniques. It is 
clear that the non-analytical methods have low efficiency. 
Additionally, the analytical approaches provide a clear 
relationship between the input and output parameters of the 
problem, which allow intelligent modifications. In this 
method, it is tried to utilize all the data of the prescribed 
pattern. The target is achieved by defining two new param-
eters and using the dual integral operator over the specified 
intervals. In other words, the integral operator allocates the 
known values to unknown functions. Two distinct Sinc 
functions are formed as a result of the integrating step, 
which inspire the sampling theory concept from a bivariate 
function. A set of linear equations is created by selecting 
different intervals, in which the solution of it provides the 
complex excitation coefficients of array elements. 

2. Theory of the Proposed Method 
Figure 1 shows the geometry of a planar array con-

sisting of isotropic elements placed in the x-y plane. In this 
case, the array factor can be written as [15]. 
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Fig. 1. The geometry of a planar array. 
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where k = 2π/λ, Irt, θ and φ are the wave number, the rela-
tive excitation of rtth element, elevation and azimuth an-
gles, respectively. Also, dx, dy, Nx and Ny show the distance 
between the elements along the x, y-axis, and the number 
of array elements in the x, y directions, respectively. Since 
the elevation and azimuth angles change from 0 to π and 0 
to 2π, respectively, both the parameters u and v change 
from –1 to +1. 

Integrating the left and right sides of (1) over the 
symmetrical intervals –um ≤ u ≤ um and –vp ≤ v ≤ vp leads to 
[17], [18]: 
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We know from sampling theory that a bivariate func-
tion can be reconstructed using two separated Sinc func-
tions. It is worth noting that the Sinc function plays the role 
of the sampling function FS(um, vp) and the reconstructed 
process is done from only restricted samples of itself lying 
within a predefined interval [19]. The obtained equations 
(4), (5) confirm the mentioned subject. The symmetrical 
integration intervals in (3) for m = 1, 2, …, Mu,  
p = 1, 2, …, Pv are as follows 
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Since parameters u, v change from –1 to +1, parame-
ters ∆u and ∆v can be defined as [17] 
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in which Mu and Pv are the number of integrating intervals 
or the total number of samples for u and v variables, re-
spectively. It is seen that equations (3) to (5) lead to a sys-
tem of linear equations, the solution of which is the array's 
excitation coefficients [20]: 
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where X and B are vectors including the excitation coeffi-
cients of array elements and the integration results of the 
desired pattern, respectively. Additionally, matrix A con-
tains the samples of Sinc functions, as illustrated in (5). 
Because matrix A is left-invertible for all practical arrays, 
equation (9) can be solved using the Pseudo-Inverse (PI) 
method. After applying the PI method, the unknowns of (9) 
are determined as follows [21] 

   1T T
X A A A B .  (15) 

It is seen from (10) that all elements of matrix A are 
only dependent on the location of the array elements (xr,yt) 
and discrete variables r and t. In other words, matrix A is 
independent of oscillatory variables u and v. It is worth 
noting that the variables u and v are inherently vulnerable 
to noise. In other words, the integral operator has protected 
the proposed synthesis procedure from undesired changes. 
On the other hand, matrix A only includes the real values. 
Hence, the proposed method will efficiently decrease the 
computational time and error. 

Because the integration process utilizes all of the data 
associated with the desired pattern, data loss is negligible 
in the suggested method. This property distinguishes the 
method from other sampling-based methods, such as the 
Woodward-Lawson method, which suffers from a lack of 
local control over the desired pattern's unshaped area [7]. 

