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Abstract. In cognitive radio techniques, OFDM is usually 
regarded as the physical layer candidate. However, the 
weaknesses of the OFDM technique, i.e., using plain FFT 
for spectral analysis , decreased bandwidth efficiency due 
to CP (cyclic prefix), high out-of-band emission, have been 
pointed out and the introduction of filter banks based mul-
ticarrier (FBMC) system has been advocated by a number 
of authors. In this paper, we propose an efficient FBMC 
system for cognitive radio network. At the transmitter, we 
propose a decimation transform decomposition method to 
eliminate the unnecessary zero operations. At the receiver, 
we utilize the analysis filter banks to sense the spectrum 
bands. In order to conquer the shortages of the traditional 
filter banks, we propose a multistage analysis filter banks, 
which can reduce the computational complexity while 
improve the detection precision when used to sense the 
spectrum bands. And with an adaptive threshold scheme in 
the power estimator, the threshold can be kept very close to 
the noise power, which can increase the detection prob-
ability especially in the condition of low SNR. 

Keywords 
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1. Introduction 
Cognitive radio (CR) is a revolutionary intelligence 

technology which can maximize the utilization of the spec-
trum band by allowing the second users (SU) access the 
spectrum holes without causing interference to primary 
users. During recent years, CR has attracted significant 
attention of the research community and became a subject 
of numerous publications including books, special confer-
ences, special issues, tutorials, and research articles [1], 
[2]. The opportunistic nature of CR systems offers big 
promises in terms of spectrum usage, but generates a lot of 
constraints. Basically, such systems must act quickly to 
access the spectrum and to cease transmission, they must 
be reliable and robust and they must provide quality of 
service. And in a licensed band, the main issue is the pro-

tection of the primary user, although the coexistence with 
other CR users has to be considered as well, for the sake of 
global efficiency. This means that the primary task in any 
CR network is to dynamically explore the spectrum holes 
and determine spectrum band that can be used without 
causing interference to other users. 

The benefits of multicarrier modulation in spectrum 
sensing context have already been emphasized, such as 
high spectral resolution, commonality of sensing and com-
munication functions, flexible way of building decision 
statistics from basic observations within the sensing win-
dow and so on. Naturally, OFDM is usually the first choice 
when talking about multicarrier systems. However, the 
weaknesses of the OFDM technique, i.e., using plain FFT 
for spectral analysis, decreased bandwidth efficiency due 
to CP (cyclic prefix), high out-of-band emission, have been 
pointed out and the introduction of filter banks based mul-
ticarrier (FBMC) system has been advocated by a number 
of authors [3], [4].  

From a transmission perspective, the FBMC tech-
nique has the potential to increase the bit rate, due to the 
reduced guard bands and the absence of the cyclic prefix 
needed in OFDM. FBMC gives also the possibility to allo-
cate different subcarriers to different non-synchronized 
users in a spectrally efficient manner. But the out-of-band 
emission of FBMC is much lower than OFDM. Applica-
tion of filter banks techniques in spectrum sensing in CR 
has been studied in references [5], [6]. In this paper, we 
propose a multistage DFT filter banks (MS-DFTFB) 
enhanced with an adaptive threshold scheme to sense the 
spectrum band. It has low computational complexity and 
high detection precision comparing to the detection method 
based on traditional DFTFB. And with an adaptive thresh-
old method in our proposed MS-DFTFB, the threshold can 
be kept very close to the noise power, which can increase 
the detection probability, especially under the condition of 
low SNR.  

In cognitive radio, the secondary user (SU) using 
multiple carriers OFDM or FBMC techniques always need 
to deactivate a number of subcarriers in order to avoid 
interference to the primary user (PU). This means the 
OFDM or FBMC based cognitive radio transmitter will 
have a large number of zero inputs at the IFFT/FFT mod-
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ule if there are many subcarriers need to be deactivated as 
presented in Fig. 1. From a systematic perspective, the 
IFFT and FFT are the critical modules of the OFDM trans-
ceiver, which are also the most computationally intensive 
blocks in the whole OFDM system. So, an inefficient 
FFT/IFFT can considerably waste computation power and 
energy efficiency of the overall cognitive radio system. 

