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Abstract. There exist many types of structures, which are required to have 
stable dimensions within a wide range of temperatures. The specific nature 
of composites allows finding special conditions when a laminate stacking 
sequence can provide zero thermal expansion coefficients in one or more 
directions. This allows the structure being designed to have the same 
dimensions in a wide range of temperatures. This work is aimed to find 
mathematical conditions, which guarantee in-plane zero CTE at least in one 
direction. As an application of thermally stable laminates a rotating disk is 
chosen. The mathematical model for such a disk is presented. Among 
investigated materials there was not found any of them, which can be used 
to layup a laminate with zero CTEs in two directions. However, all 
investigated materials can be used to layup many laminates with zero CTE 
in one or another direction. Moreover, it was discovered a laminate might 
have a zero CTE, if the lamina has zero or negative CTE at least in one 
direction. It was found the stresses, which appear in a laminated disk caused 
by centripetal forces, are insignificantly low in comparison to the thermal 
ones within the investigated ranges of angular velocity and temperature. 

1 Introduction 

Many structural applications of laminated FRP materials are connected with thermal 
loading, where special requirements are applied to the structure such as stability of its 
dimensions and/or shape within a certain range of temperatures. Mainly, these are the space 
applications, where the variation of geometry and/or shape of a special structure has strict 
limitations during its operation in order to keep their main characteristics. The examples of 
such structures can be space antennas, telescopes, instrumental platforms, etc. [1], [2], [3]. 
However, the ground applications are possible also. For example, the pressurized vessels and 
pipelines with a heated medium inside are discussed in [4]. 

Another possible future application could be a base-wheel and blades of a gas turbine 
engine, which are exposed to high temperatures and where the blade tip clearance represent 
a source of large loss in a turbine [5]. The less the gap the less loss. From the other hand, the 
thermal expansion of the wheel and blades is one of the reasons why it cannot be designed 
as small as possible for all engine modes. 

The main reason for the laminated FRPs to be applied in above noted structures is an 
ability to control their properties via stacking sequence variation. 
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The carbon-epoxy symmetrically balanced angle-ply laminates with almost null CTE in 
one direction firstly were found in [6], where the laminas’ angles were approximately ±42°. 
It was shown experimentally, the lamina CTEs are significantly changing within wide 
temperature range. Therefore, the found laminate has zero CTE only in narrow range close 
to room temperature. 

Further T.Ishikawa et al. [7] proposed a technique for designing laminates, which have 
almost zero CTE in one direction in a wide temperature range. They used thermoelastic and 
in-plane stiffness invariants while finding the relation between the lamina thermal and 
mechanical properties and the laminate CTE in one direction. The technique is very good and 
simple for general case, when any type of laminate (orthotropic, anisotropic, etc.) is being 
looked for. However, the authors finally transit from the general case to the symmetrical 
balanced laminates like [0°, ±θ]s. In such a case it seems the relations   and zero CTE 
laminates could be found in a more simple and evident way. 

2 Zero CTE laminates 

2.1 Formulation of the problem 

The dimensionally stable laminate exposed to thermal loading (thermostable) is expressed 
by the next system of equations: 

�
�� = 0,
�� = 0,

 (1) 

where �� and �� – CTEs in the main directions of laminate’s orthotropy (see Fig. 1). 

 

Fig. 1. Global laminate and local lamina coordinate systems. 

It is required to develop a technique, which will help finding thermostable laminate(s) at least 
in one global direction within a narrow temperature range close to room temperature. The 
laminates being looked for are limited to the balanced symmetrical ones of [0°, 90°, ±φ]ns 
class, where φ ϵ (0°, 90°). 

2.2 General thermo-mechanical equations 

The stresses in k-th lamina caused by mechanical and thermal loading are given by [8]: 
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where ���� – stiffness matrix of the k-th lamina; ��, ��, �� - k-th lamina strains in local 
coordinate system; ��, �� – CTEs of the k-th lamina in local coordinate system. 
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 From other side, the laminate strains in laminate’s XOY coordinate system are: 
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Using the rotating matrix of the k-th lamina ����, we can obtain lamina strains from (3): 
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 Finally, by substituting (4) to (2) and rotating stresses in k-th lamina from local 
coordinate system 12 to laminate’s XOY coordinate system we will obtain: 
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 Integration of (5) through the laminate thickness will give the next equation: 
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where ��, ��, ��� – the in-plane internal normal and shear forces, which appear in the 

laminate; N – the number of laminas in the laminate; �� – the distance from the middle plane 

of the laminate to the lower surface of the k-th lamina; ����� = ����
�����������

�
�
��

, ����
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=

����
������. 

