
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

MMO PLUGIN FOR DEPLOYMENT OFMICROSERVICES INTO THE CLUSTER
MODUL MMO PRO NASAZENÍ MIKROSLUŽEB DO CLUSTERU

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE
AUTHOR JAKUB KULICH
AUTOR PRÁCE
SUPERVISOR prof. Ing. ADAM HEROUT, PhD.
VEDOUCÍ PRÁCE

BRNO 2018

Abstract
Orchestration of applications with microservice architecture is difficult. Available tools
do not allow deployment of an application to the user without deep knowledge of target
platform. Another problem is that many mistakes are done when these tools are used.
MMO – Monorepo Microservice Orchestrator is a tool that makes the development of
applications with microservice architecture easier. MMO can be extended with parts that
can help the user to avoid problems mentioned above. One part is used for generation
of the configurations for deployment of the application to Kubernetes and second part
is used for deployment of the application the Kubernetes cluster. A result of using MMO
extension is an ability of beginner users to create deployment configurations, faster creation
of deployment configurations by advanced users and decreased number of mistakes done
when the application is deployed manually by Kubernetes users.

Abstrakt
Aplikácie s architektúrou typu „mikroslužby“ je náročné orchestrovať. Dostupné nástroje
neumožňujú užívateľom nasadenie aplikácie bez veľkej znalosti cieľovej platformy. Ďalším
problémom je, že užívatelia pri nepozornosti robia chyby pri používaní týchto nástrojov.
Vývoj aplikácií s architektúrou typu „mikroslužby“ zjednodušuje open-source nástroj MMO
– Monorepo Microservice Orchestrator. Rozšírením tohto nástroja o určité časti nám
umožňuje vyhnúť sa spomínaným problémom. Jedna časť slúži na generovanie konfigurácií
pre nasadenie aplikácie do Kubernetes clustera. Druhá časť umožňuje samotné nasade-
nie aplikácie do Kubernetes clustera. Výsledkom používania rozšírenia nástroja MMO je
uľahčenie vytvárania konfiguračných súborov u začiatočníckych používateľov nástroja Ku-
bernetes, urýchlenie vytvorenia konfiguračných súborov u pokročilých užívateľov nástroja
Kubernetes a zníženie počtu chýb ktoré užívatelia robia pri ručnom nasadení aplikácie.

Keywords
deployment, microservice, architecture, monorepo,kubernetes, cluster

Klíčová slova
nasadenie, mikroslužby, monorepo, kubernetes

Reference
KULICH, Jakub. MMO Plugin for Deployment of
Microservices into the cluster. Brno, 2018. Bachelor’s thesis. Brno University of Technol-
ogy, Faculty of Information Technology. Supervisor prof. Ing. Adam Herout, PhD.

Rozšířený abstrakt
Aplikácie s architektúrou typu „mikroslužby“ je náročné orchestrovať. Vzniklo množstvo
nástrojov na orchestráciu jednotlivých služieb v clusteri, je však problém vybrať spomedzi
nich ten správny pre konkrétne použitie. Každý nástroj má určité výhody a určité nevýhody.
Niektoré sú vhodné pre veľké projekty, iné zase pre projekty menšej veľkosti. Táto práca
sa venuje porovnaniu týchto nástrojov a výberu nástroja, ktorý bude najviac vyhovovať
väčšine používateľov.

Konkrétny nástroj vybratý pre túto prácu je open-source nástroj Kubernetes. Dostupné
nástroje pre správu aplikácií bežiacich v Kubernetes neumožňujú užívateľom nasadenie
aplikácie bez veľkej znalosti cieľovej platformy. Ďalším problémom je, že užívatelia pri
nepozornosti robia chyby pri používaní týchto nástrojov. Tieto chyby môžu viesť k časovým
a finančným stratám v závislosti od konkrétnej chyby. V rámci tejto práce bol urobený
prieskum medzi užívateľmi nástroja Kubernetes pre lepšie pochopenie toho ako užívatelia
nástroj používajú.

Vývoj aplikácií s architektúrou typu „mikroslužby“ zjednodušuje open-source nástroj
MMO – Monorepo Microservice Orchestration. Nástroj MMO momentálne dokáže gen-
erovať projekty a ich mikroslužby podľa šablón, tiež podporuje zásuvné moduly, pomocou
ktorých dokáže užívateľ rozšíriť základnú funkčnosť nástroja. Nástroju chýbajú funkcie,
ktoré by zjednodušili nasadenie aplikácie do Kubernetes. Rozšírením tohto nástroja o
určitú funkcionalitu, umožňuje užívateľovi vyhnúť sa vyššie spomínaným problémom. Tieto
funkcie budú slúžiť k tomu aby pomohli vývojárom s vytvorením konfigurácií pre nasadenie
aplikácií do Kubernetes a tiež aby pomohli so samotným nasadením aplikácie do Kuber-
netes clustera. Rozšírenie nástroja je vo forme užívateľského rozhrania, ktoré je pre toto
použitie prehľadnejšie ako konzolová aplikácia.

Výsledkom tejto práce je rozšírenie nástroja MMO, ktoré rieši vyššie spomínané prob-
lémy. Rozšírenie umožňuje generovanie konfiguračných súborov pre nasadenie aplikácií
do Kubernetes clustera. To umožňuje začiatočníckym používateľom nástroja Kubernetes
vytvoriť konfiguračné nástroje aj bez hlbšej znalosti nástroja Kubernetes. U pokročilých
užívateľov nástroja Kubernetes prichádza k urýchleniu vytvorenia konfiguračných súborov.
Ďalšia funkcia ktorú prináša rozšírenie nástroja MMO vytvorené vrámci tejto práce je
funkcia určená pre nasadenie aplikácie. Aplikáciu je možné nasadiť dvoma spôsobmi. Prvý
spôsob je nasadenie pomocou GitHub Deployments API, kde nasadenie prebieha v rámci au-
tomatizovaného procesu. Druhý spôsob je priame nasadenie do Kubernetes clustera. Táto
funkcia znižuje počet chýb, ktoré užívatelia robia pri ručnom nasadení aplikácie. Znížením
počtu chýb môže ušetriť vývojár svoj čas a tým aj financie.

Práca sa tiež zaoberá pokusom, kde bol vytvorený prototyp platformy určenej na nasade-
nie aplikácií. Samostatná platforma by si našla svojich užívateľov, ale až v prípade, kedy
by integrovala väčšie množstvo funkcií. Rozsah práce na takejto veľkej platforme však nie
je realizovateľný v rámci bakalárskej práce.

MMO Plugin for Deployment of
Microservices into the cluster

Declaration
Hereby I declare that this bachelor’s thesis was prepared as an original author’s work
under the supervision of prof. Ing. Adam Herout, Phd. The supplementary information
was provided by Bc. Peter Malina. All the relevant information sources, which were used
during preparation of this thesis, are properly cited and included in the list of references.

. .
Jakub Kulich
May 14, 2018

Acknowledgements
First of all, I have to thank my supervisor Adam Herout. This thesis would have never
been accomplished without his assistance and ability to motivate me. I would also like to
thank Peter Malina for his suggestions.

Contents

1 Introduction 3

2 Deploying Applications with Microservice Architecture to the Cluster 4
2.1 Development of Microservice Applications 4
2.2 Application Building and Distribution . 8
2.3 Deployment of the container applications 12

3 Kubernetes 16
3.1 Kubernetes Architecture . 16
3.2 Basic principles of Kubernetes . 17
3.3 Description of Kubernetes Workloads . 18
3.4 Description of the objects for network management 20
3.5 Description of the other Kubernetes objects 22
3.6 Storing Kubernetes configurations in the repository 23
3.7 Survey about using Kubernetes . 24
3.8 Local Development . 27

4 Existing solutions for deployment of applications to Kubernetes 28
4.1 Continuous Integration (CI) solutions . 28
4.2 Helm – package manager for Kubernetes . 28
4.3 Other existing solutions . 29

5 Design of the MMO Extension for Application Deployment 30
5.1 Design of the Backend . 30
5.2 Design of the Frontend . 34

6 Implementation 40
6.1 Implementation of the Backend . 40
6.2 Implementation of the Frontend . 44

7 Experiments 46
7.1 Time savings . 46
7.2 Standalone Platform for Deploying Microservices Projects 48
7.3 User Experience . 50

8 Conclusion 51

Bibliography 52

1

Appendices 53

A The Content of the Included Memory Media 54

2

Chapter 1

Introduction

The complexity of developed applications had brought microservice architecture pattern
to use. A disadvantage of the microservice architecture is the difficulty to orchestrate
applications built with this pattern in the cluster. The goal of this thesis is to extend open-
source tool MMO – Monorepo Microservice Orchestration so it helps developers to deploy
application to the cluster. MMO is an open-source tool that helps to develop projects with
microservice architecture. The second object of thesis is to compare available tools for
orchestrating applications in cluster and select one that MMO has to be compatible with.

The second chapter breaks down the problem of microservice architecture, how appli-
cations with this architecture are distributed to target platforms and how they are orches-
trated. The third chapter talks about Kubernetes and its concepts to understand how
applications should be deployed. The third chapter also presents the results of the survey
about using Kubernetes to understand Kubernetes users better. This is a prerequisite for
finding the best design of the MMO extension. The fourth chapter shows existing solutions,
their advantages and disadvantages. The fifth and sixth chapters talk about design of the
extension and implementation of this design. The seventh chapter is demonstrating the
benefits of using MMO extension for application deployment as a result of the multiple
experiments. The last chapter summarizes the important findings that result from this
thesis.

3

Chapter 2

Deploying Applications with
Microservice Architecture to the
Cluster

Software development is usually done in accordance with iterative models. The classic
development cycle of the iterative model has these parts: planning, development, testing,
evaluation. Figure 2.1 shows development cycle from the point of the view of the DevOps
engineer. Some parts of the development cycle such as planning, testing, etc are omitted
from the diagram in the Figure because they are not important for this thesis. Each part
of the development cycle in the figure has one section dedicated in this chapter.

Development

Building

Distribution

Deployment

Figure 2.1: Development cycle of iterative development model from the DevOps engineer
point of view. When new version of application is developed, it has to be built, tested,
distributed to the environment where it will run and in the last step, it has to be launched.

2.1 Development of Microservice Applications
Microservice architecture is an architecture used for building complex applications. The
biggest problem in complex applications is their size and the number of users they have
to serve. One of the new architecture patterns is called microservice architecture. This

4

architecture solves problems with managing development teams and scaling application
but brings other downsides.

