DESIGN AND IMPLEMENTATION OF NETWORK COLLECTOR

Jaroslav Bosela
Master Degree Programme (2), FEEC BUT
E-mail: xbosel00@stud.feec.vutbr.cz

Supervised by: Vaclav Oujezsky

E-mail: oujezsky @feec.vutbr.cz

Abstract: This article presents a part of our project focused on developing a network collector and
analyzer. It is a Python application used to collect and analyze NetFlow version 9 messages. With
this article, an underlying schema and code of the application are described.

Keywords: Analyzer, collector, network, NetFlow, python

INTRODUCTION

In today’s world, it’s essential to analyze and collect network traffic. Such analysis gives us impor-
tant information, which is needed for various functions and purposes. In the early stage of Internet
networks were analyses primarily used for better routing, network speed rising, and improvement for
the whole transmission. With the enormous growth of users and transmission point in today’s time,
the need for more extensive use of this information has risen. Analysis with this information has
begun to use in detection of security risk, expose weak spots in network and network behavior as
the entire thing. For this analysis, we use export network protocols, such a NetFlow [1] and IPFIX
(Internet Protocol Flow Information Export) [2], which are most common in use. These protocols
help network administrators and experts to detect vulnerable network nodes, their abnormal behavior,
or check atypical traffic run. Export network protocols also provide us information about inner and
outer incidents, improve the whole network process, and take care of a balanced load of the network.
This article focuses on Cisco’s network export protocol named NetFlow, in version 9 [3].

The output of NetFlow is a flow record. The most recent version of the NetFlow flow record format is
NetFlow version 9. The characteristic of the NetFlow Version 9 format is that it is template-based. A
template defines a collection of fields, with corresponding descriptions of structure and semantics [4].
The principle of reading and parsing data depending on the template is the most important work on
the collector, described in the following section.

NETWORK COLLECTOR

The NetFlow network collector is being developed in Python version 3. Currently, support for Net-
Flow messaging version 9 is under development. The development of NetFlow version 1 and 5
processing is now complete [5]. The program listens for incoming NetFlow reports on individually
selected port. The port number can be changed. The port number 4710 is selected by default. The
entire socket consists of all interfaces and addresses on the device and of the selected port number.

The program automatically stores information about a traffic to the sqlite3 database file. The database
file is deleted by default from the program’s beginning. The preservation of historical data in the
database can be changed with the configuration file.

189

2.1 THE PROCESSING OF NETFLOW 9

Designing and processing of NetFlow version 9 is considerably more difficult. In this version, dy-
namic templates are used to determine what will be contained in custom NetFlow messages. The
code is designed based on the standard and is structured into classes for clarity. The NetFlow header
is constant and includes information about the NetFlow version and templates, Figure 1.

class Header
def __ _init_ (self,data):

pack = struct.unpack ("!HHIIII", datal[:self.length])
self.version = pack[0]

self.count = pack [1]

self.uptime pack [2]

self.timestamp = pack[3]

self.sequence = pack [4]

self.source_id = pack [5]

Figure 1: Class for processing the packet header.

class Data_Flow_Set:
def __init__ (self, data, template):
pack = struct.unpack ("!HH", datal[:4])
self.template_id = pack[0]
self.length = pack([1l]
self.flows = []

offset = 4
template = templates[self.template_id]
padding_size = 4 - (self.length \% 4)

class Template_Field:
def __init__ (self, field_type, field_length):
self.field_type = field_type
self.field length = field_length

class Template_Flow_Set:
def __init_ (self, data):
pack = struct.unpack ("!HH", datal[:4])
self.flowset_id = pack[O0]
self.length = pack[1l]
self.templates = {}
offset = 4

class Export_Packet:
def __init__ (self, data, templates):
self.header = Header (data)
self.templates = templates
self.flows = []
offset = 20

Figure 2: Classes for processing the templates.

The Data_Flow_Set class, Figure 2, defines the sequence of data from the packet, which needs
to be unpacked and looked into it. The template_id is filled, with an identifier of the template
used in sequence, the 1ength field with a length of flow set, other fields are filed as RFC (Request
for Comments) definition says for format padding. The template field is a definition template by
identifier from the previous field and is used in the following class. The Template_Field class
defines type and length from template definitions, also the next defined Template_Flow_Set
class brings flow set template, which can be used for carrying other templates used in traffic flow.

190

import socketserver
import NetFlowV9_collector
import ExportPacket

def get_server(cls, host, port):
logging.info ("Listening on {}:{}".format (host, port))
server = socketserver.UDPServer ((host, port),cls)
return server

Figure 3: Algorithm to run the NetFlow collector.

The Export_Packet class describes the version of a packet that needs to be imported into the main
file, where it is used for export to final data. This class contains header data, template, and flow data
from previous classes.

The presented code introduces the main important parts of the classes and imports from the main file,
as NetFlow collector, socket server, which is used for listening on ports, and export packet with the
template, header, and flow data coming from exporter to collector.

The code presented in Figure 3 is used to start the socket listener on UDP (User Datagram Protocol)
port and to get exported data, the length of these data, source ports, and IP (Internet Protocol) address.

3 CONCLUSION

Within this article, a network collector has been introduced that is being developed in Python to enable
the processing of NetFlow messages in version 9. The basic concept of the network collector and its
properties and possibilities were introduced in the paper. Once the collector is complete, a program
extension will be developed to implement its own algorithms for detecting traffic anomalies.

ACKNOWLEDGEMENT

Research described in this paper was financed by the grant of the Ministry of the Interior of the
Czech Republic, Program of Security Research, V120192022135, PID VI3VS/746 “Deep hardware
detection of network traffic of next generation passive optical network in critical infrastructures”.

REFERENCES

[1] “Introduction to cisco ios netflow - a technical overview,” 2012. [Online]. Available:
http://www.cisco.com

[2] “Specification of the ip flow information export (ipfix) protocol for the exchange of flow
information,” 2013. [Online]. Available: https://tools.ietf.org/html/rfc7011

[3] J. Bosela, “Implementation of internet protocol in python,” Master’s thesis, Brno University of
Technology, 2019.

[4] “Cisco systems netflow services export version 9,7 2004. [Online]. Available:
https://www.ietf.org/rfc/rfc3954.txt

[5] “Gdp - netflow collector,” 2016. [Online]. Available: nsr.utko.feec.vutbr.cz/software.php

191