 This equation can be written in the matrix form: 
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 If the structure is free of constrains and mechanical loading the internal forces are equal 
to zero, the solution of the equation (7) is the next: 
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 The equation (8) has the next unfolded view for orthotropic laminates: 
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where H – is the total thickness of the laminate; ��, ��, ���, ���, ��� – are the elastic moduli, 

Poisson’s coefficients and the in-plane shear modulus of the laminate, respectively. 
 Finally, the thermostability conditions for orthotropic materials will have the next shape: 
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2.3 Themostability conditions for [0°, 90°, ±φ]ns laminates 

 The elements ��� and ��� in a general case can be expanded as follows: 
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(12) 

where �� – the thickness of the k-th lamina; ���� =
�� �

����������
, � = �, �� 

 However, for [0, 90°, ±φ]ns laminates it can be significantly simplified. 
 Let’s introduce the relative thicknesses of laminas group with the same orientation: 

�� =
���
�
, �� =

����
�
, (13) 

where ���, ���� – the total thicknesses of laminas group with orientation of 0 and 90°, 
respectively. 
 Thus, dividing the relationships  (11) and (12) by the total thickness of the laminate and 
after some mathematical transformations we will obtain: 
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where С� = ����� � ��������, С� = ����� � ��������,� �� = ������ � ��� � ����,� 
�� = ������ � ��� � ����� 
 After substitution (14) to (10) and mathematical transformations, the thermostability 
conditions (10) take the shape of two quadratic equations: 
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thicknesses �� and ��. The first equation gives 3 parameters ��, �� and � at which the 
laminate has zero CTE in OX direction. The second equation gives these parameters for the 
case, when the laminate has zero CTE in OY direction. 

2.4 Theoretical results 

 Many different materials were investigated for ability to build zero CTE laminates. There 
was not found any material, which can be used to layup a laminate with zero CTEs in two 
directions. However, many investigated materials can be used to layup many laminates with 
zero CTE in one or another direction. The Fig. 2 shows dependencies � = ����, ��� for zero 
CTE carbon-epoxy laminates, where the lamina properties are given in the Table 1. 

a) b) 

Fig. 2. Dependencies � = ����, ��� for laminates with: a) �� = 0, b) �� = 0. 

Table 1. Properties of a unidirectional carbon-epoxy lamina. 

Ρ, kg/m3 E1, GPa E2, GPa G12, GPa μ12 α1, 1/K α2, 1/K H, mm 

1400 150 8 4 0.3 -2 40 0.12 

3 Design of thermostable disks 

3.1 Theoretical equations 

 Let us take an ideal case, when the shaft does not influence the disk and the stresses are 
not varying through the thickness of the disk. The main stresses are induced by centripetal 
forces and temperature loading. Let us assume the temperature field is constant within whole 

2 : 
 0       0.25    0.39 
 0.10       0.30    0.40 
 0.15       0.35 
 0.20       0.37 

1 

 

φ 

 

1 
 

φ 
 

2 : 
 0       0.45     0.59 

0.15       0.50     0.599 
 0.25       0.55 
 0.35       0.57 
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disk, therefore the thermal stresses are constant everywhere also. The centripetal forces 
depend on the distance from the rotation axis only. Therefore, the stresses, which appear in 
the disk are the function of that distance also. 
 The small sector element of the disk with the dimensions of �� � �� (see Fig. 3a) is 
loaded on the edges and with the volumetric centripetal forces, which can be summarized to 
the resultant force: 

�� =
�

�
�����������, (16) 

where 
�

�
 – the specific weight of the material; H – the thickness of the disk. 

 The stresses’ equilibrium in the disk can be expressed by the next differential equation: 

�
���
��

� �� � �� �
�

�
���� = 0� (17) 

 The radial and circumferential stresses can be defined through the corresponding strains: 

�� = ������ � ����� � ����� � �������, 

�� = ������ � ����� � ����� � �������, 
(18) 

where ������ =
�����

��������
; ��, ��  – radial and circumferential elastic moduli of the laminate; 

��, �� – radial and circumferential CTEs of the laminate; ���, ��� – Poisson’s coefficients 
of the laminate. 
 The radial and circumferential strains can be found easily: 

�� =
��

��
, �� =

�

�
, (19) 

where � – is the radial displacements within the disk (see Fig. 3b). 
 After substituting (19) in to (18) and the results into (17) and mathematical 
transformations the next differential equation is obtained: 
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 The solution - the radial displacements in dependence to the radius is the next: 
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where �� – the outer radius of the disk; �� = �� � �����; �� = �� � �����; �� , �� – 
integration constants, which will be found later from the boundary conditions. 
 Finally, the radial and circumferential stresses can be found by substitution (21) into (19) 
and the result into (18): 

�� = ��� � ���,�

�� = ��� � ���, 
(22) 

6

MATEC Web of Conferences 304, 01001 (2019)	 https://doi.org/10.1051/matecconf/201930401001
EASN 2019



disk, therefore the thermal stresses are constant everywhere also. The centripetal forces 
depend on the distance from the rotation axis only. Therefore, the stresses, which appear in 
the disk are the function of that distance also. 
 The small sector element of the disk with the dimensions of �� � �� (see Fig. 3a) is 
loaded on the edges and with the volumetric centripetal forces, which can be summarized to 
the resultant force: 

�� =
�

�
�����������, (16) 

where 
�

�
 – the specific weight of the material; H – the thickness of the disk. 