2.1.1 Microservice Architecture

Microservices are a type of software architecture used in the server applications [8]. Op-
posite architecture pattern is monolithic architecture. The principle of the microservice
architecture is to divide application to the logical parts where each part acts as a stan-
dalone service responsible for its tasks. Decomposition of the monolith to microservices
can be seen in Figure 2.2. For example, an e-commerce application with monolithic archi-
tecture is one server that does all the work. Using the microservice architecture, application
can be broken to multiple services that do small tasks – one can manage users with authen-
tication and authorization, another one can manage products, another service will manage
finance services (payments, invoices), etc.

Authentification
Products

Orders
Transactions

Orders
Transactions

Authentification
Products

Figure 2.2: Decomposition of the monolithic application to application with microservice
architecture

A microservice architecture offers better control over the source code – each service is
in its own repository or in one part of a shared repository [8]. This can be also reached
in monolithic application but it is easy to break this rule. This plays well with team man-
agement, because microservice is working as a standalone unit. One team can develop one
service and multiple services can be divided into multiple teams. This makes development
faster and more agile. It is also bringing one downside and it is that services must have well
defined communication interfaces to communicate between themselves. The most usual
ways of the communication between the services is using HTTP protocol or using RPCs
(Remote Procedure Calls) [7]. A favorite RPC framework between developers is gRPC –
Google Remote Procedure Call1, which supports more than 10 of the most favorite program-
ming languages. It may play a role in the next advantage of the microservice architecture
– a microservice architecture is a polyglot. That means that each of the services can be
programmed in a different language and can use different technology stack that is most
suitable for the use case of the service. Another advantage of microservices is their scalabil-
ity. Just services that are resource intensive, can be scaled. In the monolithic application,
whole application would have to be scaled which is not that easy as small single-purpose

1https://grpc.io

5

https://grpc.io

service. A example of scaling the application with the microservice architecture is shown
in Figure 2.3.

Application

Authentification Products Orders

Figure 2.3: Scalability of the services – each service can have different number of replicas

Microservice architecture offers a better tolerance of errors in comparison to monolithic
architecture [8]. Critical error in one service does not affect the runtime of the whole
application.

As mentioned before, microservice architecture brings multiple downsides:

∙ much more difficult orchestration of the services,

∙ a more difficult setup of the continuous integration,

∙ larger network overhead,

∙ more complex monitoring of the services.

The biggest drawback of the microservice architecture is the complexity of setting up
continuous integration [8]. Continuous Integration (CI) pipeline consists of multiple steps
like building, testing [4]. All advantages mentioned above are turning into disadvantages
when it comes to setting up the continuous integration. It is a lot harder to set up CI
pipeline for the project with microservice architecture which can be written in the multiple
programming languages.

Another big disadvantage is the deployment of the application to a server. This also
follows the previous problem, because deployment of the application is usually done from
the CI system [8]. Monolithic application deployment is easy because everything that has to
be run is one application binary. Multiple applications have to be deployed and linked in the
network in the application with microservice architecture. The microservice architecture
also brings overhead to the network layer of the application. All communication between
the services is done on the network layer. They must know where is another service with
which they want to communicate so there always have to be service that is responsible for
service discovery.

6

A minor problem of the microservice architecture is service monitoring. In monolithic
architecture is only one application that will be monitored. There is need for the service
that is dedicated to collecting logs in microservice architecture.

There may be questions how small a microservice should be or how many microservices
should the application have. This can differ from application to application but the common
approach is that a single microservice should be refactored or replaced by the a version in
a short time [8].

2.1.2 Managing Source Code of the Microservice Applications

The microservice architecture has multiple approaches to source code control. One of the
approaches is that each service has its own dedicated repository. This will make the service
completely isolated from other services. Developer has high control over the microservice
in continuous integration in this approach. Someone prefers having each service in its own
repository to have access control. They can have fine-grained permission over the services.
A disadvantage of this approach is that there are difficulties when it comes to sharing the
communication interfaces between services. For example, programming language Go does
not allow using dependencies from private repositories, because dependencies are cloned
over HTTP. A workaround in the local developer machine is to configure git in a way that
every clone of the repository over HTTP is done over SSH in the background. It is working
on the developer’s machine because the developer has access to all dependencies. This does
not work in the continuous integration systems, because deploy key has to be added to the
SSH client for each dependency that need to be cloned. Security mechanisms of the version
control system providers do not allow creating one key for multiple repositories.

The second approach is storing all services in the one repository. Repository with
multiple services or applications is called monorepo. Continuous integration tools have
minimal support for this approach so sometimes so these tools have to be hacked to run
standalone builds for each service. The scale of a monorepo can be different. Monorepo
can contain 2 services or it can contain multiple projects. For example, Google stores a
majority of their projects in one big monorepo [9].

2.1.3 MMO – Monorepo Microservice Orchestrator

MMO is an open-source tool that helps with the development of monorepo applications with
microservice architecture2. MMO has a set of features that help generate the structure of
a project and its services. Generation is done based on templates so when user wants to
generate a service written in a different programming language then everything that has to
be done is to provide another template.

Another feature of the MMO are plug-ins that are used for generating the code. Existing
plug-ins are for example plug-ins that generate:

∙ gRPC stub and client from the Protobuf definition (Protobuf is a new mechanism for
serializing structured data in binary format developed by Google [1]).

∙ gRPC gateway from the Protobuf – this allows us to generate a REST API from the
Protobuf with extended annotations.

2https://github.com/flowup/mmo

7

https://github.com/flowup/mmo

∙ Swagger definition from the Protobuf. This plug-in works with combination with
the previously mentioned plug-ins (Swagger definition is documentation of the REST
API).

∙ Angular client from the Swagger definition in programming language Typescript.

This combination of the plug-ins allows to generate a gRPC server with REST API
endpoints with type compatible frontend client.

MMO’s version is actually Beta so a lot of features will come later. One of the missing
features is an option to make deployment of the application to cluster easier.

2.2 Application Building and Distribution
Before building the application, we need to know the platform where the application will
be running. Based on that the application is built on this specific platform and then it can
be delivered to that platform.

Applications are orchestrated in multiple ways:

∙ Operation system runs directly on hardware and the application runs in the installed
operating system.

∙ Hardware is virtualized and the application runs in the operating system installed on
the virtualized hardware.

∙ The application is running in a container.

First of the options is not used because it takes a lot of effort when an application has
to be migrated from a server to another one. The second option is mostly used because of
the flexibility that is offered. The last option is latest and its advantages and disadvantages
against the second option will be summarized in this section.

2.2.1 Release Models of the Software

Software has to be released after its development. Two most known release models of
the software are standard stable release model and rolling release model [5]. According to
the standard stable release model, software is released at intervals in which bugs are fixed
and new features are added. These intervals can have a different length from software to
software, e.g. some distributions of Linux operation system are released two times in a
year. The second way of releasing software, rolling release model. Rolling release means
that software is released frequently in small updates.

Rolling releases are more preferred because it is more natural to get new features when
they are finished rather than waiting some time for a set of features when release planned.

When we choose to have a rolling release we have to care much more about release
process because updates are much more frequent too (e.g. it can be with every push to the
software repository).

2.2.2 Distribution of Binaries

Distribution of binaries is a standard approach that exists as long as software development.
This approach is working but in modern software development, it starts to be outdated.

8

Binaries are usually pushed to the virtual machines that have all needed dependencies
installed. Lot of time we run into the conflicts where multiple applications need same
dependency but different versions. This leads to a lot of weird hacks and fixes. Another
problem which can occur is running multiple instances of the one network application –
operation systems do not allow us to bind the same port to multiple applications. Some
applications allow us to change port but a lot of times it is not comfortable. Another
disadvantage is that application can have non-deterministic behavior on different systems
due to versions of dependencies where every new combination of versions can lead to new
type of behavior.

Binaries can be distributed through operating system’s package managers. Preferred
way when free or open source software is distributed. Another way to distribute bina-
ries is through ssh, for example, utility scp. We have to realize that the binary itself is
not sometimes sufficient. We have to distribute configurations of the applications, secrets
(passwords, API keys, . . .). One of the available solutions for this is Ansible.

Ansible is a tool for automating deployments. It allows us to push binaries or other files
such as configurations [10]. Ansible also supports a lot of modules for managing dependen-
cies through package managers on the different operating systems, managing systemd and a
lot more. Ansible has the feature that makes possible to create templates (of configurations
for example) that are dynamically filled before deployment.

Even though we have tools like Ansible, deploying applications is not easy and does
not feel natural. This leads to researching new technology. Results of this researching are
container technologies.

2.2.3 Containers

Containerization is technology that allows running applications in the isolated environment
[3]. A containerization can be compared to virtualization. Virtualization is technology that
virtualizes CPU, RAM and other hardware and we can run some operation system on this
virtualized hardware.

Containers with virtualized operation systems have in common that they are isolated.
Containers do not use virtualized hardware, they share the kernel with the host system.
We can run multiple containers on one host system.

The container is fully isolated from the environment as was mentioned above. Containers
do not see other processes running on the host machine or in other containers. They are
running on their own network in default. They do not share any environment variables
with the host system. Containers also cannot access host’s systems volumes.

Container always has metadata and read-only volume that contains all data needed for
runtime.

Containers offer multiple advantages over the binaries. The largest one is that we can
pack all dependencies that application needs into the container. That will ensure that
application will run on any platform and it will also run when two applications will use
different versions of the same dependency. Containers have deterministic behavior and run
in the same way on all platforms. That makes easy migration from one platform to another.
Side by side comparison of application runtime in a virtual machine and in the container
is shown in Figure 2.4.

9

Infrastructure

Host OS

Docker

Libs Libs Libs

App 1 App 2 App 3

Container

Infrastructure

Hypervisor

Guest OS

Libs Libs Libs

App 1 App 2 App 3

VM

Guest OS Guest OS

Figure 2.4: Comparison of the applications running in the containers (left) and in the
virtual machines (right). Application running in the container is running directly on the
host operating system. Application running in the virtualized operating system have to be
running on the virtualized hardware.

The Open Container Initiative (OCI)

A lot of container solutions appeared and it was necessary to define some standard how
containers should look and how they are supposed to run. In 2015 OCI was launched by
Docker, CoreOS and other leaders in the container industry.

OCI is a lightweight, open governance structure (project), formed under the auspices of
the Linux Foundation, for the express purpose of creating open industry standards around
container formats and runtime [2].

OCI currently contains two specifications: the Runtime Specification and the Image
Specification. The Runtime Specification outlines how to run a “filesystem bundle” that is
unpacked on disk. At a high-level, an OCI implementation would download an OCI Image
then unpack that image into an OCI Runtime filesystem bundle. At this point, the OCI
Runtime Bundle would be run by an OCI Runtime.

Docker

Docker is the best-known container platform. It meets OCI standard (was the first con-
tributor to the standard as mentioned above)3.

