
BRNO UNIVERSITY OF TECHNOLOGY

Faculty of Electrical Engineering
and Communication

MASTER'S THESIS

Brno, 2022 Bc. Patrik Končitý

BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF ELECTRICAL ENGINEERING
AND COMMUNICATION
FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF TELECOMMUNICATIONS
ÚSTAV TELEKOMUNIKACÍ

USER RIGHTS DEFINED BY SELINUX TECHNOLOGY
IN RED HAT ENTERPRISE LINUX OPERATING
SYSTEM
TITLE OF STUDENT’S THESIS

MASTER’S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Bc. Patrik Končitý
AUTOR PRÁCE

ADVISOR prof. Ing. Dan Komosný, CSc.
VEDOUCÍ PRÁCE

BRNO 2022

Date of project
specification:

7.2.2022
Deadline for
submission:

 24.5.2022

Supervisor: prof. Ing. Dan Komosný, Ph.D.
Consultant: Mgr. Zdeněk Pytela

doc. Ing. Jan Hajný, Ph.D.

Chair of study program board

Master's Thesis
Master's study program Information Security

Department of Telecommunications
Student: Bc. Patrik Končitý ID: 203172
Year of
study:

 2 Academic year: 2021/22

TITLE OF THESIS:

User rights defined by SELinux technology in Red Hat Enterprise Linux
operating system

INSTRUCTION:

Study possible options for user’s privilege restriction in the OS Red Hat Enterprise Linux using the SELinux
technology (Security-Enhanced Linux). Propose general rules based on the actions of typical OS users.
Implement the rights proposed into the SELinux technology. Verify their operation using case studies.

RECOMMENDED LITERATURE:

[1] VERMEULEN, S. SELinux Cookbook. Packt Publishing, 2014, 240 s. ISBN 978-1783989669.

[2] Linux Dokumentační projekt. 4. vyd. Computer Press, 2008. 1336 s. ISBN: 978-80-251-1525-1.

WARNING:

The author of the Master's Thesis claims that by creating this thesis he/she did not infringe the rights of third persons and the personal and/or
property rights of third persons were not subjected to derogatory treatment. The author is fully aware of the legal consequences of an
infringement of provisions as per Section 11 and following of Act No 121/2000 Coll. on copyright and rights related to copyright and on
amendments to some other laws (the Copyright Act) in the wording of subsequent directives including the possible criminal consequences as
resulting from provisions of Part 2, Chapter VI, Article 4 of Criminal Code 40/2009 Coll.

Faculty of Electrical Engineering and Communication, Brno University of Technology / Technická 3058/10 / 616 00 / Brno

ABSTRACT
This thesis deals with the restriction of user rights in the Red Hat Enterprise Linux
(GNU/Linux) operating system using SELinux technology. The first part of the thesis
explains the mechanisms by which we can restrict rights in the OS. The basic two mech-
anisms of rights restriction are explained. These mechanisms are Discreet Access Control
and Mandatory Access Control. Next, we elaborate on SELinux technology, which is a
form of Mandatory Access Control. In the practical part, first a survey of typical OS
users and their typical activities is carried out, followed by the implementation part where
the theoretical knowledge of SELinux technology is applied. The implementation of new
confined users and the templates that are added to each security policy are described.
These security policies are then tested on the configured systems to test the mitiga-
tion of specific vulnerabilities. Mitigation is successful and the attacker is prevented
from gaining privileges. In the last section, we discuss possible future extensions to the
security policies.

KEYWORDS
Discretionary Access Control, Mandatory Access Control, Linux, Red Hat Enterprise
Linux, Security, SELinux Technology, Policy, Confined Users

ABSTRAKT
Tato diplomová práce se zabývá omezením uživatelských práv v operačních systému Red
Hat Enterprise Linux (GNU/Linux) pomocí technologie SELinux. V první části práce jsou
objasněny mechanismy, pomocí kterých můžeme omezovat práva v OS. Jsou zde vysvět-
leny základní dva mechanismy omezení práv. Jedná se o mechanismy Diskretního řízení
přístupu a Mandatorního řízení přístupu. Dále rozvádíme SELinux technologii, která je
formou mandatorního řízení přístupu. V praktické části je proveden nejdříve průzkum
typických uživatelů OS a jejich typických činností, na které navazuje implementační
část, kde jsou uplatněny teoretické poznatky o SELinux technologii. Je zde popsána
implementace nových confined uživatelů a šablony, které jsou přidávány do jednotlivých
bezpečnostních politik. Následně jsou tyto bezpečnostní politiky testovány na konfiguro-
vaných systémech a testuje se mitigace konkrétních zranitelností. Mitigace je úspěšná a
útočníkovi je zamezeno získat práva. V poslední části se zaobíráme možnými budoucími
rozšířeními bezpečnostních politik.

KLÍČOVÁ SLOVA
Diskrétní řízení přístupu, Mandatorní řízení přístupu, Linux, Red Hat Enterprise Linux,
Zabezpečení, Technologie SELinux, Bezpečnostní politiky, Omezení uživatelé

Typeset by the thesis package, version 4.07; http://latex.feec.vutbr.cz

http://latex.feec.vutbr.cz

ROZŠÍŘENÝ ABSTRAKT
Tato práce se zaměřuje na bezpečnost linuxových systémů z obecného hlediska

a zejména na technologii SELinux. Útoky na počítačové systémy jsou v každodenním
životě na vzestupu a je třeba se před těmito hrozbami chránit. Jen za rok 2020 bylo
v produktech firmy Red Hat nahlášeno více než 3 000 bezpečnostních problémů.[1]

K zabránění těchto útoků nebo případné zmírnění škod v dnešní době naštěstí ex-
istuje několik bezpečnostních mechanismů, které poměrně účinně chrání. Pro oper-
ační systémy GNU/Linux existuje několik typů mechanismů, které dokáží mitigovat
případný úspěšný útok.

Většina linuxových systémů používá systém diskrétního řízení přístupu. Je to
prostředek omezení přístupu k objektům na základě identity subjektů nebo skupin,
ke kterým patří. Subjekt s určitým přístupovým oprávněním může toto oprávnění
předat jakémukoli jinému subjektu. [2] Mechanismus, založený na diskrétním řízení
přístupu, je však pro zabezpečení systému nedostatečný. Povolení nebo odepření
přístupu je založeno pouze na identitě a vlastnictví uživatele a nezohledňuje další rel-
evantní informace z hlediska bezpečnosti. A vzhledem k nedostatečnému zabezpečení
DAC byl zaveden mechanismus, založený na povinném řízení přístupu (MAC), který
má zlepšit nedostatky mechanismu DAC. MAC, na rozdíl od DAC, vynucuje admin-
istrativně nastavenou bezpečnostní politiku pro všechny procesy, soubory v systému
a všechny subjekty, přičemž rozhodnutí jsou založena na štítcích obsahujících různé
informace důležité z hlediska bezpečnosti. [3]

Tento mechanismus je implementován v systémech Red Hat Enterprise Linux
a nazývá se Security Enchanced Linux (SELinux), který zvyšuje bezpečnost systému
a zmírňuje dopady útoků hackerů. Pomocí systému SELinux můžeme nejen zmírnit
dopad přímých útoků, ale také díky možnosti omezit konkrétní uživatele můžeme
snížit dopad útoků sociálního inženýrství. SELinux aktivně nezabrání útočníkovi
útok na zařízení, ale do velké míry zmírní dopad škod.

V teoretické části je nejdříve popsán mechanismus diskrétního řízení přístupu
(DAC), který se nachází na valné většině operačních systému GNU/Linux. Jsou
popsány základní entity, které mohou přistupovat k objektům a také jaké základní
akce mohou provést na objektech. Nevynechali jsme ani speciální práva které mohou
být na objektech.

Po prvním bezpečnostním mechanismu pokračujeme s popisem mandatorního
řízení přístupu (MAC). Vysvětlujeme jak funguje linuxový bezpečnostní modul (LSM),
který je základním kamenem celého bezpečnostního mechanismu a jakým způsobem
posuzuje jednotlivé žádosti objektů o přístup ke zdrojům. Následuje kapitola 1.2
o SELinux technologii, která popisuje historii tohoto bezpečnostního mechanismu
a základní principy SELinuxu. V následujících podkapitolách je popsán princip
jakým způsobem funguje SELinux bezpečnostní server na systému a jak posuzuje

přístupy subjektů k objektu.
Popisujeme princip bezpečnostního kontextu, kdy jakýkoliv subjekt i objekt na

systému má bezpečnostní kontext, a na základě pravidel má subjekt povolený přístup
do bezpečnostních domén. Dále jsou popsány další SELinuxové prvky a jsou uve-
deny typy bezpečnostních politik a stavy jejich vymáhání na systému. Můžeme mít
teoreticky tři stavy bezpečnostních politik na systému.

SELinux mechanismus může být úplně vypnutý, kdy nefunguje a bezpečnostní
politiky se nevymáhají. Pak existuje permisivní mód, kdy politiky nejsou vymáhány,
ale všechny nevyžádané přístupy subjektů k objektům jsou uloženy do logů. A ještě
může nastat třetí stav SELinux politik, kdy bezpečnostní server aktivně vymáhá
všechny nevyžádané přístupy.

Bezpečnostní politiky se skládají z pravidel, a struktura obecného pravidla je
vysvětlena v teoretické části diplomové práce. Můžeme mít několik typů pravidel:
od základního pravidla jež povoluje přístup subjektu ke zdrojům, až po pravidlo,
které povoluje původnímu procesu začít proces potomka s jiným bezpečnostním
kontextem.

V poslední části teorie popisujeme jakým způsobem dokáže SELinux omezit
přímo GNU/Linux uživatele a mitigovat tak eskalaci práv. Jsou zde vypsány ex-
istující uživatelé, které můžeme najít v SELinux mechanismu a rozsah jejich práv.
V další části je probráno jakým způsobem mohou existující omezení uživatelé rozšířit
své pravomoce a jaké jsou limity stávajících uživatelů. Tímto končí teoretická práce,
která je takovým základním průřezem bezpečnostních mechanismů, které jsou k dis-
pozici na OS GNU/Linux.

Jako hlavní cíl praktické části diplomové práce bylo navrhnout a vytvořit nové
omezené SELinuxové uživatele, kteří budou pro systémové správce snazší na vytváření
a údržbu. V první kapitole je proveden průzkum typických činností uživatelů OS
GNU/Linuxu aby bylo možno určit, která funkcionalita bude pro různé typy uži-
vatelů. Na základě průzkumu bylo určeno jaké typy uživatelů budeme vytvářet
a jakou funkcionalitu budeme v politikách pokrývat.

Je rozhodnuto, že budou tři typy uživatelů. Prvním uživatelem bude uživatel ba-
sic_u, který bude pokrývat základní funkcionalitu jako například přihlášení do sys-
tému přes konzoli, možnost spustit systém s GUI nebo například možnost pracovat
se základními příkazy v terminálu a schopnost pracovat s webovým prohlížečem.
Toto není ovšem celý výčet funkcionalit, více v kapitole 2.3.3.

Poté tu máme uživatele advanced_u který má hlavní výhodu v tom, že může
využívat nástroj sudo pro spouštění některých příkazů jako root, ovšem tento typ
uživatele nemůže přes sudo spustit všechny programy, má povolenou jen základní
funkcionalitu jako například správa služeb pomocí systemd. Další funkcionalitou
který má tento uživatel přidanou pomocí šablony na systému je možnost pracovat

jako čtenář se SELinuxem. To znamená, že uživatel může vidět aktivní pravidla,
vlastnosti SELinux mechanismu nebo například aktivní booleany.

Třetí typ uživatele admin_u má nejširší rozsah pravomocí. Má možnost ovládat
administrátorský software, který vyžaduje spoustu práv jako například cron, wire-
shark nebo například měnit parametry kernelu. Také může pracovat s všemožnými
logy a spravovat ostatní uživatele na systému. Dále má práva pracovat se systémem
SELinux a má právo SELinux deaktivovat.

Poté jsme zvolili vhodný systém, na kterém budeme moci nové uživatele vytvářet,
a nakonfigurujeme systém pro potřeby vývoje nových uživatelů. To znamená stáh-
nout software, který slouží k vývoji bezpečnostních politik a jejich udržbě.

Tyto tři uživatele jsme se tedy rozhodli vytvořit a jejich politiky se budou skládat
z variabilních šablon, které vytvoříme. Tyto šablony se budou dát snadno použít
a přidat do politik, bez nutné hlubší znalosti SELinux mechanismu.

V implementační části popisujeme jakým způsobem lze vytvořit omezeného SELin-
uxového uživatele na systému. Také dále popisujeme všechny vytvořené šablony,
které použijeme v bezpečnostních politikách. Detailně rozebíráme jaké pravidla je
do nich potřeba přidat, aby splňovala definovanou funkcionalitu. Dále také popisu-
jeme samotnou konfiguraci nových omezených uživatelů na systému a funkčnost
nových bezpečnostních politik.

V předposlední části zkoušíme na našem systému s nakonfigurovanými uživateli
dva exploity na eskalaci práv a pozorujeme, jakým způsobem může SELinux mitigo-
vat tyto útoky. Naši SELinuxoví uživatele dokáží tyto eskalace práv úspěšně mitigo-
vat a nedovolí útočníkovi získat na systému větší rozsah práv. V poslední kapitole
diskutujeme o možných vylepšeních do budoucna jako například přepínání do jiných
uživatelských rolí v bezpečnostním kontextu.

Ve zkratce tedy jsou vytvořeny šablony na základě typických činností uživatele
OS, které lze variabilně použít, a v budoucnu může být pro systémového správce
snazší pracovat se SELinux mechanismem a vytvářet si vlastní SELinuxové uživatele,
či použít námi vytvořené uživatele.

