
Simulation of the acoustic wave propagation using a meshless method

J. Bajko1a, P. Niedoba1, L. Čermák1, and M. J́ıcha1
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Abstract. This paper presents numerical simulations of the acoustic wave propagation phenomenon

modelled via Linearized Euler equations. A meshless method based on collocation of the strong form

of the equation system is adopted. Moreover, the Weighted least squares method is used for local

approximation of derivatives as well as stabilization technique in a form of spatial filtering. The

accuracy and robustness of the method is examined on several benchmark problems.

1 Introduction

Numerical study of sound generation and propaga-

tion phenomenon plays a major role in Computational

Aeroacoustics (CAA), especially in predictions of sound

generated by turbulent flows and its environmental

consequences. This paper is aiming to contribute to

the development of suitable methods for sound prop-

agation simulations governed by the Linearized Euler

equations (LEE), cf. [1,2].

Various numerical mesh-based methods, cf. [3,4],

have been investigated in this context, but there is also

growing interest in meshless methods, cf. [5–11], due

to their potential advantages. Depending on applica-

tions, these methods can be superior in accuracy, sta-

bility, robustness and can deal with complex geome-

tries, multiphase flow, problems with free boundaries

and moving objects. In this paper, the development

of a meshless method adjusted for linear systems is

outlined.

Firstly, LEE as a linear hyperbolic system is in-

troduced, followed by the Weighted Least SQuares

(WLSQ) method which is employed in two ways - for

local interpolation of acoustic variables and for spatial

filtering, cf. [12,13]. The WLSQ filtration technique

serves primarily for the stabilization of the numerical

scheme and can be utilized under the assumption that

the governing equations are linear and the solution is

smooth enough.

Finally, abilities of the method are demonstrated

on various benchmark problems for the acoustic wave

propagation, cf. [14–16]. The method is tested on un-

structured point distributions and several types of bound-

ary conditions (BC) are implemented, namely the non-

reflecting BC realized by the Perfectly Matched Layer

(PML), cf. [17–19].
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2 Linearized Euler equations

The hyperbolic non-homogeneous LEE represent one

of the suitable models for the acoustic wave propa-

gation phenomenon. We consider the 2D matrix form

(x = (x, y) ∈ Ω, t > 0) written as

∂w′

∂t
+ A1(w0)

∂w′

∂x
+ A2(w0)

∂w′

∂y
= S, (1)

where

w′(x, t) =

⎛
⎜⎜⎝
ρ′(x, t)
u′(x, t)
v′(x, t)
p′(x, t)

⎞
⎟⎟⎠ , w0(x) =

⎛
⎜⎜⎝
ρ0(x)

u0(x)

v0(x)

p0(x)

⎞
⎟⎟⎠ , (2)

Vector function w′(x, t) denotes the time dependent

acoustic variables (density, velocity components and

pressure) and w0(x) steady mean flow variables cor-

responding to the underlying flow field.

Jacobian matrices of the system (1) are given as

A1 =

⎛
⎜⎜⎝
u0 ρ0 0 0

0 u0 0 1
ρ0

0 0 u0 0

0 γp0 0 u0

⎞
⎟⎟⎠ ,A2 =

⎛
⎜⎜⎝
v0 0 ρ0 0

0 v0 0 0

0 0 v0
1
ρ0

0 0 γp0 v0

⎞
⎟⎟⎠ , (3)

where γ = 1.4 is the ratio of specific heats and S =

S(x, t) represents the acoustic source term, cf. [1,2].

The initial–value boundary problem for LEE then

consists of the equation system (1) with the initial and

boundary condition

(IC) w′(x, 0) = w′in(x), x ∈ Ω, (4)

(BC) w′(x, t) = w′Γ (x, t), x ∈ Γ = ∂Ω, t > 0. (5)
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3 Meshless method with WLSQ filtering

In the context of meshless methods we distiguish be-

tween the global cloud Ω̂ defined as a set of n points

discretizing a domain of interest Ω and local clouds

Ω̂i, i = 1, . . . , n that are calculated in the pre-processing

step of the simulation. An i-th local cloud usually con-

sists of a set of ni neighbours chosen by a certain rule.

Practically, efficient algorithms for nearest neighbor

search such as the k-d tree are used. Therefore, the

number of points ni is controlled by the radius of an

open ball or it can be prescribed manually.