Isolation is achieved using Linux kernel’s features – cgroups, kernel namespaces and
using OverlayFS to manage volumes.

The image is created on union filesystem (OverlayFS). Every image is based on base
Docker image and there are multiple layers that describe how to recreate a filesystem as
we see in Figure 2.5. This makes storing and sharing of the Docker images less resource
intensive. When Docker image is transferred or stored, only new layers that are not present
are transferred or stored. Each image has a tag. The tag is used for versioning of the
images. Default tag is “latest”.

3https://docs.docker.com

10

https://docs.docker.com

There is a difference between the Docker image and the Docker container. Docker image
is set of layers, that are build based on the Dockerfile. This set of layers are read-only and
they contain everything needed for runtime. When Docker image is run, then it is named
Docker container. A container has a read-write layer above the read-only layers of the
Docker image. It is a necessity for the application in the container so it can write changes.
Difference between Docker image and container can be also seen in Figure 2.5. A read-
write layer is discarded always on the container removal. To keep data persistent we need
to mount needed directories or files to the host system.

Docker image
R
ea
d­
on
ly
 la
ye
rs

R/W layer

Image layer (1.4 kB)

Image layer (94 kB)

Image layer (25 MB)

Image layer (142 MB)

Figure 2.5: Structure of the Docker container – container is basically Docker image with
thin read-write layer

Docker is not just a container provider but it is the whole platform. The most useful
part of the platform is Docker registry. It is a tool to manage images. The image can
be pulled from a remote registry to a local registry or local image can be pushed to the
remote registry. There are registries like Docker Hub, Google Container Registry (GCR),
Amazon EC2 Container Registry (ECR) and more that are public and can be used to
share Docker images between users or machines. These registries have usually secured
connection and access control so the only user with valid credentials has access to private
images. Distribution of images through mentioned registries is very easy thanks to native
versioning of the images.

Docker is integrated into the multiple infrastructure tools and the most of the container
orchestration tools as well:

∙ Kubernetes

∙ Docker swarm

∙ Marathon on Mesos

11

LXC and LXD

LXC (LinuX Containers) are very similar to Docker containers from the side of function-
ality. Isolation of the processes is done in the same way4.

Definition of the container is slightly different in LXC. It aims to virtualization like the
experience so there are images of Linux distributions available (Ubuntu, Fedora, RHEL,
etc). A user should run these images like a virtual machine and install needed applications
inside.

Does not support versioning and does not have ecosystem build around so managing
LXC images is not as comfortable as in Docker. LXC is deprecated and it will only get
security updates until April 2019. Support is moved to the new project called LXD.

rkt

The core execution unit of rkt is the pod, a collection of one or more applications executing
in a shared context (rkt’s pods are synonymous with the concept of Kubernetes orchestra-
tion system)5. rkt allows users to apply different configurations (like isolation parameters)
at both pod-level and at the more granular per-application level. rkt’s architecture means
that each pod executes directly in the classic Unix process model (i.e. there is no central
daemon), in a self-contained, isolated environment. rkt implements a modern, open, stan-
dard container format, the App Container (appc) spec, but can also execute other container
images, like those created with Docker.

rkt meets OCI standard. The image format is different from the Docker images. It
does not need the special registry for providing images. Appc images can be hosted on the
HTTP(s) server. Its main advantage is that it can convert Docker image to its own format
and then run it. Containers are run in the simpler way and rkt does not need daemon such
as Docker. The disadvantage is that it does not have full support in orchestrators. Runtime
is not possible without virtualization layer on operation systems Microsoft Windows and
Apple OS X.

2.3 Deployment of the container applications
Deployment of the container applications to the cluster is much more abstract than deploy-
ing applications using Ansible as mentioned in the 2.2.2. Clusters can have a variety of
sizes – clusters can be small where less than 10 nodes are present or there can be clusters
with the size of hundreds of nodes. With infrastructure this big it is impossible to manage
running applications manually. We use can use one of the container orchestration tool.

Container orchestrators are responsible for the runtime of the container application in
a cluster. These applications do a lot of tasks to manage application runtime. These tasks
are:

∙ Running container with provided configuration (published ports, used volumes, num-
ber of replicas, ...)

∙ Provide service discovery so services can communicate among themselves

∙ Restarting containers in case they are not healthy
4https://linuxcontainers.org
5https://coreos.com/rkt/docs/latest/

12

https://linuxcontainers.org
https://coreos.com/rkt/docs/latest/

∙ Provide load-balancing and metric and log systems

2.3.1 Container schedulers

Docker Swarm

The solution developed by Docker6. It was originally a part of the Docker core. Local
development with docker swarm can be done easily because Docker Swarm can be run as a
single node cluster for these purposes. Applications are orchestrated using CLI that is very
similar to standalone Docker. Another way is to use Docker Compose files. Docker Compose
is the tool for running multi-container applications. Docker Compose file uses yaml format
and contains all needed information about the application. This information is a list of
containers to run, mounted volumes, published ports and the most of the options that are
available in Docker. To write Docker Compose configurations for Docker Swarm, everything
that is needed is knowledge of how Docker works. Docker Compose configurations are just
Docker commands transformed to the configuration.

The disadvantage of Docker swarm is that it does not provide that much configuration
options as other orchestrators. Another disadvantage is small support from cloud providers.

Kubernetes

Kubernetes is an open-source system for automating deployment, scaling, and management
of containerized applications [6]. Kubernetes has set of features that allow running appli-
cations in a massive scale. From all of the orchestrators, it has the widest community. It’s
developed by Google, Red Hat, CoreOS. There are also special Linux distributions that
are build just for running Kubernetes – the two most known are CoreOS and RancherOS.
Kubernetes also develops Minikube which is just one lightweight Kubernetes master node
running in a virtual machine and can be used for running applications locally. This is a nice
feature that can be used for local development. Kubernetes is also supported by largest
cloud providers – Google Cloud Platform, Amazon Web Services, Microsoft Azure.

Kubernetes has a lot of configuration options. This is a disadvantage from the point
of view that user needs very wide knowledge to deploy a working application. Deploying
the single container application is not as easy as with other orchestration tools. We can
see an example of Kubernetes configuration in the code 2.1. Configuration represents an
application that has only one service – Redis database. In the code 2.2, we can see the
configuration for the same application but for the Docker Swarm. Kubernetes supports
Role-based access control (RBAC) so users can have restricted access only to parts of
Kubernetes that are responsible for.

apiVersion: extensions/v1beta1
kind: Deployment
metadata:

labels:
io.kompose.service: redis-master

name: redis-master
spec:

replicas: 1
template:

6https://docs.docker.com/engine/swarm/

13

https://docs.docker.com/engine/swarm/

spec:
containers:
- image: k8s.gcr.io/redis:e2e

name: redis-master
ports:
- containerPort: 6379

apiVersion: v1
kind: Service
metadata:

name: redis-master
spec:

ports:
- name: db

port: 6379
targetPort: 6379

Listing 2.1: Kubernetes configuration that can be used for deployment of Redis database to
Kubernetes cluster.

version: "3"

services:
redis-master:

image: k8s.gcr.io/redis:e2e
ports:
- "6379:6379"

Listing 2.2: Configuragation that can be used for running Redis database using Docker
Compose. Docker Compose configurations are less complex than configurations for Kuber-
netes that can be seen in Listing 2.1

Company Red Hat develops its own version of Kubernetes called Openshift. Openshift
offers additional functionality to Kubernetes. It brings new security concepts to Kubernetes.
One of these concepts is that containers are not run in standard way under root user but
they are run by the non-root user. Because of this common images are unusable but
RedHat offers popular images that are compatible with the OpenShift. Other features
that are added to OpenShift is multi-tenancy, tools for project management or continuous
integration and deployment tools.

Nomad

Nomad is scheduler developed by HashiCorp7. Nomad is more general purpose than Ku-
bernetes or Docker swarm. Nomad supports virtualized, containerized and standalone ap-
plications so we can run Docker container or application’s binary. Nomad is designed with
extensible drivers. Nomad has much simpler architecture than Kubernetes. It does not have
features like service discovery but a lot of functionality can be extended by HashiCorp’s
other projects – Consul for service discovery, Vault for key and password management, etc.

7https://www.nomadproject.io/docs/

14

https://www.nomadproject.io/docs/

Mesos

Mesos is a solution from company Apache8. Mesos provides resources allocation in the
data center based on utilization of the resources. It can switch nodes on when needed and
it can switch off nodes that are no longer needed. Mesos can be fine-tuned for different
applications.

Mesos is great for large-scale applications that are heterogeneous. The application does
not have to be just bunch of the containers. It does not have support from cloud providers
so hardware needs to be bought or rent.

The disadvantage of Mesos is that it cannot run locally, similar to Kubernetes, it does
have tool Mini Mesos that makes possible experimenting and testing. Mesos is much more
heavyweight than Docker swarm or Kubernetes.

8http://mesos.apache.org/documentation/latest/

15

http://mesos.apache.org/documentation/latest/

Chapter 3

Kubernetes

Kubernetes was selected as a tool for orchestrating applications. Kubernetes was selected
because of the options it provides when running applications and the second important
reason is its community. Good community is priceless when it comes to some problem
solving. Other advantage over other tools is the support of the cloud providers – it allows
effortless migration of an application to the different provider in the case of need.

3.1 Kubernetes Architecture

3.1.1 Kubernetes Node Types

Kubernetes cluster needs at least two nodes in the cluster and at least one of the nodes
have to be master node [6]. Other nodes are simply called “nodes”. In a case, where
high-availability cluster is needed, there may be multiple master nodes. Master node is
always running tools that are making global decisions about the whole cluster, detecting
and responding to the cluster events.

3.1.2 Kubernetes Master Components

These components are running on Kubernetes master nodes [6]:

∙ kube-apiserver – component that exposes Kubernetes API (Kubernetes API is used
to control Kubernetes).

∙ etcd – consistent and highly-available key value store used as Kubernetes backing
store for all cluster data.

∙ kube-scheduler – component that watches newly created pods and assigns them
node where they should run.

∙ kube-controller-manager – component that runs controllers. Controllers are tools
that are watching the state of the cluster and are making changes to reach the desired
state of the cluster.

∙ cloud-controller-manager – component that runs controllers that interact with
cloud providers.

16

Kubernetes Master

Node 1

Node 2

Node 3

Node n

User
interface

CLI

API

Figure 3.1: Architecture of Kubernetes. Kubernetes Master node is running API for con-
trolling cluster and communicating with other nodes.

3.1.3 Kubernetes Node Components

These components are running on every node (even on the master nodes) [6]:

∙ kubelet – component that ensures that pods assigned to node are running and
healthy.