Výstup diplomové práce je dostupný veřejně na internetu, pomocí gitového re-
pozitáře, který obsahuje šablony a vytvořené vzorové uživatele. Je zde také uveden
návod jakým způsobem na systému nakonfigurovat tyto SELinuxové omezené uži-
vatele.

Šablony jsou otestovány na námi konfigurovaném systému, a vyzkoušeli jsme si
jak obstojí proti eskalacím práv na systému. Díky mandatornímu řízení přístupu,
které běží nad klasickým diskretním řízením přístupu se podařilo SELinuxu abso-
lutně eliminovat eskalaci práv na OS. Funkčnost práce byla tak důkladně prověřena.
V průběhu vývoje šablon se nám navíc podařilo objevit několik chyb v aktivních
SELinuxových politikách a mohli jsme je tak nahlásit společnosti Red Hat, která je

https://github.com/Koncpa/confined-users-policy

odstranila.

KONČITÝ, Patrik. User rights defined by SELinux technology in Red Hat Enterprise
Linux operating system. Brno: Brno University of Technology, Faculty of Electrical Engi-
neering and Communication, Department of Telecommunications, 2022, 67 p. Master’s
Thesis. Advised by prof. Ing. Dan Komosný, CSc.

Author’s Declaration

Author: Bc. Patrik Končitý

Author’s ID: 203172

Paper type: Master’s Thesis

Academic year: 2021/22

Topic: User rights defined by SELinux technol-
ogy in Red Hat Enterprise Linux operat-
ing system

I declare that I have written this paper independently, under the guidance of the advisor
and using exclusively the technical references and other sources of information cited in
the paper and listed in the comprehensive bibliography at the end of the paper.

As the author, I furthermore declare that, with respect to the creation of this paper,
I have not infringed any copyright or violated anyone’s personal and/or ownership rights.
In this context, I am fully aware of the consequences of breaking Regulation S 11 of the
Copyright Act No. 121/2000 Coll. of the Czech Republic, as amended, and of any breach
of rights related to intellectual property or introduced within amendments to relevant
Acts such as the Intellectual Property Act or the Criminal Code, Act No. 40/2009 Coll.
of the Czech Republic, Section 2, Head VI, Part 4.

Brno .
author’s signature∗

∗The author signs only in the printed version.

ACKNOWLEDGEMENT

I would like to thank my supervisor prof. Ing. Dan Komosný Ph.D. for his profes-
sional guidance, consultation, patience and suggestive suggestions for the work. Special
thanks to colleague from Red Hat, Mgr. Zdenek Zpytela, Senior Software Engineer, for
his excellent guidance and collaboration in sharing his broad knowledge and experience
in SELinux Technology. Moreover, I want to express my sincerest thanks to all my col-
leagues from the Security Controls team. I would also like to thank my colleague Bc.
Vladimír Janout for providing me with stimulating ideas related to priviledge escalations.

Contents

Introduction 16

1 GNU/Linux systems and security 18
1.1 Security mechanism in GNU/Linux systems 18

1.1.1 Discretionary Access Control 19
1.1.2 Mandatory access control . 20

1.2 SELinux technology . 22
1.2.1 Basic SELinux mechanism . 23
1.2.2 User rights defined by SELinux 26

2 Practical part 30
2.1 Survey on typical GNU/Linux users 30
2.2 SELinux proposal . 35
2.3 Implementation . 37

2.3.1 Developed policy . 42
2.3.2 Templates . 44
2.3.3 Configuration of system with confined users 52

2.4 Application to improve security . 54
2.4.1 DirtyPipe . 55
2.4.2 Pwnkit . 57

2.5 Future improvements . 59

3 Conclusion 60

Bibliography 62

Symbols and abbreviations 67

List of Figures
1.1 Linux Security Modules (LSM) hooks 21
1.2 High Level Core SELinux Component 23
1.3 Security context . 24

List of Tables
1.1 SELinux users and their rights . 27
1.2 SELinux users and their switching . 28
2.1 Table of priviledge escalations . 55

Listings
2.1 How find source package for tool. 38
2.2 How to get security context of the user. 39
2.3 How look security context on system. 39
2.4 The form of the .TE file. 40
2.5 Building local policy. 40
2.6 Loading module to kernel. 40
2.7 Testing if it’s module loaded. 41
2.8 Adding new user type. 41
2.9 Adding new SELinux user. 41
2.10 Creating new GNU/Linux user. 42
2.11 Adding role for SELinux user_u. 42
2.12 MappingGNU/Linux user to SELinux user_u. 42
2.13 Fix label of home directory for mapped new SELinux user. 42
2.14 Status of running user. 42
2.15 Setting mode of SELinux mechanism. 43
2.16 SElinux status of GNU/Linux user. 43
2.17 Essential policy for basic user. 43
2.18 Interface file for local basic policy. 44
2.19 Using first template in basic .TE file. 44
2.20 User running succesfully. 47
2.21 Security context of user. 53
2.22 Setting permission of file and executing them. 55
2.23 Running exploit. 56
2.24 After exploit. 56
2.25 ID of basic_user. 57
2.26 Steps to reproduce PwnKit exploit. 58
2.27 Temporary workaround for PwnKit. 58

Introduction
This thesis focuses on security of linux systems in general sight of view and espe-
cially based on technology SELinux. Attacks on operating systems are on the rise
in everyday life and we need to protect ourselves from these threats. Often these
attacks are caused by some vulnerabilities in the code that are caused by incorrectly
written code.

For 2020 alone, more than 3,000 security issues have been reported on Red Hat
products.[4] And some security tools are needed to mitigate these vulnerabilities
as much as possible when they are discovered and not yet patched. For linux oper-
ating systems, there are several types of security to mitigate the effects of weaknesses
in case an attacker gains control of the machine.

Most linux’s use a Discretionary Access Control system, which control how sub-
jects interact with other objects, and how subjects interact with each other.[5] How-
ever, a mechanism based on discrete access control is insufficient for strong system
security, allowing or denying access is based only on user identity and ownership, and
does not take into account other relevant information from a security perspective.
And due to the inadequate security of DAC, a mechanism based on mandatory access
control (MAC) was implemented to improve the inadequacy of the DAC mechanism.
A MAC architecture, unlike a DAC, needs the ability to enforce an administratively
set security policy for all processes and files in the system, with decisions based on
labels containing various security-relevant information. [6]

This mechanism has been implemented in Red Hat Enterprise Linux systems and
is called Security Enchanced Linux (SELinux), which makes system more secure and
mitigate impacts of hackers attacks. With SELinux, we can not only mitigate the
impact of direct attacks, but also with the ability to restrict specific users, we can
reduce impact of social engineering attacks. The need to restrict specific users has
recently increased due to these attacks. It is by restricting users using SELinux that
the damage to the system can be mitigated.

These SELinux confined users will be major topic of this diploma thesis. We
will focus more on these users and discuss the features and capabilities of this part
of SELinux technology. As the one of practical objectives of the thesis will be
to conduct research on typical GNU/Linux user activities and to define several types
of constrained users on this basis. However, the main goal of this work is to create
security policies that will restrict GNU/Linux users on the system, and thus have
the power to better mitigate privilege escalation on the operating system.

The diploma thesis is divided into a theoretical part and a practical part. The
chapter 1.1 will first discuss the security mechanisms used by GNU/Linux operating
systems and discuss the principle of each mechanism. The general principles of these

16

mechanisms and their basic properties will be described.
In the next chapter 1.2, we will discuss the specific SELinux security technology

that this thesis will cover. In the first related subchapter 1.2.1 we will discuss
the basic features of this technology, describe the mechanism of operation and the
structure of the rules used in SELinux. In the second subchapter 1.2.2, we will look
at how we can use SELinux technology to define privileges for users of the operating
system. We will describe the current implementation of confined users in SELinux
technology.

The practical part of the thesis starts with chapter 2.1. In this chapter a survey
of typical users of GNU/Linux operating systems is conducted. The possible classifi-
cation of users into groups based on system usage is described and then the possible
typical deployments of each type of user are discussed. In the next chapter 2.2,
based on the survey of typical OS users, a possible new architecture for constrained
SELinux users is proposed.

The next chapter 2.3 will describe the implementation of the security policies that
will be used for new confined users, and will provide instructions on how to create
your own confined user and link it to a classic GNU/Linux user. It will also describe
the templates we will use to build security policies for individual SELinux users. The
penultimate chapter 2.4 will show how SELinux can mitigate privilege escalation on
the operating system in our configuration. And the last short chapter 2.5 will outline
possible future enhancements to the security policies.

17

1 GNU/Linux systems and security

1.1 Security mechanism in GNU/Linux systems
In GNU/Linux-based operating systems, there are several ways to secure impacts
from potential attacks, and this paper will focus on one of them, which will be dis-
cussed later in this paper. Operating system security is always an important topic
because in times of increasing attacks, each additional layer of security can reduce
the impact of an attack or directly prevent a given attack.

In this paper, we specifically focus on security mechanisms in systems that di-
rectly mitigate the impact of attacks. This is called proactive security and we have
several elements that can help us achieve it.

The first security feature of these systems, is the existence of a special user called
root, who has administrative privileges on the system. Unlike Windows systems
where anyone can be an admin. So root has almost complete rights to the system and
can do anything and anywhere. At the same time, when a user gets root permissions,
root permissions can be divided into permission levels called capability, which allow
only a certain range of root privileges. And this ensures even greater distribution
of rights in the event of a root attack.[7] There are other users who do not have such
rights in the system and can only perform common tasks and operations.

Separation of users and distribution of privileges makes it difficult for malware
to spread throughout the system and take control of it. This model of rights dis-
tribution is called Discretionary Access Control (DAC) and will be described more
in the chapter 1.1.1.

This model works on the basis of an access list, where only specific users are
allowed access to certain objects.

The disadvantage of this solution is the lack of working with other important
security information that can help to make the system more granular, but this is not
the only way to prevent damage. Another option is to use a solution for operating
systems added to the kernel as a module that offers greater granularity and can
therefore specify the rights of users or applications on the system.

We call this solution "Mandatory access control" (MAC) and like DAC it is also
a type of access control, but unlike DAC, MAC security policy is controlled centrally
by the administrator who is tasked with this. The user does not have the ability
to modify their security rights. For example, to grant himself the right to access
a file that he should not otherwise be able to access.[8] In chapter 1.1.2 we will
discuss this area in more detail and describe the MAC principle.

18

1.1.1 Discretionary Access Control

Discretionary Access Control (DAC) is a type of access control defined by the Trusted
Computer System Evaluation Criteria. [9] It is based on access control by verifying
to which group or entity an object belongs. The owner of the file or the user who
has ownership rights is able to manipulate the object and can set access rights for
other users and groups based on this.

Thus, access rights to an object can be granted to three entities:
• owner,
• group,
• other.
The owner is usually the owner of the file or a specific user account that is al-

lowed access. A group is usually a group of users, or a specified group of users.
And the entity other assigns rights to any process that does not correspond to any
user or group.

We can allow several actions to each entity that handles the object. We can
allow it to:

• read - r,
• write - w,
• execute - x.
These permissions are implemented as permission bits attached to each file and

can only be set by the owner of that object.[10]
Thus, each entity can be assigned one of these rights in any combination. It can

have all of these rights or even none. Unless an entity is assigned a right it is unable
to override that right. The only super entity that is able to bypass these rights
is root, which was mentioned in chapter 1.1. This simple form of access control list
has been further supplemented with additional special rights to the object.

Setting permissions on an object in this way ensures that when any user runs
this file, they take over the user ID of the owner or group of this executable. The
owner who sets these special rights must be careful how they are handled, as this
is a potential security risk. For example, if a special permission is set on a file that
has the root ID on it, a user who runs that file can take over the root permission.[11]
We have several types of special authorisations:

• setuid - s or S,
• setgid - s or S,
• Sticky Bit - t or T.
For each process that accesses an executable file with the setuid permission,

access is granted based on the owner of the file, not the user who runs the file. With
this special permission, users can access files and directories that are accessible only

19

to the owner. The setgid permission is a similar special permission to setuid, but
unlike setuid, the user runs the executable with group permissions. If we want
to apply the setuid or setuid permission to a file without enabling the execute bit,
this permission is written with a capital S. If we want to enable the execute bit at
the same time, this permission is written with a lowercase s.

The last special permission we can apply to an object is the Sticky bit per-
mission. The sticky bit can be applied to any file or directory on the system. This
permission prohibits the user from deleting other users objects. Again, we have the
option to apply this permission to the object with or without the execute bit. The
lower case t represents the Sticky bit permission with the execute bit enabled and the
upper case T represents the sticky bit permission with the execute bit disabled.[12]
In modern GNU/Linux systems, the sticky bit is used only for directories.[13]

DAC is the basic access control mechanism in Linux systems. It is relatively
simple and suitable for use on systems that do not handle sensitive data. Discre-
tionary access control fulfills two functions. An entity that does not have the right
to modify an object is not able to modify that object by writing or otherwise. Fur-
thermore, a subject who does not have the right to read an object is not able to read
it. Thus, discrete access control can ensure the integrity and confidentiality of data
on the operating system. On the other hand, for systems working with sensitive
data, mechanisms with more granularity are needed. A possible security risk to
the machine’s security is the root account. If an attacker compromises the account
or a process with its privileges, he can take control of the entire system and it’s
data.[14] However, root privileges can be limited and divided into capability that
offers only a certain slice of root privileges. Still, a user who gets root privileges gets
very strong privileges for operations on the system. Therefore, the root account
needs to be restricted as much as possible, and this can be done with a security
concept that will be discussed in the next chapter.