3.1 Weighted Least Squares Method

For every local cloud Ω̂i we wish to find a local ap-

proximation ŵ : Ωi → R in the form

ŵ(x) =
m∑
l=1

αlpl(x) = pT (x)α (6)

where

pT (x) = (p1(x), p2(x), . . . , pm(x)) (7)

and

α = (α1, α2, . . . , αm)
T ∈ R

m. (8)

Functions pl : R
d → R, l = 1, . . . ,m, form a basis B of

an approximation space F = span(B). The complete

(multivariate) polynomial basis of degree ν, cf. [5,10]

is adopted in this work. For d = 2 and ν = 3, the basis

B =
{
1, x, y, x2, xy, y2, x3, x2y, xy2, y3

}
. (9)

3.2 WLSQ approximation

It is well known that WLSQ method finds the coeffi-

cients α in (6) by minimizing the objective function

J(α) with weights

J(α) = (Pα−w)
T
Φ (Pα−w) , (10)

where P denotes the moment matrix of type (ni×m),

Φ the diagonal weight matrix of order ni and w the

vector of given function values. The weighting function

φ : Rd → R prescribes the contribution of every point

to J(α) in the local cloud according the distance to

the star point xi1, cf. [10].

Solution to the system of normal equations

PTΦPα = PTΦw. (11)

then yields

α =
(
PTΦP

)−1
PTΦw (12)

assumming the invertibility of the above mentioned

matrix. We suppose that the number of points ni in

Ω̂i is greater than the number of basis functions m,

i.e. ni > m holds.

3.3 WLSQ interpolation

By adding the interpolation constraint

ŵ(xi1) = w1, (13)

to the Normal equations (11), the value w1 is repro-

duced at the star point xi exactly. This modification

can be gently implemented and allows to use theWLSQ

method for multiple purposes, namely the spatial dis-

cretization of the governing equations (interpolation)

as well as numerical filtering (approximation).

3.4 Spatial discretization of LEE

In order to obtain the semi–discrete form of governing

equations (1), the collocation method is adopted, i.e.

the expression

[
∂ŵ′

∂t
+ A1

∂ŵ′

∂x
+ A2

∂ŵ′

∂y
− S

]
x=xi

= 0 (14)

has to be satisfied. Acoustic variables ŵi are locally

approximated using WLSQ method with interpolation

condition described in section (3.1).

The collocation then leads to a system of ordinary

differential equations (ODE) in form

dwi(t)

dt
= RHSi(t) + S(xi, t) (15)

where RHSi(t) contains contributions to the right-

hand side from all neighbours of the star point xi, cf.

[7,10,11]. The interpolation condition in the WLSQ

approach allows to simplify the left side of the equa-

tion system (15) avoiding the necessity to solve the

system of n linear equations. Therefore, using WLSQ

with interpolation condition greatly reduces the com-

putation costs and improves stability, cf. [10,11]. The

system of ODE (15) is then solved with high order low-

dissipation and low-dispersion runge-kutta scheme op-

timized for wave propagation problems, cf. [20].

3.5 Numerical filtering

The numerical scheme (15) can be viewed as a gen-

eralized finite differences scheme based on central dif-

ferences which is not stable in general, cf. [8,9]. For

linear problems, e.g. the acoustic wave propagation de-

scribed by LEE, the stabilization can be gently achieved

in the context of WLSQ method used as a filter. In

general, filters based on least squares minimization are

known as Savitzky–Golay filters, cf. [12,13]. It is not

only the stability, but also robustness and accuracy of

the meshless method is then affected by the WLSQ

filter.
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The i-th local cloud Ω̂i is utilized for filtering after

every time step in a way that wi(t) ≈ w′(xi, t) is

replaced by the filtered value

wi(t) = pT (xi)α (16)

at the star point xi.

3.6 Boundary conditions

Firstly, solid–wall slip BC is prescribed at points where

the acoustic waves should be reflected. The acoustic

velocity vector v′ = (u′, v′) at the boundary point

x ∈ Γ is forced to stay orthogonal to the normal vec-

tor n = (nx, ny), i.e.

v′ · n = 0. (17)

Secondly, non–reflecting BC is prescribed at do-

main boundaries, where waves should leave the com-

putational domain without any reflection. It can be

achieved artificially by designing a layer of points around

the domain of interest that will affect the solution in

such a way that the major spectrum of incoming waves

will dissipate. The PML is implemented in our numer-

ical experiments, cf. [17–19].