∙ kube-proxy – component that is responsible for networking (service discovery, DNS
resolving and more).

∙ Container Runtime – software responsible for running containers (Docker, rkt, runc
or any container implementation meeting OCI runtime-spec as mentioned in the
2.2.3).

3.2 Basic principles of Kubernetes
As mentioned before, we are describing final state of the application that we want to reach.
Kubernetes is trying to reach this state with its tools. For describing desired state we
are using Kubernetes workloads [6]. After deploying workloads to the cluster, application
will not run instantly based on the deployed workload, but Kubernetes will use workload
to deploy application. There are different types of these workloads. The most important
workloads are described in the section 3.3.

Kubernetes has also other type of resources than workloads – for networking (mentioned
in the section 3.4), managing configurations and volumes (mentioned in the section 3.5).
We can call all these Kubernetes objects. Each object of one kind must have a unique name
within a namespace.

17

Kubernetes master node

kube­apiserver

etcd

kube­scheduler kube­controller­
manager

cloud­controller­
manager

Figure 3.2: Components present in Kubernetes Master node. All components are using
component etcd for storing data about the cluster.

A namespace is a way to divide cluster logically for different reasons1. One of the
reasons can be running of multiple environments of application in each namespace. Each
namespace can have CPU and memory resource restriction.

Labels are key/value pairs that can be tied to objects2. Labels do not have to be unique
like names. Labels can be used for organizational purposes. For example, we can add label
“release = beta” to object, for another object we can add the label “release = canary”.
Labels are sometimes necessary in specific Kubernetes objects – Kubernetes Service is using
label selector to determine which Pods are able to receive network traffic. Another usage of
the labels is object listing and filtering based on the defined labels. Objects should contain
only necessary labels. When we want to add key/value meta-data that is just informational
we should use annotations.

3.3 Description of Kubernetes Workloads

3.3.1 Pods

A pod is the most basic unit that can be deployed to Kubernetes [6]. As we can see in
Figure 3.4, the pod encapsulates container (or group of tightly coupled containers), storage
resources and a unique IP. For example, we can have a pod that has two containers, where
one container is gRPC server and a second container that acts as an HTTP proxy to the
gRPC server in the first container. The pod can be configured in a way that we know from
the configuration of the Docker container. We can mount volumes to pod’s containers,
publish ports, set up health checks and more.

Another thing we can configure is container’s hardware resources – requests and limits
of the CPU and memory. The request is maximum of the resources the container can take.
Kubernetes allows the container to allocate more resources than defined in the requests,
when requested resources are free on Kubernetes node. The resource requests is also an
information that Kubernetes uses for scheduling pods on the nodes. Pod is not schedulable
on the node that has less free resources than a pod requests. The limit is the value of which

1https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
2https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/

18

https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/

kubelet kube­proxy container runtime
(Docker)

Pod
Pod

Pod
Pod Pod

Pod

Pod

Pod

Pod

Figure 3.3: Components present in Kubernetes node. Kubelet is the spart that is com-
municating with Kubernetes master node, and it is running Pods using container runtime.
Kube-proxy is responsible for service discovery

are resources restricted. Second parameter – limit – is used as a hard resource limit for the
container. If container takes more resources than its defined limit then container will be
marked for termination in the short time. If the container does not free the resources in
this short time, it will be restarted.

The pod is intended to serve as a single instance of the running application. For hori-
zontal scaling of the application, multiple pods should be created.

3.3.2 Deployments

A deployment is abstract Kubernetes object that is describing how deployed application
should look like [6]. Deployment has always pod template – pods are created based on this
template. Deploying deployment resource to Kubernetes will indirectly create number of
pods (based on the number of replicas) by creating ReplicaSet object. Deployments have
set of advanced features for updating or roll-backing the application. New ReplicaSet is
created always when the Deployment is changed.

One of the features are rolling updates. The rolling update is a process of updating the
application when we have more than one replica of the application. When rolling update
is triggered, Pods are replaced one by one with newer version. Deployment has parameter
“replicas” that says how many of the replicas should be available during the rolling update
process. With this feature, we can update application without downtime. Reverse operation
to rolling update is called roll back. This can be used when application has some serious
bug and we want to downgrade application to the previous version.

3.3.3 Replication Controllers

Replication controller is the resource that controls the creation of the pods in the cluster [6].
It uses the template of the Pod for Pod creation. Replication controller must ensure that

19

Kubernetes Pod

Volume

Container 1 Container 2

Consumers

Figure 3.4: Example of Kubernetes Pod that has two containers communicating between
themselves and one container is serving to consumers (clients). Both of containers are using
one shared volume.

number of replicas defined in configuration is same as a number of replicas running. Repli-
cation controllers support rolling updates as the Deployments, but they are not automatic
and they have to be triggered manually using kubectl tool.

In actual implementation it is not recommended creating replication controller. We
should create a resource called “Deployment” that manages the creation of ReplicaSets.

3.3.4 ReplicaSet

ReplicaSet is next generation of Replication controller that has the support of label selectors
[6].

3.4 Description of the objects for network management

3.4.1 Services

Pod has IP address assigned on the creation. Pods have to communicate between themselves
and it would not be possible only using IP addresses. Kubernetes Services are used for
service discovery and load-balancing between Pods [6]. Pod that should be accessible over
the network needs to have Service created. After the creation of the Service, DNS entry is

20

reserved inside the namespace for all Pods that are matching Service’s label selector. We
can then access the Pod using this DNS name <service-name> within the namespace. In
case we want to access this service outside of the namespace we have to use fully qualified
domain name <service-name>.<namespace-name>.svc.cluster.local.

Services have different types. Default Service type is ClusterIP. This makes Service
accessible only from the inside of the cluster. Next option is NodePort. This will make
Service accessible from the outside of the cluster on the every node in the cluster (Each
node has range of the ports reserved for this purpose). There are other options such as
LoadBalancer that are only available in Kubernetes instances from cloud providers. Option
LoadBalancer will make Pod accessible based on the configuration of the load-balancer –
each cloud provider offers different configuration.

Pod Pod Pod

Service

Client

Automatic Load
Balancing

Figure 3.5: How Kubernetes Services works – multiple instances of one service are accessed
by one Kubernetes Service. Component kube-proxy is responsible for correct functionality
of this.

3.4.2 Ingress controllers and Ingresses

Ingress controller is a gateway to Services from the outside of the cluster [6]. Ingress
controller works on the application level of the network model. Ingress controller is usually
reverse HTTP proxy (Nginx for example) with watcher of Kubernetes resources named
“Ingress”. When watcher captures changes in Ingress resources, then new configuration for
the reverse proxy is generated and reverse proxy is reloaded. Multiple ingress controllers
are available:

∙ Official Nginx ingress controller (developed by Kubernetes).

∙ Nginx ingress controller (developed by Nginx).

∙ GKE (Google Kubernetes Engine) ingress controller.

∙ Træfik ingress controller – based on the reverse-proxy Træfik developed in Go.

Each ingress controller has slightly different set of the features. These features can be:

∙ Usage of the TLS (Transport Layer Security) certificates for the used domains.

21

∙ Enabling CORS (Cross Origin Resource Sharing) for the locations3.

∙ Websocket support

∙ Authentication

∙ And more. . .

Ingress contains information how to route HTTP(s) requests to individual services.
Ingress controllers can usually route requests based on sub-domains and paths.

Service Service Service

Ingress controller

Client

HTTP (GET,
POST, ...)

example.com
/user example.com

/product
sub.example.com

/

Figure 3.6: Kubernetes Ingress controller works on the application level of the network
model. This allows routing of the HTTP requests to different Services based on hostname
or path they are requesting.

3.5 Description of the other Kubernetes objects

3.5.1 Configmaps

Configmaps are resources for storing configuration files [6]. Configmaps can be used in the
application multiple ways. One option is configuration in a special format where each line
contains key-value pair in format KEY: VALUE. Each line of the Configmap is exported to the
container of a Pod as a environment variable. Second option is mount whole configuration
file of Configmap as a volume in the Pod’s container. These two are most used and other
options are documented in Kubernetes documentation4.

3.5.2 Secrets

Secret is very similar Kubernetes object to Configmap. Only different is that secret should
be used for storing sensitive data such as keys and passwords. Usage of the secrets is well
documented in Secrets section of Kubernetes documentation5.

3https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
4https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/
5https://kubernetes.io/docs/concepts/configuration/secret/

22

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/
https://kubernetes.io/docs/concepts/configuration/secret/

3.6 Storing Kubernetes configurations in the repository

3.6.1 Static Kubernetes resources or Kubernetes resource templates

In a lot of cases, we do not want static deployment resources. Static resources are good
in the case that deployed resource is not changed on regular basis, for example, databases.
When we want use Rolling Updates advantage of Kubernetes Deployments, we have to
change the image in the Deployment resource before deploy. This can be done in two ways.

First option is to store template of Kubernetes resource – this can be bash template
(variables in the tempalate have format ${GIT_COMMIT_HASH}). Advantage of this is that
resources can be much more dynamic. All variables in Kubernetes resource can be changed
in one step. For example, these variables can be: Docker image or its tag, labels in the
application that can contain deployed commit or branch, etc. Disadvantage of this option
is that application cannot be deployed directly using kubectl but it has to be preprocessed
using tool that fills out variables in the template.

Second option is to store normal Kubernetes resources. Resources are more static and
change of each value must be done in one step. Application should be running after deploy
to Kubernetes without changing values in the resource. When we want to deploy different
version of the application, we need to change Docker image in the resource. This can be
done in the continuous integration system using utility sed.

Second option will be more useful, and it will also save problems that are described in
the 3.8.

kind: Service
apiVersion: v1
metadata:

name: example-service
spec:

selector:
app: example-service

ports:
- protocol: TCP

port: 80

apiVersion: extensions/v1beta1
kind: Deployment
metadata:

name: example-service
labels:

commit: ${GIT_COMMIT}
branch: ${GIT_BRANCH}

spec:
replicas: 1
selector:

matchLabels:
app: example-service

template:
metadata:

labels:

23

app: example-service
commit: ${GIT_COMMIT}
branch: ${GIT_BRANCH}

spec:
containers:
- name: example-service

image: ${DOCKER_REGISTRY}-example-service:${GIT_COMMIT}
ports:
- name: http

containerPort: 80
protocol: TCP

env:
- name: GCP_PROJECT_ID
value: ${PROJECT_NAME}

Listing 3.1: Example of Kubernetes resource template

3.6.2 Structure of Kubernetes resources

Kubernetes resources can be structured in many ways. Universal way to structure Ku-
bernetes resources does not exist. Each application has different needs and different size,
according to which we select best structure for files. These ways can be:

∙ Directory that contains all configurations – this can be fitting for small applications
that share configurations between environments (staging, development, production).