1.1.2 Mandatory access control

Mandatory access control (MAC) is a type of access control that gives a subject
the right to perform an action on an object based on a security policy. Compliance
with security policies is mandatory for MAC, and security policies can be set by the
system owner and are usually implemented by the system administrator or security
administrator. Even users with root privileges cannot override these policies if they
are active, unless they have it enabled in the policy. MAC makes file and process
protection independent of the object owner.[15]

20

LSM mechanism

Mandatory Access Control (MAC) uses the Linux Security Module (LSM) mecha-
nism. This generic framework has been added to the kernel since version 2.6. Based
on this concept, a module implementing MAC can be added to the Linux kernel.
There are several types of MAC-based security modules and the system administra-
tor can choose any implementation.[16]

The mechanism for using the module is as follows: an application or process
makes a system call to the kernel with a specific request for access to an object
or resource. The call first goes through error checking and DAC checking, in each
of these checks the request may be denied and not granted.

However, if the system call successfully passes all these parts, the kernel calls the
LSM hook, a module that extends the kernel behavior, and asks the module whether
to allow or deny access to the object or resources based on active security policies.
If the LSM module finds a rule in the policy allowing this access it will allow the
action and if not it will deny it. This mechanism is shown graphically in the figure
below:[17]

Fig. 1.1: Linux Security Modules (LSM) hooks

21

We have several different implementations of MAC technology that use the LSM
module, the most well known of which are AppArmor and SELinux. In this pa-
per we will look at SELinux technology in more detail, describing its mechanisms
and looking at how this technology can be used to restrict users on a GNU/Linux
system.[18]

1.2 SELinux technology
The history of SELinux dates back to the 1990s when the National Security Agency
(NSA) and other organizations began developing a tool for comprehensive and flexi-
ble management of mandated access control. These organizations jointly developed
a prototype of SELinux called the Flux Advanced Security Kernel (FLASK). FLASK
was an implementation of a series of utilities that enforced mandated access control
on a given system. Later, Red Hat expressed interest in a complete implementa-
tion of FLASK in its commercial Red Hat Enterprise Linux (RHEL) distribution,
and SELinux was born. SELinux subsequently spread to other GNU/Linux distri-
butions such as Debian GNU/Linux, Gentoo Linux and Fedora. [19]

Before we get to the more details about SELinux, let’s summarize a few basic
features:

1. When SELinux is active on a system, SELinux policies use rules to allow
certain entities to access certain objects and allow various operations on them
(e.g. open, read, write).

2. SELinux can restrict a service in its own "domain", thereby limiting its privi-
leges to a level sufficient to do its job. If the service will require access to other
resources and objects. This access must be allowed in the SELinux policy.

3. If the service wanted to perform something that is forbidden in the active
policy, SELinux would not allow this operation.

4. If the service wanted to do something that is not explicitly allowed in the
active policy, SELinux would not allow this operation.

5. GNU/Linux users can be mapped to SELinux users, and the permissions that
a specific user needs on the system can be set for each specific user.

6. SELinux is not capable of stopping all malware that infects a system, however
it can mitigate the effects of an attack.

7. New rules can easily be added to SELinux policies using tools such as au-
dit2allow and others. [20]

22

1.2.1 Basic SELinux mechanism

First, let’s discuss the basic elements of the SELinux module. Below is a diagram
of the SELinux components that manage and enforce policies and contains all of the
following parts:

1. An entity that requires an action on an object, such as reading the object.
2. An administrator of an object who knows the actions from the resource and

can enable these actions if allowed by the security server. Sends queries to the
security server.

3. A security server that decides the right of an entity to perform an action on
a given object based on the rules in the policy.

4. A policy in which rules are written using a special policy language.
5. A cache in which the security server’s decisions are stored.

Fig. 1.2: High Level Core SELinux Component

The security server searches the active rules and tries to find the rule for the
subject’s access to the object. If it does not find the rule, access to the object
is denied. The server that makes this decision needs to know the security context
of the subject and object in order to make the correct decision.

SELinux context

The SElinux system context is a fundamental element of the policy, every file, di-
rectory, process or any system resource has a context. Based on this context, rules
can be created in various forms and decisions can be made about how each entity
accesses objects. Thus, every element of the system must always have a context.
For example, objects for which do not have clearly defined contexts using special
types of rules called file transition, the object obtains the general context of the
parent directory.

23

Fig. 1.3: Security context

SELinux User

This section is suffixed with _u such as system_u. This is the identity of the
GNU/Linux user in the SELinux mechanism. We will discuss users in more de-
tail in chapter 1.2.2.[21]

SELinux Role

Role is with suffix _r such as object_r. A SELinux user can have more than one
role, and each role can have different permissions. A role can be associated with
multiple possible types that allow permissions. We will discuss roles in more detail
in chapter 1.2.2.[22]

SELinux type

The type part is with suffix _t such as lib_t. A type can be associated with either
a process or an object. If the type is associated with a process, the type defines
what the SELinux user’s process is allowed to access. If the type is associated
with an object, in this case the type defines what access rights the SELinux user
has to that object. The type could be considered the most important part of the
security context; the type is used to shape the access rules between subjects and
objects.[23]

MCS/MLS

This part is only active if the SELinux policy is also activated with MCS or MLS.
It consists of a sensitivity level or range entry to the security context. In the default
policy state, the sensitivity is set to s0. Although neither MLS nor MCS is the main
topic of the diploma thesis, we will talk more about MLS in next subsection.[24]

24

Two forms of MAC in SELinux:

SELinux can support two MAC types based on which the security module decides
whether to allow or deny access.

• Type Enforcement - This MAC works on the principle of everything is de-
nied by default. The default state is policies in which no rules are defined. If
access needs to be granted, then the appropriate rule must be created. For ex-
ample, if a process wants access to object, it needs to have that access defined
by rules. In practice, this is the most commonly used mandatory access control
form for SELinux.

• MLS - This type of MAC security mechanism is based on the Bell-La Padula
(BLP) model, which is used for companies that need to split access levels
on a system due to classified information. This security mechanism ensures
that elements in the system at the same sensitivity level can only read and write
at that level. Anyone further up can report to higher levels, but only the same
and lower levels can read. [25]

Form of SELinux rules

This subsection explains what a common SELinux policy rule looks like, based
on which the security server makes decisions. The basic structure of a rule is as
follows:

rule_name source_type target_type:class perm_set;

• rule_name - This part of the rule determines the final nature of the rule,
the allow, dontaudit, auditallow or neverallow action can be applied.[26]

• source_type - The label of the entity that wants to allow or disallow ac-
cess to something is inserted here. It can be a process that wants to access
the object.[27]

• target_type - Usually the label of the object that the entity wants to access
and perform some action on it, such as reading, writing, etc. [28]

• class - This is the object class that the subject wants to access. This can be
a class such as file,dir etc. There are also classes for different kinds of sockets.[29]

• perm_set - In this part of the rule, we fill in the type of action we want
to allow on the object, such as reading, mapping, writing, and more.[30]

In a policy, we can have several types of rules, we can have classic permission
rules that allow access to the target domain file. We can also have transition rules
that provide either domain transition or object transition.

25

A domain transition rule ensures that a process in a particular domain can
create a process that has a different domain and a different security context. In
the case of object transition, this is when the new object requires a different label
than it’s parent. These transition rules are also important rules that we can add to
policies. [31]

Type of active policies

We have several types of policies that can be active on the system and enforce access
control.

• Minimum - This type of policy emphasizes the smallest possible policy size.
Only a small number of services are restricted, usually services that are critical
to the system. The rest of the services and objects and other system elements
run as unconfined. This saves space on the operating system. [32]

• Targeted - A common type of policy on Red Hat systems. This policy covers
a large number of services and other features on the system. By default,
however, the user runs with the unconfined label, but it is possible to restrict
the user. The MAC mechanism is in type enforcement mode.[33]

• MLS - multi level security - This type uses type enforcement mode and also
MLS mode.[34]

Modes of SELinux policy

If the SELinux module is enabled, it can run in two modes on the system:
• Enforcing - security policies are active and actively enforce access,
• Permissive - security policies are active but do not enforce access, only logging

denied accesses.
This was the chapter that explained the basic SELinux mechanisms, how the SELinux

module works, the SELinux policy parts, the basic form of SELinux rules and more.
In the next chapter, we will cover how to restrict GNU/Linux users using SELinux.

1.2.2 User rights defined by SELinux

The main topic of this paper is user constraints using SELinux technology. In this
chapter we will describe what methods we have for restricting users using SELinux
and also mention the current implementation. In the chapter 1.2.1, we have already
written about how to label a GNU/Linux user, but here we will discuss it in more
detail.

Each user of the system should be mapped to a SELinux user. Every element
in the system must have a label, and so must the user. So even a newly created

26

user has a label. Only one SELinux user can be mapped to a GNU/Linux user, but
multiple users can have the same SELinux user. By default, unless otherwise set
in the system, each user is mapped to the default SELinux user unconfined_u.
However, this default label allows almost unlimited privileges on the system, and
if this user is compromised by an attacker, it can be difficult to mitigate the effects
of an attack.[35]

Confined users

Fortunately, we can map GNU/Linux users to more restrictive SELinux users. In ad-
dition to unconfined_u, we have the following types of SELinux users:[36]

• guest_u,
• root,
• staff_u,
• sysadm_u,
• system_u,
• user_u,
• xguest_u.
Each of these types of users has different permissions and powers. The basic

scope of permissions and authority for all users except unconfined and root is shown
below:

User Role Domain X Window
System

su or sudo Networking

sysadm_u sysadm_r sysadm_t yes su
and sudo

yes

staff_u staff_r staff_t yes only sudo yes
user_u user_r user_t yes no yes
guest_u guest_r guest_t no no no
xguest_u xguest_r xguest_t yes no Firefox

only

Tab. 1.1: SELinux users and their rights

The table does not include root or unconfined users because they have unlimited
privileges.

Role-Based Access Control

Each of these types of users has different permissions and powers. Sometimes a sit-
uation arises where a confined user needs to extend their own permissions, and one

27

of the easiest ways to do this is to switch to a different role if they are allowed to
do so.

Roles in SELinux technology work based on the Role-Based Access Control
(RBAC) security model. Each user can have one or more roles defined to which
they can switch and extend their privileges. A table of all users and their ability to
switch to other roles is below:[37]

sysadm_r staff_r user_r guest_r xguest_r unconfined_r
sysadm_u X
staff_u X X X
user_u X
guest_u X
xguest_u X
unconfined_u X
root X X X

Tab. 1.2: SELinux users and their switching

28

In SELinux there is an implementation of confined users and switching to other
roles, but this implementation is outdated and does not meet the needs of today.
A lot of services that are for restricted SELinux users do not exist anymore or have
extended functionality and not all accesses are allowed for them. Also, the eventual
intervention in the policies and reworking of the confined users policies for the needs
of the system administrator is difficult in terms of the complexity of modifying the
policies and finding enabling rules.

However, the main drawback of the current confined users architecture is the
architecture itself, which operates on the inverted pyramid principle. That is, the
user at the bottom of the pyramid has the fewest privileges, and gradually other
users higher up the pyramid take over all of his privileges and extend them. However,
they can take over rights that they don’t inherently need.

Therefore, the goal of this work is to change the architecture of constrained users
to meet current needs. This is because the original concept was created twenty years
ago and does not suit today’s operating systems, which often have different usage
patterns and the users who operate them also have different habits of using operating
systems. As far as threats are concerned, the world has also moved on in twenty
years and threats are often more sophisticated and target different vulnerabilities
on the system.

Thus, in this work, the focus is on the issue of confined users, who through
reimplementation will restrict privileges on the system to the right extent to mitigate
the impact of attacks. Selected services that are really used by real OS users will
be treated for new confined users. At the same time, creating custom security
policies should be easier for system administrators managing the system due to the
modularity of the architecture. In the capabilities of this work, it is not possible
to cover all the uses of services on the system, but the focus will be on covering the
frequently used services by a typical user.

29

2 Practical part
This chapter will describe the practical part of this thesis, research will be con-
ducted on typical uses and deployments of GNU/Linux users. Based on this, new
users in the new architecture will be proposed. The implementation section first de-
scribes how to create a custom SELinux restricted user on GNU/Linux systems, then
describes the individual templates that allow individual users to access resources and
data on the system.

Then, the functionality of configuring the system with restricted users using the
created templates is described, and the last subsection of the implementation paper
discusses the possibility of mitigating privilege escalations on the system by using
our new users with new security policies.

2.1 Survey on typical GNU/Linux users
In this part of the thesis, a survey of typical GNU/Linux deployments and users
will be conducted. The aim will be to identify the types of users based on their use
of the services and features of the system. Based on the result of the survey, we will
be able to propose a redesign of limited users in SELinux technology. As the main
source of data for the survey, we will use articles on the Internet that describe the
usage of GNU/Linux systems from several perspectives.

Linux Documentation website, which provides documentation for GNU/Linux
operating systems, can also serve as a possible source of inspiration.[38] We will also
draw on the original SELinux restricted user types and the official SELinux policies.
Another source may be the ref policy, these are policies that are an alternative
to the Red Hat supported SELinux policy, some things in the ref policy are different
from the official policy.

Types of users using GNU/Linux

As far as user types are concerned, we have several sources to find out what types
of users the systems are available for. The first source is to look at the different
distributions and what versions each distribution is offered in. For example, the fe-
dora distribution is officially offered in two versions. The fedora workstation version
and the fedora server version. This offers the basic idea that you will need to divide
the users based on the capabilities and usage of the system into the ordinary user
who just wants to use the GNU/Linux system as a working tool for their purposes
and the user who has more knowledge and uses the system as a server.[39]

30

Another source may be the already active SELinux policies that divide and then
restrict users into several types. The division and restriction of users under official
SELinux policy was discussed in the chapter 1.2.2. In ref policy, the distribution
of confined users is virtually identical. There are a large number of user types
in these policies, and the exact use and deployment of these SELinux users is not
specified.