 
Fig. 1. The usage of a spectrum band for second user. 

Up to now, in the literature, several methods have 
been developed to eliminate or reduce the computation 
intensity if the input points within an IFFT/FFT module 
have many zeros or the number of output points acquired is 
relatively small. These methods are collectively known as 
FFT pruning [7], [8], [9]. Subsequently, Sorensen and 
Burrus proposed another method, named as transform 
decomposition (TD) [10]. In general, TD can be seen as 
a modified Cooley-Tukey FFT where the DFT is decom-
posed into two smaller DFTs [11]. In the view point of 
hardware implementation, TD method is more efficient and 
flexible than conventional FFT pruning. The FFT pruning 
or TD has already been applied to the OFDM system 
instead of standard FFT algorithms in [12] and [13], which 
both showed significant reduction in arithmetic computa-
tion. In this paper, we propose an efficient decimation TD 
scheme which can reduce the computational complexity 
comparing with the conventional TD method under the 
condition of sparse input points. 

The rest of this paper is organized as follows: Section 
2 describes the decimation TD method and the numeric 
analysis. Spectrum sensing using our proposed multistage 
filter banks is presented in section 3.1, followed by 
an example of two stage filter banks used for wireless 
microphone detection in IEEE 802.22 WRAN in 3.2. 
Section 3.3 presents the numeric analysis and simulation 
results. Section 4 is the adaptive threshold scheme in 
power estimator followed by the conclusions in section 5. 

2. Improved Transform Decomposi-
tion Method for DFT with Sparse 
Input Points in FBMC Transmitter 
The filter banks system often involves two processes: 

separation of the frequency components and recombination 
of the components to recover the original signal. The sepa-
ration process is known as analysis filter banks and the 
recombination process is known as synthesis filter banks. 
Analysis and synthesis filter banks often appear in pairs 
and satisfy the perfect reconstruction condition which guar-

antees the perfect reconstruction of the signal. We can 
utilize synthesis filter banks to transmit information in 
FBMC system as presented in Fig. 2. In order to avoid 
causing interference to primary users in cognitive radio 
networks, we need to deactivate some subcarriers as shown 
in Fig. 1. The deactivation can be realized by loading zeros 
on the intended subcarriers while others are loaded with 
modulated complex symbols at the transmitter which is an 
M band synthesis filter banks. Therefore, the input points 
may contain a large number of zero points. By using trans-
form decomposition (TD) method, we can eliminate the 
unnecessary zero computations, which can help to improve 
the computational efficiency. 
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Fig. 2. Basic structure of FBMC transmitter. 

2.1 Traditional Transform Decomposition  

The transform decomposition uses a mixture of 
a Cooley-Tukey FFT and a computational structure similar 
to Goertzel’s algorithm [14]. It is shown to be both more 
efficient and more flexible than pruning. Below, a mathe-
matical derivation of TD for input with few nonzero points 
is given.  

The DFT is defined as  

     1,,1,0,
1

0

 




NkWnxkX
N

n

nk
N   (1) 

where WN
nk= exp(-j2πnk/N). Assume there are L nonzero 

inputs and there exist a P, which is the nearest power-of-
two integer larger than L, divide N and define Q = N/P. 
The index n can be written as  

  1,,1,0,1,,1,0, 2121  PnQnnPnn  . (2) 

Similarly, the index k can be decomposed as  
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Substituting n and k in (1) with (2) and (3), the DFT can be 
rewritten as  
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By taking advantage of equation (5) 
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we can rewritten equation (4) as (6) 
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where     2121
QkkXkX k  .  