∙ Directory that contains sub-directory for each environment – complex applications
that are running in different ways between environments.

∙ Combined structure – configurations that are shared are in one directory and others
that are different for environments are in the specific environment directory.

Survey about structuring Kubernetes configurations is in the next section 3.7. These
three mentioned above are the most used and some other can be used too in some specific
applications.

3.7 Survey about using Kubernetes
Survey about Kubernetes was conducted for two reasons. One reason is verify that other
users are doing mistakes with kubectl tool when they are deploying applications to Ku-
bernetes. Other reason for conducting the survey is to understand how users are using
Kubernetes. Survey form had only four questions so it does not discourage respondents
from filling out the form. Questions were following:

1. Do you use Kubernetes resource templates? (Yes or No)

2. How do you structure your Kubernetes resources? Provided multi-choice options were:

∙ All environments (development, staging, production) share one configuration
∙ Each environment has its own configuration

24

∙ Combined – some configurations are shared across all environments and others
are created for each specific environment

3. How many times did you deploy application to different namespace? Provided options
were:

∙ 0
∙ 1 – 5
∙ 5+

4. How many times did you deploy application to different cluster? Provided options
were:

∙ 0
∙ 1 – 5
∙ 5+

Respondents had option to leave the comment that can extend their selected answer.
Survey form was posted to Kubernetes community on the social network Reddit and 26
respondents have filled the survey form.

In Figure 3.7, we can see on the chart that the most of the users are using the templates
of Kubernetes resources. One respondent did not know what are Kubernetes resource
templates and one user noted that they are using Helm charts (mentioned in the 4.2) and
only thing that is template are Configmaps that are used as environments mappings. Second
chart is shown in Figure 3.8 and it shows how users structure their Kubernetes resources
in the repositories. One of the respondents noted that they have shared resources between
environments and they have only different environment mappings.

Figure 3.7: Chart shows how much of Kubernetes users are using Kubernetes resource
templates

Second part of the results is talking about mistakes that are done with kubectl. We
can see that only 27 % of the respondents did not deploy application to the different
namespace on the chart in Figure 3.9. Similar numbers are resulting from question that

25

Figure 3.8: Chart shows how are Kubernetes structuring their Kubernetes resources

talks about deploying application to the different cluster. Only 38 % of the users did not
deploy application to the different cluster yet as we see on the chart in Figure 3.10. One
respondent stated that first or second mistake cannot happen in their company, because
each state-modifying kubectl commands have to be reviewed and approved by the other
coworker.

Figure 3.9: Chart how many times they deployed application to the wrong Kubernetes
namespace

26

Figure 3.10: Chart shows how many times they deployed application to the wrong Kuber-
netes cluster

3.8 Local Development
Local development of the application should be done in the environment that is similar to
production environment as much as possible. With this approach, we can avoid problems
that results from the differences between environments. This is possible with minikube.
Minikube is official tool for running lightweight development cluster locally6. Cluster has
only one node that is running in the virtual machine.

Minikube is controlled as a normal cluster – with kubectl tool. We would need to
maintain two versions of the deployment resources – one that is the template used in the
continuous integration and the second one is resource ready for usage in Kubernetes. This
can bring huge inconsistencies between staging and local environment. Another option
is running some utility that fills the template before the every deploy to the minikube.
Templates can be problem in a local development. It creates one more step that is needed
to deployment of an application. Another problem that can be encountered is filling labels
that are not available in the time of development such as git branch or git commit hash.

6https://github.com/kubernetes/minikube

27

https://github.com/kubernetes/minikube

Chapter 4

Existing solutions for deployment
of applications to Kubernetes

Kubernetes can be controlled using official command line interface tool kubectl or using its
API. kubectl is official console tool developed by Kubernetes so it supports all operations
for Kubernetes management. kubectl is communicating over Kubernetes API and supports
multiple versions of Kubernetes API (is back-compatible). With kubectl, for example,
resources can be managed, logs from pods can be viewed, deployments can be scaled,
rollback can be issued. kubectl is a tool for manual managing of Kubernetes. It does not
support any type of the automation. Automation is usually done by creating scripts that
use kubectl to manage Kubernetes and applications running inside. Another option is
running Kubernetes Dashboard using command kubectl proxy. Kubernetes Dashboard is
user interface for controlling and monitoring Kubernetes.

4.1 Continuous Integration (CI) solutions
CI providers support Kubernetes using its plug-ins. These plug-ins are usually wrappers of
kubectl tool.

Wercker has step named kubectl. This step is just wrapper of the kubectl tool and this
step can do all kinds of operations that kubectl supports. In case we do not want to use
static deployment resources we can transform these resources to bash templates and use
the step that fills the template with values from system environment, and then we can use
kubectl step to deploy this filled template.

On a platform Travis CI, we can create the script that installs kubectl tool that we can
later use. Solution to use resource templates is similar to the solution in Wercker.

Other CI providers offer similar solutions for deploying applications to Kubernetes as
two mentioned above.

4.2 Helm – package manager for Kubernetes
Helm is package manager for Kubernetes1. It allows deployment of application with its
dependencies to the cluster. The package is named chart. The chart contains chart de-
scriptor, Kubernetes resources templates, file with application configuration and helpers.

1https://github.com/kubernetes/helm

28

https://github.com/kubernetes/helm

Kubernetes resources templates are filled with application configuration before deployment
and helpers can provide an interactive way to finish deployment. Helpers can be used for
fine-tuning deployment for selected environment. Deployment can be slightly changed de-
pending on the environment that is selected – minikube, self-hosted cluster, cluster from
cloud provider, etc.

Chart can also have dependencies – list of other charts that should be deployed with
the main chart. One of these dependencies can be database, for example.

Helm charts would be good solutions for our usage, but they are complex for common
usage and developers and DevOps engineers would have to learn how to use it.

4.3 Other existing solutions
In the beginning of the March 2018, Google created open-source tool skaffold2 for deploy-
ment of applications to Kubernetes. skaffold helps with deployment to Kubernetes in the
multiple ways:

∙ Local development with minikube.

∙ Remote development with dedicated cluster.

∙ Deployment of the application to the staging or production environment.

skaffold also supports code watching and automatic building of the Docker images and
deploying application. Power of this tool is development mode where source code of the
application is watched and application is built and deployed automatically when change is
made.

2https://github.com/GoogleContainerTools/skaffold

29

https://github.com/GoogleContainerTools/skaffold

Chapter 5

Design of the MMO Extension for
Application Deployment

The MMO extension for deploying monorepo applications with microservice architecture
was designed as a user interface. The user interface can show a lot more information to the
user and it is less confusing in this type of application than command line interface. User
interface of the MMO will be used for managing Kubernetes configurations and deploying
application or its services but can be later extended with existing features of the MMO
that are actually implemented as the features of the command line interface.

User interface will have backend and frontend part. Each part has section dedicated to
it below. User interface will have multiple parts, each function the tool provides will have
dedicated part of the interface.

One of the sections should be overview of the services that are in the project. Overview
has list of the services where each of the services will have a link to standalone service detail
page.

Service detail page will contain list of MMO plug-ins that service use. Second part
of the service detail page is list of Kubernetes resources that service has. Management
of the configuration with editor will be useful in the projects of bigger size (more than
10 microservices) because developer does not have to search for multiple resources in one
folder, but he will see just the that resources that belong to service. This is possible due
to fact that user is developing usually one service at a time. Service detail page will also
contain tool for generating Kubernetes resources.

Second section of the application is used for deploying application. The application
can be deployed directly to Kubernetes cluster. Another way to deploy an application can
be GitHub deployment which can be utilized in the continuous integration and continuous
deployment tools for deploying the application.

The data transportation is defined in the Protobuf definition from which both server
and client are generated.

5.1 Design of the Backend
As shown in Figure 5.1, the backend part of the application will be a gRPC server written
in Go and it will work as a layer above the MMO core. gRPC is using protocol HTTP/2
for communication and it is not fully supported by all browsers. Due to this, a proxy will

30

between the frontend client and the gRPC server. This proxy translates HTTP requests
with JSON body to the gRPC requests.

Frontend HTTP
Proxy

gRPC
Server

MMO
Core

Figure 5.1: Design of the application. Angular Frontend communicates with gRPC through
HTTP Proxy and gRPC server is built on the top of existing core of MMO

The application will be developed using MMO. The API will be defined using Protobuf.
We will use set of MMO plugins that:

1. Generate gRPC server and stubs from the Protobuf definition

2. Generate REST API from the Protobuf definition (this REST API is proxy that
translates a RESTful JSON API into gRPC1)

3. Generate Swagger definition from the Protobuf definition

4. Generate Angular API client from the Swagger definition

This set of plug-ins ensure that communication between frontend and the backend of the
application is type safe. There are only two things that have to be implemented – business
logic of the backend of the application and visual part of the frontend of the application.

5.1.1 Design of Kubernetes Resource Generation

This section will talk about generation of Kubernetes resources in detail. For Kubernetes
resources generation, we need information about:

∙ Ports used by services

∙ Volumes that services need to being persistent (if they need to be persistent)

∙ Environment variables used by service

After collecting this information we can generate Kubernetes resources. Resources are
generated to directory named infrastructure in the root of the project. This directory
will contain multiple directories – one directory per target environment.

In the results of Kubernetes usage survey in Section 3.7 can be seen that most of Kuber-
netes users are trying to share resources across environments as most as possible. Because
of this, directory shared will be always present and it will be used for storing resources
that are shared across environments. It will also be the default directory for Kubernetes
resource generation. Other directories can be for example: production, staging. De-
ploying application is easy with this structure of resources. When we want to deploy the

1https://github.com/grpc-ecosystem/grpc-gateway

31

https://github.com/grpc-ecosystem/grpc-gateway

application to staging environment be have to deploy resources from shared directory and
resources from staging directory. Another advantage is that the services are as same as
possible across environments and little nuances between environments can be in environ-
ment specific folder. This can be for example environment mapping stored as a Configmap
(approach used by some Kubernetes users that results from the survey in Section 3.7).

Another problem that has to be solved is format of the generated Kubernetes resource.
As mentioned in Section 3.6.1, we can generate Kubernetes resource or its template. Results
from survey in Section 3.7 say that the most of the users prefer templates. Generated
resources by MMO are not very complex and each user prefers different type of variables
in the resource template. This can be also dependent on the type of application that is
user orchestrating in Kubernetes. Only one variable – Docker image name – is worth of
swapping by variable currently generated resource. Due to this fact, generated resource will
not be template. If some user wants to use templates, he just needs to swap image name
by variable and extend Kubernetes resources with his parameters.