So basically, the user is using OS for normal use or is using GNU/Linux in a server
version and there is a need for increased powers.

Activities of typical OS users

In this chapter, we describe the basic activities of typical OS users. We’ve already
established that there are two broad groups of users-ordinary system users and sys-
tem administrators. Now we will need to conduct a survey to determine the typical
activities on the system when it is used by an ordinary user and when it is used by
a system administrator.

With this, we will find out what to focus on in the new policies and add that
to the new policies. Most of the things that will be enabled for the normal user will
be enabled for the system administrator. The first part that needs to be enabled and
there is no need to do research on it for typical usage is logging into the system itself
using the console, then remote login, then GUI login, there are other ways to log in,
but due to the scope of a thesis only these login methods will be addressed.[40]

At the same time, not only the GUI startup should be handled, but also the
subsequent system setup in the GUI. This could be another module that would be
available in the new policy for new limited users. Also, the user should be able
to use the file explorer that is freely available on the system if the system runs with
the GUI.

Moving on to working with the terminal, the user should be able to use basic file
handling commands such as copying files, listing files, searching through files and so
on.[41] Also, an ordinary user should be able to use the text editor in the terminal
such as vim or nano.

However, the key for today’s ordinary OS user is the use of the Internet. Most
users no longer work with the system as such but take advantage of the Internet
and use the Software as a Service (SaaS) principle. The typical ordinary user needs
to work with a browser to connect to the software he wants to work with.[42] We
also need to ensure that the user is able to download files from the browser and also
that the user is able to, for example, start a video with sound in the browser. The
last activity that should be enabled for the ordinary user is working with USB and
other peripherals that can be connected.

31

This section described how ordinary users use the GNU/Linux operating sys-
tem. The next section discusses typical use of the Linux operating system from the
perspective of a system administrator.

A system administrator should basically be able to do the same things as a normal
user, which means of course logging into the system in different ways, being able
to work with the file explorer if the system runs with a GUI, or being able to use
basic terminal commands.

The system administrator should still control the more advanced utilities that
are related to configuring network connections and displaying network information.
Examples of such utilities include ping, netstat, nslookup, and others. [43] We do
not cover all types of utilities in this survey, but only the most common or well-
known ones. Covering all types of uses would be beyond the scope of this paper.
The system user should also be able to work with user management, i.e. create new
users, delete them and change them.

Another activity that an administrator should be allowed to do, and it is often
the administrator’s job, so he should be able to work with cron and should be able to
work with server logs, that is, collect them and work with them. Also, as a user who
works as an administrator, he should be able to work with software installation,
either using package manager or manually. The system administrator should be
allowed to work with tools that monitor properties about the server, such as server
uptime or memory usage. [44] Also, working with SELinux security policies should
be enabled. Other typical admin use cases would be beyond the scope of the thesis.

Typical activities that users should have enabled and that are most commonly
used are discussed in more detail below:
Basic checks

• user logs in with a password and can execute a command,
• systemctl user@ID status,
• systemctl status –user,
• journalctl, journalctl –user,
• user can log out successfully, no error message pops up,

Basic operations
• invoke a terminal (GUI),
• date, ls, ps, man,
• systemctl –user, journalctl –user,
• password setup, update, with a password policy in place,
• internet access,
• poweoff, reboot,

Advanced operations
• systemd user service and timer unit, transient unit,

32

• systemd services control commands - resolvectl, hostnamectl,
• ssh/scp , changing configuration in /.ssh,

Operations with files
• browse, read, edit, delete, copy,
• /tmp access,
• /homedir access,
• /run access,
• /etc access,
• /usr/share access,
• ~/.local, ~/.cache and ~/.config can be updated,
• using find,
• using locate,
• executing files in ~/bin, /usr/local/bin,
• executing /tmp,

Devel work
• shell and python scripting,
• gcc,
• make,
• make install,
• git, git config,
• using screen/tmux,

GUI
• start, login, autologin,
• limits.conf applied,
• manage stuff in gnome settings,
• images viewer,
• camera,
• pdf viewer,
• screensaver locks and unlocks with a password,

Browser usage
• browse, http, https, ftp, configuration,
• web browsing,
• download and store, download and open, upload,
• video and music replay, editing,
• browser plugins,

Office tools
• word processor,
• sheets,
• presentation,

33

Peripherals usage
• kbd, mouse, USB drive, other drives, bluetooth, wireless mouse, headphones,

thunderbolt,
• printer,
• scanner,
• camera,

Network operations
• address management - static, dynamic,
• virtual private network,
• ping,
• ifconfig,
• cli tools for setup network - ip, nm,
• firewall,
• cli tools for troubleshooting - route, netstat, traceroute,
• ping,
• ipsec,

Admin tools
• users management,
• authconfig,
• passwd,
• vipw,
• sudo,
• systemd settings (e. g. RemoveIPC),
• cron,
• wireshark,
• logging,
• sysctl tunables,
• tuned,

Security
• getsebool,
• checks - sesearch, seinfo, sestatus,
• newrole,
• ssh with another role,
• auditing (ausearch),
• semanage,
• chcon,
• semodule disable, enable, load,
• restorecon.
This chapter has described the typical users of the operating systems and also

34

the typical use of the system from their point of view. Based on this list, we will
create security policies for users and try to allow programs and tools from this list
in security policies.

This list covers only the most commonly used tools and programs and does not
take into account many other less commonly used tools. However, there is room
for further improvements and enabling rights for lesser used tools in the future.

2.2 SELinux proposal
This chapter describes a possible new architecture limited to SELinux users. First,
however, it is important to mention what the current restricted user architecture
looks like in SELinux technology.

The current architecture works on the principle of an inverted pyramid, where
the user with the fewest rights is at the bottom of the pyramid and users higher
up the pyramid contain the rights of the lower user as well as additional rights.
However, this architecture has one drawback, users that have more rights and take
over the rights of lower users also take over rights that they do not necessarily need
to use.

Another disadvantage that is not directly related to the current architecture
is the addition of rules to the policies and the creation of the policies themselves,
if a user wanted to allow the use of network utilities for example, they do not have
a macro in the policy that contains all the necessary rules for the use of network
utilities. For a more advanced user who wants to manage policies and add rules to
them, this makes it difficult to know the rules or functions to add to active policies.

Design of new SELinux user architecture

The new architecture will work on a different principle, unlike the inverted pyramid,
the range of rights for users is independent of each other. Each user has a range of
rights tailored to their exact needs. Thus, there will be no cases where a confined
SELinux user will have rights that he would not necessarily need for his typical
activity. This would solve one problem with the current SELinux confined users
architecture.

In the future architecture, the problem of complex policy creation will also be
solved, special macros will be created, called templates. These templates will cover a
set of functionalities. An example of a template is the template for user login via the
console. With these templates, the administrator will be able to piece together poli-
cies for custom restricted users as desired or possibly supplement existing restricted

35

users with modules with needed functionality. This will make policy creation an
easier task for someone who is not intimately familiar with SELinux technology.

Proposals of new users

In this section, we propose possible new users for the new architecture of confined
users discussed in the previous subsection. The basic consideration is to create
a confined user for the system administrator and another for the normal user.

It would require adding a limited ordinary user who could use the sudo utility.
With the sudo utility, a user is able to perform operations with the permissions
of another user, usually a root user. This user would be somewhere between an
admin user and a regular user with a range of privileges. This user with more
extensive rights would be possible as a default user in RHEL and Fedora operating
systems instead of the unrestricted user that is in the current architecture. These
three confined users would serve as the base SELinux users of the new architecture.

The basic user on the system will be the basic_t user, this user will be able
to connect to the system via the console and will also be able to connect via the
GUI. Once connected to the system, the basic user will be able to perform simple
actions in terms of verifying the correctness of the system boot and all the threads
related to the successful running of the system.

Furthermore, the user will also be able to see the system log and will be able
to perform basic user settings such as changing the user password, changing the
name and other settings. From the basic terminal commands, it will have the power
to work in allowed file directories. He should be able to work with basic network
utilities. It should also be able to work with system peripherals whether it is a mouse,
keyboard or attached flash drives.

A basic user should also be allowed to control basic SELinux mechanisms such
as looking up rules on the system or seeing a list of all booleans on the system
and checking which attributes are assigned to which SELinux types. In the case
of accessing the system through the GUI, the user has the right to change the
settings of the desktop system. Last but not least, the user should be able to
perform classic office work using office software and should also be allowed to work
with a web browser.A basic user should also be able to work with development tools
such as building a package or working with git. However, he won’t be able to push
commits via ssh because ssh will only be enabled for the next user.

This brings us to the next user advanced_t. This user will have the same privi-
leges as the basic user but in addition to the previous user, he will be allowed to use
ssh and scp. He will also be able to use the sudo utility if the user is in the sudo
group. This will give him the power to configure and set up daemons via systemctl,

36

and he will be able to install packages using package managers such as yum or dnf.
The last user will be the admin_t user. This user will also be able to work

with security on the system as far as SELinux modules are concerned, he will be
able to add new rules and change the security context of files, he will also be able
to disable the whole SELinux mechanism, he will have unlimited possibilities as far
as controlling the SELinux mechanism is concerned. Another key power for admin
users will be the ability to manage users on the system and set sysctl and kernel
tunables. He will also be able to use various tools that require root privileges such
as wireshark, cron or work with firewalls. It will also be able to work with logs.

These are the three types of users that we will be creating in this thesis and that
will be the output of this thesis. We’ll have a basic_u user that will serve as a user
that could be on ordinary Linux workstations, then we have an advanced_u user
that offers more privileges for developers working on the system, and then we have
an admin_u user that will have unlimited privileges on the system. These three
users will be the basis of user security policies on the system. The next chapter will
describe the implementation of the new user security policies.

2.3 Implementation
First of all, it is necessary to clarify what will be the content of the practical output.
The result of the practical output will be the creation of a new SELinux user for
whom large macros will be created, which we will call templates because they will
contain many rules and will always be related to some functional part of the system.
It will be a set of rules for the functionality of the system. Specifically, the output
of the thesis will be to create a template for logging into the text console. The reason
for choosing this template is that in the new architecture, every user will have this
template built into the policy. However, before that we have to choose what system
we will accept it in and what tools we will use on the system.

Choice of system

The choice of the OS on which to develop the policies for new users was relatively
easy. A lot of the credit for the development of SELinux technology goes to Red
Hat, and in addition, SELinux is set up by default in Red Hat Linux distributions.
Red Hat Enterprise Linux (RHEL) version 9.0 was chosen as the system on which
to develop new users and modular policies for users.

The other option was to use the community Linux distribution Fedora, which
also has an active SELinux module by default, but due to less stability of the system

37

the choice fell on the official Red Hat Linux distribution. The beta version of RHEL-
9.0 is freely available on the official Red Hat website, the only condition is to register
here.[45]

Choice of packages

In order to create policies and users, in addition to the SELinux module, it is also
necessary to install several packages that help to work with policies, debug denials
and create local security policies.

For a clearer listing of SELinux denials from the log, the policycoreutils-
python-utils package is useful. This package includes the audit2allow tool, which
translates the denials dump into an understandable policy dump. We can find out
which package this tool is in by using:

Listing 2.1: How find source package for tool.
rpm -qf ‘which audit2allow ‘
policycoreutils -python -utils -3.3 -1. el9.noarch

Another useful tool found in this package is the semanage tool, which can
manage various SELinux policy settings, and can map users to SELinux users.

Another package that has been installed is the setools-console package, which
contains a useful tool called seinfo that can browse policies and output security con-
text types and attribute associations. Another tool in this package is the sesearch
tool, which searches for rules in an active policy. Next useful package is policy-
coreutils. In this package are tools such as semodule, which is used to load the
local policy module into SELinux policy.

But the most important package to install is selinux-policy-devel. This is a pack-
age for developing local policies, and this package is central to that work. Together
with the installation of the selinux-policy-devel package, the packages mentioned
above are also installed as dependencies.

This was the section on the packages needed to develop new policies, and now
on to the section on how to create a policy.

Creating a new user

This section will describe how to create a new user and map it to a new SELinux
user. With this tutorial, you should be able to create a new SELinux user with
a custom security context that gets a new context for login. To find out the user’s
security context after login, use:

38

Listing 2.2: How to get security context of the user.
id -Z

If all steps are done successfully the context should look like this:

Listing 2.3: How look security context on system.
CustomContext_u : CustomContext_r : CustomContext_t :s0

If any part is set incorrectly, the system user will get the security context un-
confined_t. With this tutorial you will create a custom SELinux user with basic
settings, however to make a running system with this user functional you need to add
additional rules to the policy to make all parts of the system work properly. The
templates that will address the functionality of the new user on the system will be
addressed in the next section of the thesis.

First, you need to create a local policy module for the user. It is therefore
necessary to create the source files for the SELinux policy. The source files are as
follows:

• Type Enforcement (.TE) file - This file contains the rules to be written
for this user’s type or domain transitions. Not only can rules be used here in
raw form, but also in the form of macros that contain multiple rules and allow
access to objects with a different type. What the rule looks like was described
in chapter 1.2.1.

• File Context (.FC) - This file contains the security context of the files and
folders associated with the domain.

• Interface File (.IF) - The interface file contains macros that allow manip-
ulation of the domain. Macros consist of raw rules that allow various actions
on the domain. Raw rules are the basic element of the policy, all macros and
all other elements in the policy such as booleans are decomposed into basic
raw rules. For example, a macro that allows access to the files of the policy
module. This is important for other domains that need to access that domain’s
resources.

These three source files are then compiled to create a .pp module, which is then
loaded into the SELinux policy. When creating a test user, the procedure will be
displayed.