 The stresses’ equilibrium in the disk can be expressed by the next differential equation: 

�
���
��

� �� � �� �
�

�
���� = 0� (17) 

 The radial and circumferential stresses can be defined through the corresponding strains: 

�� = ������ � ����� � ����� � �������, 

�� = ������ � ����� � ����� � �������, 
(18) 

where ������ =
�����

��������
; ��, ��  – radial and circumferential elastic moduli of the laminate; 

��, �� – radial and circumferential CTEs of the laminate; ���, ��� – Poisson’s coefficients 
of the laminate. 
 The radial and circumferential strains can be found easily: 

�� =
��

��
, �� =

�

�
, (19) 

where � – is the radial displacements within the disk (see Fig. 3b). 
 After substituting (19) in to (18) and the results into (17) and mathematical 
transformations the next differential equation is obtained: 

�
���

���
�
�

�

��

��
� �

�

��
=
��

�
��� � ����� � ���� � ������� �

����

����
, (20) 

where � =
���

���
� 

 The solution - the radial displacements in dependence to the radius is the next: 

���� =
��
�

� � �
�
��

�
��� � ���� �

����

����
� � �� �

�

��
�
√�

� �� �
�

��
�
�√�

, (21) 

where �� – the outer radius of the disk; �� = �� � �����; �� = �� � �����; �� , �� – 
integration constants, which will be found later from the boundary conditions. 
 Finally, the radial and circumferential stresses can be found by substitution (21) into (19) 
and the result into (18): 

�� = ��� � ���,�

�� = ��� � ���, 
(22) 

where ���, ��� - radial and circumferential thermal stresses, and ���, ��� - radial and 
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���������
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��
; �� – the inner radius of the disk. 

 
 

a) b) 

Fig. 3. Equilibrium of a disk element: a) stresses, which appear in the disk, b) displacements, 
which appear in the disk. 

3.2 An example of stresses calculation 

 The parameters of the case being calculated are shown in the Table 2. 
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 The lamina material has the properties, which are shown in the Table 1 above. Two 
stacking sequences [0°, 90°]ns are investigated. The first one has 60% of 0° layers and �� =
0. The second one has 40% of 0° layers and �� = 0. 

Table 2. The parameters of the case. 

r1, m r2, m ω, rps ΔT, °C 

0.050 0.250 333.33 20 

 
 The distribution of radial and circumferential thermal, centripetal and total stresses along 
the disk radius are shown in the Fig. 4 - Fig. 5. 
 

 
  

a) b) 

Fig. 4. Stresses for the first stacking sequence, 0° - 60%, �� = 0: a) radial, b) circumferential. 
 

 
 

a) b) 

Fig. 5. Stresses for the second stacking sequence, 0° - 40%, �� = 0: a) radial, b) 
circumferential. 
 
The local lamina stresses in 1 and 2 directions of the local coordinate system for both 
sequences are shown below in the Fig. 6. 
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a) b) 

Fig. 6. Lamina stresses: a) for the first stacking sequence, 0° - 60%, �� = 0, ��� for the 
second stacking sequence, 0° - 40%, �� = 0. 
 
 The radial and circumferential stresses induced by heat in relation to the total stresses for 
these two sequences, are shown below in the Fig. 7 and Fig. 8. 
 

  
a) b) 

Fig. 7. Thermal stress in relation to the total stress for the first stacking sequence, 0° - 60%, 
�� = 0: a) in radial direction, b) in circumferential direction. 

  
a) b) 

Fig. 8. Thermal stress in relation to the total stress for the second stacking sequence, 0° - 
40%, �� = 0: a) in radial direction, b) in circumferential direction. 
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4 Conclusions 

 As the result of this work the in-plane thermostability condition is found for orthotropic 
laminates of [0, 90°, ±φ]ns class. Many different materials were investigated for ability to 
build zero CTE laminates. There was not found any material, which can be used to layup a 
laminate with zero CTEs in two directions. However, many of the investigated materials can 
be used to layup many laminates with zero CTE in one or another direction. Moreover, it was 
discovered a laminate can have a zero CTE, if the lamina has zero or negative CTE at least 
in one direction. 
 A technique was developed for analytical calculation of stresses, which appear in a 
heated and rotating with a constant angular velocity disk made of laminate. 
 The stresses were investigated for a disk made of CFRP with two different [0°, 90°]ns 
stacking sequences. One of them had zero CTE in radial direction and another one - in 
circumferential direction. For the investigated ranges of angular velocity (166.67 - 333.33 
rps) and temperature (40 - 100°C) it was found, the stresses caused by centripetal forces are 
insignificantly low in comparison to the thermal ones. 
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