Generation of the resources is implemented using Go HTML templates. This library
is part of the standard library of Go. Go HTML templates are used for generating static
HTML web sites, but they will be also useful for generating Kubernetes resources. For
generating file, we need template and object that is passed to template. Properties of the
object will be used for filling the given template. Templates also support more advanced
features such as loops and conditions. For example, loops can be used for adding multiple
ports to the Kubernetes Deployment and Service.

Deployments

Deployments are the most important resources along with the Services. For generating
deployment file we need this information:

∙ Ports used by service

∙ Mounted volumes to the container

∙ Environment variables used by the application

More advanced features of Kubernetes will not be generated. There are lot of these
advanced features and form for generating resources would be cluttered. When some feature
will be demanded by number of the users, it can be added to the form later.

Services

When user provides information about the used ports we can also generate Kubernetes
Services. We will be assuming that ports that user provided are using TCP protocol.

Persistent Volume Claims

Another resource that we want to generate is persistent volume claim. For generating this
type of resource only information we need is mounted volume and its size. Persistent Volume
Claims (PVC) are generated always when the user specifies that he wants to persist data
on disk of a node. We generate PVC resource when user specifies volume mount during
generation process.

32

Configmaps and Secrets

It would be a nice feature to generate Configmap and Secret resources but these are created
directly from file using kubectl tool.

Ingresses

The ingress resources are quite simple to understand and it would be counterproductive
to make tool for generating this resource. Another disadvantage of the generation is that
resources can have little differences that depend on the type of the Ingress Controller used
in Kubernetes.

5.1.2 Application deployment design

This section will talk about deployment of the application to the Kubernetes in detail.

GitHub Deployment

GitHub deployments is feature hidden to regular users of the Github but it is mentioned
in API documentation. However, documentation of this functionality is very poor. Some
experimentation was needed to determine what are the deployments good for and how this
endpoint works. After some time spent with experimentation with deployment endpoint
on the GitHub and continuous integration tools, it has been found out that GitHub De-
ployments can be very useful feature for continuous delivery. In the continuous delivery
process, manual approval for the deployment by the human is needed [5].

Github Deployments work in the following way:

1. POST request to Github deployment API is sent with the following information –
reference (branch, commit hash, tag, release, etc2), environment and message (other
optional request parameters are in the Github’s API documentation3).

2. Github will check reference and if reference is valid then Github sends webhook re-
quests to all webhook services registered in the repository which are listening to event
type “Deployment”.

3. Receiver of the webhook event can utilize information about deployment, for example,
continuous integration tools can run deployment pipeline of the application.

Advantage of deploying using continuous integration tool is that all steps on which
deployment depends are done (build, test, etc). If continuous integration is set up then
deploy from CI is preferred because individual steps of the pipeline done by people can be
done with mistakes. These mistakes can lead to putting application down.

GitHub deployments are using GitHub API and GitHub personal access key is needed for
API authentication. This key should be exported to environment variable GITHUB_TOKEN.
MMO will read API key from the environment variable and utilizes it when GitHub de-
ployment is invoked from the user interface.

2https://developer.github.com/v3/git/refs/
3https://developer.github.com/v3/repos/deployments/

33

https://developer.github.com/v3/git/refs/
https://developer.github.com/v3/repos/deployments/

Manual Deployment

Manual deploy should be used when application is deployed to the cluster and Github de-
ployment is not available. Manual deploy takes all files from “shared” directory and all files
from environment specific directory that user provided as a target environment. Confir-
mation summary is shown with the list of resources that will be deployed and information
about the cluster. When user confirms the deployment, confirmation is sent to the backend,
where kubectl tool is invoked to deploy resources to the cluster. Log from the deployment
is sent back to the frontend so user knows about the success or fail.

5.2 Design of the Frontend
Frontend part will be implemented in web application framework Angular. Frontend will
be designed according to Material Design Guidelines4. People are familiar with Material
Design and another advantage is that Kubernetes Dashboard uses Material Design too, so
people will get used to it faster. Frontend will communicate with backend as shown in
Figure 5.1 in the previous section.

Angular framework allows us to create application composed of reusable components.
Whole application is one big component. This big component is composed of smaller com-
ponents and these smaller components can be again composed of even smaller components.
Application’s main component will be divided to the 4 main components:

∙ Overview Component

∙ Service Detail Component (accessible from the Overview Component)

∙ Plug-ins Component

∙ Deployment Component

Main application’s component will always have 2 navigation components: Material Tool-
bar and Material Navigation Drawer that has buttons for accessing 4 components mentioned
above. A button of component that is active will be highlighted. The component that is
active in default will be Overview component after accessing application. Toolbar will con-
tain only button for toggling Navigation Drawer. It can be later used for adding another
buttons. Position of the Toolbar and Navigation Drawer can be seen in Figure 5.2.

5.2.1 Design of the Overview Component

Overview component is used for showing overview information about MMO project to the
user. Second part of the overview can show list of the MMO services to the user. Each
service present in the list has also its description and hyper link to the detail of the service.
After clicking this link, Service Detail Component will be shown to the user. Service Detail
Component is described in the following section 5.2.2. Component will have two Material
Cards for both project information and list of services. This can be seen in Figure 5.2.

5.2.2 Design of the Service Detail Component

Service Detail Component should show information about particular service. This infor-
mation involves a list of MMO plugins that service uses and list of Kubernetes resources

4https://material.io

34

https://material.io

Plugins

Overview

Deployment

Project

Project information

Project information 2

Services

Service 1

Service 2

Service 3

Figure 5.2: Wireframe of the Overview Component. Grey rectangle on the top side of
wireframe is Material Toolbar. Menu on the left side of wireframe is Material Navigation
Drawer. Overview component has two Material Cards. One card contains information
about MMO project. Second card contains list of MMO services with hyperactive link to
detail of the service.

associated with that service. Again, list of MMO plug-ins is in the separate Material Card
and list of Kubernetes resources is in another separate Material Card as seen in Figure 5.3.

Each Kubernetes resource has one row in the table. First column of the row is check box
for selecting resources, second column is the type of resource, third and fourth are buttons
for editing and deleting Kubernetes resource. When “Edit” button is clicked, dialog window
opens with the content of the resource will be opened as seen in Figure 5.4.

On the bottom of the card, there are two action buttons – for creating new resource
for the service and second for deploying all resources that are selected. When button for
creating new resource is clicked, dialog window with form is shown. This window is shown
in Figure 5.5. It contains inputs needed for generating valid Kubernetes configuration for
deployment of application:

∙ Name of the resource (service).

∙ List of the ports that service uses.

∙ List of the environment variables that service needs.

∙ List of the volumes that have to be mounted to container.

Each list of items has button that appends new empty row on the bottom of the list. “Add
volume” button is little different – dropdown list of options is shown when clicked. Each
option appends different type of row. First option adds “Persistent Volume Claim” volume,
second option adds “GCE Disk” volume. Field values will be filled with the information
that can get be fetched from the API. These values can be determined from the MMO
service plug-ins – e.g. some plug-in is used for generation of the REST API that runs on
the port number 50080, so we can add this port to the form.

35

Plugins

Overview

Deployment

Information

Information about service

Plugins

Plugin 1 Version of plugin

Version of plugin Plugin 2

Kubernetes

Resource 1 Type of resource Edit Delete

Create

Edit Type of resource Resource 1

Delete Edit Type of resource Resource 1

Deploy selected

Figure 5.3: Wireframe of Service Detail Component. Component is divided to three Mate-
rial Cards. First contains information about service. Second contains list of MMO plug-ins
that service uses and last one has list of Kubernetes resources with ability to select, edit
or delete them. Selected resources can be deployed or new resource can be generated with
two buttons at the bottom of the last card.

Two buttons are on the bottom of the dialog’s window – for creating Kubernetes resource
and for canceling generation of the resource (this will close dialog).

5.2.3 Design of the Plug-ins Component

Plug-ins Component is the most simple component among main components. Component
has Material Card, which contains list of the global MMO plug-ins. This is shown on the
wireframe in Figure 5.6. This component will be later extended with plug-in management
(this is not goal of this thesis).

5.2.4 Design of the Deployment Component

Deployment component will be used for deploying application. Component (shown in Figure
5.7) is divided to two sections, each in the standalone Material Card. First section is for
deploying using GitHub Deployments which are described in Section 5.1.2. As mentioned
there, we need GitHub reference, deployment subject (form of message that can be later
used, for example, reason for deployment) and environment.

Second part is used for manual deployment to Kubernetes cluser. As mentioned in
Section 5.1.2, we need target namespace, cluster and source environment for manual de-
ployment. Source environment determines which set of Kubernetes resources will be used
in the project. When user clicks on “Deploy” button, confirmation dialog with summary
information will be shown. Summary information contains list of deployed resources, name
of the Kubernetes cluster and namespace. User have to confirm deployment. After confir-

36

Edit

Save Cancel

resource content

Figure 5.4: Wireframe of the dialog window for editing Kubernetes resources.

mation, output log will be shown in the dialog window to inform user about the deployment
status.

37

New Kubernetes Configuration
Service name

Save Cancel

Port name Port number

Add port

Service ports

Variable name Variable value

Add variable

Environment variables

Volume name Volume size (GB)

Add volume

Service volumes
Mount path

Volume name GCE Disk name Mount path

Figure 5.5: Wireframe of the dialog window for generating Kubernetes resources.

Overview

Plugins

Deployment

Plugins

Plugin 1

Plugin 2

Plugin 3

Figure 5.6: Wireframe of the Plug-ins Component. For now, just list of global MMO
plug-ins is shown in the card. Plug-in management can be added later.

38

Plugins

Deployment

Overview

Deploy

GitHub Deployment

Subject:

Ref:

Environment:

Kubernetes Deployment

Namespace:

Deploy

Target cluster:

Source environment:

Cluster 1

Figure 5.7: Wireframe of Deployment Component. One section is used for deploying appli-
cation using GitHub deployments. Second section is used for deploying directly to Kuber-
netes.

39

Chapter 6

Implementation

This section talks about the implementation of the application. The structure of the source
code created within this thesis is shown in Figure 6.1.

mmo..Root of the repository
api .. API part of the MMO

protobuf
proto.proto Protobuf definition of gRPC server

server
server.go...Server library of API

static Directory with static frontend files
proto.pb.go................................Generated gRPC server and stub
proto.pb.gw.go Generated gRPC proxy gateway
service_test.go..Test of the service
service.go Implementation of server’s service

ui User interface of MMO – Angular project
api...............Typescript API client generated from the Swagger definition

models...Generated models
...

api-client-service.ts...............................Generated methods
index.ts

src ... Angular source code
app...Main Angular component
assets......................Assets of Angular project – pictures, fonts, etc
environments............................Environments of Angular project

templates
kubernetes Templates used for generating Kubernetes resources

...