For a given k1, equation (6) can be recognized as 
a length P FFT, which can be computed efficiently using 
a FFT algorithm. As the k1 can range from 0 to Q - 1, there 
are Q length P FFT operations. For each length P FFT, we 
need to acquire xk1(n2) by using (5). Since there are L non-
zero input points, the multiplications used by (5) will be L 
at a given k1 when n2 traverses from 0 to P - 1. When k1 = 0, 
then 1 1 2( ) 0k Pn n

NW   , equation (5) exists only additions. 

Therefore, the total number of multiplications cost by (5) 
will be (Q – 1)L when k1 ranges from 0 to Q - 1. The total 
number of multiplications used by TD is given as  

  LQP
P

QNumTD 1log
2 2  . (7) 

2.2 Proposed Decimation Transform Decom-
position Method 

Thereinafter, we propose an efficient transform de-
composition method which can reduce the computational 
complexity further more comparing to the traditional TD 
method. We denote this method as decimation transform 
decomposition (DTD), because the proposed method needs 
to decimate the input x(n) into two separate sets. The 
method DTD is somewhat like the way from a DFT to 
decimation-in-time FFT (DIT-FFT). We first divide the 
input points x(n) into two groups, one is the set with even 
index n and the other is the set with odd n, which is de-
scribed in (8) 
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Then equation (1) can be rewritten as 

      









12/

0
2/22/

12/

0
1

N

r

rk
N

k
N

rk
N

N

r

WrxWWrxkX , (9) 

which divides a N point DFT into two N/2 point DFT. 
Because of the symmetry of 
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X(k) can be acquired according to the X1(k) and X2(k), as 
equation (10) shows: 
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Instead of using TD on X(k), we perform TD on X1(k) and 
X2(k). Then we use (9) to get X(k). Assume there are L 
nonzero inputs and L1 nonzero inputs are in the even set 
x1(r) while L2 (which is also L - L1) in the odd set x2(r). The 
TD on X1(k) and X2(k) is the same as (4) and (5), respec-
tively. We assume P1 (P2) is the nearest power-of-two 
integer larger than L1 (L2), and Q1 = N/(2P1), Q2 = N/(2P2). 
The number of multiplications needed for our proposed 
DTD method is given by (11) 
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The component N/2 in (10) is the number of multiplica-
tions that equation (9) needs to compose X1(k) and X2(k) 
into X(k). Fig. 3 presents the block diagram for the pro-
posed novel TD method. The input x(n) is divided into two 
sets as mentioned above, one is x1(r) and another is x2(r). 
Then the conventional TD is carried out on x1(r) and x2(r) 
separately. The output mapping process is used to get the 
X1(k) and X2(k) in natural order by utilizing (3). The final 
X(k) we need is then produced by butterfly operation as 
equation (9) shows. It is the combination of conventional 
TD and partial DIT-FFT which can achieve the computa-
tional efficiency comparing with the TD. 
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Fig. 3. Block diagram of proposed efficient TD method for 
sparse input points DFT. 

2.3 Numerical Results and Computational 
Complexity Analysis  

In this section, we discuss the computational com-
plexity of conventional TD and out proposed DTD method 
in different conditions. As mentioned above, the computa-
tional complexity of conventional TD (CTD) is given by 
equation (7), while the proposed DTD’s complexity is 
given by (11). Fig. 4 presents the number of multiplications 
CTR2-FFT, conventional TD and our proposed DTD needs 
under the hypothesis that the nonzero input points are all in 
one single set. If the nonzero ratio is bigger than 0.5, then 
we assume the N/2 nonzero input points are in one set and 
the remains nonzero input points in another set. In Fig. 4, 
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when the nonzero input points is less than N/2, which is 
512 exactly, we assume the nonzero points are all in one 
set, the odd set x2(r), for example. In the case the nonzero 
ratio is bigger than 0.5, we assume there are N/2 points in 
one set, and the remains are in another set. When the non-
zero ratio is bigger than 0.5, from Fig. 4, we can see that 
the number of complex multiplications of CTD is equal to 
CTR2-FFT. While the nonzero ratio is about 0.75 the 
number of multiplications of DTD and CTR2-FFT are 
equal. When the nonzero ratio is less than 0.5 in Fig. 4, the 
number of complex multiplications DTD needs is much 
less than CTD needs. This is because there is one set do not 
need to be operated when the nonzero ratio is lees than 0.5.  