The only requirement for the proposed technique, ac-
cording to (3), is that the desired array factor be integrable 
throughout the integration interval and piecewise continu-
ous [22]. In other words, the desired array factor must 
satisfy the Dirichlet condition for the proposed method to 
be convergent, as follows [23] 
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The Dirichlet condition (16) is usually satisfied in 
practical arrays, so the proposed method is general. The 
parameters Mu and Pv can also be determined using the 
Nyquist theorem, as shown below [18] 
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Our studies show that for practical arrays,  
Mu ≈ 5(Nx – 1)dx/λ and Pv ≈ 5(Ny – 1)dy/λ, are sufficient and 
the iterative process is not needed [21]. Because the num-
ber of Nx and Ny in symmetrical arrays is halved, just one-
half of the parameters Mu and Pv are required. In this case, 
we are faced with a real array factor as follows 
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in which I00 presents the excitation coefficient of the ele-
ment placed in the array plane's center. Hence, for the 
symmetrical arrays, equation (4) is rewritten as follows 
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Function FS is the same as defined in (5). Other synthesiz-
ing steps for symmetrical arrays are the same as previously 
stated. 

The array factor for a planar array with elements 
arranged on a circular sheet in the x-y plane is shown 
below [24] 
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in which In is the complex excitation of the nth element and 
the pairs (Rn, φn) show the position of the nth element in 
cylindrical coordinate. Equation (20) can be rewritten as 
follows in consideration of (2a): 
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In this scenario and according to the approach out-
lined above, equation (4) should stay unchanged; however, 
equations (5) and (11) should be updated as follows: 
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Equations (21) to (23) can be used for a circular ring 
array by substituting Rn to R0, where R0 represents the ring 
radius. The array factor is independent of azimuth angle for 
a ring array with a large radius, and the array factor can be 
simplified as follows 

 
0

1

exp( j sin cos )
N

n n
n

F I kR  


  .  (24) 

In this case, we can define u = kR0 sinθ. Hence, 
equation (5) changes as 
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A radiation pattern with ring type side lobe levels is 
sometimes required. In this case, the main lobe has the 
same beam-width in all radiation planes. A linear array 
with transformations, as shown in [19], can be used to 
generate the desired radiation pattern of an array with ring 
type side lobes. 

3. Results Verification 
In this section, to verify the performance of the intro-

duced method, several practical arrays are examined. The 
process of determining the analytical expression of all 
examples is available in the literature [15], [24]. 

3.1 Example 1 

In the first example, an 8×8 Tschebyscheff array with 
ring type side lobes is considered. The distance between 
the elements in the x and y directions is equal to 0.5λ. The 
side lobe level is about –25 dB, and Mu = Pv = 16. Figure 2 
depicts the synthesized array's 3D radiation pattern. Fig-
ure 3 shows the radiation pattern in the u-v plane. In Fig. 4, 
the excitation coefficients are shown against the element 
locations in the x-y plane, where all excitation coefficients 
have real values. 

 
Fig. 2. The synthesized results of 8×8 Tschebyscheff array. 
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Fig. 3. Radiation pattern of Tschebyscheff array in u-v plane. 

 
Fig. 4. The excitation coefficients of 8×8 Tschebyscheff 

array. 

 
Fig. 5. The 3D results of 30×30 array with flat-top pattern. 

 
Fig. 6. Radiation pattern of flat-top array in u-v plane. 

 
Fig. 7. The magnitude of the excitation currents of all 

elements of flat-top array. 

 
Fig. 8. The phase (in degree) of the excitation currents of all 

elements of flat-top array. 

3.2 Example 2 

The second example considers a symmetrical array 
with a flat-top radiation pattern. The designing parameters 
are Nx = Ny = 30, dx = dy = 0.5λ and Mu = Pv = 70. Except for 
the main lobe angles, it is assumed that the normalized 
amplitude pattern is equal to or less than 0.2. Figures 5 and 
6 show the obtained results in 3D format and in the u-v 
plane, respectively. The magnitude and phase (in degree) 
of all elements' excitation currents are also shown in Fig. 7 
and 8, respectively. According to Fig. 8, the phase of the 
excitation currents is more critical than their magnitude. 