Figure 6.1: Directory tree of the MMO source code created within this thesis.

6.1 Implementation of the Backend
The backend part of the application is implemented in the programming language Go and
it is present in the folder “api” in the root of repository. The structure of the source code

40

is presented in Figure 6.1. File proto.proto in protobuf directory contains the definition
of the server and its methods. This file is used for generating Go gRPC server, Go gRPC
gateway and Swagger definition.

Backend of the application is run using command mmo ui. This also opens web browser
with URL of frontend page. When server is run, configuration of the MMO project is
loaded. This is later used for some server’s methods like reading global plug-ins, services,
its description and plug-ins. Along with configuration, GitHub personal key is loaded from
environment variable $GITHUB_TOKEN too. GitHub key is used for integration of GitHub,
in our case, Deployment API will be used for deploying applications.

Figure 6.1 shows how is source code of the MMO structured within repository. Directory
api contains all files needed for running backend part of the application. Inside that,
directory protobuf with file proto.proto is present. This file is used for generation of
gRPC server and gRPC gateway proxy. Generated files are in the api directory and they
are named proto.pb.go and proto.pb.gw.go. Generated gRPC server file has interface
of the server that has to be implemented. Implementation of the mentioned sever is in the
file service.go. This is shown in Figure 6.2.

Last file has to be mentioned is file server.go in the directory server. This file contains
function that runs both gRPC server and HTTP to gRPC proxy.

Kubernetes resources are generated using Go HTML templates present in the Go stan-
dard library1. Example of the Go template can be seen in Listing 6.1. Go template engine
takes template and an object of type interface{} as an input. Example of object can be
seen in Listing 6.2. Resulting file created from mentioned template and object can be seen
in Listing 6.3.
kind: Service
apiVersion: v1
metadata:

name: {{ .ServiceName }}
spec:

selector:
app: {{ .ServiceName }}

ports:{{range $index, $element := .Ports}}
- name: {{ $element.Name }}
port: {{ $element.Port }}
protocol: TCP {{end}}

Listing 6.1: Go template used for generation of Kubernetes Service resource

{
ServiceName: "auth",
Ports: [

{
Name: "http",
Port: "80",

},{
Name: "grpc",
Port: "50051"

}

1https://golang.org/pkg/text/template/

41

https://golang.org/pkg/text/template/

]
}

Listing 6.2: Object that can be passed to the Go template engine

kind: Service
apiVersion: v1
metadata:

name: auth
spec:

selector:
app: auth
ports:
- name: http
port: 80
protocol: TCP

- name: grpc
port: 50051
protocol: TCP

Listing 6.3: Result of filling template in Listing 6.1 with object in Listing 6.2.

42

APIService implements APIServiceServer

Config: *config.Config

GithubClient: *github.Client

APIServiceServer interface

GetServices(context.Context, *google_protobuf.Empty) (*Version, error)

GetGlobalPlugins(context.Context, *google_protobuf.Empty) (*Plugins, error)

GetPlugins(context.Context, *Service) (*Plugins, error)

GetKubernetesConfigs(context.Context, *Service) (*KubernetesConfigs, error)

SaveKuberentesConfig(context.Context, *KubernetesConfig) (*google_protobuf.Empty, error)

RemoveKubernetesConfig(context.Context, *KubernetesConfig) (*google_protobuf.Empty, error)

KubernetesFormFromPlugins(context.Context, *Service) (*KubernetesServiceForm, error)

KubernetesConfigFromForm(context.Context, *KubernetesServiceForm) (*KubernetesServiceForm, error)

GithubDeploy(context.Context, *GithubDeployRequest) (*google_protobuf.Empty, error)

GetKubernetesClusters(context.Context, *google_protobuf.Empty) (*KubernetesClusters, error)

KubernetesDeploy(context.Context, *KubernetesDeployRequest) (*KubernetesConfigs, error)

ConfirmKubernetesDeploy(context.Context, *KubernetesDeployRequest) (*ConsoleOutput, error)

Plugins

Plugins: []*Plugin

Plugin

Version: string

Name: string

Service

Name: string

Description: string

Services

Services: []*Service

GithubDeployRequest

Environment: string

Message: string

Ref: string

KubernetesClusters

Clusters: []string

Environments: []string

KubernetesConfigs

Configs: []*KubernetesConfig

KubernetesConfig

Name: string

Type: string

Path: string

Data: string

KubernetesServiceForm

ServiceName: string

ProjectName: string

Ports: []*KubernetesPort

Volumes: []*KubernetesVolume

Variables: []*KubernetesVariable

ConfigEnvConfigmap: bool

KubernetesDeployRequest

Cluster: string

Namespace: string

Environment: string

KubernetesPort

Name: string

Port: string

KubernetesVariable

Name: string

Value: string

KubernetesVolume

Name: string

MountPath: string

PvcName: string

PvcSizeGB: int32

GceDisk: string

Figure 6.2: Diagram of structures and dependencies of Go package
github.com/flowup/mmo/api. Every structure except APIService is generated from
the models in Protobuf definition. Interface ApiServiceServer is generated from RPC
methods in Protobuf definition too.

43

6.2 Implementation of the Frontend
Frontend is implemented in programming language Typescript using web application frame-
work Angular. Like mentioned in 5.2, Angular is using reusable components for building
application. Source code of the frontend is stored in the directory ui of the root of MMO
repository as shown in Figure 6.1. This directory contains directory api which contains
models generated from Swagger definition. Swagger definition is stored in the root of MMO
repository and it is generated from the Protobuf definition. Second directory that can be
mentioned is src which contains all source code related to Angular project – components
and dialogs. At the root of src directory is directory app, which is main component of the
application.

Library Angular Material2 is used for integrating Material Design into the application.
App Component has Material Toolbar, Material Navigation Drawer and component

based on the route that user has visited. This can be Overview Component, Deployment
Component or Plugins Component. Structure of components within the app component
can be seen in Figure 6.3.

app
overview ... Overview Component

...
deployment...Deployment Component

...
service..Service Detail Component

kubernetes............Dialogs for generating and editing Kubernetes resources
...

global-plugins.....................................Global Plug-ins Component
...

store State management of the application using ngrx store library
...

...

Figure 6.3: Source code of the Angular project’s components. Tree starts with main com-
ponent of application named app.

A library ngrx-store is used for managing the state of application3. How this library
works is described in Figure 6.4. Ngrx effects, reducers and store are all stored in store
directory of app component.

Each component consists of three files:

∙ HTML template

∙ Sass style file

∙ Typescript Component file

HTML template is used for defining how component should look like. With special di-
rectives, variables from the Typescript file can be used. HTML template also supports
more advanced features like conditions and loops. Style of HTML file is defined in Sass

2http://material.angular.io
3https://github.com/ngrx/platform

44

http://material.angular.io
https://github.com/ngrx/platform

file. Sass is an extension of CSS that support features like variables, nesting of the CSS
attributes, etc4. Typescript Component file is used for programming background logic of
the component, for example, accessing ngrx store and retrieving data from it.

Store

Effects

Component

API

Reducer

Component subscribes
 to store's observables

Effect fetches data

Dispatch action

Dispatch action

Dispatch action

Update store

Figure 6.4: ngrx state management is based on actions. Actions can also transport a
payload. Component is reading data from Store and can dispatch action that can affect the
state of Store. Effects are side effects that can be triggered by action and effect, for example,
can fetch data from API. Reducer is component that catches all actions and decides how
to change state of the Store based on the action.

4https://sass-lang.com/documentation/file.SASS_REFERENCE.html

45

https://sass-lang.com/documentation/file.SASS_REFERENCE.html

Chapter 7

Experiments

7.1 Time savings
Time savings that come from using user interface can be divided to two groups: time
savings from Kubernetes resource management and time savings from the deployment of
application from the user interface.

7.1.1 Time savings from Kubernetes resource management

Resources are usually copied from the examples of Kubernetes documentation or from dif-
ferent projects and then edited for intended purpose. Time can save be saved by generating
resources with MMO. Time savings will differ for each user. Users who have experience
with Kubernetes will save less time than unexperienced users. Another advantage of using
MMO generator is that generator uses tested templates so there will be no errors after
generation. User can bring some errors to resources when resources are copied from the
documentation or from the project.

We have two user test groups for this experiment:

1. Beginner user – user knows the basics of Kubernetes. He can create Kubernetes
resources based on Kubernetes documentation but he cannot check that resource is
correct. This user will have hard time when something in the resources is not correct
and he has to debug it.

2. Experienced user – user can create basic resources like Deployments and Services.
He can check that resource he created is correct (Ports, container image, volume
mounting, environment variables, etc.).

A task of the tested user is to create Kubernetes resource that contains Deployment and
Service. Application is using two ports – one for exposing gRPC server and second one for
exposing HTTP API. Application is storing data in the /opt/data and GCE disk (Google
Cloud Compute Engine disk) has to be mounted to that directory. Environment variable
named DB_USER has to be added with value postgres. Resource is created manually and
second time it is generated using the MMO generator. Task was marked as failed, when
user deployed three non-working configurations to Kubernetes.

Each testing group had three users. As shown in Figure 7.1, experienced user needed
averagely 4m 5s to manually create the resource. 1 user had typo in the resource that
was fixed after first deploy. Generation of the resource taken 1m 14s in average to the

46

experienced users and resources created in this way are all correct. Beginner users had
similar results when they generated the resources – difference was only little higher average
time. Beginner users had problem to create Kubernetes resources from scratch – average
time was over 17 min 49 sec but none of the created resources was correct.

Manual resource creation

MMO resource generation

Time (min:sec)
0:00 2:30 5:00 7:30 10:00 12:30 15:00 17:30 20:00

Experienced user Beginner user

�2

Figure 7.1: Chart showing the results of Kubernetes resources creation experiment

In the result, experienced Kubernetes users are able to generate Kubernetes resources
approximately 226 % faster. Beginner users are able to generate configurations that are
working out of the box so they much of their time and time of the DevOps engineers.

7.1.2 Time savings from using the MMO deployments

Time savings from using the MMO deployments come mainly from elimination of the mis-
takes that can be done when the application is deployed. Mistakes can happen easily when
deploying application cluster. Mistakes are more likely when multiple applications are de-
ployed to the different clusters and to different namespaces of the cluster. A result of the
survey in 3.7 says that the most made mistake is deploying to the different namespace.
Namespace must be provided via flag in kubectl tool and default namespace is selected
when it is not provided. In other cases, namespace may be mistyped or namespace of an-
other project can be typed by not paying attention. Mistake like this is not critical when
nothing is running in the targeted namespace. This can be critical when existing appli-
cation in mistaken namespace is put down by deploying different resources. This mistake
can cause finance losses when production is put down. Similar mistake can happen when

47

application is deployed to the different cluster. This is very likely when user is switching
between different clusters and he forgets to switch to cluster where he wants to deploy
application.