4 Numerical experiments

4.1 2D Wall-reflected acoustic pulse problem

This benchmark problem is designed to verify the im-

plementation of the wall boundary condition and the

accuracy and stability of a numerical method when a

reflection of an acoustic wave from the solid wall oc-

cur. Let us consider a 2D domain Ω = (−100, 100) ×
〈0, 150) that is depicted in Fig. 1 together with an

initial pulse located at (xp, yp) = (0, 25). The wall

boundary condition is prescribed at line y = 0. We

suppose the underlying medium at rest, which implies

that the mean flow velocity equals zero and therefore

the Mach number M = 0 and for w0 it holds

ρ0 = 1, u0 = v0 = 0, p0 =
ρ0
γ

=
5

7
. (18)

The Initial-value boundary problem consists of the

equation system (1) with the source term S = 0, above

mentioned boundary conditions and initialized by the

initial condition w′(x, y, 0) given as follows

w′in(x, y) = ε exp(−κr2p) (1, 0, 0, 1)T , (19)

where the radius rp =
√
(x− xp)2 + (y − yp)2 and

κ = (ln 2)/b2. The amplitude and the half–width of

the acoustic initial pulse are determined by ε = 1 and

b = 5, respectively.

x

y

200

150

25

Fig. 1. Rectangular domain Ω, wall (solid line) and ex-

ternal boundary (dashed line).

4.1.1 Numerical solution

Results of the acoustic wave simulation in terms of

the acoustic pressure contours are plotted ase a series

of Fig. (2–5) at particular times T = 10, 25, 50, 75.

The time integration was performed with time step

dt = 0.025 that corresponds to the unstructured point

distribution with n = 36006 number of points.
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Fig. 2. Ac. pressure p′(x, y, T ) contours at time T = 10.

The comparison of the acoustic pressure p′(x, y, T )
along the line x = 0 and analytical solution at time

T = 75 is shown in Fig. 6.

4.2 2D Convected acoustic monopole

The domain of interest for the following benchmark

problem is simple square Ω = (−100, 100)2 extended

by the PML Ωe, cf. Fig. 7. Furthemore, stretching of

points towards outlet boundaries and artificial dissipa-

tion is applied in order to suppress all incoming waves

and eliminate spurious reflections.
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Fig. 3. Ac. pressure p′(x, y, T ) contours at time T = 25.
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Fig. 4. Ac. pressure p′(x, y, T ) contours at time T = 50.
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Fig. 5. Ac. pressure p′(x, y, T ) contours at time T = 75.
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Fig. 6. Ac. pressure p′(x, y, T ) along the line x = 0.

x

y

Ωe

M0 = 0.5

100

100

50

50

Fig. 7. Square domain Ω, PML layer Ωe (shaded region)

and external boundary (dashed line).

We will consider subsonic underlying mean flow in

x-direction with Mach number M0 = 0.5 as well as

supersonic flow with M0 = 1.5. In this example, the

acoustic source term on the right-hand side of the sys-

tem (1) is the periodic perturbation of acoustic density

and pressure at the origin xs = ys = 0 which is given

as

S(x, t) = e−α((x−xs)
2+(y−ys)2) sin(ωt)(1, 0, 0, 1)T

(20)

where α = ln(2)/2, amplitude ε = 0.5 and angular

frequency ω = 2π/30.

The temporal computation was performed with

time step dt = 0.1, number of points n = 50181 irregu-

larly distributed and stretched in the PML. Contours

of the acoustic pressure p′(x, y, T ) at time T = 270

for the subsonic case are shown in Fig. 8 and for the

supersonic case in Fig. 9. Waves moving in the PML

layer clearly dissipate and there are no spurious waves

returning to the domain of interest.
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Fig. 8. Subsonic flow - acoustic pressure p′(x, y, T ) con-

tours at time T = 270.
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Fig. 9. Supersonic flow - detail of the acoustic pressure

p′(x, y, T ) contours at time T = 270.

4.3 2D Acoustic monopole in a sheared mean flow

Prescribing the velocity components in (18) in form

u0(x, y) = umax tanh(2y/δ), v0 = 0 (21)

we get the non-constant underlying flow known as

sheared mean flow, cf. [1,15]. In this example, the peak

velocity is taken as umax = 0.5 and the shear layer

thickness δ = 150. The convection velocity profile is

depicted in Fig. 10.

Instantaneous acoustic pressure contours at time

T = 270 are plotted in Fig. 11.

5 Discussion

Linearity of governing equations (LEE) and therefore

the absense of shock waves and strong disturbances
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Fig. 10. Velocity profile u0(x, y)
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Fig. 11. Acoustic pressure p′(x, y, T ) at time T = 270.

in the solution allowed to develop a new stabilization

technique in a meshless framework. Instead of the up-

wind approximation of derivatives widely used, e.g. in

Finite volume methods, the stability of the meshless

method was achieved by the WLSQ filtering of the

numerical solution after each time step.

The method was tested on acoustic benchmark

problems, such as the 2D wall bounded acoustic pulse

problem and the acoustic monopole in a free stream

and sheared mean flow. In order to suppress waves

leaving the domain, the non-reflecting boundary con-

dition in form of the PML was sucessfully utilized,

cf. Fig. 8. To conclude, the method proved its ability

to solve the wave propagation problems governed by

LEE in various settings and is prepared for further

applications.
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