3.3 Example 3 

In some applications, and due to the interference 
effect, a planar array with two different values of side lobes 
is needed. In [21], an algorithm-based method for synthesis 
of the defined pattern is introduced. In the third example, 
the described pattern is investigated. To this end, a planar 
array with Nx = Ny = 21, dx = dy = 0.5λ, and Mu = Pv = 40 is 
considered. The first and second side lobe levels of the 
prescribed pattern are about –16 dB and –40 dB, respec-
tively. The obtained results in 3D format and in the u-v 
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plane are depicted in Fig. 9, 10, respectively. Figure 10 
shows that the deep nulls for all value of azimuth angles 
are met very well. Figure 11 shows the under-studying 
array's excitation coefficients. The phase of all elements' 
excitation currents is zeros. 

3.4 Example 4 

In the fourth example, a planar array with a differ-
ence-type radiation pattern is regarded. The side lobe levels 
of the desired pattern are about –20 and –25 dB, respec-
tively. The designing parameters are Nx = 15, Ny = 10, 
dx = 0.5λ, dy = 0.75λ. The obtained 3D radiation pattern is  

 
Fig. 9. The synthesized results of 21×21 array with two level 

side lobes. 

 
Fig. 10. Radiation pattern of the array with two level side lobes 

in u-v plane. 

 
Fig. 11. The excitation currents of the array with two level side 

lobes. 

 
Fig. 12. The synthesized results of 15×10 array with 

difference-type pattern. 

 
Fig. 13. Radiation pattern of the array with difference-type 

pattern in u-v plane. 

 
Fig. 14. The magnitude of the excitation currents of difference-

type array. 

 
Fig. 15. The phase (in degree) of the excitation currents of 

difference-type array. 
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depicted in Fig. 12. Also, Figure 13 shows the synthesized 
pattern in the u-v plane. As seen in Fig. 13, the achieved 
results are extremely near to the desired one. The magni-
tude and phase (in degree) of the exciting coefficients are 
plotted in Fig. 14 and 15, respectively. As expected, 
an array with an asymmetrical radiation pattern has 
complex excitation coefficients. 

3.5 Example 5 

In the final example, a ring array with R0 = 2λ, N = 30 is 
considered. The parameters of the desired array factor with 
Taylor distribution are np = 7, SLL = –20 dB [24]. 
Figures 16, 17 show the obtained 3D and 2D radiation 
patterns, respectively. The obtained results in the u-v plane 
show that the accuracy of the proposed method is high. 
Figure 18 displays the obtained In’s versus angular position 
of elements in  cylindrical coordinate. As expected,  In’s are 

 
Fig. 16. The 3D synthesized result of ring array. 

 
Fig. 17. Radiation pattern of ring array in u-v plane. 

 
Fig. 18. The magnitude and phase of In of ring array. 

 

Example # 1 2 3 4 5 

MSE 5.5×10–5 8.9×10–2 9.5×10–11 9.5×10–12 8.4×10–5

Tab. 1. The mean square error for all examples. 
 

 This work [10] [11] [13] 
Type analytical algorithm analytical iterative 

Complexity medium medium medium high 
Accuracy good good medium good 

Tab. 2. The comparison of the introduced and other methods. 

symmetric with respect to the ring diameter. Figure 18 also 
demonstrates that only the elements aligned in a symmet-
rical axis have non-zero phases. 

Table 1 reports the computed mean square error 
(MSE) of the proposed method for all studied arrays. It can 
be seen that the MSE for all cases is acceptable. Table 2 
also includes a comparison of the introduced and other 
proposed approaches in the literature. 

4. Conclusion 
An analytical approach for synthesizing the desired 

array factor of the planar and ring arrays is presented in 
this study. It is shown that the synthesis procedure can be 
simplified by defining two new parameters. To accomplish 
this, we use the double integral to obtain two distinct Sinc 
functions from a dual variables function, utilizing the sam-
pling theory notion. Additionally, a system of linear equa-
tions is obtained and solved to determine the complex 
excitation coefficients of the array elements. Then, the 
proposed method is extended to the ring array. The per-
formance of the proposed strategy is evaluated in the final 
section by presenting several examples. 
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