All these mistakes costs the user money or time. When no application is put down
by deploying in the wrong environment, we always have to remove deployed resource from
the environment. This can take various time depending on the status of environment. It
takes less time to fix deploy mistake in namespace or cluster where nothing is running. On
the other side, it may take long time to fix deploy mistake when application is deployed
in the namespace where another application is running. User must be careful that he will
not remove resources from original applications, because this can make application work
improperly.

7.2 Standalone Platform for Deploying Microservices Projects
This experiment consisted of building a prototype of a standalone platform for managing
microservice applications. The platform should be used for deploying applications after
they are builr and testet in a continuous integration tool. The platform should serve to
end-users, especially to developers and DevOps engineers.

The platform should be able manage projects and services. After creating the applica-
tion you can create service and configure each service. Configuration of the service consists
of similar options as those mentioned in Design section 5.1.1. We need information about
which ports are used by application, if an application uses some volumes to persist data,
which variables should be exported into the container, and which configurations should be
mounted into the container.

The platform should have a webhook endpoint that would be accessible to continuous
integration tools to deploy application into the cluster. Use-cases of the platform:

1. User signs in and creates project.

2. Services are added to project.

3. Each service is configured.

4. User configures cluster where application will run (Kubernetes cluster or Docker
Swarm cluster) and provides credentials to this cluster.

5. User will setup continuous integration system to notify the platform that some service
from the project should be deployed and information about changes is provided (can
be name of the Docker image).

6. Platform will deploy application after notification.

Application will use web application framework Angular for a frontend and Firebase for
a backend. Firebase is suitable for prototyping applications like this because of its simplicity
and number of features it provides. The most important feature that we will use is Firestore
which is real-time document database. The database will be used to store data about users,
their projects, and services that are in the project. Configurations of all services will be
also stored in Firestore. Storage in Firebase will be used for storing configurations that
will be deployed as ConfigMaps to Kubernetes. We will also use Firebase Authentification
for authenticating and authorizing users. Users will be able to sign-in using their GitHub

48

account. Each user should have access only to projects and services that he owns. Firebase
hosting will be used for hosting frontend of our platform. Last part of the Firebase that will
be used is Firebase functions. Functions serve as support functions for Firestore database.
We can create functions that will watch some resources in the database and trigger them
when some event happens. For example, this type of the event can be write to the database.
Firebase Functions should be used always when we have to do some operation that is CPU or
memory intensive, or when the operation should not be done on the application’s frontend.
The technologies used in this implementation are shown in Figure 7.2.

Frontend
Firestore

Storage

Authentification

Functions

OAuth

Figure 7.2: Application frontend is implemented using web application framework Angular.
Users can authenticate with their GitHub account using Firebase Authentification. Data
of the users are stored in the Firestore and Storage of Firebase. Firebase Functions are
supportive functions for Firestore database.

Each service has multiple settings – used ports, mounted volumes, exported environment
variables and used configurations. These settings are stored in Firebase Firestore database.
Configurations are uploaded to the Firebase Storage. For deployment, user needs API
key which is used for authentication and authorization. User can generate API key for his
application in project settings. Webhook endpoint is implemented using Firebase Functions.
When user sends deploy request to this endpoint, function will validate his API key and
append this deploy request to Firestore. There is another Firebase Function that watches
these deploy requests and does deployments according these requests. The deployment of
application is done over Kubernetes API. Kubernetes resources are created based on the
configuration of the service that should be deployed and information from the deploy request
– Docker image name. These resources are sent to Kubernetes API with the credentials
that are stored in the Firestore.

The application was implemented according to the design above. After doing user
testing, it has been found out that experience the platform provides is not sufficient. Exact
problems are:

49

∙ The application is just another platform that the developers and DevOps engineers
would have to visit and have some basic knowledge about it.

∙ The application’s feature that deploys application to the cluster on the webhook event
should be part of the continuous integration pipeline.

∙ Configuration of the services is not tied to the version of the services. To make this
possible, application’s configuration would have to be stored in the repository instead
of the platform’s Firebase.

Platform would be useful, but in the case that it would integrate also continuous in-
tegration and deployment tools so developers would use only one tool instead of the two.
Platform would have to be more advanced. Advanced options are necessary so applications
can be set up to run in different environments (production too). Platform should cover
stuff like monitoring, scaling, logging and more. Platform with this many features is big
project that is not realizable as a bachelor thesis. Development would need team of the
people and lot of planning.

7.3 User Experience
User experience tests were done to find out user experience flaws in application. First round
of the user tests revealed some serious bugs in the application. All of these bug were fixed.

The most serious bug was that deployed application was always deployed to the default
namespace of the Kubernetes, no matter which namespace was selected in the user interface.
The second bug was a problem with refreshing the user interface in the browser, which just
shown error “404 - Not found”. This problem was caused by Angular which uses path in the
browser for application routing. When browser path contained something after slash, HTTP
static file server returned error, because it had not found that file in the static files. Last bug
appeared when user tried to generate Kubernetes resource. Form with service configuration
was not filled because server crashed while it was reading MMO service configuration.

First round of the user tests also bring enhancement to generated Kubernetes resources.
Enhancement is adding healthcheck sidecar container to the Deployment of the gRPC
server. Kubernetes offers native healthchecking of the container, which is used for termi-
nating containers that cannot respond because they are unhealthy1.

Second round of user tests have brought the idea to generate Configmap environment
mappings and use them as environment variables in the Deployments. Some users men-
tioned in survey in 3.7 that they prefer] this approach. Second enhancement was loading of
the source environments in the Kubernetes Deployment section of the application. This will
save to users, because they do not have to check available environment in the application’s
repository.

1https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-
probes/

50

https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/

Chapter 8

Conclusion

The result of this thesis is a extension of the tool MMO that helps developers to deploy
applications to Kubernetes cluster. Extension of the tool is in the form of an user interface.
The most beneficial feature that came with the extension is generation of Kubernetes config-
urations for the deployment of applications. It is saving the precious time of both beginner
and advanced users of Kubernetes. Other feature is useful for deployment of application
using GitHub deployments or by direct deploy to Kubernetes cluster. The advantage of
this feature is reduction of mistakes done by Kubernetes users, where they deployed their
application to a different Kubernetes namespace or a different Kubernetes cluster.

MMO user interface can show much more information in comparison with command
line interface. It can be extended with features that MMO provides as a command line
interface tool. It could help the developer to focus his attention to the service that he is
developing. Whole new features are possible with user interface. For example, one of the
features can be running a service in a development mode, where source code of the service
is tested and the results of the tests are shown in the user interface. Another useful feature
would be watching source code and deploy application to Kubernetes cluster upon change.
This would be useful when MMO would integrate the tool skaffold mentioned in Chapter
4. This is not possible at the moment because skaffold is a new tool in early stages of
development and 4 alpha releases of the tool already rolled out between the first release
and finishing this thesis. All of these changes would need redesign of the MMO tool as a
whole to provide the best user experience to developers.

51

Bibliography

[1] Anonymous: Protocol buffers. [Online; visited 24/04/2018].
Retrieved from: https://developers.google.com/protocol-buffers/

[2] Anonymous: The Open Container Initiative. [Online; visited 03/13/2018].
Retrieved from: https://www.opencontainers.org/about

[3] Dua, R.; Raja, A. R.; Kakadia, D.: Virtualization vs Containerization to Support
PaaS. In 2014 IEEE International Conference on Cloud Engineering. March 2014.
pp. 610–614. doi:10.1109/IC2E.2014.41.

[4] Fowler, M.; Foemmel, M.: Continuous integration. Thought-Works) http://www.
thoughtworks. com/Continuous Integration. pdf. vol. 122. 2006: page 14.

[5] Humble, J.; Farley, D.: Continuous Delivery: Reliable Software Releases through
Build, Test, and Deployment Automation. Addison-Wesley Publishing Company.
2010. ISBN 0-321-60191-2.

[6] Kubernetes: Kubernetes. [Online; visited 04/10/2018].
Retrieved from: https://kubernetes.io

[7] Nelson, B. J.: Remote Procedure Call. PhD. Thesis. Pittsburgh, PA, USA. 1981.
aAI8204168.

[8] Newman, S.: Building Microservices: Designing Fine-Grained Systems. O’Reilly
Media. 2015. ISBN 978-1491950357.

[9] Rachel Potvin, J. L.: Why Google Stores Billions of Lines of Code in a Single
Repository. Communications of the ACM. vol. 59, no. 7. 7 2016: pp. 78–87.

[10] Red Hat, I.: Ansible documentation. [Online; visited 04/02/2018].
Retrieved from: http://docs.ansible.com

52

https://developers.google.com/protocol-buffers/
https://www.opencontainers.org/about
https://kubernetes.io
http://docs.ansible.com

Appendices

53

Appendix A

The Content of the Included
Memory Media

A memory media attached to this thesis contains following files and directories:

∙ mmo/ – a source code of tool MMO (parts that were designed and implemented
within this thesis are listed in Figure 6.1).

∙ mmo-demo/ – a MMO project for demonstrating functionality implemented in this
thesis.

∙ platform/ – a source code of platform that was created as an experiment in this
thesis.

∙ tex/ – LATEX source code of this thesis.

∙ README.md – a file that contains instructions for building and running tool MMO.

∙ thesis-print.pdf – a final version of this document for printing.

∙ thesis-wis.pdf – a final version of this document for submitting to WIS.

54

	Introduction
	Deploying Applications with Microservice Architecture to the Cluster
	Development of Microservice Applications
	Application Building and Distribution
	Deployment of the container applications

	Kubernetes
	Kubernetes Architecture
	Basic principles of Kubernetes
	Description of Kubernetes Workloads
	Description of the objects for network management
	Description of the other Kubernetes objects
	Storing Kubernetes configurations in the repository
	Survey about using Kubernetes
	Local Development

	Existing solutions for deployment of applications to Kubernetes
	Continuous Integration (CI) solutions
	Helm – package manager for Kubernetes
	Other existing solutions

	Design of the MMO Extension for Application Deployment
	Design of the Backend
	Design of the Frontend

	Implementation
	Implementation of the Backend
	Implementation of the Frontend

	Experiments
	Time savings
	Standalone Platform for Deploying Microservices Projects
	User Experience

	Conclusion
	Bibliography
	Appendices
	The Content of the Included Memory Media