Our module will be named testUser and will have a .TE extension. It is used
for testing purposes, so there is no need to use additional source files.

39

This file will look like this:

Listing 2.4: The form of the .TE file.
cat testUser .te

policy_module (testUser , 1.0)

type testUser_t ;
role testUser_r ;

role testUser_r types testUser_t ;
allow system_r testUser_r ;

For a SELinux user to function properly, several things need to be included in the
user policy. First, the domain type and domain role need to be defined. Next, you
need to link the role to the type and also enable the link between the system role
and the domain role. These should be basic elements in any newly created policy
and with this, the user will get the appropriate context defined in the domain when
logging in. We have a source file with a basic role definition and a basic template
for user login and now we will need to compile the source file as follows:

Listing 2.5: Building local policy.
make -f /usr/share/ selinux /devel/ Makefile testUser .pp
Compiling targeted testUser module
Creating targeted testUser .pp policy package
rm tmp/ testUser .mod tmp/ testUser .mod.fc

A module is created and loaded as follows:

Listing 2.6: Loading module to kernel.
semodule -i testUser .pp

It can then check if the module is loaded, or use the seinfo tool to check the newly
created testUser_r role.

40

Listing 2.7: Testing if it’s module loaded.
semodule -l | grep testUser
testUser
seinfo -r testUser_r
Roles: 1

testUser_r

Then you need to change the /etc/selinux/targeted/contexts/default_type file
and add a new user testUser. The location of the file, depends on the active version
of the policy, if the active version is targeted, the location in targeted would be as
here in that case, if it was mls, the location of the file would be /etc/selinux/target-
ed/contexts/default_type. The file will look like this:

Listing 2.8: Adding new user type.
cat /etc/ selinux / targeted / contexts / default_type
auditadm_r : auditadm_t
secadm_r : secadm_t
sysadm_r : sysadm_t
staff_r : staff_t
unconfined_r : unconfined_t
user_r:user_t
testUser_r : testUser_t

You will still need to create a file for a new user in /etc/selinux/targeted/con-
texts/users, the easiest way is to copy an existing user and change the user name
in the file using:

Listing 2.9: Adding new SELinux user.
sed -e ’s|user| testUser |g’ user_u > testUser_u
ls
guest_u root staff_u testUser_u unconfined_u user_u
xguest_u

The last step is to map a GNU/Linux user to a SELinux user. First you need to
create a new user for example newUser.

41

Listing 2.10: Creating new GNU/Linux user.
useradd newUser
passwd newUser
Changing password for user newUser .
New password :
BAD PASSWORD : The password is shorter than 8 characters
Retype new password :
passwd: all authentication tokens updated successfully .

Then you need to create a new SELinux user based on the new type and role.

Listing 2.11: Adding role for SELinux user_u.
semanage user -a testUser_u -R " testUser_r "

Now the user is linked to the SELinux user.

Listing 2.12: MappingGNU/Linux user to SELinux user_u.
semanage login -a -s testUser_u newUser

And finally you need to change the labels in the home directory of newUser
because it got the default security context.

Listing 2.13: Fix label of home directory for mapped new SELinux user.
restorecon -RvF /home/ newUser

After all these steps, the user newUser should get the security context of the new
user testUser_u after logging in.

2.3.1 Developed policy

In previous part we showed how create a new user and now on to creating policies
for the new user. It was mentioned at the beginning of the chapter 2.2 that the user
will be made up of templates for the most part.

The functionality and number of templates was described in chapter 2.2. In the
thesis, the first important templates was developed, namely the templates of user
login to the text console. It still needed to be verified that the user actually works
up after logging in without any problem and this can be verified using a command:

Listing 2.14: Status of running user.
$ systemctl status user@{UID}

The command will show us the systemd user manager for the running user and
we can see if the user is running fine and if all services bound to the user have
started.

42

New SELinux user

In the first step, a new SELinux user basic_u was created with the role basic_r
defined. This user will serve us as a basic user for diploma thesis. The user was
created using the tutorial on creating users in the 2.3 chapter. The SELinux user
was then mapped to the GNU/Linux user basic_user.

However, we are not able to log into the console because the user does not have
the other necessary privileges that will be addressed in the login template. However,
if we change the policy state from enforcing to permissive using:

Listing 2.15: Setting mode of SELinux mechanism.
setenforce 0

We are able to log into the console. This command can change the active policy
state. Number 1 means switching to enforcing mode and number 0 means switching
the policy to permissive mode. We discussed policy states in more detail in the
chapter 1.2.1.

After all these steps, the basic_user user should have the following security
context when logged into the console:

Listing 2.16: SElinux status of GNU/Linux user.
$ id -Z
basic_u : basic_r : basic_t :s0

Logging templates creation

In order to be able to log in via the console even in SELinux policy enforcement
mode, you will need to create a template for logging in via the console. The basic
policy that was defined in the basic.te file looked like this:

Listing 2.17: Essential policy for basic user.
cat basic.te
policy_module (basic , 1.0)

type basic_t ;
role basic_r ;

role basic_r types basic_t ;

It defines the type and role of this policy and the interrelationship between type
and role. To make the policies as modular as possible, we will move these type and

43

interconnection definitions to an .if file where we will create a template for logging in
via the console. The template will be named confinedom_user_login_template
and will look like this:

Listing 2.18: Interface file for local basic policy.
vi basic.if
template (‘ confinedom_user_login_template ’,‘

type $1_t;
role $1_r;

role $1_r types $1_t;
’)

Instead of a fixed type and role, there are parameters in the macro into which
the variable is inserted. Using the macro in basic.te will look like this:

Listing 2.19: Using first template in basic .TE file.
cat basic.te
policy_module (basic , 1.0)

confinedom_user_login_template (basic)

This step will make policy creation for SELinux users very modular and allow
easy creation. Many more rules need to be added to this macro to allow the user to
log into the console. And you just add a template to the .te file and there is no need
to add additional rules that specify the types and roles used in the policy and set
up the connection between role and type. All these rules will not be described and
shown in detail here, because it is a big bunch of rules, but it will be explained in
general what all the SELinux user needs to enable in order to boot without problems.
At the same time, the local policies will be freely available on github to test the
implementation.

2.3.2 Templates

This chapter will describe the templates that will be used to enable rights on the
system and that will be created for this work. A template will consist of several rules
that will enable the functionality of a given tool or program on the system. Without
adding these templates to an active SELinux restricted user policy, users will not
be able to use the required functionality. SELinux policies work on the principle
that everything is disabled by default and functionality on the system needs to

44

https://github.com/Koncpa/confined-users-policy

be enabled by adding rules to the security policy. There will be several of these
templates covering specific areas of activity on the system. For example, there will
be a template to allow limited user logins in the text console, a template to cover
functionality to allow the sudo tool, or a template to allow the use of administrative
tools such as the cron daemon or the use of wireshark.

The various sub-sections related to templates are not alphabetical but based on
creation and level of authority, meaning that templates related to admin and security
work will be at the end of this section.

Login template

A larger number of rules were needed to allow login to the console. Only the key
parts that were needed will be described here. It was necessary to allow the new user
to use the terminal, and it was also necessary to allow the user to run all binaries,
since the user needs to run several utilities when logging in. Then it was necessary
to allow the user to manage their own processes and set setgid and setuid on their
own files. Next, we needed to enable socket communication for different socket types
for the type that will use this template.

You also need to allow access to /etc/passwd, where the user can read the es-
sential data that is needed during login.

Another set of rules that are important are the rules that allow systemd to work,
because systemd is used to run other processes in userspace.

Furthermore, with this template, the user’s security context can be added to
the attributes that hold additional rules relevant to logging in via the console. One
of these attributes is the userdomain attribute, which enables rules for all user
domains, so there is no need to add these rules individually for each domain, but
just add the domain to the attribute.

You need systemd to be running properly for the system to run properly. Sys-
temd can then be used to start and manage other system services and daemons.
Systemd can also have other systemd subprocesses that provide login, time syn-
chronization or logging, for example. All of this also needs to be implemented in a
template.[46]

You also need to enable the SELinux user’s communication template with the
kernel for login and enable reading kernel information. It was also necessary to
enable logging related operations in the policy, as it is necessary to keep logs of events
in case of any errors on the user side.

An important part of the console login template is a set of rules related to SELinux
technology. These are rules that allow the display of information about SELinux,

45

such as what mode the SELinux technology is running in, the ability to read security
contexts, or the ability to create security contexts, for example.

The last important part that needed to be enabled was the handling of the
home directory and the user temporary directory. In the previous term paper there
were problems with incorrect security contexts for the temporary directory, but
fortunately this has been solved in the thesis and the user login is without problems.

SSH template

This template enables user login using the ssh communication protocol, as well as
other communication protocol related operations such as connecting via ssh to var-
ious git repositories and more. This template also allows you to use scp, which
communicates using the ssh protocol. This template also allows you to use scp,
which communicates using the ssh protocol.

The basic idea was to add the already existing ssh_role_template() template
that allows the domain to use the ssh protocol and also needed to enable read and
write inherited sshd pty for the user domain. In addition, the domain needed to en-
able read and write operations to the pty multiplexor (/dev/ptmx). A dytransition
from the sshd domain to the user domains was added to the template.

Basic commands template

Another template that has been worked on is the template for basic commands,
which mostly dealt with basic commands that the user uses in the terminal for
various operations. The user can check the systemd status of the running system
to see if the user has logged in with no problem and all parts of the system are
running successfully. In the case of the GUI, the user has the option to launch the
terminal. He also has access to the system log. The user can monitor processes
using the ps tool.

The image below shows a user in enforcing mode with the security context ba-
sic_u running successfully. This verifies the successful implementation of the console
login template.

46

Listing 2.20: User running succesfully.

Last login: Mon Nov 22 22:34:41 2021
$ id -Z
basic_u : basic_r : basic_t :s0
$ sestatus
SELinux status: enabled
SELinuxfs mount: /sys/fs/ selinux
SELinux root directory : /etc/ selinux
Loaded policy name: targeted
Current mode: enforcing
Mode from config file: enforcing
Policy MLS status: enabled
Policy deny_unknown status: allowed
Memory protection checking : actual (secure)
Max kernel policy version : 33
$ systemctl status user@1002
user@1002 . service - User Manager for UID 1002
Loaded: loaded (/ usr/lib/ systemd /system/user@. service ;
static)
Active: green active (running) since Mon 2021 -11 -22
22:35:09 CET; 17s ago
Docs: man:user@. service (5)
Main PID: 1052 (systemd)
Status: " Startup finished in 59ms."

However, this is not the only functionality covered by this template, the user can
browse directories using ls or has the power to open manual pages and can set the
date and time on the system using the date tool.

There are also rules added to this template that allow the passwd tool to work,
allowing the logged in user to change their password.

To enable these functionalities, it was necessary to enable the reading and map-
ping of systemd daemon files in the policy, which provides information about the
running user on the system.

Reading of logs was enabled for the ability to view the user’s journals, and
mapping of manual files was also enabled for the ability to be read by the user.

Last but not least, access to date files needed to be enabled to change and display
the time. To allow the user to change their password, a macro was added to allow
the passwd tool to run.

47

The next rule under consideration to be added to the basic command template
after the security policies are complete is a dontaudit rule to read all files. Because
the SELinux server logs a lot of access vector cache messages to allow accesses and
resources for the domain that are not needed for the functionality of the tool or
software. With dontaudit rules, the SELinux server can stop logging these resource
access records when the access is not allowed by a classic allow rule.

Networking template

This template is smaller than the previous one because some of the rules that are
needed are enabled in the previous templates. The template should cover the net-
work utilities that are used to configure and debug networks. Such as the ifcon-
fig utility used to configure the network interface or the ping, traceroute, netstat
and route commands.

It should also cover the ip addr and ip link utilities, which will replace ifconfig
in the future. These tools are enabled for the user by adding the macros netu-
tils_run_ping_cond() and netutils_run_traceroute_cond().

Additional rules did not need to be added to the template due to the existence
of rules in the previous templates and the coverage of all necessary rules in these
two macros.

Graphical login template

The template that allows user login via GUI is one of the most extensive templates
created. It should be noted at the outset that this template was developed for the
gnome desktop and may not be fully functional in other GUIs.

Not only does it allow the user to log into the GUI, but it also allows the user
to work with the entire gnome desktop environment. This means the ability to make
various settings on the system such as adding and managing internet connections,
working with bluetooth, various settings and customizations to the appearance of
the system, and setting up peripherals that can be connected to the system such as
a monitor, keyboard and mouse.

You also need to enable working with other settings such as printer and scanner
settings or user management and last but not least sound settings. There are many
more things in gnome settings, but only the most common and most used ones have
been listed here. You also need to enable native gnome desktop applications like
pdf viewer, image viewer or camera control in the template. Also, don’t forget the
ability to download applications using the gnome sofware center.

The gnome software center is the only way for users to install applications unless
the user is a sudoer and has a template that enables sudo on the system.

48

In order for the gnome GUI to work properly, several resource and file accesses
had to be enabled. Since there are many rules that are needed for the GUI to work
properly, not all of them will be listed here, but only the most important rules will
be described.

For the basic GUI start-up it was necessary to enable the use of x windows
system, which allows the GUI to be started on the linux operating system. Next,
it was necessary to use a domain transition from the user domain to the x windows
system domain and back.

It was also necessary for the GUI process that will run in the user domain to
enable the process attribute retrieval, as well as the information and ability to set
resources for the process. One of the other enabled rules that were added to the
template was to enable socket communication for the domain.

Another segments that needed to be enabled are the rules dedicated to devices
connected to the system such as various peripherals and hard drives, video cards,
video and so on. All the important files for the devices are in the /dev/ directory
folder. These files need to be read and written to for proper functionality of the
entire environment. We also need to write to the attachable disks that we can
connect to the system so that, for example, we can work with the flash drive and
modify the content on it.