 
Fig. 4.  The number of complex multiplications that CTR2-

FFT, conventional TD (CTD) and our proposed 
method (DTD) need under the hypothesis that 
mentioned above. 

 
Fig. 5. The number of complex multiplications that DTD 

needs at different distribution degrees. 

When the nonzero input points are arbitrary distribut-
ing in the two sets, the result will be different from Fig. 5, 
obviously. We use the distribution degree to denote the 
randomness of the nonzero input points as β = L1/L2, L1 is 
the number of nonzero points in the even set x1(r) while L2 
is the number in set x2(r). Obviously, Fig. 4 is the scenario 
that β = 0. Fig. 5 presents the number of multiplications 

that CTD and DTD need at different distribution degrees. 
From Fig. 5, we can see that the gap between the CTD 
curve and DTD curve is becoming more and more nar-
rower as the increasing of distribution degree β. The num-
ber of multiplications that CTD and DTD need are almost 
equal when β = 1. This means that when the nonzero input 
points are uniformly distributing, the computational 
complexity of DTD and CTD are almost the same. 

3. Multistage Filter Banks for Spec-
trum Sensing in Cognitive Radio 
Networks 
The receiver of the FBMC system is an analysis filter 

banks as shown in Fig. 6. And we can utilize the analysis 
filter banks (AFB) to sense the spectrum band. In Fig. 6, 
the analysis filter banks utilize the polyphase structure and 
IFFT. We name this AFB as DFT filter banks (DFTFB). 
A traditional M band DFTFB divides the spectrum band 
into M subbands and by calculating the energy of each 
subband we can know whether this subband is occupied or 
not. The detection precision is directly affected by the 
parameter M, which is the number of subbands of the M 
band filter banks. If we want higher detection precision, we 
need to increase the value of M, which will cause the rapid 
increasing of computational complexity. 
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Fig. 6. Basic structure of FBMC receiver. 

3.1 Proposed Multistage Analysis Filter 
Banks 

In order to reduce the computational complexity while 
improve the detection precision, we divide the traditional 
DFTFB into N stages. 

Stage 1: We first use an M1 band DFTFB to sense the 
spectrum that we interest in. If there are narrow band users 
existing in the spectrum band and the detection result is not 
precise enough, we carry out stage 2. 

Stage 2: We use an M2 band DFTFB to detect the nar-
row band user we interest in (we use xin(n) to denote our 
target signal below) based on the result of stage 1. We 
divide the subband which has detected xin(n) in stage 1 into 
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M2 subbands. These M2 subbands can build up an M2 
DFTFB, which has much narrower subband comparing 
with M1 DFTFB. If the narrow band signal spans two or 
more subbands, for example SU2, as presented in Fig. 7, 
we divide these adjacent subbands into M2 subbands and 
then build up an M2 band DFTFB. If the detection preci-
sion is still not good enough, we can carry out stage 3, 
stage 4, ... stage N, until the detection precision achieves 
our requirement. The process is just as same as stage 1 to 
stage 2. 

Before we carry out our analysis on MS-DFTFB, we 
need to make some useful definitions. Assume the band-
width of the spectrum we want to sense is W0 and the fre-
quency of the spectrum band ranges from 0 to W0. (In fact, 
by using a down conversion, we can change any spectrum 
band into base band.) We define Si as the number of sub-
bands that xin(n) spans in the Mi band DFTFB of stage i, 
i =1,2,…,N - 1. In Fig. 7, for example, S1= 1 for SU1 and 
S1= 2 for SU2. N is the number of total stages of MS-
DFTFB. Obviously, the bandwidth of subband in M1 band 
DFTFB is W0/M1. The bandwidth of the subband in the ith 
stage’s Mi band DFTFB (Wi

sub) is given by  

   NiMMWSW iiii
i

sub ,,3,2,/ 111   . (12) 

The center frequency of xin(n) (fi
cx) is decided by the 

subbands that detected xin(n) in the ith stage, which are 
assumed kth to the (k + Si - 1)th subbands of the Mi band 
DFTFB, as presented in equation (13) 
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where fk is the start frequency of the kth subband. 
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Fig.7. The scheme of proposed multistage DFTFB. 