We also need to enable the rtkit daemon, which acts as a resource allocator for
processes, and we also need to enable the fuse software, which provides users with
the ability to create their own filesystems. For SELinux policies, you only need
to enable GUI read-only security contexts on the system to allow SELinux security
contexts in file explorer.

The domain also needs to enable the Advanced Linux Sound Architecture, which
we call "ALSA" for short, which handles sound. For the user domain running the
GUI, the desktop system needed to be enabled to communicate with the application
using the dbus daemon that handles this communication. There are many appli-
cations and daemons that need to communicate with the user domain via dbus.
Dbus is the software that provides communication between applications. Such as
the bluetooth daemon or the firewall daemon. There were a lot of rules related to
dbus communication in this template and there is no need to describe them in detail.

It is also necessary to enable work with the printer and work with the scanner.
These are the most important rules that needed to be added to the GUI template
in order for the SELinux restricted user to work properly with the gnome GUI.

This template is likely to be used for all types of our new limited users, as a large
proportion of systems today run with a graphical user interface.

49

Mozilla browser template

The template allows a limited user to use a web browser and also allows adding plug-
ins to the browser that can improve its functionality. It was decided that a template
would be written to use the mozilla firefox web browser. Several things had to be
enabled, such as adding a macro to the template to allow the user domain under
which the browser will run to work with plugins, or allowing the user domain to
communicate with mozilla using the dbus daemon. Also, mozzila_t domain was
enabled to work with mozzila_t domain in the process area and file transition for
mozzila firefox files was enabled.

These are the basic rules that will allow a confined SELinux user to use the
mozilla firefox web browser. The user is able to download files through the browser
and can play various multimedia on the browser and surf the internet.

Sudo template

The template that allows you to use sudo is already a template for users who will
have more privileges and will be able to run the software as root. The plan is to
use this template for advanced_u and admin_u users. This is just to allow running
commands with sudo, and in addition there are elementary rules in this template
that will allow the new security context username_sudo_t to access resources on
the system. The moment the user enters a command in the sudo terminal, after
authentication, the user’s security context changes to the sudo format mentioned
in the previous sentences and the new security context needs to access resources on
the system.

So it was necessary to add an existing sudo_role_template() to the function
that covers the rules that enable sudo control, this template has all the rules needed
to run this tool. It is also important to enable the possible basic rules that are
associated with using the sudo utility. For example, the ability to enable or disable
a service using systemctl, or the ability to load kernel modules into the kernel, or
the ability to use sudo in an ssh connection. All of these rules have been added to
the sudo template permissions.

Security template basic

Thanks to this template, the user who will have it in the active policy should be
able to work with the basic tools of the SELinux mechanism. A configured user will
be able to get a list of all SELinux booleans that are in the policy, they should also
be able to search for all SELinux rules on the system or be able to find out which
domains belong to a certain attribute and vice versa.

50

This functionality is used in case of debugging problems that may occur on
a given system due to SELinux. Specifically, the sesearch tool is used to search for
SELinux rules on a system, the getsebool tool is used to list all SELinux booleans
for a change, and the seinfo tool is used to list attributes and domains.

To enable these functionalities, it was important that the template contain rules
that allow reading SELinux policy and the ability to load SELinux modules into the
kernel. It is likely that other necessary rules for proper functionality are enabled
in the base templates.

Security template advanced

If we wanted to allow more privileges for limited users to work with the SELinux
mechanism, we would use this template, which offers advanced options to modify
security policies. It allows users to work with security policies such as adding new
rules to an active policy, disabling domain-specific security policies via modules, or
creating new security contexts for files on the system.

This is a list of only the most well-known operations that can be performed with
the SELinux modification mechanism, however there are other possible SELinux
modifications that will be described below with specific tools.

The most important tool for which functionality needed to be covered is the se-
manage tool, which provides a wide range of modifications to the SELinux mech-
anism. With this tool, booleans can be turned on/off or, for example, SELinux
security contexts can be assigned to Linux users. Another tool is ausearch which
can browse all records of SELinux denials that appear on the system.

The semodule tool can be used to upload, enable and disable domain-specific
security modules to the kernel. With chcon it is possible to change the security
context of files and restorecon utility checks the security context of files based on
the policy, if it does not match the policy then this security context is changed to
the one officially set in the security policy.

In the advanced security template, users will also be allowed to set the SELinux
mode of the entire mechanism thanks to the setenforce tool. If we want to enforce
policies, we use this command and add option 1 after the command, if we want to
disable policy enforcement we use option 0.

To enable the selected functionality described here, we needed to enable the
ability to read audit logs for the user domain in the rules if we want to access
SELinux denials using the ausearch tool. To enable the SELinux mode setting,
there is a macro selinux_set_enforce_mode() directly that enables changing
the SELinux mode. For the ability to change boolean values for the user, the macro
selinux_set_all_booleans() has been added to the template.

51

For the semanage utility to work properly, you need to enable the communication
of this utility via the dbus daemon with the user domain and also add a macro that
enables the usage. You also need to allow the user domain to change security
contexts on the system.

Admin commands template

This is the last template that was created for confined users in this work and is in-
tended for users who will have almost unlimited rights on the system. This template
covers the various tools used by the administrator in his daily work.

Such as managing users on the system, using various network management utili-
ties such as firewall or working with logs or wireshark. Also, working with the tuned
daemon that checks all connected peripherals has been enabled, and a user who has
this template added in an active policy can also change sysctl and kernel tunables.

The iptables_run() macro needed to be enabled to work with the firewall, and
the files_unconfined() macro was added to work with any file on the system.
For wireshark to work properly, a larger set of rules needed to be enabled because
wireshark works with different socket types and reads all incoming communication
on the system, also the existing macro wireshark_role() was enabled.

With the addition of the logging_admin() interface, the user domain will be
able to work and view logs. The tuned_dbus_chat() template allows the user to
communicate with the tuned daemon, allowing the user to use this tool.

This was the last template that was implemented for the new limited users, all
the necessary and important functionality was managed to be added to the templates
for the users.

2.3.3 Configuration of system with confined users

This chapter describes which templates each user is composed of. The composition
of templates gives users different functionality. First, the individual policies need
to be compiled and loaded into the system using the semodule utility, then the
appropriate changes need to be made to the SELinux settings and the Linux user
needs to be mapped to the new SELinux user.

The procedure will not be described in detail here because the 2.3 chapter de-
scribes it step by step.

52

For example, after mapping the advanced_u user with the new security domain,
you should see the following output in the terminal after entering the following
command:

Listing 2.21: Security context of user.
$ id -Z
advanced_u : advanced_r : advanced_t :s0

For the purpose of this work, three users basic_u, advanced_u and admin_u
have been created with different responsibilities. However, thanks to the newly
created templates, the person who will create the policies does not have to use the
users we have designed, but can compose his own user from the templates. The
templates make building a custom user much more user-friendly. Now on to how
the individual users are configured and what functionality they fulfill.

Basic_u

This is the basic user with the least amount of authority. This user has a template
added in the policy for logging in via the console confinedom_user_login_template()
and also logging in via the GUI confinedom_user_login_template(). With the
confined_ssh_connect_template() template, he can use the ssh protocol and
confinedom_networking_template() allows the restricted user to use network
utilities.

There is then the confined_use_basic_commands_template() template
to allow the use of basic commands and the confinedom_mozilla_usage_template()
template that allows the use of the Mozilla Firefox web browser.

A user with this range of permissions is able to work on the system as a normal
user who needs to work largely with the browser and GUI and does not need other
administrative utilities.

Advanced_u

This restricted user contains all the templates that were described for the first user
in the policy, but also has two additional templates added. In the active policy, it
has the added template confinedom_security_template_basic(), which allows
the user to browse the active SELinux rules on the system and browse other SELinux
mechanism data.

There is also the addition of the confinedom_sudo_template() template,
which allows a restricted user to use the sudo utility, as long as they are in the
sudoers group. However, this template allows him to use the sudo utilities for which
the rules are written, meaning that he is not automatically allowed to run everything

53

with sudo. The SELinux server will block these attempts unless he is allowed to run
a specific utility with sudo.

This restricted user may be ideal for people who need to perform more complex
operations on the system.

Admin_u

This is the last user that was created in this work. The user has almost un-
limited powers on the system and is allowed a wide variety of tools. This type
of user is suitable for people who are system administrators, as it offers them
the widest functionality. Two templates are added to the policy, the confine-
dom_security_template_advanced() template provides the user with the abil-
ity to change SELinux rules and security contexts. It can also disable the entire
SELinux mechanism, thus making it inoperable. The second template added to
the admin policy is the confinedom_admin_commands_template() template,
which allows the user to use various advanced admin tools.

These are the three basic users that were created in this work. The individual
functionality could be extended, but due to the scope and complexity of the work,
the most common functionality is brushed off. However, as mentioned once in this
chapter, a developer can create and assemble their own limited user quite easily
thanks to the templates created.

2.4 Application to improve security
In this part of the thesis we will describe possible privilege escalations that can occur
on a linux system and we can see how SELinux can or cannot prevent and mitigate
these attacks from the user side. RHEL-9.0 was used as the target system on which
the latest privilege escalation exploits were tested. These exploits were tested first
on a system where SELinux was disabled, then on a system where SELinux was
active but users were not restricted in any way, and then on systems where users
had the security contexts of the new restricted users which we created.

Five priviledge escalations were searched for in the last year and a half, but only
two of them could be reproduced on RHEL-9.0. In the table below we attach all the
vulnerabilities we were able to find with all the useful links.

The two priviledge escalations that we managed to reproduce are the first two in
the table. These vulnerabilities were disclosed this year. These vulnerabilities are
Dirty Pipe and PwnKit.

54

Codename Affected component Public disclosure CVE
Dirty Pipe Linux kernel 2022-03-07 CVE-2022-0847
PwnKit Polkit - pkexec 2022-01-02 CVE-2021-4034
NotQuite0DayFriday iSCSI - Linux kernel 2021-03-12 CVE-2021-27365
Sequoia Linux kernel - file sys-

tem layer
2021-07-20 CVE-2021-33909

Linux eBPF Linux kernel - eBPF 2021-09-01 CVE-2021-3490

Tab. 2.1: Table of priviledge escalations

2.4.1 DirtyPipe

Thanks to a vulnerability that security researchers have dubbed "Dirty Pipe", users
can gain root privileges on a given system through publicly available exploits, making
it potentially dangerous for vulnerabilities that would only allow an attacker to gain
ordinary user privileges. With this privilege escalation, he can take control of the
entire machine. This vulnerability first appeared and affected Linux Kernel version
5.8 and later. Android devices are also affected by this vulnerability. [47]

How DirtyPipe vulnerability work

Now to the vulnerability itself. Thanks to dirty pipe, an unprivileged user can write
to cached pages that have been backed up with read-only files and thus can increase
their privileges on the system. This is due to the use of a partially uninitialized
memory of the pipe buffer structure in its construction. This means that the new
member is insufficiently zero-initialized, which causes flag values to be out of date.
This is exploited by an attacker to gain write access to cached pages, which are,
however, originally marked read-only. This vulnerability gives an attacker several
ways to gain root privileges, such as through unauthorized creation of new cron jobs,
SUID binary hijacking, or by modifying the /etc/passwd file. [48]

An exploit has been found for replay cases and can be used in the following steps.
First, the ELF executable needs to be downloaded on the system. Then you need
to change the permissions for the file using the chmod file and see if your system is
compromised by executing the file.

Listing 2.22: Setting permission of file and executing them.
$ chmod 777 traitor -amd64
$./ traitor -amd64

If a vulnerable version of the Linux Kernel is found on the system the exploit
can be run as follows:

55

https://dirtypipe.cm4all.com/
https://tryhackme.com/room/pwnkit
https://github.com/trickest/cve/blob/main/2021/CVE-2021-27365.md
https://github.com/trickest/cve/blob/main/2021/CVE-2021-33909.md
https://packetstormsecurity.com/files/164015/Linux-eBPF-ALU32-32-bit-Invalid-Bounds-Tracking-Local-Privilege-Escalation.html
https://github.com/liamg/traitor/releases/download/v0.0.14/traitor-amd64

Listing 2.23: Running exploit.
$./ traitor -amd64 --exploit kernel:CVE -2022 -0847

If the exploit is successful after entering the following commands the user should
get root privileges and have a root ID:

Listing 2.24: After exploit.
whoami
root
id
uid =0(root) gid =0(root) groups =0(root)

This exploit gives the user root privileges on the system. The vulnerability will
not be discussed in more detail as vulnerabilities are not the focus of this paper.
The following paragraphs will describe how various SELinux settings can or cannot
mitigate this privilege escalation.

Inactive SELinux

In this configuration, SELinux is inactive and thus there are no mechanisms that
can mitigate this privilege escalation. An attacker gains full privileges to the system
and can compromise the machine. A small change would occur in the permissive
where SELinux is enabled but policies are not required so all unauthorized accesses
are logged.

Unconfined_u

This security context is used on most systems running SELinux by default. The user
has the security context unconfined_t. The problem is that root has a designated
security context of unconfined_t i.e. the same as a regular user and for this context
a large part of the rules in the policies are enabled.

So if an ordinary user who is not in the sudo group runs an exploit, they gain
root privileges and can compromise the system as well.

Basic_u

This is already a SELinux user that is created by us and has templates created by
us in its policies. He should have the least authority of the three users that were
created for this job, and thus the SELinux mechanism should mitigate any privilege
escalation the most.