The detailed method of dividing the interested sub-
band(s) of Mi-1 (i > 1) band DFTFB into Mi subbands and 
build up an Mi band DFTFB is as following (ith stage): We 
assume the lowest index of the subbands that have detected 
xin(n) is k, which means the xin(n) spans from the kth to the 
(k + Si-1 - 1)th subbands of the Mi-1 band DFTFB. Then we 
divide these Si-1 subbands into Mi subbands and build up 
an Mi band DFTFB. We assume the types of the prototype 
filters of Mi i=1,2,…,N band DFTFB are same except the 
bandwidth. The initial start frequency of Mi band DFTFB 

is 0 . In order to sense the kth to (k + Si-1 - 1)th subbands of 
the Mi-1 band DFTFB, we need to modulate the center 
frequency of Mi band DFTFB onto the center frequency of 
those subbands of Mi-1 band DFTFB. This can be realized 
by multiplying a modulation component after each poly-
phase component Ei(z), i= 0,1,…,Mi-1 in Fig. 6. In the ith 
stage, the modulation component (Ci

m) is defined as 
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frequency of the filter banks in the (i - 1)th stage. 

The whole structure of our proposed scheme is 
presented in Fig. 8(a). There are N stages and each stage 
(except stage 1) has two input flows. One is the detection 
information, which is used to set the modulation 
component. The other is the SU signal (xin(n)) we want to 
detect from the antenna. Fig. 8(b) is the structure of the Mi 
band DFTFB in the ith stage. In Fig. 8(b), 
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Fig. 8. (a) Brief structure of the proposed multistage DFT 

filter banks. (b) Structure of DFT filter banks with 
modulation component in stage L. 

3.2 An Example: Wireless Microphone 
Detection in IEEE 802.22 WRAN Using 
Proposed Multistage AFB 

In 802.22 WRAN, at any time when there is wireless 
microphone (WM) appearing in TV channel, the whole 
channel of 6 MHz bandwidth should be evacuated immedi-
ately for interference avoidance. In order to avoid interfer-
ence to WM when other users using the adjacent TV chan-
nel, we need to know the precise location of WM. Usually, 
the bandwidth of WM is 200 kHz or less. Traditional 
DFTFB divide the whole 6 MHz TV channel into 30 or 
more subbands. By detecting the energy of each subband, 
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we can locate the occupied frequency of WM. In this sec-
tion, considering the complexity of hardware implementa-
tion, we choose a two stage DFTDB (TS-DFTFB) as men-
tioned in 3.1 to sense the 6 MHz TV channel. The whole 
architecture of two stage filter banks is presented in Fig. 9.  
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Fig. 9. Architecture of  the two stage filter banks. 

We use a RF module followed by an ADC to sample 
the receiving WM signal. A rough detection is carried out 
by the m1 band DFTFB at the stage 1, which estimates the 
output power of each subband. Then the modulation com-
ponent k is set up by the “SET k” module according to the 
rough detection result. A precise result will be obtained 
during the second stage that relies on much narrower sub-
band to detect the WM with increased resolution. The 
power estimator module is used to calculate the power of 
each subband and adaptively setting the threshold. More 
detail of the power estimator module will be described in 
section 4. We assume the WM users are slowly changing 
so that there is no need to save the data from ADC into 
a buffer for precise detection in stage 2. In addition, there 
is no need to further divide the m2 band DFTFB into much 
narrower DFTFB like stage 1 to stage 2 in this paper, be-
cause we consider that the detection result is relatively 
precise enough for the WM, comparing with the 6 MHz 
TV channel, and the hardware implementation complexity 
will increase if we divide the DFTFB into 3 or more stages. 

3.3 Numerical Analysis and Simulation 
Results 

As multiplication is the most complex operation in fil-
tering, we use the number of complex multiplication to 

estimate the computational complexity. In this section, we 
do not consider the complexity of the power estimator 
module, because the adaptive threshold scheme is periodic 
and in a relevant long time, we can use the same threshold 
and do not need to change it. Corresponding to the tradi-
tional DFTFB (t-DFTFB) mentioned above, the number of 
complex multiplication is given by  

    M
M

nhln DFTFBt 20 log
2


 (14) 

where l(h0(n)) is the points of the prototype filter, M is the 
number of total subbands. In (14), M is a power-of-two 
integer. 

In comparison, the number of complex multiplication 
of the TS-DFTFB is given by: 
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where l(hi0(n)), i = 1,2, is the points of prototype filters of 
the mi, i = 1,2 band DFTFB. Similar to equation (14), m1 
and m2 are both power-of-two integers. 

The number of multiplications of the m2 band DFTFB 
is adding another l(h20(n)) compared with m1 band DFTFB 
in (15). This is because the modulation at the stage 2 costs 
additional l(h20(n)) complex multiplications. The total 
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  is just the length of the prototype filter 

in Fig. 9, and the number of complex multiplications cost 
on modulating m2 band DFTFB to the center frequency of 
WM that we get in stage 1 is just l(h20(n)). In order to 
avoid aliasing in the M band DFTFB, it is necessary to 
ensure the points of prototype filter be bigger than M. In 
this paper, we choose the length of prototype filter γ times 
as the total bands of DFTFB, namely l(h0(n)) = γM, γ ≥ 1. 

When we use traditional DFTFB or TS-DFTFB to de-
tect the WM, if the WM spans two or more adjacent filters, 
we have to choose the center frequency of those filters as 
the WM’s center frequency. Obviously, the bigger the 
value of M or m1× m2 is, the smaller the detection error will 
be. Fig. 10(a) presents the simulation results of detection 
error of the 32 band traditional DFTFB and the TS-DFTFB 
with coefficients of m1= 8, m2= 4. A sequence of wireless 
microphones with random center frequencies is used to 
carry out our simulation. We assume that whenever there is 
a WM appearing in a specific TV channel, it can be de-
tected immediately. From Fig. 10(a), we can observe that, 
the detection precision of traditional DFTFB and TS-
DFTFB is almost same when M = m1× m2. Fig. 10 (b) 
presents the number of complex multiplications that tradi-
tional DFTFB and TS-DFTFB needed when the value of M 
and m1× m2 is equal. We can find that, when the detection 
precision is same, the number of multiplications of TS-
DFTFB is smaller than traditional DFTFB.  
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Fig. 10.  (a) Detection error of 32 band t-DFTFB and TS-

DFTFB. (b) Number of multiplications of 32 band t-
DFTFB and TS DFTFB. 

4. Power Estimator with Adaptive 
Threshold 
In this paper, we use an adaptive threshold algorithm 

to determine whether there is WM in TV channel in section 
3.2 (it obviously can be used in other situation of spectrum 
sensing), which is the AT module in Fig. 11. The main idea 
is coming from reference [15], but we made some modifi-
cation in our paper. The architecture in dashed rectangle in 
Fig.11 is the detailed structure of power estimator module. 
The output of each subband of the m band DFTFB γi(n), 
i = 0,1,…,m-1 is firstly operated by |γi(n)|2/N, which is in 
order to calculate the power of each subband. Then the 
subband power comparison (SPC) module is used to com-
pare the power of each subband  with the threshold set by 
the adaptive threshold (AT) module. Whether there is WM 
in TV channel as well as the average noise power pn can be 
acquired in this module. (If several continuous subbands 
have bigger output power than the threshold, the SPC 
module will decide these subbands are occupied by WM, 
and the average power of noise pn is the average power of 
the remaining subbands.) The WM detection information is 
just the output of our proposed power estimator and the 
average noise power pn is sent to the adaptive threshold 
(AT) module in order to get the next period’s threshold 
value. 
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Fig. 11. Detailed power estimator module in Fig. 9. 