Again, after the exploit is triggered, the user becomes root and has a root ID. If
we look at the output of the following command we see this:

56

Listing 2.25: ID of basic_user.
id
uid =0(root) gid =0(root) groups =0(root)
context = basic_u : basic_r : basic_t :s0

You can see the extra security context of a restricted basic user. Due to the fact
that the SELinux server is running over classic discrete access control, the attacker
has no chance to exploit root privileges on this account because root is still running
in the security context of this user. The SELinux system would have to be inactive
or in permissive mode for an attacker to gain root privileges. Thus, the policies we
developed work against privilege escalation and can mitigate it on the SELinux side.
So it always depends to what extent a given user is restricted based on that extent
an attacker gains privileges. For a basic user, there is no way to use the sudo utility.

Advanced_u

The same situation occurs with another user who is more advanced and can already
use the sudo utility, but even in this case the attacker does not gain more power
than an ordinary user thanks to the SELinux mechanism. The only advantage the
attacker gains is that the functionality that the user runs via sudo can be run as
root without authenticating the user.

Admin_u

For an admin, the situation will be similar, except that it has a much larger range
of functionality executable via sudo that could be exploited by an attacker.

2.4.2 Pwnkit

Another priviledge escalation that has been reproduced on our system is a vulner-
ability codenamed "PwnKit". This vulnerability can be found on a wide range of
Linux distributions and is also found on the Red Hat Enterprise Linux distribution.
As with the "DirtyPipe" vulnerability, an attacker can obtain root privileges.

Unlike the previous priviledge escalation, here the Kernel kernel is not affected,
but a Polkit system component specifically pkexec. This vulnerability has been
found to have existed for 12 years and has been in every version of Polkit released
in that time.

Polkit is a component for managing system-wide permissions in Unix-like oper-
ating systems. It provides an organized way for non-privileged processes to commu-
nicate with privileged processes. Polkit provides a level of centralized system policy
control.

57

A component of polkit is pkexec, which allows a privileged user to run commands
as another user and is an alternative to the sudo tool.[49]

How PwnKit works

This vulnerability allows a user to execute the pkexec executable and pass it a specific
set of environment variables that can execute an arbitrary library file. This allows
an unprivileged attacker to invoke PolicyKit and force it to execute an attacker-
controlled .so file on the file system. After this exploit, the attacker is able to
perform privilege escalation from an ordinary user to a user with root privileges.[50]

An exploit has been found for this priviledge escalation, which you can download
using this link. The source files that need to be built can be downloaded and then
the exploit can be run. All the steps that have been written here are here:

Listing 2.26: Steps to reproduce PwnKit exploit.
[basic_user@thesis -rhel9 PwnKit - Exploit]$ make
cc -Wall exploit .c -o exploit
[basic_user@thesis -rhel9 PwnKit - Exploit]$ whoami
basic_user
[basic_user@thesis -rhel9 PwnKit - Exploit]$./ exploit
Current User before execute exploit
hacker@victim$whoami : basic_user
[+] Enjoy your root if exploit was completed succesfully
bash: /root /. bashrc: Permission denied
bash -5.1# id -Z
basic_u : basic_r : basic_t :s0
bash -5.1# whoami
root
bash -5.1#

However, this exploit is valid for Polkit polkit-0.117-7.el9.x86_64 and earlier.
A temporary workaround for this vulnerability was to issue this command, which
removes the pkexec setuid bit.

Listing 2.27: Temporary workaround for PwnKit.
$ chmod 0755 /usr/bin/pkexec

Currently, current versions of polkit no longer contain this vulnerability.
And how can SELinux mitigate this vulnerability?
The impact of this priviledge escalation is exactly the same as the first vulner-

ability discussed. SELinux can therefore mitigate effectively depending on which

58

https://github.com/luijait/PwnKit-Exploit.git

restricted user is mapped to the Linux user on the system. This means that the user
basic_u who only provides basic functionality can mitigate the most and the user
admin_u who has the most authority can mitigate the least, but this does not take
into account systems that do not use our restricted users. In these cases, SELinux
cannot effectively mitigate privilege escalation.

In conclusion, SELinux in our configuration with newly created users can there-
fore successfully mitigate an attacker’s attempts to elevate privileges on the system.
We have demonstrated this with the kernel vulnerability example and also with the
system component vulnerability example. SELinux with our limited users is thus
an interesting option to secure possible privilege escalation on the system. Still on
the issue of vulnerabilities that we have not been able to reproduce, there is an as-
sumption that SELinux would be able to mitigate all these vulnerabilities because
the security server always runs on top of the classic discrete access control that is
on the system.

2.5 Future improvements
Although we were able to create functional security policies on the Red Hat Enter-
prise Linux operating system for everyday use, this work was not able to cover all
the functionality that this system offers to users. Full coverage of the functionality
was beyond the scope of this work. And as a possible future enhancement to the
restricted user policies, the policies can be extended to cover additional software on
the system.

Another possible enhancement is to make role switching with the newrole tool
available for advanced_u and admin_u users, where a user who has the security
context of advanced_u will be able to gain more privileges and switch to the admin_r
role. This will give them all the privileges on the system that admin_u has but with
the associated security risk.

Another possible policy enhancement is to create additional confined users that
would more specify the use of the system, such as a confined user that specializes
in working with logs or a confined user that specializes in working with SELinux
technology.

59

3 Conclusion
In this thesis, we addressed how to handle user rights using SELinux technology
in Red Hat Enterprise Linux. First, the general security mechanisms and access
control found on GNU/Linux systems were discussed. Also, the classic discrete
access control found on all GNU/Linux operating systems was explained and then
the principle of Mandatory Access Control, which can be added as a module to the
GNU/Linux kernel, was discussed.

Furthermore, the SELinux technology, which is crucial for our work, was dis-
cussed in more detail. Regarding SELinux technology we described more about
its basics, how it enforces security on the system. What the different elements of
SELinux technology exist and also how it restricts services from working on the sys-
tem and how we can directly restrict GNU/Linux users on the system. Describing
the ways of restricting users on the system was important because in the practical
part, restricting users is the goal of the whole thesis.

Therefore, the overall objective of the work was to design security rules based
on typical user activities and further implement these rules and then test the func-
tionality of the security policies. First, we did some research on typical uses of the
GNU/Linux OS. The survey resulted in a list of typical uses of the OS, which was
divided into several logical units such as basic operations or security on the system.

The survey was followed by a description of our proposed architecture of how the
new confined users will be structured and what structure will be used in the security
policies to allow the most variable cutomization. It was decided that the security
rules that will then be added to the SELinux user policies will be encapsulated in
templates that can thus be freely used. It was decided to create three confined
SELinux users, which are different in functionality and are intended for different
typical GNU/Linux users.

In the implementation part, we aim to implement the principles and mechanisms
of the new policies proposed by us. We first describe how to create a custom policy
for a restricted user. The steps from the creation of a GNU/Linux user, a SELinux
user, to the subsequent mapping of the two mechanisms and the linking of the
GNU/Linux user to the SELinux security context are broken down.

This tutorial was followed by a description of the functionalities of each template
that was created. It described what resource and data accesses we need to add to the
template to enable the user. Several of these templates were created and described
and we won’t list them all in the conclusion, but the more important templates that
were created are the user login template and then the GUI template.

Thanks to the implementation of the new template, we have discovered several
errors in the SELinux security policies that need to be fixed and can already benefit

60

all users using the technology. For example, we discovered a bad label for temporary
systemd files that were tagged as user_tmp_t, causing problems in policies.

After that, it was still necessary to create individual SELinux users and ap-
ply the templates created to them. Once the users were successfully implemented
and configured on the system, the intended functionality of the individual confined
users was tested to see if the individual users had more powers than declared. In
the penultimate part of the practical work, we tried using our new SELinux users
to mitigate the latest vulnerabilities that have emerged. And in the last part we
outlined possible improvements to our confined users for the future.

SELinux technology has proven that it can be an interesting option to limit
users and mitigate possible attacks, which recently also aim at controlling the sys-
tem through user compromise. Thanks to our confined users, this danger can be
minimized, making it harder for attackers to penetrate the system. And with fur-
ther improvements that can be made in the future, this technology can even better
secure operating systems that are used around the world by many users.

61

Bibliography
[1] Red Hat Product Security risk report: 2020 [online]. Raleigh: Red Hat, 2021

[cit. 2021-11-03]. Available from: https://www.redhat.com/en/resources/
product-security-risk-report-2020

[2] Chapter 2. Introduction [online]. Raleigh: Red Hat, 2020 [cit. 2021-
11-03]. Available from: https://access.redhat.com/documentation/
en-us/red_hat_enterprise_linux/6/html/security-enhanced_linux/
chap-security-enhanced_linux-introduction

[3] Chapter 2. Introduction [online]. Raleigh: Red Hat, 2020 [cit. 2021-
11-03]. Available from: https://access.redhat.com/documentation/
en-us/red_hat_enterprise_linux/6/html/security-enhanced_linux/
chap-security-enhanced_linux-introduction

[4] Red Hat Product Security risk report: 2020 [online]. Raleigh: Red Hat, 2021
[cit. 2021-11-03]. Available from: https://www.redhat.com/en/resources/
product-security-risk-report-2020

[5] Chapter 2. Introduction [online]. Raleigh: Red Hat, 2020 [cit. 2021-
11-03]. Available from: https://access.redhat.com/documentation/
en-us/red_hat_enterprise_linux/6/html/security-enhanced_linux/
chap-security-enhanced_linux-introduction

[6] Chapter 2. Introduction [online]. Raleigh: Red Hat, 2020 [cit. 2021-
11-03]. Available from: https://access.redhat.com/documentation/
en-us/red_hat_enterprise_linux/6/html/security-enhanced_linux/
chap-security-enhanced_linux-introduction

[7] How Secure Is Linux? [online]. Upper Saddle River, N.J.: Guardian Dig-
ital, 2021 [cit. 2021-11-04]. Available from: https://linuxsecurity.com/
features/how-secure-is-linux

[8] KŇAŽEKOVÁ, Nikola. SECURITY OF RED HAT ENTERPRISE LINUX
BASED OPERATING SYSTEMS. Brno, 2020. Diplomová práce. Vysoké učení
technické v Brně. Vedoucí práce Prof. Ing. Dan Komosný, Ph.D.

[9] KŇAŽEKOVÁ, Nikola. SECURITY OF RED HAT ENTERPRISE LINUX
BASED OPERATING SYSTEMS. Brno, 2020. Diplomová práce. Vysoké učení
technické v Brně. Vedoucí práce Prof. Ing. Dan Komosný, Ph.D.

62

https://www.redhat.com/en/resources/product-security-risk-report-2020
https://www.redhat.com/en/resources/product-security-risk-report-2020
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/security-enhanced_linux/chap-security-enhanced_linux-introduction
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/security-enhanced_linux/chap-security-enhanced_linux-introduction
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/security-enhanced_linux/chap-security-enhanced_linux-introduction
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/security-enhanced_linux/chap-security-enhanced_linux-introduction
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/security-enhanced_linux/chap-security-enhanced_linux-introduction
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/security-enhanced_linux/chap-security-enhanced_linux-introduction
https://www.redhat.com/en/resources/product-security-risk-report-2020
https://www.redhat.com/en/resources/product-security-risk-report-2020
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/security-enhanced_linux/chap-security-enhanced_linux-introduction
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/security-enhanced_linux/chap-security-enhanced_linux-introduction
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/security-enhanced_linux/chap-security-enhanced_linux-introduction
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/security-enhanced_linux/chap-security-enhanced_linux-introduction
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/security-enhanced_linux/chap-security-enhanced_linux-introduction
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/security-enhanced_linux/chap-security-enhanced_linux-introduction
https://linuxsecurity.com/features/how-secure-is-linux
https://linuxsecurity.com/features/how-secure-is-linux

[10] Overview of Linux Kernel Security Features [online]. USA: The Linux Foun-
dation, 2013 [cit. 2021-11-05]. Available from: https://www.linux.com/
training-tutorials/overview-linux-kernel-security-features/

[11] Special File Permissions (setuid, setgid and Sticky Bit) [online]. USA: Oracle
Corporation, 2010 [cit. 2021-11-05]. Available from: https://docs.oracle.
com/cd/E19683-01/816-4883/secfile-69/index.html

[12] The SCO Group, Inc. UnixWare 7 Documentation. Discretionary ac-
cess control DAC: permission bits [online]. [cit. 2021-11-06]. Available
at: http://uw714doc.xinuos.com/en/SEC_file/_Discretionary_Access_
Control_DAC_perms.html

[13] Sticky bit is only for directories? [online]. USA: StackOverflow, 2017 [cit. 2021-
12-05]. Dostupné z: https://stackoverflow.com/questions/41435657/
sticky-bit-is-only-for-directories-i-found-it-could-be-on-files-weird

[14] Securing Linux with Mandatory Access Controls [online]. USA: The Linux Foun-
dation, 2005 [cit. 2021-11-05]. Available from: https://www.linux.com/news/
securing-linux-mandatory-access-controls/

[15] Securing Linux with Mandatory Access Controls [online]. USA: The Linux Foun-
dation, 2005 [cit. 2021-11-05]. Available from: https://www.linux.com/news/
securing-linux-mandatory-access-controls/

[16] Linux Security Module Usage [online]. USA: The Linux Kernel, 2021 [cit.
2021-11-22]. Available from: https://www.kernel.org/doc/html/v4.16/
admin-guide/LSM/index.html

[17] Securing Linux with Mandatory Access Control [online].
GOTHENBURG, SWEDEN: Scionova, 2019 [cit. 2021-11-
06]. Available from: https://www.scionova.com/2019/04/08/
securing-linux-with-mandatory-access-control/

[18] Linux Security Module Usage [online]. USA: The Linux Kernel, 2021 [cit.
2021-11-22]. Available from: https://www.kernel.org/doc/html/v4.16/
admin-guide/LSM/index.html