The method [15] we choose to adaptively set the 
threshold is as following: 

    ipip thth  0  (16) 

where pth(i) is the threshold in the ith period that set by AT, 
and pth0 can be adaptively set according to the spectrum 
environment and the white Guassion noise (WGN). In 
order to reduce false alarm, pth0 should be big enough to 
ensure the threshold is bigger than the noise. While in the 
other hand, pth0 should be properly set to ensure the thresh-
old is smaller than the signal, which can reduce the prob-
ability of leakage alarm. Another component β(i) is pre-
sented in (17), where the modification is made in. 
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where pn(i - 1) is the average noise power in the (i – 1)th 
period (in reference [15], pn(i) will be instead of pn(i - 1)), 
α and Cp are two adaptive parameters. α mainly affects the 
tendency of β(i) and Cp can control the degree that β(i) 
affected by the noise. We usually set Cp to 1 if the noise is 
varying very slowly. The average noise power pn(i - 1) can 
be acquired according to the result of the (i – 1)th period’s 
detection result and can be used to mend the threshold in 
the ith period. This is the main motivation that we use  
pn(i-1) instead of pn(i) in our paper. 

 
Fig. 12.  (a) Threshold and AWGN curves, where the initial 

threshold is varying to the actual noise power. 
(b) Threshold and AWGN curves, where the initial 
threshold is much bigger than the noise power. (The 
values of adaptive parameters are α = 6, Cp= 1.) 

We can use the threshold pth(i) to determine whether 
there is WM in TV channel by comparing the power of 
each subband with the threshold in the ith period. The value 
of threshold exported to SPC module from AT module will 
maintain unchanging in the whole period. This means that 
we should set the threshold again after a period according 
to the spectrum environment, which is exactly the average 
noise power pn in this paper. When we use the adaptive 
threshold method in (16) and (17), we need an initial 
threshold pth(1), which is an empirical value. Even if the 
initial threshold we set is bigger or smaller than the actual 
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noise power, the following thresholds will be adaptively 
amended to the actual noise power after several periods, 
just as presented in Fig. 12. We can see that the adaptive 
threshold curve is much smoother than the noise power 
curve from Fig. 12 (a). And with a proper value of pth0, we 
can ensure the threshold almost always bigger than the 
noise power in order to reduce the probability of false 
alarm. Fig. 12 (b) is the situation that initial threshold pth(1) 
is much bigger than the actual noise power. We can find 
that after several periods, the threshold is very close to the 
noise power just as in Fig. 12 (a). 

5. Conclusions 
In this paper, we propose an efficient FBMC system 

for cognitive radio networks. At the transmitter, we pro-
pose a decimation transform decomposition method to 
eliminate the unnecessary zero operations. At the receiver, 
we utilize the analysis filter banks to sense the spectrum 
bands. In order to conquer the shortages of the traditional 
filter banks, we propose a multistage filter banks, which 
can reduce the computational complexity while improve 
the detection precision when used to sense the spectrum 
bands. This scheme has been analyzed and tested through 
simulations on wireless microphone detection in IEEE 
802.22 WRAN. The simulation results also demonstrate 
our theoretical analysis. Besides, we also use an adaptive 
threshold scheme to determine whether there is primary 
user in a spectrum band. Simulation results show that the 
adaptive method can keep the threshold close to the noise 
power, even if the initial threshold is much bigger or 
smaller than the actual noise power, which can increase the 
detection probability especially in low SNR. 
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