[19] HAINES, Richard. The SELinux Notebook: (4th Edition) [online]. 2014
[cit. 2021-11-06]. Available at: http://freecomputerbooks.com/books/The_
SELinux_Notebook-4th_Edition.pdf

63

https://www.linux.com/training-tutorials/overview-linux-kernel-security-features/
https://www.linux.com/training-tutorials/overview-linux-kernel-security-features/
https://docs.oracle.com/cd/E19683-01/816-4883/secfile-69/index.html
https://docs.oracle.com/cd/E19683-01/816-4883/secfile-69/index.html
http://uw714doc.xinuos.com/en/SEC_file/_Discretionary_Access_Control_DAC_perms.html
http://uw714doc.xinuos.com/en/SEC_file/_Discretionary_Access_Control_DAC_perms.html
https://stackoverflow.com/questions/41435657/sticky-bit-is-only-for-directories-i-found-it-could-be-on-files-weird
https://stackoverflow.com/questions/41435657/sticky-bit-is-only-for-directories-i-found-it-could-be-on-files-weird
https://www.linux.com/news/securing-linux-mandatory-access-controls/
https://www.linux.com/news/securing-linux-mandatory-access-controls/
https://www.linux.com/news/securing-linux-mandatory-access-controls/
https://www.linux.com/news/securing-linux-mandatory-access-controls/
https://www.kernel.org/doc/html/v4.16/admin-guide/LSM/index.html
https://www.kernel.org/doc/html/v4.16/admin-guide/LSM/index.html
https://www.scionova.com/2019/04/08/securing-linux-with-mandatory-access-control/
https://www.scionova.com/2019/04/08/securing-linux-with-mandatory-access-control/
https://www.kernel.org/doc/html/v4.16/admin-guide/LSM/index.html
https://www.kernel.org/doc/html/v4.16/admin-guide/LSM/index.html
http://freecomputerbooks.com/books/The_SELinux_Notebook-4th_Edition.pdf
http://freecomputerbooks.com/books/The_SELinux_Notebook-4th_Edition.pdf

[20] HAINES, Richard. The SELinux Notebook: (4th Edition) [online]. 2014
[cit. 2021-11-06]. Available at: http://freecomputerbooks.com/books/The_
SELinux_Notebook-4th_Edition.pdf

[21] Security Context [online]. USA: Red Hat, 2014 [cit. 2021-11-09]. Available from:
https://selinuxproject.org/page/NB_SC

[22] Security Context [online]. USA: Red Hat, 2014 [cit. 2021-11-09]. Available from:
https://selinuxproject.org/page/NB_SC

[23] Security Context [online]. USA: Red Hat, 2014 [cit. 2021-11-09]. Available from:
https://selinuxproject.org/page/NB_SC

[24] Security Context [online]. USA: Red Hat, 2014 [cit. 2021-11-09]. Available from:
https://selinuxproject.org/page/NB_SC

[25] HAINES, Richard. The SELinux Notebook: (4th Edition) [online]. 2014
[cit. 2021-11-06]. Available at: http://freecomputerbooks.com/books/The_
SELinux_Notebook-4th_Edition.pdf

[26] AVCRules [online]. USA: Red Hat, 2015 [cit. 2021-11-09]. Available from:
https://selinuxproject.org/page/AVCRules

[27] AVCRules [online]. USA: Red Hat, 2015 [cit. 2021-11-09]. Available from:
https://selinuxproject.org/page/AVCRules

[28] AVCRules [online]. USA: Red Hat, 2015 [cit. 2021-11-09]. Available from:
https://selinuxproject.org/page/AVCRules

[29] AVCRules [online]. USA: Red Hat, 2015 [cit. 2021-11-09]. Available from:
https://selinuxproject.org/page/AVCRules

[30] AVCRules [online]. USA: Red Hat, 2015 [cit. 2021-11-09]. Available from:
https://selinuxproject.org/page/AVCRules

[31] VERMEULEN, S. SELinux Cookbook. Packt Publishing, 2014, 214 s. ISBN
978-1783989669.

[32] HAINES, Richard. The SELinux Notebook: (4th Edition) [online]. 2014
[cit. 2021-11-06]. Available at: http://freecomputerbooks.com/books/The_
SELinux_Notebook-4th_Edition.pdf

[33] HAINES, Richard. The SELinux Notebook: (4th Edition) [online]. 2014
[cit. 2021-11-06]. Available at: http://freecomputerbooks.com/books/The_
SELinux_Notebook-4th_Edition.pdf

64

http://freecomputerbooks.com/books/The_SELinux_Notebook-4th_Edition.pdf
http://freecomputerbooks.com/books/The_SELinux_Notebook-4th_Edition.pdf
https://selinuxproject.org/page/NB_SC
https://selinuxproject.org/page/NB_SC
https://selinuxproject.org/page/NB_SC
https://selinuxproject.org/page/NB_SC
http://freecomputerbooks.com/books/The_SELinux_Notebook-4th_Edition.pdf
http://freecomputerbooks.com/books/The_SELinux_Notebook-4th_Edition.pdf
https://selinuxproject.org/page/AVCRules
https://selinuxproject.org/page/AVCRules
https://selinuxproject.org/page/AVCRules
https://selinuxproject.org/page/AVCRules
http://freecomputerbooks.com/books/The_SELinux_Notebook-4th_Edition.pdf
http://freecomputerbooks.com/books/The_SELinux_Notebook-4th_Edition.pdf
http://freecomputerbooks.com/books/The_SELinux_Notebook-4th_Edition.pdf
http://freecomputerbooks.com/books/The_SELinux_Notebook-4th_Edition.pdf

[34] HAINES, Richard. The SELinux Notebook: (4th Edition) [online]. 2014
[cit. 2021-11-06]. Available at: http://freecomputerbooks.com/books/The_
SELinux_Notebook-4th_Edition.pdf

[35] Using SELinux [online]. Raleigh: Red Hat, 2021 [cit. 2021-11-10]. Avail-
able from: https://access.redhat.com/documentation/en-us/red_
hat_enterprise_linux/9-beta/html-single/using_selinux/index#
managing-confined-and-unconfined-users_using-selinux

[36] Using SELinux [online]. Raleigh: Red Hat, 2021 [cit. 2021-11-10]. Avail-
able from: https://access.redhat.com/documentation/en-us/red_
hat_enterprise_linux/9-beta/html-single/using_selinux/index#
managing-confined-and-unconfined-users_using-selinux

[37] KŇAŽEKOVÁ, Nikola. SECURITY OF RED HAT ENTERPRISE LINUX
BASED OPERATING SYSTEMS. Brno, 2020. Diplomová práce. Vysoké učení
technické v Brně. Vedoucí práce Prof. Ing. Dan Komosný, Ph.D.

[38] Linux Documentation Project Guides [online]. USA: Linux Documentation
Project, 2014 [cit. 2021-11-22]. Available from: https://tldp.org/guides.
html

[39] Welcome to Freedom [online]. USA: Red Hat, 2021 [cit. 2021-11-15]. Available
from: https://getfedora.org/

[40] Ways of logging to Linux machine [online]. USA: Stack&Exchange, 2014 [cit.
2021-11-16]. Available from: https://unix.stackexchange.com/questions/
109999/ways-of-logging-to-linux-machine

[41] 34 Linux Basic Commands Every User Should Know [online]. –: Hostinger, 2021
[cit. 2021-11-16]. Available from: https://www.hostinger.com/tutorials/
linux-commands

[42] The most obvious user for Linux isn’t who you think [online]. USA: Technology
Advice, 2021 [cit. 2021-11-16]. Available from: https://www.techrepublic.
com/article/the-most-obvious-user-for-linux-isnt-who-you-think/

[43] Linux System Admin Command [online]. USA: JavaTpoint, 2021
[cit. 2021-11-16]. Available from: https://www.javatpoint.com/
linux-system-admin-commands

[44] 5 everyday sysadmin tasks to automate with Ansible [online]. USA: Red Hat,
2021 [cit. 2021-11-16]. Available from: https://opensource.com/article/
21/3/ansible-sysadmin

65

http://freecomputerbooks.com/books/The_SELinux_Notebook-4th_Edition.pdf
http://freecomputerbooks.com/books/The_SELinux_Notebook-4th_Edition.pdf
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9-beta/html-single/using_selinux/index#managing-confined-and-unconfined-users_using-selinux
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9-beta/html-single/using_selinux/index#managing-confined-and-unconfined-users_using-selinux
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9-beta/html-single/using_selinux/index#managing-confined-and-unconfined-users_using-selinux
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9-beta/html-single/using_selinux/index#managing-confined-and-unconfined-users_using-selinux
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9-beta/html-single/using_selinux/index#managing-confined-and-unconfined-users_using-selinux
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9-beta/html-single/using_selinux/index#managing-confined-and-unconfined-users_using-selinux
https://tldp.org/guides.html
https://tldp.org/guides.html
https://getfedora.org/
https://unix.stackexchange.com/questions/109999/ways-of-logging-to-linux-machine
https://unix.stackexchange.com/questions/109999/ways-of-logging-to-linux-machine
https://www.hostinger.com/tutorials/linux-commands
https://www.hostinger.com/tutorials/linux-commands
https://www.techrepublic.com/article/the-most-obvious-user-for-linux-isnt-who-you-think/
https://www.techrepublic.com/article/the-most-obvious-user-for-linux-isnt-who-you-think/
https://www.javatpoint.com/linux-system-admin-commands
https://www.javatpoint.com/linux-system-admin-commands
https://opensource.com/article/21/3/ansible-sysadmin
https://opensource.com/article/21/3/ansible-sysadmin

[45] Red Hat Enterprise Linux (RHEL) 9 Beta se zaměřuje
na automatizaci [online]. Praha: Root.cz, 2021 [cit. 2021-
11-11]. Available from: https://www.root.cz/zpravicky/
red-hat-enterprise-linux-rhel-9-beta-se-zameruje-na-automatizaci/

[46] Systemd System and Service Manager [online]. USA: Freedesktop, 2021
[cit. 2021-11-22]. Available from: https://www.freedesktop.org/wiki/
Software/systemd/

[47] New Linux bug gives root on all major distros, exploit released
[online]. USA: Bleeping Computer, 2022 [cit. 2022-04-21]. Dos-
tupné z: https://www.bleepingcomputer.com/news/security/
new-linux-bug-gives-root-on-all-major-distros-exploit-released/

[48] Linux system service bug gives root on all major distros, exploit re-
leased [online]. USA: BleepingComputer.coM, 2022 [cit. 2022-04-26].
Dostupné z: https://www.bleepingcomputer.com/news/security/
linux-system-service-bug-gives-root-on-all-major-distros-exploit-released/

[49] Linux system service bug gives root on all major distros, exploit re-
leased [online]. USA: BleepingComputer.coM, 2022 [cit. 2022-04-26].
Dostupné z: https://www.bleepingcomputer.com/news/security/
linux-system-service-bug-gives-root-on-all-major-distros-exploit-released/

[50] Linux system service bug gives root on all major distros, exploit re-
leased [online]. USA: BleepingComputer.coM, 2022 [cit. 2022-04-26].
Dostupné z: https://www.bleepingcomputer.com/news/security/
linux-system-service-bug-gives-root-on-all-major-distros-exploit-released/

66

https://www.root.cz/zpravicky/red-hat-enterprise-linux-rhel-9-beta-se-zameruje-na-automatizaci/
https://www.root.cz/zpravicky/red-hat-enterprise-linux-rhel-9-beta-se-zameruje-na-automatizaci/
https://www.freedesktop.org/wiki/Software/systemd/
https://www.freedesktop.org/wiki/Software/systemd/
https://www.bleepingcomputer.com/news/security/new-linux-bug-gives-root-on-all-major-distros-exploit-released/
https://www.bleepingcomputer.com/news/security/new-linux-bug-gives-root-on-all-major-distros-exploit-released/
https://www.bleepingcomputer.com/news/security/linux-system-service-bug-gives-root-on-all-major-distros-exploit-released/
https://www.bleepingcomputer.com/news/security/linux-system-service-bug-gives-root-on-all-major-distros-exploit-released/
https://www.bleepingcomputer.com/news/security/linux-system-service-bug-gives-root-on-all-major-distros-exploit-released/
https://www.bleepingcomputer.com/news/security/linux-system-service-bug-gives-root-on-all-major-distros-exploit-released/
https://www.bleepingcomputer.com/news/security/linux-system-service-bug-gives-root-on-all-major-distros-exploit-released/
https://www.bleepingcomputer.com/news/security/linux-system-service-bug-gives-root-on-all-major-distros-exploit-released/

Symbols and abbreviations
ALSA Advanced Linux Sound Architecture

CVE Common Vulnerabilities and Exposures

DAC Discretionary Access Control

ELF Executable and Linkable Format

FLASK Flux Advanced Security Kernel

GUI Graphical User Interface

LSM Linux Security Modules

MAC Mandatory Access Control

MCS Multi-Category Security

MLS Multi-Level Security

RBAC Role-Based Access Control

OS operating system

RHEL Red Hat Enterprise Linux

SaaS Software as a Service

SELinux Security-Enhanced Linux

TE Type enforcement

USB Universal Serial Bus

67

	Introduction
	GNU/Linux systems and security
	Security mechanism in GNU/Linux systems
	Discretionary Access Control
	Mandatory access control

	SELinux technology
	Basic SELinux mechanism
	User rights defined by SELinux

	Practical part
	Survey on typical GNU/Linux users
	SELinux proposal
	Implementation
	Developed policy
	Templates
	Configuration of system with confined users

	Application to improve security
	DirtyPipe
	Pwnkit

	Future improvements

	Conclusion
	Bibliography
	Symbols and abbreviations

